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Abstract— We propose a novel home energy management
framework to intelligently schedule the distributed energy
storage (DES) for the cost reduction of customers in this paper.
The proposed optimal production control technique determines
the action policy (e.g., charging or discharging) and the power
allocation policy of the DES to provide DES power at proper
time with lower price than that of the utility grid, resulting
in the reduction of the long term financial cost. Specifically,
we first formulate the optimal decision problem for home
energy systems with solar and energy storage devices, when
the demand, renewable energy, electricity purchase from grid
are all subject to Brownian motions. Both drift and variance
parameters are modulated by a continuous-time Markov chain
that represents the regime of electricity price. In particular,
we set up a mean-variance problem where the cost function is
both the running cost of diesel generator and deviation from
the target State of Charge (SOC) of batteries. We assume the
regime information follows a Hidden Markov Model (HMM),
and then estimate the state by change of measure based
on the Girsanov’s theorem. Finally, the problem boils down
to solving a stochastic differential equation (SDE), which we
provide both the explicit and numerical solutions to this specific
SDE. An example is provided to illustrate the effectiveness
of our proposed approach. Moreover, we compare it with the
traditional Model Predictive Control (MPC) technique, and show
it outperforms MPC.

I. INTRODUCTION

There are different types of conventional and non-
conventional energy sources used to generate electricity.
Green (solar and wind in particular) energy production is
supposed to increase significantly in the next years [1]. Unlike
conventional generation sources, green energy brings in a lot
of uncertainty and instability into existing power grids, and
has significantly complicated energy system management for
microgrids [2], [3], [4]. In other words, renewable energy
utilization brings great challenges for the traditional power
system operation due to uncertain/intermittent renewable
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generation and inelastic demand. On one hand, even a small
error in renewable resource forecasting may result in great
uncertainties for real-time operations of a microgrid given its
limited scale and size [5]. On the other hand, in microgrids,
the customers play a more important role by managing the
controllable loads and local energy storage devices. Therefore,
effective energy management of microgrids is one of the
key components to adapt uncertain operating conditions of
renewable resources and to achieve flexible and economic
operation with various resources are among the challenges
in energy management and optimization of microgrids [6].

The general objective of energy management of a micro
grid is to solve the following problem: given a stochastic
renewable generation, how to minimize the operating costs
such as fuel, maintenance, and the purchased cost of exchange
power from the main grid. Traditional deterministic microgrid
operations are not sufficient to deal with this complicated
energy system management. Meanwhile, the stochastic model-
ing and energy management methods that have been studied
in transmission-level energy management such as [7], [3]
demonstrate promising results in capturing the uncertainty
associated with renewable energy resources considering worst-
case scenarios.

Seeking to address the uncertain issues in energy opti-
mization, two different approaches (direct/indirect) have been
reported in the literature. The direct approach is to apply
stochastic optimization, and probability statistical methods as
[8], [9], to name a few. The indirect alternative approach is to
aggregate more controllable nonrenewable generators to make
the power system robust to the uncertainties. Different hybrid
renewable energy systems (HRES) with grid integration were
introduced to overcome the drawback of being unpredictable
in nature [10]. It should be mentioned that in the hardware
level, the robustness issue of voltage source converters
has been addressed by two time-scale separation redesign
technique [11].

More recently, [12] borrowed a probabilistic framework
from real options in financial theory to assess the value
of a portfolio of demand response customers under both
operational (short-term) and planning (long-term) uncertain-
ties. The financial theory framework will help reduce the
exposure to electricity price risk caused by very high and
volatile prices, particularly for small commercial and domestic
customers in demand response based on real-time pricing.
However, detailed home energy devices such as battery, back-
up generator are not considered in their model, no mention
of critical constraints of these components.

