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Abstract— We consider the optimal stochastic control prob-
lem for home energy systems with solar and energy storage
devices when the demand is realized from the grid. The demand
is subject to Brownian motions with both drift and variance
parameters modulated by a continuous-time Markov chain that
represents the regime of electricity price. We model the systems
as pure stochastic differential equation models, and then we
follow the completing square technique to solve the stochastic
home energy management problem. The effectiveness of the
efficiency of the proposed approach is validated through a
simulation example. For practical situations with constraints
consistent to those studied here, our results imply the proposed
framework could reduce the electricity cost from short-term
purchase in peak hour market.

I. INTRODUCTION

Several efforts have been utilizing clean renewable energy
sources and demand-side resources, e.g., electric loads, to
reduce green house gas emissions of the electric power grid.
However, there are several challenges associated with the
uncertainty of renewable generation and inelastic demand.
Furthermore, the interdependencies between system states
of power networks or interconnected loads complicate the
decision-making process. Growing interactions between power
and energy systems, and human agents with advances in
sensing, computing and communication technologies has also
increased the need for personalized operations. Consumers can
optimally adjust their energy consumptions by participating
into the demand response (DR) program for minimizing the
electricity bill [1], [2].

In this paper, we consider the following problem: given a
stochastic renewable generation, which is disclosed in time, a
customer agent seeks to conduct an efficient demand response,
and then allocate the net remaining generation among various
conventional generators.

Recently, system operators have turned to demand-side
resources to mitigate peak demand. The market is set up as
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a two-settlement electricity market, commonly used in U.S.
independent system operator/regional transmission operator
(ISO/RTO) markets [3]. In a typical two-settlement electricity
market, load entities can procure energy from a day-ahead
market and a real-time market [4]. In order to reduce the
expansive real-time market purchase during peak hours, two
general solution approaches have been used in the literature: 1)
utilizing time-shiftable loads and 2) optimal demand bidding.

Model predictive control and dynamic programming (DP)
are the two widely adopted techniques for solving these prob-
lems utilizing time-shiftable loads. The problem of scheduling
time-shiftable loads under different retail electricity pricing
scenarios has been addressed in [5], [6], [7] for thermal
loads, in [8], [9] for hybrid electric vehicles, in [10], [11]
for aggregated loads, while several other efforts are based on
DP [12], [13]. Optimal demand bidding has been discussed
for fixed or forecasted load data in [14], [15], and for time-
shiftable loads with deadlines in [9].

Furthermore, due to the nature of the smart grid which
features different entities with conflicting objectives, game
theoretical approaches have been proposed in a number of pa-
pers [16], [17], [18]. Zhu et al. [19] used a Stackelberg game
framework for economic dispatch with demand response,
where they used a two person game with ISO as leader
and users aggregated into second player. The users could
change their demand based on price signal so as to maximize
their payoff function. In problems involving systems with
a large state space, where using dynamic programing is
computationally intense, approximate DP has been considered
as a viable alternative (see [20]).

In this paper, we model the users’ demand and day-ahead
market bidding as stochastic dynamical systems with regime
switching and generate the optimal demand response in a
stochastic way. We use the optimal management technique
(specially the completing square) to solve the problem in the
real–time case.

A. Contribution

By considering the optimal production control framework
[21], there are two main advantages:

1. Home energy management is made feasible for any
existing power grid without the requirement to have
detailed electricity price available to the customers.

2. Better performance on the infrastructure where electric-
ity price is available to the customers can be achieved
since real stochastic models are used to capture the
uncertainty in the power systems especially for the
renewable energy penetrated situation.
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The paper is organized as follows. We present the modeling
framework and problem formulation in Section II, and the
main results in Section III. Then, we provide an illustrative
example in Section IV, and draw our concluding remarks in
Section V.

II. PRELIMINARIES: NOTATION AND PROBLEM
FORMULATION

We assume that the cumulative demand of a customer
follows a Brownian motion with drift modulated by a
continuous-time Markov chain that alternates between two
regimes. We allow both the drift and the diffusion to be
affected by the Markov chain, which represents the regime
(or the state) of the economy. One regime may represent
an off-peak period with a low demand rate and the other
may represent an peak period with a high demand rate. The
objective of management is to maintain the battery close to
a fixed target level; there is a penalty associated with the
deviation of the battery’s state of charge (SOC) from its
target value. In addition, the customer may also prefer to
maintain a production rate that is close to a fixed target rate
to obtain the best efficiency of the generator. There is also
a running cost associated with the difference between the
actual production rate and its target. In this paper we consider
two basic models.

