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ABSTRACT

The rapid advancements in transportation technologies have significantly im-

pacted urban social life, necessitating a reevaluation of the relationship between auto-

mobility and society. This dissertation is motivated by the need to understand human

behavior and the effects of selfish decision-making in mobility systems, as technologi-

cal advancements make it increasingly convenient for travelers to rely on cars. We are

also motivated in providing a sustained scholarly focus on understanding the deeply

economic, behavioral game-theoretic relationships and interactions among travelers,

passengers, drivers, and the mobility system itself, while addressing key open questions

in the domain. Our overarching goal is to ensure accessibility and efficiency in the mo-

bility systems of the future by developing socially-efficient strategies that handle travel

demand while focusing on the human preferences. By bridging theories from behavioral

economics, microeconomics, game theory, control, and transportation engineering, we

provide a comprehensive understanding of traveler-centric mobility systems.

This dissertation investigates social dilemmas in mobility decision-making, strate-

gic traveler routing, mobility market design, and behavioral interactions in multimodal

transportation networks. We explore the implications of selfish behavior on trans-

portation systems and provide solutions that address congestion and resource alloca-

tion challenges. Our contributions span the development of distinct methodologies to

understand the evolving social-mobility dilemma, the integration of game theory and

microeconomics with transportation engineering for strategic traveler routing, and the

incorporation of prospect theory in examining travel behavior in mobility systems.

In Chapter 2, we investigate the socioeconomic interactions of humans with

self-driving cars and public transit. The focus is on the impact of these interactions
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on system efficiency, using a game-theoretic perspective to analyze emerging mobil-

ity systems (EMS) within a multimodal transportation network. Chapter 3 explores

the game-theoretic approach to resource allocation for efficient multimodal mobility

systems. The research probes the potential of such systems to enhance accessibility,

manage travel demand versus capacity, and improve overall traveler welfare. The de-

sign and stability of a shared mobility market are also examined from a game-theoretic

perspective. In Chapter 4, the work is expanded by applying prospect theory and es-

tablishing the “mobility game” for multimodal transportation systems. This approach

aids in understanding the effect of different traveler behaviors on decision-making in

EMS and the impact on optimal system-wide performance.

The impact of our research on society and the state of the art is significant,

as it provides a deeper understanding of human behavior in mobility systems and of-

fers valuable insights into the implications of selfish decision-making on the future of

transportation. By bridging theories from different disciplines, our work lays the foun-

dation for the development of innovative solutions that ensure accessibility, efficiency,

and sustainability in the mobility systems of the future. Furthermore, our research

advances the state of the art by providing a comprehensive framework that unifies di-

verse theoretical perspectives, ultimately informing the design of smart, efficient, and

accessible mobility systems.

In conclusion, this dissertation advances the state of the art in mobility systems

research by providing a comprehensive and interdisciplinary understanding of human

behavior and selfish decision-making. Our work contributes to the development of

smart strategies for handling travel demand, promoting accessibility and efficiency in

future transportation networks. By bridging diverse theoretical perspectives, we pave

the way for continued innovation in the design and management of sustainable and

efficient mobility systems that cater to the preferences of individual travelers.

xiv



Chapter 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

Commuters in big cities have continuously experienced the frustration of con-

gestion and traffic jams [239]. Travel delays, accidents, and road altercations have

consistently impacted the economy, society, and the natural environment by increasing

the number of vehicles on city roads [52]. In addition, one of the pressing challenges of

our time is the increasing demand for energy, which requires us to make fundamental

transformations in how our societies use and access transportation [258]. Thanks to the

technological evolution of mobility (e.g., electrification of vehicles, smart vehicles and

smart mobility, improved vehicle sensor technology [53]) that is currently afoot, it is

highly expected that we will be able to eliminate congestion entirely, and significantly

increase mobility efficiency in terms of fuel consumption and travel time [208]. In addi-

tion, several studies have shown the benefits of emerging mobility systems (EMS) (e.g.,

ride-hailing, on-demand mobility services, shared vehicles, self-driving cars) in reduc-

ing energy and alleviating traffic congestion in a number of different transportation

scenarios [178, 255, 172, 137, 232]. But, what are EMS exactly?

One of the most novel and defining characteristics of an EMS is its socioeco-

nomic complexity. Mobility is an indispensable prerequisite for social, cultural, and

economic development as well as social participation. Thanks to the unprecedented

improvements in mobility, we expect a significant alteration in human behavior and,

most importantly, on tendency-to-travel. This may lead to unintended consequences,

i.e., rebound effects, in the sense of additional energy use and greenhouse gas emissions,
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as well as leading to decreases in the density of urban areas and negatively impacting

congestion. In addition, future mobility systems will enable human-vehicle interactions

between people of any age and abilities, thus allowing enhanced and universal acces-

sibility. One key reason why connectivity (e.g., Internet of Things) and automation

in mobility may lead to rebound effects is because of the high levels of comfort and

convenience - factors that urge drivers, passengers, and travelers to change their com-

mute and travel tendencies, and thus use their vehicles quite more frequently and more

unexpectedly. As urban social life has been greatly associated with the technological

impact of the car, this compels us to reassess the relationship between automobility

and social life [218, 27]. To add to our argument, evident from similar technological

revolutions, for example, the impact of elevators on building design and social class

hierarchies [22], human social perspective and view can have a tremendous effect on

how technological innovations are utilized and implemented. For all these reasons, it is

vital to study the impact of EMS in a sociotechnical context focusing on the social im-

plications and attempt to provide optimal solutions for efficient EMS with widespread

societal benefits.

The cyber-physical nature (e.g., data and shared information) of EMS is asso-

ciated with significant control challenges and gives rise to a new level of complexity in

modeling and control [77]. Research efforts over the last twenty years have tended to fo-

cus on the technological dimension. Zardini et al [254] provide a comprehensive review

of the methods and tools that model and solve problems related to smart mobility-on-

demand systems. While there has been considerable research in smart mobility, the

area that remains less studied is a comprehensive theoretical examination of its broader

social implications. The impact of selfish social behavior in routing networks of reg-

ular and autonomous vehicles has been studied in [153, 130, 30]. Other efforts have

addressed “how people learn and make routing decisions” with behavioral dynamics

[124, 123]. A game-theoretic framework using sequential games was proposed to study

the socioeconomic interactions as well as the different tradeoffs that emerge between
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the mobility stakeholders of a mobility “ecosystem” [253]. It seems though that the

problem of how automation in mobility will affect the tendency to travel and decision

making has not been adequately approached yet. In a recent study [94], it was shown

that when daily commuters were offered a convenient and affordable taxi service for

their travels, a change of behavior was noticed; the commuters adjusted their travel

behavior and activities and used the taxi service considerably more often leading to a

83% overall increase in vehicle miles traveled. Along with other similar studies [9, 26]

this shows that EMS will affect people’s tendency to travel and incentivize them to

use cars more frequently, which potentially can also lead to a shift away from public

transit.

As the reality of connected and automated vehicles (CAVs) is coming fast to

realization [140], and similarly, with other past technologies, CAVs promise to be an

incoming disruptive innovation with vast technological, commercial, and regulatory di-

mensions. Recently, there has been a significant amount of work on the technological or

social impact of CAVs (mostly focusing on congestion, emissions, energy consumption,

and safety). CAVs will transform the transportation system of today and revolutionize

mobility. On the other hand, one expected social consequence of CAVs is to reshape

urban mobility in the sense of altered tendency-to-travel, and thus, highly increase

demand in the transportation system. To elaborate on this point, evident from similar

technological revolutions (e.g., elevators), human social tendencies and society’s per-

spective have changed the way a technology is used and applied [22]. Thus, we can

most certainly expect that the deployment of CAVs in society will have unexpected

outcomes, in the form of rebound effects (e.g., increased overall vehicle miles traveled,

decreased use of public transportation, higher demand for road usage, etc.) Although

there have been numerous studies that provide qualitative analysis for the social im-

pact [261, 227], a formal analysis of the human decision-making regarding the expected

social-mobility dilemma of the future travelers is missing from the state of the art.