This paper is a continuous work of our previous paper
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[13], where we model the users’ demand and day-ahead
market bidding as stochastic dynamical systems with regime
switching and generate the optimal demand response in a
stochastic way. As proposed in [13], we use the optimal
management technique to solve the problem in the real-time
case. However, [13] requires additional regime information
to be known. It should be mentioned that the regime here
is more general than the existing peak/off-peak regime
defined by the utility. Although the utility usually has a
contract with the customers and sets the peak and off-
peak tariffs, customers can still define their own more
complicated regimes to maximize their benefits based on real-
time market price and demand. Especially when more demand
response or promotion based strategy has been involved in
the whole operation. A predefined peak/off-peak regime may
not provide correct incentive to obtain desired load shape
or not responsive to unexpected fluctuation from renewable
resources. Therefore, an adaptive regime which is related to
real-time market can better regulate the power grid, which
makes it meaningful to study this regime.

The paper is organized as follows. We begin with the
preliminary modeling framework and problem formulation in
Section II. Main results of deriving the optimal control for
both regime known and unknown cases are given in Section
III. This is followed by an illustrative example in Section IV.
Finally we draw our conclusion in Section V.

II. PRELIMINARIES: NOTATION AND PROBLEM
FORMULATION

Assume that the cumulative demand of a customer follows
a Brownian motion with drift modulated by a continuous-
time Markov chain that alternates between two regimes. We
allow both the drift and the diffusion to be affected by this
continuous-time Markov chain, which represents the regime
(or the state) of the economy. One regime may represent
an off-peak period with a low demand rate and the other
may represent a peak period with a high demand rate. The
objective of management is to maintain the battery level as
close as possible to a fixed target level; there is a penalty
associated with the deviation of the battery’s SOC from its
target value. In addition to that, the customer may also want
to maintain a production rate that is as close as possible to a
fixed target rate to obtain the best efficiency of the generator.
In this paper, we follow the same notation and formulation
introduced in [13].

A. Notation

Throughout the paper ω, ωi etc. will be used to denote
random variables. We denote random variables with upper
case letters, and their realization with lower case letters, e.g.,
for a random variable X , x denotes its realization.

We assume X and D are adapted stochastic processes
defined as the following notation:

We consider a continuous-time Markov chain ∆(t), t ≥ 0,
that can take values in two regimes ϕ = {1, 2}. We denote
the amount of time the electricity price remains in off-peak
(or peak) regime is exponentially distributed with rate λ1(λ2).

TABLE I
TABLE OF NOTATION

Xt , battery state of charge (SOC) at time t,
Gt , amount (Kwh) purchased (sold) from (to) grid at time

t,
Yt , cumulative PV generation (Kwh) up to time t,
Dt , cumulative demand (Kwh) up to time t,
pt , diesel generator production rate (Kw) at time t,

∆(t) , regime of the electricity price at time t.

Regime switching Variables of two-state model

∆(t) =

{
1, electricty is in off-peak price
2, electricty is in peak price

This can be explained from the practical application’s aspect.
Specifically, depending on whether the electricity price is
off-peak (peak) i.e. belonging to regime 1(2), the cumulative
consumer demand follows a Brownian motion ω with a drift
µ1(µ2) and a variance σ2

1(σ2
2). We also assume that ε and ω

are independent.

B. Model and problem formulation

The dynamic system can be modeled by a controlled
regime-switching diffusion process. The switching action
reflects system structural changes, which is exemplified by
scheduled or emergency maintenance of solar modules, failure
of a battery cell, addition of super-capacitor banks and tap
changes in transformer. In this home energy management
system, we consider the regime switching to be electricity
price.

To maintain grid functionality, smooth operations and
reduce waste, it is desirable that (generation - consumption)
disparity in transient be kept as small as possible. The
problem is thus naturally formulated as a mean-variance
control problem.

The objective is to minimize the risk (measured by variance)
of the terminal battery storage subject to a given expected
terminal storage level.