In the first model, management knows at any time the
actual regime of the electricity price, whereas in the second
model we assume that management does not know the actual
regime. We determine for both models the optimal production
policies by applying the “completing squares” technique.

A. Notation
Throughout the paper ω, ωi etc. will be used to denote

random variables. We denote random variables with upper
case letters, and their realization with lower case letters,
e.g., for a random variable X , x denotes its realization. We
assume X and D are adapted stochastic processes defined
as the following notation:

TABLE II.1
TABLE OF NOTATION

Xt , battery state of charge (SOC) at time t,
Gt , amount (Kwh) purchased (sold) from (to) grid at time

t,
Yt , cumulative PV generation (Kwh) up to time t,
Dt , cumulative demand (Kwh) up to time t,
pt , diesel generator production rate (Kw) at time t,
ε(t) , regime of the electricity price at time t.

Regime switching variables of two-state model

ε(t) =

{
1, electricty is in off-peak price
2, electricty is in peak price

We consider a continuous-time Markov chain
{
ε(t), t ≥

0
}
, that can take values in two regimes ϕ = {1, 2}. The

amount of time that the electricity price remains in the off-
peak (or peak) regime is exponentially distributed with rate

λ1(λ2). Depending on whether the electricity price is off-
peak (peak), i.e., belonging to regime 1(2), the cumulative
consumer demand follows a Brownian motion ω with a drift
µ1(µ2) and a variance σ2

1(σ2
2). We also assume that ε and

ω are independent. Therefore, the Markov chain ε has a
strongly irreducible generator Q = [υij ]2×2, for i, j ∈ ϕ,
where υij = −λi < 0 and Σj∈ϕυij = 0 for every i ∈ ϕ.

More generally, one can generalize the state space to ϕ =
{0, 1, 2, . . . , N, } for ε(t) to model more complex information
structures in the future.

We should notice that the cumulative demand Dt may at
times decrease in t. This situation would correspond to a
potential negative demand, i.e., electric may be sold back to
the grid when sufficient power supplied from the renewable
resources and the battery storage is full.

Table II.1 summarizes the notation used in this paper. Note
when ε(t) = 1, we represents a regime of normal electricity
price, while when ε(t) = 2 we represent a regime of peak
electricity price. Apparently, ε could also represent the cases
where consumer demand is high and low.

B. Model and problem formulation

The dynamic system can be modeled as a controlled regime-
switching diffusion. The switching process reflects system
structural changes, exemplified by scheduled or emergency
maintenance of solar modules, e.g., failure of a battery
cell, addition of super-capacitor banks and tap changes in
transformer. We consider the regime switching to be the
electricity price.

To meet the total power consumption demand, it is
necessary to impose certain constraints. On the other hand,
to maintain grid functionality, smooth operations and reduce
waste, it is desirable that (generation - consumption) disparity
in transient be kept as small as possible. The problem is
thus naturally formulated as a mean-variance control problem.
The objective is to minimize the risk (measured by variance)
of the terminal battery storage subject to a given expected
terminal storage level.

1) Load (demand) model: We consider that the cumulative
demand satisfies the dynamics

dDt = µε(t)dt+ σε(t)dωt, (II.1)

where at any time t, the demand rate µε(t) and the diffusion
σε(t) depend on the regime ε(t), dω(t) represents the
Brownian Motion.

Remark 2.1: We consider the loads are uncontrollable.
The solution of the problem with controllable loads, e.g.,
thermostatically controlled loads, is the subject of ongoing
research.

2) Photo-voltaic model: The output of photo-voltaic (PV)
is associated with significant uncertainty. On the other hand, a
renewable generator’s maximum capacity is a stochastic pro-
cess, e.g., the wind turbine’s maximum power is determined
by the wind speed and direction. Similarly, a PV system’s
output is determined by how much solar radiation is available
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at a given time, weather condition, and the angle that the
sunlight is shining on the solar panels.

dYt = µp(ε(t))dt+ σp(ε(t))dωt, (II.2)

where the drift term µp(ε(t)) represents average solar radiation
values for each time step (the smooth curve for maximum
output); and the diffusion term σp(ε(t)) represents solar
radiation fluctuations which are commonly caused by many
factors such as wind, clouds, many other uncertain weather
conditions.

3) Diesel generator: Backup diesel generators can sup-
ply load requirements that exceed renewable generation to
increase the reliability of power systems. Besides meeting
demand directly, diesel generators can also be used for battery
charging, especially when it is during the peak hours. As a
device used to convert the energy stored in diesel fuel into the
electrical energy used by household and industrial devices,
fuel consumption is the major portion of the operating cost.