In addition, shared mobility can provide access to transportation on a custom
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basis without vehicle ownership [20]. Over the last few years, on-demand ride-sharing

services available via our smartphone have proved to be an innovative and adaptive

mobility strategy for a broad range of travelers, passengers, and drivers [224]. Be-

sides the apparent benefits to travelers (e.g., short-term and as-needed mobility access

[164]), shared mobility services have been shown to have a significant environmental

and societal impact. For example, reduced vehicle use, ownership, and vehicle miles

traveled [212]. However, it is the authors’ belief that shared mobility can also provide

a solution to the social impact of connected and automated vehicles (CAVs), which

promise to be an incoming disruptive innovation with vast technological, commercial,

and regulatory dimensions [140]. Although it is clear that CAVs will transform the

urban transportation networks and revolutionize mobility [133, 172, 4, 137], we expect

CAVs to have social consequences. For example, CAVs may reshape urban mobility in

the sense of altered tendency-to-travel and highly increase traffic demand [128].

The question for improved and efficient EMS is not only on modeling and un-

derstanding the human interactions. Wide accessibility to transportation in EMS can

be impacted by the socioeconomic background of the travelers, i.e., whether a traveler

can afford it. For example, travelers with a low-income background may be unable to

use any or all transportation travel options available in a city. A key characteristic

of our approach, which allows us to differentiate from other studies on fairness and

efficiency [222, 105], is that we adopt the Mobility-as-a-Service (MaaS) concept, which

is a system of multi-modal mobility that handles user-centric information and provides

travel services (e.g., navigation, location, booking, payment) to a number of travelers.

So, for the purposes of our work, travelers are expected to report their preferences to

a central authority. The goal is to guarantee mobility as a seamless service across all

modes of transportation accessible to all in a socially-efficient and fair way.

In this dissertation, we are motivated to investigate traveler-centric mobility

systems (CAVS, shared mobility, smart mobility), provide a formal theoretical under-

standing of the relationships between travelers, passengers, and drivers and self-driving
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cars and public transit. At the same time, we investigate and explore how using a game-

theoretic framework can enable us to a better understanding of how to offer efficient

and accessible solutions for tomorrow’s mobility systems.

1.1.1 Why Game Theory in Mobility?

One may ask why use game theory to analyze such a problem. EMS (e.g., CAVs,

shared mobility, electric vehicles) will be characterized by their socio-economic com-

plexity: (i) improved productivity and energy efficiency, (ii) widespread accessibility,

and (iii) drastic urban redesign and evolved urban culture. In other words, the inter-

play of economic implications and social tendencies of the travelers can be naturally

modeled and analyzed using notions from social choice theory and game theory. One of

the main arguments in our work is that the social interaction of humans and CAVs or

shared and self-driving cars or even public transit can be modeled as a “social dilemma”

or a market. Informally, a social dilemma is any situation where there is a subtle yet

unwanted discrepancy between individual and collective interest. We can then find the

socially-acceptable equilibrium by ensuring to take into account the most important

factors that influence the travelers’ decision-making. It is for this reason why we in

this dissertation we argue that game-inspired markets offer a complementary analysis

of decision-making in EMS.

We offer an example here: Consider a normal-form game of n players. We

can acquire a significantly improved way to realistically model social dilemmas that

occur in real-life, and most importantly, we can obtain a multiplayer structure that

reflects Garrett Hardin’s “Tragedy of the Commons” [95]. From its conception, the

Tragedy of the Commons has been an important problem in economics and other fields

as it describes a plethora of phenomena in which independent members of a society

selfishly attempt to maximize their benefit of utilizing at least one common resource

which is scarce. Thus, the individuals’ selfishness leads to the collective degradation

of society’s well-being. Noteworthy, even though the decision-makers are selfish and

5



their decisions aim to maximize personal gain, they end up depleting the resource with

unavoidable repercussions and losses [58]. In our context, the common resource is the

road infrastructure shared by all the travelers, and the utilization is whether to travel

with a CAV or not. Intuitively, one can expect that if all travelers make the selfish

decision to use a CAV for commuting, then congestion is unavoidable.

The next section presents the state of the art related to mobility systems, game

theory, mechanism design.

1.2 Literature Review

In the first decades of the 20th century, economist Arthur Cecil Pigou argued

that “if a system’s decision-makers take autonomous decisions, then the resulting col-

lective outcome most probably will be inefficient.” This key observation is evident in

many different studies and analyses of transportation and mobility problems. Based

on this, we categorize into four main realms of research the state of the art that serve

as the foundations for this dissertation and its contributions.

1.2.1 Emerging Mobility Systems & Game Theory

There is a solid body of research now available for optimizing the efficiency of

emerging mobility systems with CAVs. Over the last decade, several research efforts

reported in the literature [255, 135, 257, 256] have aimed at addressing questions regard-

ing the CAVs’ impact on transportation efficiency. For example, can we consider the

problem of optimizing fuel economy and emissions by coordinating a mobility system

consisting of CAVs? What would be the appropriate conceptual approaches for model-

ing and optimizing emerging mobility systems? Recent technological developments can

answer the above questions, indicating that CAVs will most likely help us eliminate

congestion, significantly decrease fuel consumption, and minimize road accidents. An-

alytical frameworks have been proposed to quantify and evaluate the impacts of CAVs

from the technological perspective [192, 193]. Furthermore, coordination of CAVs at

6



different traffic scenarios (e.g., intersections, vehicle-following) have been extensively

evaluated in the literature [194, 133, 251, 19, 106]. Moreover, the impact of CAVs has

been identified as one that will enable traffic administrators to monitor transportation

network conditions efficiently and effectively, thus improving the operating decisions

that are required daily [208, 258].

In recent years, it has been recognized in the literature that further research

is required to identify and understand the potential impacts of EMS. Shared mobility

has been investigated and studied extensively the last decade. Factors that motivate

active research in shared mobility systems are the significant energy savings, the limited

importance of parking, and thus, opportunities for urban redesign with more space,

and the increased demand for mobility access in developing countries [213]. Even

though the promises of shared mobility have been realized with the implementation

of various ride-sharing, or car-sharing, programs and initiatives, there are still open

questions on how to design a shared mobility system that is socially-acceptable and

profitable. Standard techniques of optimization and dynamics pricing have been used to

control shared vehicle traffic and the non-strategic behavior of travelers and passengers

[179, 248]. These methods focus primarily on formulating and solving a dynamic

or stochastic optimization problem with respect to variables that include preferred

and expected departure, arrival, and in-vehicle travel. One can control the solution

by designing pricing schemes that the travelers, or passengers, react in a predictable

manner (travelers are assumed to be price-takers).