1) Load (demand) model: We consider that the cumulative
demand satisfies the dynamics

dDt = µ∆(t)dt+ σ∆(t)dωt. (1)

where, at any time t, the demand rate µ∆(t) and the diffusion
σ∆(t) depend on the regime ∆(t), dω(t) represents the
Brownian Motion.

In reality, the drift term µp(∆(t)) represents average solar
radiation values for each time step (the smooth curve for
maximum output); and diffusion term σp(∆(t)) represents
solar radiation fluctuations which are commonly caused by
many factors such as wind, clouds, many other uncertain
weather conditions.

Similarly, we can define the stochastic generation models
for the PV panels by Yt, and diesel generator by Gt,
respectively [13].
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2) Power balance: In order to achieve the energy man-
agement, it is necessary to satisfy the power balance in the
grid. Therefore, the battery storage level X has to satisfy the
following equation with notations defined in Table. I

Xt = x0 +

∫ t

0

psds − Dt + Yt +Gt (2)

Xt can be computed by ⇓

Xt = x0 +

∫ t

0

(ps − (µ∆(s)− µp(∆(s)))︸ ︷︷ ︸
µλ(∆(s))

)ds

−
∫ t

0

(σ∆(s) + σp(∆(s)))︸ ︷︷ ︸
σλ(∆(s))

dωs +Gt. (3)

As mentioned in [13], we could generalize to larger system,
which involves many more components in real-life. As long
as we could describe each component in a stochastic way,
we are able to wrap up similar terms to get an augmented
formulation as shown in the last line of (3).

The aggregator operates the power grid and aims to
minimize the long-term time-averaged system cost by jointly
managing supply, demand, and storage units. With increased
integration of renewable generation and energy storage, busi-
ness models of power system operators and electricity markets
are constantly evolving. If we consider each residential home
user as an individual agent or utility, we can formulate our
problem as follows.

C. Cost function

Problem 2.1: Each agent wants to select an optimal pro-
duction rate p : [0,∞) × Ω 7→ (−∞,∞) for the local CG
that minimizes the functional J

J(p) :=

E

[ ∫ ∞
0

Γt
{
τ∆(t)(Xt − Ξ∆(t))

2 + υ∆(t)(pt −P∆(t))
2
}

+G2
t + p2

tdt

]
(4)

where Γt = exp
{
−
∫ t

0
κε(u)du

}
, and κi ∈ (0,∞), τi ∈

(0,∞), υi ∈ (0.∞),Ξi ∈ (−∞,∞),Pi ∈ (−∞,∞) are
constants for each regime ∆(t) = i (i ∈ {1, 2}).

The cost functional defined in (4) represents not only the
cost from diesel generator and grid but also the running cost
incurred by deviating from the target battery SOC Ξi and
from the diesel generator production target rate Pi.

Both of the target rates Ξi and Pi help the battery and
diesel generator pick the most effective working strategy
according to the regime of electricity price. An appropriate
range of the SOC of the battery should be guaranteed to
prevent the battery from being over- or under-charged. For
example, when the electricity is in peak price, the battery
may pick a small value of Ξi sacrifice to the life-cycle by
almost depleting itself. In contrast, it would pick a large value
to store as much as possible when the electricity price is low.

Remark 2.2: It’s worth mentioning that, we are trying
to minimize the diesel generator production, therefore the
production target rate Pi are ideally set to 0 all the time.
For a more general framework, we could take advantage of
our switching framework by setting it as:

Pi =

{
Prmin, if ∆(t) = 1 (off-peak price),
P rmax, if ∆(t) = 2 (peak price),

where Prmin and Prmax represent the minimum and maxi-
mum production rate of the range with the best efficiency.

