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Widespread use of alternative hybrid powertrains currently appears inevitable and many
opportunities for substantial progress remain. The necessity for environmentally friendly
vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign
oil and climate change, has led to significant investment in enhancing the propulsion
portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have
attracted considerable attention due to their potential to reduce petroleum consumption
and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially
appealing for short daily commutes with excessive stop-and-go driving. However, the
high costs associated with their components, and in particular, with their energy storage
systems have been significant barriers to extensive market penetration of PHEVs. In the
research reported here, we investigated the implications of motor/generator and battery
size on fuel economy and GHG emissions in a medium duty PHEV. An optimization
framework is proposed and applied to two different parallel powertrain configurations,
pretransmission and post transmission, to derive the Pareto frontier with respect to
motor/generator and battery size. The optimization and modeling approach adopted here
facilitates better understanding of the potential benefits from proper selection of motor/
generator and battery size on fuel economy and GHG emissions. This understanding can
help us identify the appropriate sizing of these components and thus reducing the PHEV
cost. Addressing optimal sizing of PHEV components could aim at an extensive market
penetration of PHEVs. [DOI: 10.1115/1.4023334]
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1 Introduction

1.1 Motivation. Hybrid electric vehicles (HEVs) have shown
the potential to achieve greater fuel economy than vehicles pow-
ered only by internal combustion (IC) engines (conventional
vehicles) [1–6]. This capability is mainly attributable to (1) the
potential for downsizing the engine, (2) the potential for recovering
energy during braking and thus recharging the energy storage unit,
and (3) the ability to minimize the operation of the engine in ineffi-
cient brake specific fuel consumption regimes. In addition, hybrid-
ization of conventional powertrain systems allows elimination of
near idle engine operation and thus enables direct fuel economy
enhancement [3,4]. A typical HEV powertrain configuration con-
sists of the fuel converter (engine), the electric machines (motor
and generator), the energy storage system (battery), the torque cou-
pler, and the transmission. Depending on the driving mode (e.g.,
cruising or braking), either a positive or a negative torque is
demanded from the engine. The power available from the electric
machine is regulated by adjusting its torque such that it can be ei-

ther positive or negative depending on the operating mode as des-
ignated by the power management control algorithm. In the motor
mode, the electric machine contributes power to the driveline by
drawing electrical energy from the energy storage unit. In the gen-
erator mode, the electric machine absorbs power from the driveline
and charges the energy storage unit. In cruising, positive power is
demanded at a fixed torque and speed. In braking, negative torque
is applied by the electric machine (e.g., generator), which absorbs
the maximum possible amount of energy imposed by generator
and battery constraints. Above this limit, brake friction is required
to convert any excess kinetic energy to heat.

The automotive industry has recognized that widespread use of
alternative hybrid powertrains is currently inevitable and many
opportunities for substantial progress remain [7]. The necessity
for environmentally conscious vehicle designs in conjunction with
stringent emissions regulations has led to significant investment in
enhancing the propulsion portfolio with new technologies.
Recently, PHEVs have attracted considerable attention [8].
PHEVs are hybrid vehicles with rechargeable batteries that can be
restored to full charge by connecting a plug to an external electric
wall socket. A PHEV shares the characteristics of both an HEV,
having an electric motor and an IC engine, and an all-electric ve-
hicle, having a plug to connect to the electrical grid. It is espe-
cially appealing in situations where daily commuting is over short
distances [9]. Studies have shown that about 60% of U.S. passen-
ger vehicles travel less than 30 miles each day [10]. However, the
high costs associated with their energy storage systems have been
significant barriers to extensive market penetration of PEVs. The
research presented here aims at enhancing the understanding of
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the impact of motor/generator and battery size of a PHEV on fuel
economy and GHG emissions. This understanding can help us
identify the right sizing of these components, and thus reducing
the PHEV cost. Addressing optimal sizing of PHEV components
could aim to an extensive market penetration of PHEVs.

1.2 Literature Overview. PHEVs have the potential to
reduce petroleum consumption and greenhouse gas (GHG) emis-
sions by means of sophisticated control schemes. State-of-the-art
research and development and future trends in the modeling,
design, control, and optimization of energy-storage systems for
electric vehicles, HEVs, fuel cell vehicles, and PHEVs were pre-
sented in Ref. [11]. Moreover, a detailed review and classification
of current control strategies for PHEVs are provided in Ref. [12].