4) Power balance: In order to achieve the energy man-
agement, it is necessary to satisfy the power balance in the
grid. Therefore, the battery storage level X has to satisfy the
following equation with notations defined in Table II.1

Xt = x0 +

∫ t

0

psds − Dt + Yt +Gt (II.3)

where Xt can be computed by

Xt = x0 +

∫ t

0

(ps − µε(s) + µp(ε(s)))ds

−
∫ t

0

(σε(s) + σp(ε(s)))dωs +Gt

= x0 +

∫ t

0

(ps − (µε(s)− µp(ε(s)))︸ ︷︷ ︸
µλ(ε(s))

)ds

−
∫ t

0

(σε(s) + σp(ε(s)))︸ ︷︷ ︸
σλ(ε(s))

dωs +Gt. (II.4)

Through this convention, we could potentially generalize
to larger systems that could involve more components. In
this case, since we can describe each component in a
stochastic way, we would include corresponding terms to
get an augmented formulation as shown in the last line of
(II.4). Note that we allow the demand to take negative values,
which represent the abundant electricity sells back to the grid
when we have more renewable generation than demand. The
system structure is shown in Fig. II.1.

Remark 2.2: By allowing regime switching in the models
complicates the problem significantly since it no longer follow
a standard Brownian motion with drift. However, there are
practical cases in which it is more realistic to assume that
the demand rate is a modulated geometric Brownian Motion.

The aggregator operates the power grid and aims to
minimize the long-term time-averaged system cost by jointly
managing supply, demand, and storage units. With increased
integration of renewable generation and energy storage,
business models of power system operators and electricity

LOAD Demand

DIESEL
GENERATOR

BATTERY
BANK

Grid

PV
GENERATOR

P4

P2

P3

P1

P5

P6

Fig. II.1. Infrastructure with uncontrollable loads only.

markets are constantly evolving. From the study in [22],
one suggested model of future electric utilities is termed as
”energy services utility.” If we consider each residential home
user as an individual agent or utility, we can formulate our
problem as follows.

Problem 2.3: Each agent seeks to select an optimal produc-
tion rate p : [0,∞)×Ω 7→ (−∞,∞) for the local generators
that minimizes the functional J

J(p) = E

[∫ ∞
0

Rt
{
αε(t)(Xt −Sε(t))

2

+ βε(t)(pt −Pε(t))
2
}

+G2
t + p2tdt

]
, (II.5)

where

Rt = exp

{
−
∫ t

0

rε(u)du

}
,

and ri ∈ (0,∞), αi ∈ (0,∞), βi ∈ (0.∞),Si ∈
(−∞,∞),Pi ∈ (−∞,∞) are constants for each regime
ε(t) = i (i ∈ {1, 2}).

The cost functional J(p) represents not only the cost from
diesel generator and grid but also the running cost incurred
by deviating from the target battery SOC Si and from the
diesel generator production target rate Pi. Both of the target
rates Si and Pi help the battery and diesel generator pick
the most effective working strategy according to the regime
of electricity price. In specific, SOC is an indicator for battery
storage [23]. An appropriate range of the SOC of the battery
should be guaranteed to prevent the battery from being over-
or under-charged. For example, when the electricity is in peak
price, the battery may pick a small value of Si sacrifice to
the life-cycle by almost depleting itself. In contrast, it would
pick a large value to store as much as possible when the
electricity price is low.

Remark 2.4: We should emphasize that we seek to mini-
mize the diesel generator production. Therefore the production
target rate Pi is ideally set to 0 all the time. For a more
general framework, we could take advantage of our switching
framework by setting it as:

Pi =

{
Prmin, if ε(t) = 1 (off-peak price),
P rmax, if ε(t) = 2 (peak price),
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where Prmin and Prmax represent the minimum and maxi-
mum production rate of the range with the best efficiency.

In the market with aggregator involved, most of the
trading decisions are made ahead of time. Then our local
components (battery, diesel generator and PV panel) are
working as supplementary power sources to supply the
demand fluctuations. For simplicity, we will be focusing
on the case with fixed 24-hour ahead bid strategy such that
the consumer has made the decision for purchasing how much
electricity in advance. By observing a large historical data
of the purchase for each time period, we could fit the trade
transaction into a stochastic model similar as load and PV
models:

dGt = µG(ε(t))dt+ σG(ε(t))dωt. (II.6)

Then we could plug it into (II.4) to rewrite it as:

Xt = x0 +

∫ t

0

(ps − (µε(s)− µp(ε(s)) − µG(ε(s))︸ ︷︷ ︸
µλ(ε(s))

)ds

−
∫ t

0

(σε(s) + σp(ε(s)) + σG(ε(s))︸ ︷︷ ︸
σλ(ε(s))

dωs. (II.7)

Therefore, the cost function would be rewritten as:

J(p) := E

[∫ ∞
0

Rt
{
αε(t)(Xt −Sε(t))

2 + βε(t)p
2
t

}
dt

]
.(II.8)

III. MAIN RESULTS

Following the models and formulation introduced in the
last section, we will present the main results of this paper
which is to derive an optimal production rule for the stochastic
home energy management problem.