There have been different approaches reported in the literature to study shared

mobility using ideas from game theory. In particular, game theory has been used to

model and analyze non-cooperative, or cooperative, interactions of travelers who seek

to accommodate their desired origin-destination commutes through ride-sharing. The

authors in [28] modeled a shared mobility system connected with a social network in

which travelers could communicate and arrange one-time rides. Their focus was to min-

imize travel cost. Assignment games have been used to match sets of travelers with sets
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of capacitated routes in a transportation network [187]. In contrast to game-theoretic

techniques, other efforts used a Vickrey-Clarke-Groves-inspired mechanism to design a

first-mile, ride-sharing mobility system matching selfish travelers to vehicles [23]. The

proposed mechanism was shown to be incentive compatible, individually rational, and

price non-negative. In most cases, however, traveler, or passenger, behavior has not

been well-understood. This is so, especially, in relevance to the impact that human

travelers, passengers, and drivers might have on the traffic and energy efficiency of

a mobility system. A very recent study on “social dilemmas” attempted to remedy

this lack of understanding on the social impact of shared mobility [185]. The authors

provided both a theoretical and an experimental study of how the strategic decision-

making of travelers can impact the shared mobility’s welfare, and thus, efficiency. A

thorough review on ride-sharing can be found in [82] and the references therein.

Although the social effect of selfish-mobility behavior in routing networks of

regular and autonomous vehicles has been studied [152, 155, 154], it seems that the

problem of how CAVs will affect human tendency-to-travel and mobility frequency has

not been adequately approached yet. One of the main questions we will attempt to

answer in this proposal is the following: “What is the social impact of the emerging

mobility systems with CAVs?” This question is quite important as it is widely ac-

cepted that CAVs will revolutionize urban mobility and the way people travel. For

example, thanks to CAVs, travelers may use them to make empty trips, i.e., no travel-

ers, to avoid parking, and thus add extra congestion in the network [59]. In addition,

CAVs could potentially affect drivers’ behavior and negatively impact traffic perfor-

mance in general [8]. The question of the actual impact of CAVs on travel, energy,

and carbon demand has attracted considerable attention [246]. Depending on differ-

ent environmental indicators, the authors in [245] provided a practical microeconomic

environmental rebound effect model. Quite recently, there has been research on the

effects of a considerate penetration of shared CAVs in a major metropolitan area [144].

In an emerging mobility system with CAVs, shared mobility (car-sharing, ride-sharing,
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and on-demand ride service) enables users to access transportation as needed without

vehicle ownership [214, 215, 203]. Various research efforts have focused on quantify-

ing the impact of car sharing on vehicle ownership, vehicle miles traveled, greenhouse

gas (GHG) emissions, and modal shift [79, 43]. Some studies [142, 141, 143, 17] have

shown a decrease in vehicle ownership and GHG emissions for car-sharing services

with significant implications on public transit. The feasibility and potential environ-

mental impacts of shared CAVs have been investigated thoroughly in the literature

[216, 44, 81, 190, 25, 64, 158, 159, 78, 132]. There have been also studies focusing on

cost-benefit analysis of a mobility system with shared CAVs [38, 72, 33, 163], while

some other studies have investigated its impact on vehicle ownership by using surveys

or comparable analysis with conventional car-sharing systems [234, 237, 80, 93, 157].

1.2.2 Resource Allocation, Mechanism Design, Auctions

The theory of mechanism design was developed as an objective-first approach

to efficiently align the individuals’ and system’s interests in problems of asymmetric

information, where the individual agents have private preferences [145, 171]. It can be

viewed as the art of designing the rules of a game to achieve a specific desired outcome.

A well-established and broadly-used mechanism that has been successful in widely dif-

ferent applications (e.g., auctions, public projects, and cost-minimization problems)

is the Vickrey-Clarke-Groves (VCG) mechanism [243, 50, 90]. The VCG mechanism

ensures the existence and implementation of a dominant strategy equilibrium, which is

an efficient solution and allows selfish agents to make a decision (alternatively choose

a strategy) that is best no matter what other agents may decide. Agents are also

incentivized to truthfully report their private preferences and have no reason (e.g.,

chance of receiving negative utility) not to participate in the mechanism. However,

the VCG mechanism is known to be an extravagant mechanism, i.e., it can gener-

ate big surpluses. Because the VCG mechanisms have certain limitations, there have

been attempts to use different approaches to solve the mechanism design problem. For
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example, by adopting the Nash equilibrium (NE) as the solution concept of the mech-

anism, a surrogate optimization method can be used where the network manager asks

the agents to report a bundle of messages that approximate their private information

[108, 5, 73, 96]. Mechanism design has been used extensively in communication net-

works in the form of decentralized resource allocation problems [112, 107], and also in

transportation [240, 262].

Overall, mechanism design has broad applications spanning surprisingly many

different fields, including microeconomics, social choice theory, and control engineer-

ing. Applications in engineering include communication networks [189], social networks

[56], transportation routing [24], online advertising [111], smart grid [206], multi-agent

systems [219], and in general resource allocation problems [102], who was the first to

formulate a resource allocation problem within the framework of mechanism design.

Mechanism design theory then emerged to mathematically model, analyze, and solve

informationally decentralized problems involving systems of multiple rational and in-

telligent agents [167]. In particular, mechanism design is concerned with methodologies

that implement system-wide optimal solutions to a myriad of problems - problems in

which the strategically interacting agents can hide their true preferences for better

individual benefits, thus hurting the overall efficiency of the system. Mechanism de-

sign has broad applications spanning different fields, including microeconomics, social

choice theory, and control engineering. Applications in engineering include communi-

cation networks [189, 112], power markets [221], social networks [56], transportation

routing [23, 240, 241, 262], online advertising [111], smart grid [206], multi-agent sys-

tems [219], and resource allocation problems [89, 98].

The application of mechanism design is not new in transportation and mobility

problems [104, 231, 240, 184, 174]. For example, it has been used to provide solutions

to individual route selection under different congestion traffic scenarios (e.g., first-mile

ridesharing, selfish routing, tradable driving permits). In particular, auction-based

mechanisms treat traffic congestion as an economic problem of supply and demand,
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focusing on travel time allocation or routing. So, on the one hand, auctions have

been proposed to design pricing schemes with tolls in a network of roads leading to

a spark of studies in auctioning techniques. On the other hand, this approach has

important limitations: (i) the implementability of auction-based tolling on highways

is not straightforward due to the dynamic and fast-changing nature of transportation

systems; (ii) it is also uncertain how the public (e.g., drivers, passengers, travelers)

will respond concerning toll roads in an auction setting. Therefore, understanding

the travelers’ interests (willingness-to-pay, value of time) and the impacts on different

sociodemographic groups become imperative for a socially-efficient design of an emerg-

ing mobility system. For these reasons, it is essential to design an emerging mobility

system whose focal point is the social aspect and societal impact of CAVs. In con-

junction, it is the authors’ belief that the emerging mobility systems - CAVs, shared

mobility, electric vehicles - will be characterized by their socioeconomic complexity:

(1) improved productivity and energy efficiency, (2) widespread accessibility, and (3)

drastic urban redesign and evolved urban culture. This characteristic can naturally be

modeled and analyzed using game theory/mechanism design and behavioral economics

alongside control and optimization techniques. One of the main arguments in this

dissertation is that the social interactions of human travelers with CAVs, and other

modes of transportation can be modeled as an economically-inspired mobility market,

where either monetary incentives (tolls) or well-designed game rules are used to induce

the desired socially-efficient outcome.