Under the average mix of electricity sources in the United
States, PHEVs can be driven with lower operating costs and fewer
GHG emissions per mile when powered by electricity rather than
by gasoline [13]. Most PHEVs on the road today are passenger
cars, but there are also PHEV versions of commercial vehicles,
utility trucks, buses, and military vehicles. Realizing the optimal
size and operation of the motor, generator, and battery in HEVs
and PHEVs is essential. Guzzella and Amstutz [14] presented a
tool to support the systematic design and optimization procedures
in HEVs with the aim of realizing the optimal parameterization
and power management control among the subsystems (e.g.,
motor, generator, battery, and engine). Wang et al. [15] formu-
lated an optimization problem for minimizing fuel consumption in
PHEVs with respect to the size of the energy storage system.
Sung Chul Oh [16] developed dynamic models for electric motors
to analyze several HEVs through hardware-in-the-loop. Inoa and
Wang [17] studied efficient charging strategies of a Li-ion battery
intended for PHEVs. Tara et al. [18] developed a simulation-
based optimization framework to realize the optimal sizing of the
energy storage system in HEVs and PHEVs.

Various optimization approaches focusing on minimizing fuel
consumption and emissions in hybrid vehicles with respect to
component sizing and powertrain architecture have been reported
in the literature. Previous research efforts include the optimization
study conducted by Triger et al. [19] to identify the optimal
engine size in an HEV. Aceves et al. [20] demonstrated the gain
in fuel economy by optimizing two series hybrid concept vehicles,
one operating with a stoichiometric engine and the other with a
lean-burn engine. Moore [21] utilized a set of five linked spread-
sheets to size powertrain components based on continuous and
peak power demand. Zoelch and Schroeder [22] employed
dynamic optimization to compute optimal engine torque, electric
motor torque, and transmission gear ratios for a parallel HEV.
Assanis et al. [23] demonstrated an optimization framework for
the design of a parallel hybrid electric system for a midsize pas-
senger car, linking a high fidelity engine model with the overall
vehicle system. Fellini et al. [24] presented a modular simulation
and design environment where optimization algorithms can be uti-
lized to study a variety of hybrid powertrain configurations.
Recently, Shiau et al. [25] presented an optimization model inte-
grating vehicle simulation polynomial metamodels, battery degra-
dation data, and U.S. driving data; the proposed model identifies
optimal vehicle designs and allocation of vehicles to drivers for
minimum net life-cycle cost, GHG emissions, and petroleum con-
sumption under a range of scenarios. Yusaf [26] determined the
optimum operation conditions for a diesel engine used as a hybrid
power unit. Crane and Bell [27] presented a design concept that
maximizes the performance for thermoelectric power generation
systems in which the thermal power to be recovered is from a fluid
stream subject to varying temperatures and a broad range of
exhaust flow rates.

Optimizing the design of a hybrid vehicle is tightly coupled with
the power management control algorithm [28]. The latter deter-
mines the power split demanded by the driver between the thermal
(engine) and electrical paths (electric machine and energy storage

unit). Bumby and Forster [29] used a direct search technique to
obtain an optimal control by minimizing the energy path through
the driving cycle with respect to the torque split and gear ratio con-
trollable variables. The optimized control was followed by paramet-
ric studies to optimize component size. Capata and Lora [30]
presented a power management unit for a low emissions turbo
hybrid electric vehicle in conjunction with the components of the
propulsive system. Filipi et al. [31] proposed a method for the com-
bined optimization of design and power management for a hydrau-
lic hybrid Class VI truck. The method establishes a sequential
optimization framework suitable to yield an optimal solution fulfill-
ing a given vehicle’s mission. Another simultaneous optimization
of HEV component sizing and control strategy was presented in
Ref. [32] through a multiobjective self-adaptive differential evolu-
tion algorithm; the intention of this work was to provide a set of
Pareto optimal solutions. Nino-Baron et al. [33] proposed an opti-
mization algorithm to determine the torque and speed reference sig-
nals for the engine–generator subsystem that achieve maximum
efficiency in a series HEV. Syed et al. [34] proposed a nonlinear
proportional–integral controller using the fuzzy control paradigm
for a power-split HEV to achieve improved engine speed behavior.
Martinez et al. [35] introduced a control strategy to manage the
energy in an HEV by using fuzzy logic. Sezer et al. [36] developed
the equivalent consumption minimization strategy for series HEVs
by simultaneously facilitating the optimization of fuel consumption
and multiple emission components.