A. With regime known

In this section we will discuss the case in which the
regime is known to each customer (agent). This is typically
possible in the modern electricity market where the ISO keeps
broadcasting the current price to the users. Then the current
regime will be available to the customers following the policy
defined before (ε(t) = 1 could represent a regime of normal
electricity price while ε(t) = 2 could represent a regime of
peak electricity price).

Assumption 3.1: There exists modern communication
structure in the micro grid to broadcast the electricity price
to each customer.

Let
{

F
(W,ε)
t

}
denotes the σ−algebra generated by Brow-

nian motions W (s) and ε(s), t ∈ [0,∞). Intuitively Ft

contains all the information up to time t.
Definition 3.2: A production process p is admissible if

it is adapted to the filtration {Ft; t ∈ [0,∞)}, and the
corresponding inventory process satisfies∫ ∞

0

E[RtX
2
t ]dt <∞ and lim

t→∞
E[RtXt] = 0. (III.1)

The first inequality in (III.1) implies

lim inf
t→∞

E[RtX
2
t ] = 0. (III.2)

The objective is to minimize the cost functional Vf =
infp∈A J(p), where A denotes the class of admissible
production processes.

If we follow the procedure to define necessary constants,
we are guaranteed to obtain the complete square with all the
other terms vanished.

Theorem 3.3: [21] The optimal production rate p(f) is
given in feedback form as:

p(f)s = −
aε(s)

βε(s)
X(f)
s −

fε(s)

2βε(s)
, (III.3)

where X(f) is the battery storage process corresponding to
the above production process and ai is the unique positive
solution of

−riai + αi −
1

β
a2i + λia3−i − λiai = 0, (III.4)

and fi is defined as:

fi =
2

γ

{
[−aiµi − αiSi]

[
a3−i
β3−i

+ r3−i + λ3−i

]
− λia3−iµ3−i − λiα3−iS3−i} , (III.5)

where

γ =

(
a1
β1

+ r1 + λ1

)(
a2
β2

+ r2 + λ2

)
− λ1λ2. (III.6)

The index f means full information here since we know the
regime.

Proof: The proof has been adapted the completing
squares method presented in [21]. Space limitations do not
permit us to include the details.

B. With regime unknown

In this section, we generalize the problem by removing
the assumption in Theorem 3.3. This is a more general
infrastructure of our power grid (no communication from
the ISO), where each individual residential customer has few
information about how his/her neighbors are using. Therefore,
each agent doesn’t have exact information about whether they
are in normal or peak hours except by experience. Again, this
experience knowledge might involve a lot of bias or errors
due to the limited information here.

Under this situation, the regime state ε(t) is unknown to
us, we could only observe the demand Dt here.

However, it turns out that the problem is tractable even if
the targets are still regime dependent (even though the states
are unknown to the customer). We seek to optimize the local
production rate by inferring the correct regime state first.

Let
{
FD
t , t <∞

}
be the filtration generated by the

demand process {Dt, t <∞}. We now require that the pro-
duction process p be adapted to the filtration

{
FD
t , t <∞

}
.
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1) Optimal production by completing square: Considering
no regime information available, the parameters in the original
problem should be modified with

r1 = r2 = r, σ2
1 = σ2

2 = σ, α1 = α2 = α,

and β1 = β2 = β.
Also we have a1 = a2 = a, and a is the positive root of the
equation

−ra+ α− 1

β
a2 = 0. (III.7)

Let Al be the class of admissible production processes
(the subscript l refers to the limited information). The cost
associated with a production process p becomes:

J(p) = E

[∫ ∞
0

Rt
{
α(Xt −Sε(t))

2 + βp2t
}
dt

]
, (III.8)

where now Rt = e−rt. The minimal cost is Vl =
infp∈Al

J(p).
If we follow the procedure to define necessary constants,

we are guaranteed to obtain the complete square with all the
other terms vanished.