In the market with an aggregator involved, most of the
trading decisions are made ahead of time. Then our local
components (battery, diesel generator and PV panel) are
working as supplementary power sources to supply the
demand fluctuations. For simplicity, we will focus on the
case with fixed 24-hour ahead bid strategy such that the
consumer has made the decision for purchasing how much
electricity in advance. By observing a large historical data
of the purchase for each time period, we could fit the trade
transaction into a stochastic model similar as load and PV
models:

dGt = µG(∆(t))dt+ σG(∆(t))dωt. (5)

Substituting into (3) yields:

Xt = x0 +

∫ t

0

(ps − (µ∆(s)− µp(∆(s)) − µG(∆(s))︸ ︷︷ ︸
µλ(∆(s))

)ds

−
∫ t

0

(σ∆(s) + σp(∆(s)) + σG(∆(s))︸ ︷︷ ︸
σλ(∆(s))

dωs. (6)

Therefore, the cost function can be rewritten as:

J(p) := E

[∫ ∞
0

Rt
{
τ∆(t)(Xt − Ξ∆(t))

2 + υ∆(t)p2
t

}
dt

]
III. MAIN RESULTS

Following the models and formulation introduced in the
last section, we will present the main results of this paper
which is to derive an optimal production rule for the stochastic
home energy management problem.

If we assume the regime is known to each customer (agent),
the explicit solution and simulation result were provided in
[13]. However, explicit solutions are provided in this paper
for a more general infrastructure, where each individual
residential customer has few information about how his/her
neighbors are using.

Under this situation, the regime state ∆(t) is unknown to
us, we could only observe the demand Dt.

Let
{
FD
t , t <∞

}
be the filtration generated by the

demand process {Dt, t <∞}. We now require that the pro-
duction process p be adapted to the filtration

{
FD
t , t <∞

}
.

If we follow the procedure to define necessary constants,
we are guaranteed to obtain the complete square with all the
other terms vanished.
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Theorem 3.1: [14] The optimal production rate p(l) with
limited information regarding to the state of the regime is
given by:

p(l)
s = − τ

υ
X(l)
s + E[− 1

2υ
fε(s)|FD

s ], (7)

which can be written as

p
(l)
s = − τυX

(l)
s − 1

2υf1P
{
ε(s) = 1|FD

s

}
− 1

2υf2P
{
ε(s) = 2|FD

s

}
. (8)

where l denotes limited information.

Proof: The proof is based on the completing squares
method, and is omitted due to space limit. However, it should
be remarked that the expression for optimal production
is much more complicated due to the fact that we only
have limited information available. In order to make (8,)
computable, we must calculate the conditional probabilities
P
{
ε(s) = 1|FD

s

}
and P

{
ε(s) = 2|FD

s

}
first.

This objective can be achieved by utilizing the tools from
optimal estimation for hidden Markov model (HMM) [15] if
we denote the conditional probabilities as a two-dimensional
process ∆(t)(t) = (θ1(t), θ2(t)).

A. Optimal estimation for HMM

The above conditional probabilities in (8) can be charac-
terized in the following HMM

θ(t) = e11∆(t)=1 + e21∆(t)=2, (9)

where θ(t) =

(
θ1(t)
θ2(t)

)
and θ1(t) + θ2(t) = 1.

Further, this can be denoted as conditional expectation

θ̂(t) = E
[
θ(t)|FD

t

]
. (10)

Consequently, we only need to compute the estimate θ̂ since

P{θ(s) = 1|FD
s } = θ̂1(s), (11)

and P{θ(s) = 2|FD
s } = θ̂2(s). (12)

This turns into an optimal estimation problem which has
been solved in [15]. Let H denotes the generator,

H =

[
−λ1 λ1

λ2 −λ2

]
(13)

Both the dynamics of hidden states and observation process
follow the decomposition:

θ(t) = θ(0) +

∫ t

0

HT θ(s)ds+ Vt, (14)

1

σ
Dt =

1

σ
D0 +

∫ t

0

1

σ
(µ1θ1(s) + µ2θ2(s))ds+ ωt.(15)

Define Λt as in [14], [15], we construct a new probability
measure P̄ satisfying dP̄

dP = Λt.
Remark 3.2: By Girsanov’s theorem [16] the process

{(1/σ)(Ds − D0); s ≤ t} is a standard Brownian motion
under the new probability measure P̄ .