The research objective here and in related work by the author
[37] was to investigate the impact on fuel economy and GHG emis-
sions of varying the size of two key PHEV components (motor/gen-
erator and battery). In this paper, we propose an optimization
framework that has implications for motor/generator and battery
size in a medium duty PHEV. Our approach utilizes a set of poly-
nomial metamodels, which are constructed as functions of the key
design variables of interest. The polynomial construction facilitates
analytical investigation of trends and reduction of computation
times. We apply this approach to two different parallel powertrain
configurations, pretransmission and post transmission, and derive
the optimal design with respect to motor/generator and battery size.
Finally, we compare the fuel economy and GHG emissions poten-
tials of conventional and PHEV configurations with equivalent size
and performance under the same driving conditions.

The remainder of the paper proceeds as follows. In Sec. 2, we
summarize the steps required to model the conventional and two
PHEV parallel configurations in Autonomie. In Sec. 3, we
describe the development of a set of polynomial metamodels that
reflect the influence of our key design variables (motor/generator
and battery size) and propose our optimization framework. In Sec.
4, we present optimization results and analysis from our simula-
tions, and in Sec. 5, we present overall conclusions.

2 Vehicle System Modeling

For the evaluation of various vehicle performance indices
required for our optimization study, we employed Autonomie [38].
Autonomie is a MATLAB/SIMULINK simulation package for powertrain
and vehicle model development developed by Argonne National
Laboratory. With a variety of existing forward-looking powertrain
and vehicle models, Autonomie can support the evaluation of new
technologies for improving fuel economy through virtual design
and analysis in a math-based simulation environment.

This particular medium duty vehicle was intended for a specific
duty cycle representative of typical operation that corresponds to
the JE-05 driving cycle, illustrated in Fig. 1. Consequently, the
two PHEV parallel configuration models were subjected to this
cycle. To utilize the full energy storage potential of the energy
storage system, the vehicle models were run over nine consecutive
JE-05 cycles. Thus, both full charge-depleting (CD) and charge-
sustaining (CS) operation were achieved.

Three basic powertrain configurations were analyzed as part of
this study and are summarized in Tables 1 and 2. For each
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respective powertrain variant, certain components were kept con-
stant. Table 1 outlines all of the common components present in
each powertrain configuration, including the conventional vehicle.
Table 2 outlines common powertrain components utilized only for
the pretransmission and post transmission parallel PHEV
architectures.

We adopted a blended supervisor control strategy that uses a
mix of the electric motor and engine to power the vehicle in CD
mode. For all the PHEV simulations, the state of charge (SOC) of
the vehicle was allowed to fluctuate with a delta SOC of 60%
(80% initial SOC depleting to 20% SOC). Certain constraints
were placed on the control strategy for the desired operation of
the vehicle: (a) the powertrain had to operate as an all-electric ve-
hicle below vehicle speeds of 25 mph during CD operation and (b)
the engine had to turn on at vehicle speeds greater than 45 mph
for drivability reasons.

2.1 Conventional Configuration. A conventional powertrain
was implemented to serve as a point of reference. The conventional
vehicle features a basic two-wheel drive configuration with auto-
matic transmission and torque converter. Standard transmission
shift schedules based on accelerator pedal position (driver demand)
and current vehicle speed were used.

2.2 Pretransmission Parallel Configuration. The pretrans-
mission parallel configuration builds on the conventional architec-
ture by adding a high voltage traction drive and energy storage
system at the interface of the engine. In this implementation, the
torque converter is replaced by a clutch, and the motor/generator
is used for speed matching during shifts. Thus, this configuration
resembles an operation with automated manual transmission. One
potential advantage of this architecture over the post transmission
variant is that vehicle idle charging is possible. If this vehicle is
subjected to long periods of idle, then turning the engine on and
charging can easily replenish the SOC of the energy storage
system.