Theorem 3.4: [21] The optimal production rate p(l) with
limited information regarding to the state of the regime is
given by:

p(l)s = −α
β
X(l)
s + E[− 1

2β
fε(s)|FD

s ], (III.9)

which can be written as

p
(l)
s = −αβX

(l)
s − 1

2β f1P
{
ε(s) = 1|FD

s

}
− 1

2β f2P
{
ε(s) = 2|FD

s

}
. (III.10)

where l denotes limited information.

Proof: Similarly as Theorem 3.3, the proof is based
on the completing squares method, and we omit this part
due to space limit. However, it should be emphasized that
the expression for optimal production here is much more
complicated than that of (III.3) due to the fact that we only
have limited information available. In order to make (III.10,)
computable, we must calculate the conditional probabilities
P
{
ε(s) = 1|FD

s

}
and P

{
ε(s) = 2|FD

s

}
first.

This objective can be achieved by utilizing the tools from
optimal estimation for hidden Markov model (HMM) [24] if
we denote the conditional probabilities as a two-dimensional
process ε(t)(t) = (η1(t), η2(t)). Then the actual regime
state can be estimated by change of measure based on the
Girsanov’s theorem. Finally, the problem boils down solving
a well-known stochastic differential equation (SDE), which
can be solved directly either in a explicit way or numerically.
Due to the space limit here, this will be discussed in another
forthcoming paper.

IV. NUMERICAL RESULTS

In this section, we present a numerical example to demon-
strate the effectiveness of the efficiency of the controller
presented in this paper. For simplicity, we only consider
the full information case, which corresponds to the cases
with regime known and unknown, respectively. The system
structure is the same as given in Fig. II.1 while the regime is
available. The time intervals for peak hours are assumed
to be ”7 : 00 ∼ 8 : 00”, ”12 : 00 ∼ 13 : 00” and
”18 : 00 ∼ 20 : 00”. So in total there are 4 hours peak-
time during a day.

Example 4.1: Consider demand drifts µ1 = 0.5, µ2 = 3.0;
µp1 = 0.1, µp2 = 1.5; µG1 = 0.3, µG2 = 1.0. All σi’s are
assigned to be 0.2. The expected time in regime 1 (off-peak)
is 6 times than the expected amount of time in regime 2
(peak), such that λ1 = 1.2, λ2 = 0.2.

r1 = r2 = 0.2, α1 = α2 = 1.0, β1 = 2, β2 = 0.5,(IV.1)

S1 = 0.9 and S2 = 0.2 which represent the target battery
SOC for both off-peak and peak regimes, respectively.

Plug into (III.4), we get

−0.2 ∗ a1 + 1− 0.5 ∗ a21 + 0.2 ∗ a2 − 0.2 ∗ a1 = 0,

−0.2 ∗ a2 + 1− 0.5 ∗ a22 + 0.2 ∗ a1 − 0.2 ∗ a2 = 0.

Then we obtain a1 = a2 = 2.1383.
We consider initial values of cumulative demand, diesel

production rate and battery SOC to be 0, 0, and 0.8,
respectively. Moreover, the initial regime is assumed to be
regime 1 which means off-peak price. The 24-hours time
horizon is discretized by partitioning it into 1,000 time
intervals. Regime switchings occur at the instances marked
as red diamond in Fig. IV.1 - IV.3.

A sample path of the cumulative demand is given in Fig.
IV.1. It’s worthy differentiating this cumulative demand up
to time step t with the instant demand for each time step.

The control signal for the diesel generator is depicted in
Fig. IV.2. Recall that we want to minimize the diesel cost
which is equivalent to choose the control to be as close as 0
whenever it is not necessary to run the generator. Moreover,
we do see the generator kicks in when the electricity is in
the peak price. Since the cost to purchase extra electricity at
this peak hours is usually extremely expansive, it is wiser to
turn on the generator to meet the demand.

Finally, the dynamics of battery SOC is captured in Fig.
IV.3. It is obvious that the battery keeps being fully charged
whenever it’s in off-peak hours, while it reaches the minimum
SOC as in the peak hours.

V. CONCLUSION

In this paper, we addressed the optimal stochastic control
problem for home energy systems with solar and energy
storage devices when the demand is realized from grid. The
demand is subject to Brownian motions with both drift and
variance parameters modulated by a continuous-time Markov
chain that represents the regime of electricity price. We
presented a framework aimed at addressing the stochastic
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processes involved in home energy management systems,
and used mean-variance to improve the efficiency of the
power grid. Ongoing research includes detailed derivation
for the optimal estimation of HMM and the corresponding
simulation. Future research should investigate a comparison
with traditional optimization framework.
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