In a transportation context, travelers can be viewed as agents in a routing

game created by the interaction among travelers and the road authority. Mecha-

nism design for routing games have been studied extensively in computer and com-

munication networks [198, 200, 139, 114, 75]. Advances in algorithmic mechanism

design [170, 171] provide a promising approach to incentivize rational agents to coop-

erate with the system in order to reach desirable outcomes. This approach motivates

agents to disclose their private information. As usually done in mechanism design
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[165, 86, 150, 149, 88, 147, 146, 148], the aim is to construct a mechanism that induces

voluntary participation (VP) and incentive compatibility (IC) properties. The former

means agents do not suffer any loss when they use the system, and the latter means re-

vealing truthful information is in their best interest. In algorithmic mechanism design,

besides the VP and IC properties, designers also concern about computational com-

plexity when computing an allocation rule and a payment rule for intended outcomes

[129]. The key technical difficulties lie in the combinatorial nature of the allocation rule

and the interweaving relationship of allocation rules and payment rules. On the whole,

though, we are more interested in the application of mechanism design in designing a

market or an auction. Auctions are processes for allocating goods among bidders, so

the challenge of auction design can only be understood by studying the demands of

the participants [161]. When each bidder wants to buy only one item from a set of

nonidentical items, the mechanism needs to solve the assignment problem: “who gets

which item?” Auction design has been the focus of significant theoretical discussion

from John Nash’s seminal work on bargaining problems [169] to works on multi-object

auctions and matching market problems [62, 83]. Recently, advanced optimization

techniques have been used to design multi-parameter auctions, either focusing on bud-

get constraints or maximizing revenue [14, 201]. A comprehensive outlook of the theory

can be found in [125] and the references therein.

Partly related to our work are matching models which describe systems or mar-

kets in which there are agents of disjoint groups and have preferences regarding the

“goods” of the opposite agent they associate with. Two-sided matching with transfers

have been modeled as assignment problems where one entity (e.g., a firm) needs to

pay salaries to individuals (e.g., workers) [217, 115]. Tasks-matching problems under a

wide range of constraints have been reported in [119]. A wider literature on matching

under constraints can be found in [11]. Notable examples are mechanisms for assigning

students to schools [1], interns to hospitals [250], pickup and delivery [233], electric
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vehicles [252]. It is easy to see that matching markets are quite practical as they of-

fer insights into the more general economic and behavioral real-life situations. These

examples are all centralized approaches of determining who gets assigned to whom at

what cost and benefit. One of the very first studies was the marriage model which

was analyzed by [83] and existence of stable matchings between men and women was

established. The authors in [217] extended it by incorporating monetary transactions

between the agents to the marriage model and formulated it to the well-known “as-

signment game.” They showed that there exists a set of stable assignments, called the

core (no agent wants to deviate from their match) and it is identical to the solutions of

a dual linear program. However, no explicit mechanism was offered on how to achieve

a stable assignment in the core. Thanks to the natural usefulness of matching mar-

kets, various extensions of the assignment game have been developed focusing either on

different behavioral settings or information structures [62, 223, 7]. Assignment games

and matching markets have also been used and studied extensively in auction theory

[165, 14]. For a complete and thorough overview of assignment games and matching

models, see [197].

1.2.3 Routing and Congestion Games

One of the standard approaches to alleviate congestion in a transportation sys-

tem has been the management of demand size due to the shortage of space availability

and scarce economic resources by imposing an appropriate congestion pricing scheme

[180, 76]. Such an approach focuses primarily on intelligent and scalable traffic routing,

in which the objective is to guide and coordinate decision makers in choosing routes

[177, 37, 259] that leads to optimizing the routing decisions in a transportation net-

work [121, 220]. Game theory has been one of the standard tools that can help us

investigate the impact of selfish routing on efficiency and congestion [138, 101]. By

adopting a game-theoretic approach, advanced systems have been proposed to assign

decision makers concrete routes or minimize travel time and study a Nash equilibrium
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(NE) under different congestion pricing mechanisms [34, 42, 205, 45, 46, 47, 48, 56, 49].

An important and key theoretical approach in alleviating congestion is rout-

ing/congestion games [195, 54, 93, 130, 228], which are a generalization of the standard

resource-sharing game of an arbitrary number of resources in a network with a finite

number of travelers. For example, each traveler may contribute a certain amount of

traffic from a source to a destination and affect the overall congestion on a route, thus

increasing the travel time for all other travelers. Another important class of games is

potential games, first introduced in [162], which represent an important branch of game

theory. In a potential game the incentive of all players to change their strategy can be

expressed using a single global function called the “potential” function. The potential

function depends on the action sets of all decision makers and captures the changes of

utility as the actions vary. Potential games have been used extensively in wide-ranging

applications; for example, tax schemes of public goods [120], economics of shallow lakes

[134], electricity markets [85]. Routing/congestion and potential games have played an

instrumental role in understanding competition over shared resources. Both classes of

games has been studied in multiple disciplines to model transportation and communi-

cation networks [175, 199, 211, 76], common-pool resource games in economics [176],

and resource dilemma problems in psychology [186, 36].

In cases where a resource fails (e.g., if a road is viewed as a resource then

too many people using it may lead to a traffic jam) or there is uncertainty over the

resource’s quantity/quality, the decision makers cannot collectively reach an efficient

equilibrium. Resources with negative congestion externalities have been widely consid-

ered in congestion games [97, 16]. In this regard, our work deviates from the literature

as we consider the overutilization of multiple different resources on each route in the

transportation network as well as considering additional indirect costs to the travelers’

(e.g., waiting cost at a transport hub). In our modeling framework, we consider nega-

tive congestion externalities by supposing that if the number of co-travelers that utilize

the same route or mode of transportation increases, then a traveler’s utility decreases
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[6, 260].

1.2.4 Behavioral Model: Prospect Theory

So far, most of the existing game-theoretical literature in transportation and

routing/congestion games assumes that the decision-makers behavior follows the rational-

choice theory, i.e., each decision-maker is a risk-neutral (e.g., being indifferent to risk

and only concerned with the expected outcome), selfish, utility maximizer [219]. This

seems to turn most transportation models quite unrealistic, as unexpected travel de-

lays can lead to uncertainty in a traveler’s utility. More irrational decision making

over uncertainties and risks in utility can play a significant role, and its study can help

us understand how large-scale systems perform inefficiently. There is strong evidence

with empirical experiments that show how a decision-maker’s choices and preferences

systematically may deviate from the choice and preferences of a decision-maker un-

der the rational choice theory [110, 39]. This is because real-life decision making is

seldomly truly rational, and biases affect how we make decisions. For example, de-

cision makers compare the outcomes of their choices with a known expected amount

of utility (called reference) and decide based on that reference whether their utility

is a gain or loss. Prospect theory has laid down the theoretical foundations to study

such biases and the subjective perception of risk in utility of decision makers (see the

seminal papers [110, 238]). Prospect theory has been recognized as a closer-to-reality

behavioral model for the decision making of humans and has been used in a wide range

of applications and fields [39, 15], including recent studies in engineering [69, 168, 70].

There has also been considerable work at the intersection of transportation studies and

prospect theory [61, 127, 71].

1.3 Research Gaps and Contributions

As urban social life has been considerably associated with the technological im-

pact of the car, we are compelled to reassess the relationship between automobility and
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social life. Based on this, this dissertation focuses on paving the way for a sustained

scholarly focus on understanding the societal effects and dynamics between human

travelers and EMS (shared and self-driving cars and public transit). We do this by

investigating several key open questions on the behavioral game-theoretic deeply eco-

nomic relationships and interactions of travelers, passengers, drivers and the mobility

system itself.

We offer a game-theoretic perspective and analysis for EMS by looking at the

socioeconomic interactions of human travelers with self-driving cars and public transit

in Chapter 2 following our work in:

(i) Chremos, I.V., & Malikopoulos, A.A. (2023). Socioeconomic impact of emerging

mobility markets and implementation strategies. In AI-enabled Technologies for

Autonomous and Connected Vehicles (pp. 481-510). Cham: Springer Interna-

tional Publishing.

(ii) Chremos, I.V., Beaver, L.E., & Malikopoulos, A.A. (2020, September). A game-

theoretic analysis of the social impact of connected and automated vehicles. In

2020 IEEE 23rd International Conference on Intelligent Transportation Systems

(pp. 2214-2219).