2.3 Post Transmission Parallel Configuration. The post
transmission parallel configuration builds on the conventional
architecture by coupling a high voltage traction drive and energy
storage system between the transmission and final drive. This is
necessary to fully realize the operating envelope of the traction
motor and ensure the performance of this variant is not compro-
mised over the prescribed drive cycle. During all-electric opera-
tion, the transmission is shifted into neutral so that drag torque
from the engine is avoided. One benefit of this architecture over
the pretransmission variant is regenerative braking efficiency is
maximized as a result of the physical location of the traction
motor.

It is important to note that because the PHEV variants of the
standard powertrain configuration retain all of the baseline com-
ponents (e.g., transmission, final drive, engine, chassis, and
wheels), it is expected that during highway operation the fuel effi-
ciency of the PHEV will most likely be slightly less than the con-
ventional vehicle due to the mass penalty imposed by the addition
of the high voltage traction components.

3 Optimization Framework

To formulate the optimization problem analytically and reduce
computation time, a set of polynomial metamodels was con-
structed to reflect the responses produced by changes in the design
variables (e.g., motor/generator and battery size). Although neural
networks can also by used for the evaluation of the objective func-
tion and constraints, with the use of polynomial metamodels, we
can express the problem analytically and get a better understand-
ing about the tradeoffs between fuel economy and emissions with
respect to the size of the motor/generator and battery. A metamo-
del is a model of a model, which is used to approximate a usually

Fig. 1 Japanese driving cycle

Table 1 Vehicle specification

Description Characteristics

Vehicle Mass 14,969 kg
Body length 10.36 m
Frontal area 6.32 m2

Coefficient of drag 0.65

Engine Configuration V8
Displacement 6.4 L

HP 230
Torque 312 nm

Rated speed 2800 rpm
Operating torque speed 1400–1800 rpm

Dry weight 556 kg

Transmission 1st gear ratio 3.51
2nd gear ratio 1.9
3rd gear ratio 1.44
4th gear ratio 1
5th gear ratio 0.74
6th gear ratio 0.64

Reverse 5.09

Torque converter (TC) TC stall torque ratio 1.91
Starter Power 25 kW

Table 2 Plug-in hybrid electric vehicle component
specifications

Description Characteristics

Battery Nominal capacity 41 Ah
Nominal voltage 3.6 V

Maximum charging/discharging
rate

C/5

Number of cells in series
per module

118

Number of cells in parallel
per module

1

Energy per module SOC
operating range

5.2 kWh
80%–20%

Motor/generator Range of continuous
power used

60–120 kW

Final drive Ratio 5.57
Torque converter (TC) TC stall torque ratio 1.91
Reduction gear Ratio 2.13
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expensive analysis or simulation process; metamodeling refers to
the techniques and procedures to construct such a model [39]. In
our optimization framework, a set of polynomial metamodels was
used to express the objective function and the constraints. In par-
ticular, fuel economy, GHG emissions, and 0–30 mph and
0–60 mph acceleration times were evaluated through simulation in
Autonomie over a grid of values for motor/generator and battery
sizes. Then multivariate polynomial functions were fit to the data
using least squares.

3.1 Regression Model. The least squares method is a funda-
mental approach for parameter estimation. If the model has the
property of being linear in the parameters then the least squares
estimate can be calculated analytically [40]. We assume that the
model, we wish to identify is in the form

ŷðiÞ ¼ u1ðiÞ � a1 þ u2ðiÞ � a2 þ � � � þ unðiÞ � an (1)

where i ¼ 1; 2; :::; n; n 2 @ indexes the number of simulation data
points; ŷ is the output of the model; a1; a2; :::; an are the parame-
ters of the model to be determined; and u1;u2; :::;un are known
functions that may depend on other known variables. The model
in Eq. (1) can be written in the vector form as follows:

ŷðiÞ ¼ uTðiÞ � a (2)

where uTðiÞ¼ u1ðiÞ u2ðiÞ ::: unðiÞ½ � and a¼ a1 a2 ::: an½ �T . The
model in Eq. (1) is the regression model, and the functions
ui;i¼1;2;:::;n are called the “regression variables.” The simula-
tion data points derived from Autonomie correspond to pairs of
the measured and regression variables ðyðiÞ;uðiÞÞ;i¼1;2;:::;f
n;n2@g. The problem is formulated so as to minimize the follow-
ing least squares cost function with respect to the parameters of
the model a1;a2;:::;an:

Rða; nÞ ¼ 1

2

Xn

i¼1

yðiÞ � ŷðiÞ½ �2 ¼ 1

2

Xn

i¼1

yðiÞ � uTðiÞ � a
� �2

(3)

The measured variable y is linear in parameters ai, and the cost
function is quadratic. Consequently the problem admits an analyt-
ical solution. Let Y and Ŷ be the vector of the measured variables
and output of the model. respectively

Y ¼ yð1Þ; yð2Þ;…; yðnÞ½ �T (4)

and

Ŷ ¼ ŷð1Þ; ŷð2Þ;…; ŷðnÞ½ �T (5)

and let E be the vector of the error eðiÞ between the measured
variable and output of the model

E ¼ eð1Þ; eð2Þ;…; eðnÞ½ �T (6)

where eðiÞ ¼ yðiÞ � ŷðiÞ ¼ yðiÞ � uTðiÞ � a. Substituting Eq. (6) in
Eq. (3), the cost function can be written as

Rða; nÞ ¼ 1

2

Xn

i¼1

eðiÞ2 ¼ 1

2
Ek k2

(7)

Our objective is to derive the vector of the model parameters a
that makes the error be equal to zero, that is

E ¼ Y� Ŷ ¼ Y�U � a ¼ 0 (8)

where UðnÞ ¼ uTð1Þ uTð2Þ ::: uTðnÞ½ �T . Consequently, the
solution of the least squares problem is given by solving Eq. (8)

Y ¼ U � a,

UT � Y ¼ UT �U � a,

ðUT �UÞ�1 �UT � Y ¼ ðUT �UÞ�1 � ðUT �UÞ � a,

a ¼ ðUT �UÞ�1 �UT � Y

(9)

If the matrix UTU is nonsingular, then the solution of Eq. (9) is a
unique minimum for the least squares problem [40].

3.2 Optimization Objective Function and Constraints. In
our optimization problem formulation, the vector of the design
variables x consists of the motor/generator size, x1, and the battery
size, x2. The set of polynomial metamodels is a function of the
vector x. A cubic fitting function of the following form provides
an appropriate fitting to the discrete simulation data points [39]
for the PHEV performance indices (1) fuel economy,
ffuel economy(mpg); (2) GHG emissions, fCO2

(kg-CO2); (3)
0–30 mph acceleration time, t0�30 (s); and (4) 0–60 mph accelera-
tion time, t0�60 (s)

f ðx1; x2Þ ¼ a1x3
1 þ a2x3

2 þ a3x2
1x2 þ a4x1x2

2 þ a5x2
1 þ a6x2

2

þ a7x1x2 þ a8x1 þ a9x2 þ a10 (10)

To identify the appropriate order of polynomial metamodel that
fits the discrete simulation data points well, the norm of residuals
given by the following was used

rk k ¼
Xn

i¼1

yðiÞ � ŷðiÞð Þ2
 !1=2

(11)

The norm of residuals for each model corresponding to the
PHEV performance indices were plotted against the order of the
polynomial metamodel, as shown in Figs. 2–5. In all cases, a third
order polynomial yields the smallest value of the norm of resid-
uals, and a higher order does not seem appropriate to fit the simu-
lation data.

The polynomial coefficients of the regression model used for
each of the output values to fit a set of discrete simulation data
points over a grid of values were derived using least squares. The
vector of known functions, uT , in Eq. (10) is

uTðiÞ ¼ ½x3
1ðiÞ x3

2ðiÞ x2
1ðiÞ � x2ðiÞ x1ðiÞ � x2

2ðiÞ x2
1ðiÞ x2

2 x1ðiÞ � x2ðiÞ x1ðiÞ x2 1� (12)

where x1 and x2 are the design variables. The range of values
for the motor/generator size, x1, used to derive the simulation
data points in continuous power is x1 ¼ f60; 80; 100; 120g kW.
Similarly, the range of values for the battery size in number of

modules is x2 ¼ f6; 7; 8; 9; 10g, each of which includes 118 cells
in series and 1 cell in parallel (Table 2). As a result, the simulation
data set is created over a grid of 20 different inputs
ði:e:; i ¼ 1; 2; :::; 20Þ.
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3.2.1 Fuel Consumption. The amount of fuel consumed by
each vehicle for the nine consecutive JE-05 driving cycles is com-
puted directly by Autonomie. Autonomie also provides the values
of fuel economy, ffuel economy, in miles per gallon.