Simple application of Bayes’ theorem [17] leads to

θ̂(t) = E
[
θ(t)|FD

t

]
=
Ē
[
Λ̂tθ(t)|FD

t

]
Ē
[
Λ̂t|FD

t

] . (16)

Therefore, it can be divided into two parts to compute (16)
- the numerator and denumerator of (16). In the following,
we first characterize the numerator, then computation of the
denumerator will follow easily.

Denote π(t) =

[
π1(t)
π2(t)

]
= Ē

[
Λ̂tθ(t)|FD

t

]
, then following

[15], we can rewrite π(t) as

π(t) = π(0) +

∫ t

0

HTπ(s)ds+

∫ t

0

Gπ(s)dDs, (17)

where G = 1
σ2

[
µ1

µ2

]
with initial condition defined as

π(0) = E(θ(0)) =

[
q1

q2

]
. (18)

Then the denumerator follows Ē
[
Λ̂t|FD

t

]
= π1(t) + π2(t).

Remark 3.3: We have converted the problem from original
conditional probabilities to the computation of θ̂(t), then
further rewritten in π(t) which are the solutions to the
stochastic differential equation (SDE) (17):

θ̂i(t) =
πi(t)

π1(t) + π2(t)
, i = 1, 2. (19)

Therefore, the only remaining problem is to solve for π(t)
in (17).

By observation, we see this SDE arises, for example, as
an asset price model in financial mathematics [18]. (Indeed,
it yields the same form as the well-known Black-Scholes
equation.) We will not proceed as in [14] to write the SDE as
a system of linear ODE, instead, we will solve all the SDE’s
numerically by applying the Euler-Maruyama (EM) method
[19].

It is known that the exact solution to the Black-Scholes
like SDE (16) is:

π(t) = π(0)exp((H − 1

2
G2)t+GD(t)). (20)

Therefore, we can solve for θ̂ explicitly by solving ”Black -
Scholes like” equation (17).

As mentioned before, for simulation, we pick the EM
method which approximates real solutions as follows:

Xj = Xj−1 + f(Xj−1)δt

+ g(Xj−1)(W (τj))−W (τj−1), j = 1, 2, · · · , L.

which comes from the integral

X(τj) = X(τj−1) +

∫ τj

τj−1

f(X(s))ds

+

∫ τj

τj−1

g(X(s))dW (s). (21)
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Finally, we substitute into the optimal production rate
equation to get the following theorem.

Theorem 3.4: The optimal production rate p(l) with limited
information can be computed by

p(l)
s = − τ

υ

(
X(l)
s − Ξ1θ̂1(s)− Ξ2θ̂2(s)

)
+

1

υγ

{
(λ2a+ τ θ̂1(s))µ1

+ (λ1a+ τ θ̂2(s))µ2 + τλ1θ̂1(s)(Ξ2 − Ξ1)

+ τλ2θ̂2(s)(Ξ1 − Ξ2)
}
. (22)

Proof: This follows by plugging the conditional proba-
bilities into Theorem 3.1.

IV. NUMERICAL RESULTS

In this section, we first present a stochastic scenario to
demonstrate the efficiency of the controller presented in this
paper. As claimed in this paper, the regime information is not
required to make the optimal decision, therefore this enables
us to compare with the traditional MPC solution under the
same information structure. Basically, this would tell us if
we use the same information as MPC, whether we would
achieve a better result with much less computational cost.
We will briefly introduce the MPC algorithm for a simplified
deterministic version of the same home energy management
problem, and then show its simulation results. Finally, some
preliminary comparison results are given due to the space
limit here. We use the same example as given in [13].

A. Simulation with unknown regime

The time intervals for peak hours are assumed to be ”7 :
00 ∼ 8 : 00”, ”12 : 00 ∼ 13 : 00” and ”18 : 00 ∼ 20 : 00”.
So in total there are 4 hours peak-time during a day. Regime
switchings occur at the instances marked as red diamond in
all the figures.