We ask: Can we develop an efficient multimodal mobility system that can en-

hance accessibility while controlling the ratio of travel demand over capacity and and

improve indirectly the welfare of all travelers, passengers, and drivers? Studying this

question in a game-theoretic setting in order to better understand how EMS might

affect human tendency-to-travel and decision-making allowed us to address a key open

question that has not been adequately approached yet. Understanding this “social”

aspect of CAVs is critical in our effort to design efficient mobility systems. So, to

address this question, our first step is to understand the behavioral interactions of

travelers with different modes of transportation along with the implications to system

efficiency. Thus, we study the game-theoretic interactions of travelers seeking to travel
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in a transportation network comprised of roads used by different modes of transporta-

tion (e.g., cars, buses, light rail, and bikes). A key characteristic of our approach is

that we adopt the Mobility-as-a-Service (MaaS) concept, i.e., a multimodal mobility

system that handles centrally the travelers’ information and provides travel services

(e.g., navigation, location, booking, payment). Our goal is to provide a game-theoretic

framework that captures the most significant factors of a traveler’s decision making

in a transportation network under two different behavioral models. We also expanded

our approach by addressing shared mobility.

For this question, we offer multiple different game-theoretic perspectives and

analyses in Chapter 3 following our work in

(i) Chremos, I.V., & Malikopoulos, A.A. (2022). Mobility equity and economic

sustainability using game theory. arXiv preprint, arXiv-2203.11421. In 2023

American Control Conference (to appear).

(ii) Chremos, I.V., & Malikopoulos, A.A. (2022). An analytical study of a two-sided

mobility game. In 2022 American Control Conference (pp. 1254-1259).

We expand our work and incorporate prospect theory and establish formally

the “mobility game” for multimodal transportation systems in Chapter 4 following our

work in

(i) Chremos, I.V., Bang, H., Dave, A., Le, V.A., & Malikopoulos, A.A. (2023).

Modeling travel behavior in mobility systems with an atomic routing game and

prospect theory. arXiv preprint arXiv:2303.17790.

(ii) Chremos, I.V., & Malikopoulos, A.A. (2023). A traveler-centric mobility game:

Efficiency and stability under rationality and prospect theory. PLoS ONE 18(5):

e0285322.

Recall that, in this dissertation, we interested in the question Can we develop an

efficient multimodal mobility system that can enhance accessibility while controlling the
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ratio of travel demand over capacity and and improve indirectly the welfare of all trav-

elers, passengers, and drivers? So, at the same time, we offer multiple solutions from

different perspectives at answering this question. We aim to provide a first-attempt

answer and its solution and we argue that a sociotechnical approach focusing on the

social dimension of a mobility problem can help us design the next-generation mobility

systems. To achieve this, we consider a mobility system with decentralized informa-

tion (alternatively called “asymmetric information”) and multiple selfish and intelligent

decision-makers (e.g., travelers), who, in turn, may misreport their true travel prefer-

ences for better individual benefits. Hence, based on their background and unique

behavioral tendencies, travelers make decisions that generally do not lead to system-

wide optimal performance. We tackle this discrepancy between individual and collective

interests [45] by reverse-engineering the mobility system from its optimal solution (e.g.,

efficiency, congestion-free) to what should each traveler do via the implementation of

monetary incentives. This method in economics is known as “mechanism design,” in

which by treating systems as economic institutions, we can control and coordinate the

selfish agents’ “economic activity” (e.g., which mode of transportation to use).

For this question, we explore a game-theoretic approach presented in Chapter

3 in our work:

(i) Chremos, I.V., & Malikopoulos, A.A. (2020). Social resource allocation in a

mobility system with connected and automated vehicles: A mechanism design

problem. In 2020 59th IEEE Conference on Decision and Control (pp. 2642-

2647).

Another key fundamental question that we ask ourselves is whether the deploy-

ment of CAVs in society will give rise to unexpected outcomes. For example, will

the overall vehicle miles traveled increase to the point where we observe a decrease in

traveler usage of public transit? Shared mobility can be a cost-effective and flexible

mode of transportation alongside CAVs and provide mobility access to city travelers

18



without increasing congestion, pollution, accidents, and energy consumption. We de-

sign a shared mobility market, which is consisted of a finite number of travelers and

vehicles, and it is managed by a social planner. Our goal is to measure the “benefit”

received of both the travelers and the vehicles’ operators, define the social welfare as

a function of these benefits, and form a maximization problem with integer solutions

subject to physically-related constraints. From a game-theoretic perspective, our pro-

posed shared mobility market can be interpreted as an “assignment game,” in which

indivisible goods are exchanged between two parties for money [217].

For this work, we present our contributions in Chapter 3, following:

(i) Chremos, I.V., & Malikopoulos, A.A. (2021). Design and stability analysis of a

shared mobility market. In 2021 European Control Conference (pp. 375-380).

Another important contribution of our work is the tutorial/review on the state

of the art of mechanism design in control engineering following:

(i) Chremos, I.V., & Malikopoulos, A.A. (2023). Mechanism design theory in control

engineering: A tutorial and overview of applications in communication, power

grid, transportation, and security systems. arXiv preprint arXiv:2212.00756.

This dissertation primarily includes the main contributions of my research; how-

ever, there are several other publications listed as follows which were the outcomes of

my research and collaborations with other colleagues

(i) Malikopoulos, A.A., Beaver, L.E., & Chremos, I.V. (2021). Optimal time trajec-

tory and coordination for connected and automated vehicles. Automatica. 125.

109469.

(ii) Dave, A., Chremos, I.V., & Malikopoulos, A.A. (2022). Social media and mis-

leading information in a democracy: A mechanism design approach. IEEE Trans-

actions on Automatic Control. 67(5). 2633-2639.
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1.4 Dissertation Outline

With the literature review completed and the major research gaps identified,

we present our work in these areas in Chapters 2 - 4 in the form of five peer-reviewed

conference papers and one journal paper submitted for a peer-review, and a chapter.

The overarching goal for this dissertation is presented along with our research aims.

Finally, we summarize the main contributions of this dissertation and provide some

potential future directions in Chapter 5.

1.4.1 List of Abbreviations

In this subsection, we offer a table that provides a concise list of abbreviations

used throughout the dissertation, along with their full forms for ease of reference.

Table 1.1: A summary of all abbreviations.

Abbreviation Full Form
EMS Emerging Mobility Systems
CAV Connected and Automated Vehicles
NE Nash Equilibrium
VCG Vickrey-Clarke-Groves
MaaS Mobility-as-a-Service
VP Voluntary Participation
IC Incentive Compatibility
PD Prisoner’s Dilemma
ERC Equity, Reciprocity, and Competition
SCF Social Choice Function
KKT Karush–Kuhn–Tucker
OD Origin-Destination
POA Price of Anarchy
POS Price of Stability
IDM Intelligent Driver Model
IDS3C IDS Lab’s Scaled Smart City
BFGS Broyden-Fletcher-Goldfarb-Shanno
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1.4.2 List of Notation

In addition, we summarize the notation of key variables of our models that will

be used throughout the dissertation. Note that all notation will be formally introduced

and defined in each chapter as well.

Table 1.2: A summary of the dissertation’s notation.