3.2.2 Greenhouse Gas Emissions. The average GHG emis-
sions, fCO2

, in kilograms of CO2 (kg-CO2) for the nine consecutive
JE-05 cycles are associated with the amount of CO2 corresponding
to the diesel and electricity portions. Consequently, given the fuel
efficiency, gfuel (mpg), and electricity efficiency, gE (miles/kWh),
derived from simulation in Autonomie, the average GHG emissions
are computed by the following equation:

fCO2
¼ s �

ND
CO2

gfuel

þ
NE

CO2

gE

� 1

gBC

� �
(13)

where s¼ 77 miles is the distance driven by the vehicle over the
nine consecutive JE-05 driving cycles, ND

CO2
¼10.1 kg-CO2/gal

for diesel life-cycle emissions [41], NE
CO2
¼ 0.752 kg-CO2/kWh for

electricity emissions [42,43], and gBC¼ 88% for battery charging
efficiency [43].

3.2.3 Acceleration Performance Metrics. For the 0–30 mph
and 0–60 mph acceleration times, t0�30 (s) and t0�60 (se), we per-
formed simulated tests in CS mode in Autonomie. Using the dis-
crete simulation data points from Autonomie derived over the
input grid described above, we computed the polynomial fitting
coefficients, a, for each regression model (i.e., ffuel economy, fCO2

,
t0�30, and t0�60) by solving Eq. (9) using Eq. (12).

Tables 3 and 4 give the resulting values of polynomial coeffi-
cients and the values of the norm of residuals for each regression
model, which provide a good indication that the regression models
fit the data well.

3.3 Optimization Problem Formulation. The purpose of
the optimization framework established here is to determine the
impact of the vector of the design variables, x, consisting of the
motor/generator size, x1, and battery size, x2, on both fuel econ-
omy and GHG emissions. This framework was applied in the opti-
mization study to determine which one of the two PHEV
configurations was more efficient in terms of fuel economy and
GHG emissions.

For each PHEV configuration, a multiobjective optimization
problem was investigated consisting of two functions: (1) fuel
economy and (2) GHG emissions. The objective was to maximize

Fig. 2 Norm of residuals of the polynomial metamodel for fuel
economy versus the order of the polynomial

Fig. 3 Norm of residuals of the polynomial metamodel for
greenhouse gas emissions versus the order of the polynomial

Fig. 4 Norm of residuals of the polynomial metamodel for an
acceleration time of 0–30 mph versus the order of the
polynomial

Fig. 5 Norm of residuals of the polynomial metamodel for an
acceleration time of 0–60 mph versus the order of the
polynomial
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fuel economy and minimize GHG emissions with respect to the
vector of the design variables, x, subject to the acceleration per-
formance metrics corresponding to values deemed characteristic
of this type of vehicle. Thus, the mathematical problem consists
of the following multiobjective function and constraints:

min
x

w1 �
1

ffuel economyðXÞ
þ w2 � fCO2

ðXÞ
� �
subject to t0�30 � 15 sec

t0�60 � 55 sec

(14)

where w1 and w2 are the weighting factors of the objective func-
tion. It turned out that the constraints are not active since the size
of the engine can provide the required power to satisfy the accel-
eration performance criteria. Fuel economy and GHG emissions
in Eq. (14) are normalized to avoid dominance of one function
over the other. To study the impact of the motor/generator and
battery size and the associated trade-offs between fuel economy
and GHG emissions, a general quantitative Pareto-based assess-
ment was constructed by varying the weighting factors from 0 to
1. This assessment aims to identify the optimal motor/generator
and battery size considering the associated trade-offs of fuel econ-
omy and GHG emissions.

In multiobjective optimization the focus is on the explicit trade-
offs between competing criteria. The objective is to find a Pareto
point and define the preference structure for selecting one point
among many.