The control signal for the diesel generator is depicted in
Fig. 1. We do see the generator kicks in when the electricity
is in the peak price, while keeps in a low production level
when electricity price is normal. Since the cost to purchase
extra electricity at this peak hours is usually expansive, it is
wiser to turn on the generator to meet the demand.

Finally, the dynamics of battery SOC is captured in Fig.
2. It is obvious that the battery keeps being close to fully
charged during the off-peak hours, while it discharges to the
lower bound of the SOC during the peak hours.

To examine the performance and energy efficiency of the
proposed solution, a set of comparison is conducted by the use
of MPC. It should be noted that it’s not trivial to extend the
general MPC solution to the case involving regime switchings.
Therefore it’s working similarly as the unknown regime case,
i.e. MPC would NOT directly adjust its strategy based on
whether the electricity is in peak price or not, however the
electricity price would implicitly affect the control decisions
through the cost function.
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Fig. 1. Control for diesel generator.
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Fig. 2. SOC proposed control.

B. MPC for the Deterministic Problem

x represents the states of the system, x = [x1, x2]
T ; x1

corresponds to the SOC and x2 = Pbat+Pdg . u represents the
control inputs which need to be designed, u = [Pbat, Pdg]

T .
The output of the system is denoted by y, where y = Cx.
C is set to be identity for simplicity. Therefore, the output
vector we pick is y = [SOCref , PL]

T , which correspond to
the desired SOC and predicted load profiles. It should be
mentioned that both the two reference signals take the same
values as in the previous simulation. Moreover, state matrices
A,B are chosen to have compatible dimensions, and carrying
certain values corresponding to the same model as we study
the previous stochastic problem. Then the state space model
for describing the deterministic problem is given as:

ẋ = Ax+Bu. (23)

The considered cost here is to minimize the difference
between system output and the reference signal. We denote
the cost function as

JMPC =

N∑
i=1

(Yref − Yi)TQ(Yref − Yi) + uTi Rui (24)

The simulation results using MPC are given in Fig. 3 and
Fig. 4.

2058

Authorized licensed use limited to: Cornell University Library. Downloaded on October 10,2023 at 15:35:17 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150 200 250
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
SOC

SOC

Battery Flow

Fig. 3. Battery flow with SOC using MPC.

t, Time (0.1h)

0 50 100 150 200 250
-3

-2

-1

0

1

2

3

4
states

Sum of Input

Battery flow

Generator flow

Load reference

Fig. 4. Control performance using MPC.

C. Comparison of the results

The net demand is generated by normally distributed
random values which are similar to the cumulative demand
in the previous simulation. As we can see from Fig. 3, the
battery flow kicks in during peak electricity regimes to reduce
electricity purchase from grid. After passing the peak regimes,
it automatically charged the battery to maximum SOC to make
it ready for future use. As expected, the sum of all available
resources follows exactly the random load demand (marked
green in Fig. 4). However, both the magnitudes for battery
flow and diesel generator are larger then our proposed control
algorithm. If we compute the two norm of diesel flows under
both algorithms, we get 8.92 and 18.81 for our method and
MPC, respectively. It should be mentioned that this reflects
around 53 % economic saving since total financial cost is
linear with two norm (multiplied by unit price of diesel).

V. CONCLUSION

This paper has been concerned with the optimal stochastic
control problem for home energy systems with solar and
energy storage devices, when the demand, renewable energy,
electricity purchased from grid are all subject to Brownian
motions. We assumed the regime information follows an
HMM, and then estimated the state by change of measure
based on Girsanov’s theorem. Mean-variance has been used to
improve the efficiency of the power grid. We have developed

a novel framework to deal with the stochastic processes
involved in the home energy management systems.

We are working on the problem involving more detailed
and practical models of power grid components and compare
our algorithm with stochastic MPC algorithm.
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