Symbol Description
I Set of travelers
J Set of mobility services
Jh Set of mobility services of type h
H Set of different types of services
εj Physical traveler capacity for service

j ∈ J
ε̄j Maximum traveler capacity of service

j ∈ J
G Network with set of edges E and set of

nodes V
vi Node in network G that represents a

transport hub

P(o,d) Set of routes that connect the origin o
to destination d

πi Mobility payment of traveler i ∈ I
ρi Route chosen by traveler i ∈ I
Svi Set of co-travelers at transport hub vi

for traveler i ∈ I
ηi Socioeconomic characteristic of traveler

i ∈ I
Ai Set of actions for traveler i ∈ I
A Cartesian product of all action sets
Je Total number of services of all types on

road e ∈ E
ce Travel time latency function
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Chapter 2

MOBILITY AS A SOCIAL DILEMMA AND AN EMERGING
MOBILITY MARKET

This chapter has two parts. In the first part, we address the much-anticipated

deployment of connected and automated vehicles (CAVs) in society by modeling and

analyzing the social-mobility dilemma in a game-theoretic approach. We formulate

this dilemma as a normal-form game of players making a binary decision: whether to

travel with a CAV (CAV travel) or not (non-CAV travel) and by constructing an

intuitive payoff function inspired by the socially beneficial outcomes of a mobility

system consisting of CAVs. We show that the game is equivalent to the Prisoner’s

dilemma, which implies that the rational collective decision is the opposite of the

socially optimum. We present two different solutions to tackle this phenomenon: one

with a preference structure and the other with institutional arrangements. In the

first approach, we implement a social mechanism that incentivizes players to non-CAV

travel and derive a lower bound on the players that ensures an equilibrium of non-CAV

travel. In the second approach, we investigate the possibility of players bargaining to

create an institution that enforces non-CAV travel and show that as the number of

players increases, the incentive ratio of non-CAV travel over CAV travel tends to zero.

We conclude by showcasing the last result with a numerical study.

The contributions of this chapter are: (i) we provide a game-theoretic analysis

of the conflict of interest and model the social-mobility dilemma as a social dilemma,

and (ii) we apply two different in mindset mechanisms and approaches that attempt

to prevent negative outcomes, e.g., similar to the Tragedy of the Commons. Several

research efforts reported in the literature have focused on studying social behavior
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regarding semi-autonomous driving and the selfish social decision-making of choosing

a route to commute in a transportation network [156]. A key difference between our

work and the frameworks already reported in the literature is that we focus on modeling

the human decision-making of which mode of transportation to be used rather than

modeling selfish routing. Our analysis will complement these efforts by providing a

framework that attempts to integrate the human social behavior in a mobility system

consisting of CAVs. Moreover, our work in this chapter expands the much-needed

discussion on understanding the social impact and implications of CAVs by providing

insights on how human behavior might react to an emerging mobility system. More

specifically, our most important contribution is to rigorously show that without a well-

thought intervention via regulations or incentives, a society of selfish travelers will

make the wrong collective decisions, and thus, we will end up with a catastrophically

sub-optimal performance of the emerging mobility system.

In the second part, our aim is to develop a holistic and rigorous framework to

capture the societal impact of connectivity and automation in emerging mobility sys-

tems and provide solutions that prevent any potential rebound effects (e.g., increased

vehicle-miles-traveled, increased travel demand, empty trips). To achieve this aim, as

a first attempt, we study an emerging mobility system consisting of a finite group of

travelers who seek to travel in a “smart city,” where a central authority (alternatively

called social planner) seeks to ensure the efficient distribution and operation of the

different modes of transportation offered by the city. We call these different modes

of transportation “mobility services.” A few examples of mobility services are CAVs,

shared vehicles, and public transit (e.g., train, bus, light rail, subway). The travelers

request to use at most one service to satisfy their mobility needs, i.e., to reach their

destination, via a smartphone app easily accessible to all travelers. The social planner

(e.g., a central computer) compiles all travelers’ origin-destination requests and other

information (e.g., preferred travel time, value of time, and maximum willingness-to-

pay) in order to provide a travel recommendation to each traveler. The social planner’s
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goal is to ensure that the aggregate travel recommendations are socially-efficient. Infor-

mally, by socially-efficient, we mean that the endmost collective travel recommendation

must achieve two objectives: (i) respect and satisfy the travelers’ preferences regarding

mobility, and (ii) ensure the alleviation of congestion in the system. Since our focus is

to provide socially-efficient solutions, we consider a city that supports connected and

automated mobility technologies on its roads and public transit infrastructure. Sub-

sequently, the social planner is fully aware of the system’s capabilities and network’s

capacity. In other words, the social planner is fully capable of computing the max-

imum capacity of each mobility service and the associated costs aimed at providing

travel recommendations to all travelers. Our objective is to design a mobility market

of an emerging mobility system and provide a socially-efficient solution consisting of

well-designed and appropriate monetary incentives (e.g., tolls, fares, fees) for a social

planner to guarantee the realization of the desired outcome, i.e., maximize the social

welfare of all travelers. At the same time, our solution will ensure to provide such in-

centives to travelers so that the usage of any mobility service will not lead to congestion

in the mobility system. In other words, we design a mobility market that efficiently

assigns each traveler to the “right” mode of transportation.

Our contributions are the following: (i) we design a socially-efficient mobility

market that assigns mobility services to a finite group of travelers by taking into consid-

eration their travel preferences. We achieve that by implementing a special case of the

VCG mechanism after modifying it accordingly for a mobility problem. (ii) We show

that the proposed mobility market is incentive compatible and individually rational,

two properties that ensure all selfish travelers are truthful in their communication with

the social planner and voluntarily participate in the mobility market. (iii) We also

show that the proposed market is economically sustainable, i.e., it generates revenue

from each traveler and ensures that the operating costs of each mobility service are

covered. It is through the appropriate design of monetary incentives that we success-

fully incentivize all travelers to truthfully report their travel preferences and voluntarily
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participate in the market. Thus, we are guaranteed a socially-efficient mobility solu-

tion. The proposed mobility market also provides an incentive to central authorities to

implement it, since as we show, the market ensures that there are minimum acceptable

payments to cover the operating costs of the mobility services.

The first part of the chapter proceeds as follows. In Subsection 2.1.1, we provide

an overview of Game Theory notions. In Subsection 2.1.2, we present our formulation

of the social decision-making regarding the CAVs as a normal-form game and show

that it is equivalent to a PD game. In Subsection 2.1.3, we introduce and study a

preference structure, and in Subsection 2.1.4, we apply a framework of institutions and

provide a numerical study of the results. The second part of the chapter is structured

as follows. In Subsection 2.2.1, we review the main concepts of mechanism design and

briefly discuss the VCG mechanism. In Subsection 2.2.2, we present the mathematical

formulation of the emerging mobility market, which forms the basis for the rest of

the chapter. In Subsection 2.2.3, we present the imposed optimization problem. In

Subsection 2.2.5, we present the methodology used to design the monetary incentives

for each traveler. In Subsection 2.2.6, we study the properties of the mobility market,

and finally, we draw conclusions.

2.1 A Mobility System as a Social Dilemma

2.1.1 Mathematical Preliminaries

In this section, we present a brief overview of important notions from non-

cooperative Game Theory. First, we assume that the players of the game are rational,

in the sense that each player’s objective is to maximize the expected value of her own

payoff. In addition, we assume that the players are intelligent, i.e., each player has full

knowledge of the game and has the ability to make any inferences about the game that

we, the designers, can make. In order to develop a rigorous framework that analyzes

the social dilemma as a game, we need to formally define a few important notions of

Game Theory that will prove instrumental in our analysis.
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Definition 2.1.1. A finite normal-form game is a tuple G = ⟨I,S, (ui)i∈I⟩, where

I = {1, 2, . . . , n} is a finite set of n players with n ≥ 2; S = S1 × · · · × Sn, where Si

is a finite set of actions available to player i ∈ I with s = (s1, . . . , sn) ∈ S being the

action profile; u = (u1, . . . , un), where ui : S → R, is a real-valued utility function for

player i ∈ I.