The general vector optimization problem is formulated as

min
x

fmðx; wÞ

subject to giðx; wÞ � 0; i ¼ 0;…;m

hiðx; wÞ ¼ 0; j ¼ 0;…; p

(15)

where x 2 <n is the vector of the optimization variables, w 2 <n

is the set of weighting factors, fm : <n ! <q is the multiobjective
function, gi : <n ! < are the inequality constraints, and
hj : <n ! < are the equality constraints. The set of objective val-
ues of feasible points

S :¼ fmðx; wÞj9x 2 <n; giðx; wÞ � 0; i ¼ 1;…m; hiðx; wÞ ¼ 0;f
� j ¼ 1;…; pg � <q (16)

is defined as the set of achievable objective values. If this set has a
minimum element x*, then it is said that this point is optimal for
the problem formulated in Eq. (15), and refer to fm(x*) as the opti-
mal value of the problem. In the vector optimization problems
where the set of achievable objective values does not have a mini-
mum element, the minimal elements of the set of achievable values
play an important role. A feasible point x is Pareto optimal if fm(x*)
is a minimal element of the set of achievable values S. The set of
minimal elements of S is called the Pareto frontier; namely, given a
set of feasible values of the objective function, the Pareto frontier
(or Pareto set) is the set of feasible values that are Pareto efficient.

4 Optimization Results and Analysis

The impact of varying the motor/generator and battery size on
fuel economy in PHEV pretransmission and post transmission par-
allel configurations is illustrated in Figs. 6 and 7. Increasing the
battery size has a significant impact on fuel economy, partly at-
tributable to the additional amount of electricity from grid that
can be stored and used to power the vehicle. The motor/generator
size, on the other hand, impacts fuel economy only in conjunction
with a larger battery size. The combination of a large motor/gen-
erator and large battery enhances energy recovery during brake
regeneration. This is more apparent in the PHEV post transmis-
sion configuration, where fuel economy is noticeably improved.

Increasing the battery size has some interesting implications for
GHG emissions. For architectures with small motor/generators,
increasing the number of modules in the battery is not beneficial
for GHG emissions. On the contrary, a moderate number of mod-
ules seems to be the optimal battery size for both configurations,
as illustrated in Figs. 8 and 9. For a large motor/generator, the
impact of a large battery is quite different for the pretranmission
and post transmission configurations. For the PHEV pretransmis-
sion configuration, GHG emissions are minimal for a combination
of a 120 kW motor/generator with a six-module battery. For the
PHEV post transmission configuration, on the other hand, a
120 kW motor/generator in combination with a battery with 10
modules seems to be the optimal solution for GHG emissions.
Although by increasing the battery size the contribution in GHG
emissions from the electricity grid is also increased Eq. (13), this
is compensated by the enhanced capability in the post transmis-
sion configuration to store energy from brake regeneration.

For the PHEV pretransmission configuration it seems that there
is a trade-off between fuel economy and GHG emissions in the
multiobjective optimization problem formulated in Eq. (14),
shown in Figs. 6 and 8. To understand the trade-off better we need
to look at the Pareto frontier of the multiobjective function, illus-
trated in Fig. 10. Clearly, maximizing fuel economy and minimiz-
ing GHG emissions simultaneously is not possible. The optimal
motor/generator and battery size corresponding to each value in
the Pareto frontier is illustrated in Fig. 11. It seems that the opti-
mal motor/generator size is 120 kW, while the battery size has an
impact on the Pareto solution. By increasing the battery size fuel
economy is increased (the inverse of fuel economy is decreased in
Fig. 10 by sacrificing GHG emissions. Although the optimization
with respect to the motor/generator and battery size was con-
ducted in the continuous domain, it should be emphasized that the
final selection of the size of these components will be based on
the nearest discrete available values.

The multiobjective optimization problem formulated in Eq. (14)
has an apparent visual solution for the PHEV post transmission

Table 4 Polynomial coefficients of the PHEV post transmis-
sion parallel configuration metamodels

ffuel economy fCO2
t0�30 t0�60

a1 �0.0002 0.0004 0.0001 0.0002
a2 �0.0004 �0.0287 0.0063 �0.0042
a3 0.0002 �0.0003 0.0000 0.0000
a4 0.0078 �0.0151 �0.0001 0.0001
a5 0.0428 �0.0962 �0.0389 �0.0596
a6 �0.8028 2.7026 �0.1368 0.0911
a7 �0.1314 0.2487 �0.0008 �0.0029
a8 �3.3305 7.6294 3.2825 5.0467
a9 13.4367 �35.0972 1.2736 �0.2285
a10 69.6121 �38.2324 �71.6626 �96.8739