Definition 2.1.2. Let Si be the strategy profile of player i, si, s
′
i ∈ Si be two strategies

of player i, and S−i be the set of all strategy profiles of the remaining players. Then,

si strictly dominates s′i if, for all s−i ∈ S−i, we have ui(si, s−i) > ui(s
′
i, s−i). Also, a

strategy is strictly dominant if it (strictly) dominates any other strategy.

Definition 2.1.3. A player i’s best response to the strategy profile

s−i = (s1, . . . , si−1, si+1, . . . , sn) (2.1)

is the strategy s∗i ∈ Si such that ui(s
∗
i , s−i) ≥ ui(si, s−i) for all si ∈ Si. A strategy

profile s is a Nash equilibrium (NE) if, for each player i, si is a best response to s−i.

Next, for completeness, we define the notion of Pareto domination. First, an

“outcome” of a game is any strategy profile s ∈ S. Intuitively, an outcome that Pareto

dominates some other outcome improves the utility of at least one player without

reducing the utility of any other.

Definition 2.1.4. Let G and s′, s ∈ S. Then a strategy profile s′ Pareto dominates

strategy s if, ui(s
′) ≥ ui(s), for all i, and there exists some j ∈ I for which uj(s

′) >

uj(s).

Pareto domination is a useful notion to describe the social dilemma in a game.

However, Pareto-dominated outcomes are often not played in Game Theory; a NE will

always be preferred by rational players. For further discussion of the Game Theory

notions presented above, see [219].

Next, we provide our formulation and show that it is equivalent to the PD game.
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2.1.2 Game-Theoretical Formulation

We consider a society of n ∈ N, n > 2, travelers who seek to commute on a

city’s transportation network. We consider the road infrastructure as the common, yet

limited, resource that is open-access and shared with all travelers. Each traveler has

the option to utilize the roads by traveling in a CAV, which in turn contributes to the

capacity of the roads. We expect each traveler to utilize the roads selfishly.

Assumption 2.1.5. We assume full CAV-penetration, and so each traveler may choose

either to travel in a CAV or use another mode of transportation, e.g., train, light rail,

bicycling, or walking, thereby not contributing to congestion.

In a game-theoretic context, each traveler represents a rational player who has

two possible actions, namely either NC for not traveling in a CAV (non-CAV travel) or

C for traveling in a CAV (CAV travel). From now on, we shall use the terms “player”

and “traveler,” interchangeably. All players receive a benefit c ∈ R>0 for deciding to

commute in the society. On the other hand, traveling using CAVs conveys benefits

arising from flexibility, privacy, convenience. So, if a player chooses to travel in a CAV,

then they receive a benefit of c + d, where d ∈ R>0 with d · (n − 2) > 2 (this ensures

that d provides a significant incentive for CAV travel yet the lower bound decreases as

n increases). However, traveling in a CAV is naturally the selfish choice as it exploits

the society’s resources. Hence, for each player that decides to travel in a CAV, a cost

of e ∈ R>0 is imposed to the society as a whole and is paid out equally by all players,

i.e., we define ϕ = e/n as the damage done to society. Without losing any theoretical

insight, let us define e = d+1 and assume that the original benefit c is strictly greater

than e.

Remark 2.1.6. In our formulation, we want to capture the potential consequence of

the players’ decision to travel in a CAV. For this reason, contributing to the capacity

of the roads (creating congestion, pollution) is represented by the cost and overall by

the damage done to society.
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We can write the final form of player’s i payoff for traveling in a CAV as (c+d)−

(n−k)ϕ, and accordingly, player’s i payoff for not traveling in a CAV as c−(n−k−1)ϕ,

where k is the number of players who choose not to travel in a CAV other than player

i. Thus, the payoff function is

fi(si, k) =

c− (n− k − 1)ϕ, if si = NC,

c+ d− (n− k)ϕ, if si = C.

(2.2)

For player i the benefit of traveling in a CAV is denoted by fi(C, k) and the benefit

of not traveling in a CAV by fi(NC, k), where k is the number of players who decide

to non-CAV travel other than player i. Note that (2.2) depends not only on player i’s

own action but also on k.

At this point, we can formally formulate our game denoted by G. We have the

finite set of players I = {1, . . . , n} with n > 2; for each player i the action set is

si ∈ {NC,C}, and fi(si, k) with k = 0, 1, . . . , n − 1 is the payoff function of player i.

Thus, our game can be represented by the following tuple:

G = ⟨I, (Si = {NC,C})i∈I , (fi(si, k))i∈I⟩ . (2.3)

Next, we fully characterize game G.

Lemma 2.1.7. The payoff difference α = fi(C, k)− fi(NC, k) is positive and constant

for all values k ∈ [0, n − 1] and for all players i ∈ I. Furthermore, fi(NC, k) and

fi(C, k) are strictly increasing in k.

Proof. We have fi(C, k) = c+d− (n−k)ϕ and fi(NC, k) = c− (n−k−1)ϕ and so the

difference is simply fi(C, k)− fi(NC, k) = c+d− (n−k)ϕ− [c− (n−k− 1)ϕ] = d−ϕ.

Hence, α is clearly positive by definition of c and d and also constant for all values

k = [0, n− 1]. Furthermore, for k > k′, we have

fi(NC, k) = c− (n− k − 1)ϕ, and (2.4)

fi(NC, k
′) = c− (n− k′ − 1)ϕ. (2.5)
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Subtracting (2.5) from (2.4) gives fi(NC, k) − fi(NC, k
′) = (k − k′)ϕ > 0, and so

fi(NC, k) > fi(NC, k
′) for all k. In similar lines, we can show that the benefit of CAV

travel, fi(C, k), is strictly increasing in k. Therefore, we conclude that fi(NC, k) and

fi(C, k) are strictly increasing in k.

From now on, the payoff difference is denoted by α. We observe that the payoff

difference, interpreted as the non-CAV travel cost, increases as n increases. Interest-

ingly enough, the payoff difference is independent of how many players choose not

to travel in a CAV. In game-theoretic terms, we can interpret this as the strategy

CAV travel dominating strategy non-CAV travel with a degree that is constant and

independent of the other players who choose to CAV travel.

Lemma 2.1.8. The payoff function (2.2) is non-negative for all k ∈ [0, n − 1], i.e.,

fi ≥ 0 for all i ∈ I. Furthermore, mutual non-CAV travel is preferred to mutual CAV

travel, i.e., fi(NC, n− 1) > fi(C, 0) is a Pareto relation.

Proof. We have fi(NC, 0) = c− (n−1)ϕ = c− (d+1)+ϕ and fi(C, 0) = c+d−n ·ϕ =

c − 1. As fi(NC, k) and fi(C, k) are increasing in k, the result follows. Also, we

have fi(C, 0) = c − 1 and fi(NC, n − 1) = c − (n − (n − 1) − 1)ϕ = c leading to

fi(NC, n− 1) > fi(C, 0) for all i ∈ I.

Lemma 2.1.8 establishes the fact that game G induces a Pareto relation, which

implies that the equilibrium of mutual CAV travel is Pareto inferior to the alternative

outcome, i.e., all players choose to non-CAV travel. This is significant since Pareto

relations are directly associated with social dilemmas.

Theorem 2.1.9. Game G defined in (2.3) is equivalent to the PD game as both games

share an equivalent incentive structure.

Proof. By Lemma 2.1.7, we have fi(NC, k) < fi(C, k) for all k ∈ [0, n−1] which implies

that the dominant strategy by rational players in the game is CAV travel no matter
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Figure 2.1: A visualization of the payoff function (2.2) evaluated using the values
d = 2.2827, c = 4.2827, and n = 25. We notice that, by focusing on the red circle, with
a certain number of non-CAV travelers the overall utility of non-CAV travel is greater
than the utility of CAV travel. This is the true meaning of a social dilemma in a CAV
transportation context.

how many players decide to non-CAV travel. By Lemma 2.1.8, the social dilemma

induced structure is equivalent to that of the Prisoner’s dilemma.