rk k 2.03 3.75 0.08 0.10

Table 3 Polynomial coefficients of the PHEV pretransmission
parallel configuration metamodels

ffuel economy fCO2
t0�30 t0�60

a1 0.0000 0.0000 0.0001 0.0002
a2 �0.0777 0.2992 �0.0042 �0.0042
a3 0.0002 �0.0002 0.0000 0.0000
a4 0.0026 �0.0154 0.0001 �0.0002
a5 �0.0020 0.0046 �0.0312 �0.0527
a6 1.5362 �5.1994 0.0894 0.1283
a7 �0.0717 0.2676 �0.0015 0.0038
a8 0.4407 �1.3995 2.6316 4.4511
a9 �7.5871 26.6705 �0.4871 �0.9371
a10 16.3026 60.3627 �51.7722 �80.5970

rk k 0.59 1.76 0.07 0.07
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Fig. 7 Fuel economy variation in PHEV post transmission
configuration

Fig. 8 GHG emissions in PHEV pretransmission configuration

Fig. 9 GHG emissions in PHEV post transmission
configuration

Fig. 10 Pareto frontier in PHEV pretransmission configuration

Fig. 6 Fuel economy variation in PHEV pretransmission configuration
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configuration, as shown in Figs. 7 and 9; namely, the optimal solu-
tion for both fuel economy and GHG emissions is a big motor/gen-
erator with a 10-module battery. This is also apparent from the
Pareto frontier and the optimal motor/generator and battery size
corresponding to the Pareto frontier, illustrated in Figs. 12 and 13.
A combination of a big motor/generator size (about 115 kW) with a
10-module battery is the optimal solution because it enhances
energy recovery during brake regeneration deemed characteristic in
the post transmission PHEV configuration as a result of the physical
location of the motor/generator. Especially for the battery, the big-
gest possible size is the optimal solution in order to absorb all possi-
ble energy recovery during brake regeneration. The single Pareto
efficient value in the plots corresponds to the case when only GHG
emissions are considered in Eq. (14) (i.e., the weighting factors w1

and w2 are equal to 0 and 1, respectively).
Increasing the motor/generator and battery sizes has, as might

be expected, an impact on the vehicle mass (depicted in Figs. 14
and 15), with significant implications for both packaging and cost.
Although consideration of packaging and cost repercussions is
beyond the scope of this paper the selection of the upper and
lower limits of the motor/generator and battery size was such to
meet the packaging requirement of this particular vehicle; namely,
the vehicle could not accommodate bigger motor/generator size
than 120 kW or bigger battery size than 10 modules.

Fig. 11 Optimal set of the motor/generator and battery size
corresponding to the Pareto frontier in the PHEV pretransmis-
sion configuration

Fig. 12 Pareto frontier in PHEV post transmission
configuration

Fig. 13 Optimal set of the motor/generator and battery size
corresponding to the Pareto frontier in the PHEV post transmis-
sion configuration

Fig. 14 Vehicle mass in kilograms (kg) for the PHEV pretrans-
mission configuration

Fig. 15 Vehicle mass in kilograms (kg) for the PHEV post
transmission configuration
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5 Conclusion

We have demonstrated results using a proposed optimization
framework to study the impact of motor/generator and battery size
on fuel economy and GHG emissions of a medium duty PHEV.
For the PHEV pretransmission configuration, it seems that there is
a trade-off between fuel economy and GHG emissions when the
motor/generator and battery size increases. However, in post
transmission PHEV configurations, a combination of a big motor/
generator size with a big battery size seems to be beneficial both
in terms of fuel economy and GHG emissions as it enhances
energy recovery during brake regeneration as a result of the physi-
cal location of the motor/generator.

The optimization and modeling approach adopted here facili-
tates better understanding of the potential benefits from proper
selection of motor/generator and battery size. This understanding
can help us identify the right sizing of these components, and thus
reducing the PHEV cost. Addressing optimal sizing of PHEV
components could aim to an extensive market penetration of
PHEVs. Future research should consider the interactions between
power management control strategies and these design variables.
Simultaneous consideration of both design and power manage-
ment may reveal more opportunities for substantial improvements
in fuel economy and GHG emissions.
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