Corollary 2.1.10. The game defined in (2.3) and the PD game provide equivalent

incentives to the players, and thus, they result in equivalent outcomes.

Next, we show that by construction of the payoff function (2.2), non-CAV travel

is more attractive from both the societal and the player’s perspective.

Proposition 2.1.11. Consider the game G defined in (2.3). Note that the benefit of

CAV travel is given by fi(C, k) and the cost of non-CAV travel given by α (i.e., the
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payoff difference). Then the strategy non-CAV travel is socially desirable:

nfi(C, k + 1)− (k + 1)α > nfi(C, k)− kα, ∀i ∈ I, (2.6)

and also individually desirable:

fi(NC, k + 1) > fi(NC, k), ∀i ∈ I. (2.7)

Proof. Both (2.6) and (2.7) can be verified by substitution of the corresponding func-

tions in (2.2).

Before we continue, let us introduce the notation ⌊x⌋, which denotes the greatest

integer that is less than x.

Proposition 2.1.12. Consider game G defined in (2.3). There exists a unique integer

2 ≤ k∗ ≤ n given by k∗ =
⌊
nd
d+1

⌋
+ 1 such that

fi(NC, k
∗ − 2) < fi(C, 0) < fi(NC, k

∗ − 1), (2.8)

where k∗ is the minimum number of non-CAV travelers.

Proof. By substitution, we get the following equations:

fi(NC, k
∗ − 2) = c− (n− (k∗ − 2)− 1)ϕ

= c− (n− k∗ + 1)ϕ, (2.9)

fi(C, 0) = c− 1, (2.10)

fi(NC, k
∗ − 1) = c− (n− (k∗ − 1)− 1)ϕ

= c− (n− k∗)ϕ. (2.11)

We want to find a unique k∗ such that (2.8) holds. So, we have

c− (n− k∗ + 1)ϕ < c− 1 < c− (n− k∗)ϕ (2.12)

which leads to
nd

d+ 1
< k∗ <

nd

d+ 1
+ 1. (2.13)
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As k∗ is an integer, the last inequality (2.13) is true if and only if k∗ =
⌊
nd
d+1

⌋
+ 1 and

nd
d+1

is not an integer number.

Proposition 2.1.12 intuitively implies that we need at least k∗ non-CAV travelers

so that the benefit a player receives when they decide non-CAV travel will be greater

than the dominant strategy f(C, 0) (see in Fig. 2.1 the red circle).

Next, we seek a way to characterize an outcome of the game in terms of pref-

erence. Now, in most cases, identifying the “best” outcome is not possible, but there

are certain situations that might be better from a societal standpoint.

Proposition 2.1.13. The strategy of universal CAV travel, f(C, 0), is Pareto domi-

nated by outcomes with k′ ≥ k∗ − 1.

Proof. We want to show that the outcomes with k′ ≥ k∗ − 1 Pareto dominate the

dominant strategy of universal CAV travel. We only have to check two cases, namely

k′ ≥ k∗ − 1 and k′ < k∗ − 1. For k′ = k∗ − 1, we have

fi(NC, k
′) = c−

(
n−

⌊
nd

d+ 1

⌋
− 1

)
ϕ. (2.14)

Let
⌊
nd
d+1

⌋
= nd

d+1
− ε, where ε > 0, so that

fi(NC, k
′) = c−

(
n− nd

d+ 1
− ε− 1

)(
d+ 1

n

)
= c− 1 + (ε+ 1)ϕ. (2.15)

Subtracting fi(C, 0) from fi(NC, k
′) gives (ε+ 1)ϕ > 0. Furthermore, for k′ > k∗ − 1,

note that fi is a strictly increasing function in k, thus fi(NC, k
′) > fi(NC, k

∗ − 1)

which implies fi(NC, k
′) > fi(C, 0). Thus, for all players i, fi(NC, k

′) > fi(C, 0),

where k′ ≥ k∗ − 1. On the other hand, if k′ < k∗ − 1, then fi(NC, k
′) < fi(C, 0) for

all players i by the first inequality relation in Proposition 2.1.12. Hence, all outcomes

which satisfy k′ ≥ k∗ − 1 Pareto dominate the dominant strategy of universal CAV

travel.
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We note that by construction, the payoff function (2.2) mutual non-CAV travel

is the social optimum but, as a consequence of Proposition 2.1.13, the decision to non-

CAV travel is worthwhile to a player only if there are k∗ or more non-CAV travelers.

Otherwise, everyone is no worse off at the dominant strategy of universal CAV travel.

This gives rise to the notion of the state of minimally effective non-CAV travel.

Definition 2.1.14. The state of minimally effective non-CAV travel is the minimum

number of non-CAV travelers, k∗, such that an outcome Pareto dominates the universal

CAV travel equilibrium.

Clearly, the state of minimally effective non-CAV travel is given by Propositions

2.1.12 and 2.1.13. This is an important notion that can help in the derivation of the

optimal utilization of CAVs in the emerging transportation systems.

Next, we discuss two solution approaches applied in our game G. Our goal is to

derive conditions that ensure a coalition of non-CAV travel, which are at least as large

as the minimum state of non-CAV travel.

2.1.3 Nash Equilibria and the Population Threshold

Usually, in Game Theory, we assume that players are only interested in their

own payoff. One of our goals is to study, in a more realistic setting, the players’ social

behavior, and so we impose to our game G a “preference structure.”

A preference structure allows us to model a particularly interesting scenario:

the rational players are interested not only on their own payoff but also on the relative

payoff share they receive, i.e., how their standing compares to that of others [160].

The authors in [31] designed the “equity, reciprocity, and competition (ERC)” model

which is a simple model capable of handling a large population of players with an

“adjusted utility” function constructed on the premise that players are motivated by

both their pecuniary payoff and their relative payoff standing. Notice that we changed

our terminology of payoff function to adjusted utility function here. We do this to
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differentiate the difference between the absolute payoffs that players get from (2.2)

and the adjusted payoffs players will get in a preference structure. One of the reasons

we use the ERC model is because it has been successful in explaining the behavior of

selfish players in social experiments than other standard modeling techniques.

Now, we observe that players rarely play against the same other players, and

so it is reasonable enough to analyze each game as one-shot. To further justify this,

we only have to argue that it is highly unlikely to “meet” other travelers in a major

metropolitan city. Let the absolute payoff of player i be given by fi from (2.2). Each

player i seeks to maximize the expected utility of her motivation function vi = vi(fi, σi),

where

σi = σi(fi, γ, n) =

fi/γ, if γ > 0,

1/n, if γ = 0.

(2.16)

Equation (2.16) represents player i’s relative share of the payoff and γ =
∑n

j=1 fj is the

total pecuniary payout. We can think of the motivation function vi as the expected

benefits that drive the players’ behavior. We assume that vi is twice differentiable.

Next, we allow each player to be characterized by ai/bi which is the ratio of

weights that are attributed to the pecuniary and relative components of the mo-

tivation function. For example, strict relativism is represented by ai/bi = 0, so

argmaxσi vi(γσi, σi) = π = 1/2, where πi(γ) is implicitly defined by vi(γπi, πi) =

vi(0, 1/n) for πi ≤ 1/n. Strict narrow self-interest is the limiting case ai/bi → ∞, so

argmaxσi vi(γσi, σi) = 1 and s → 0 [31]. Based on the above, the adjusted utility

function then is given by:

ui(fi, σi) = aiq(fi) + bir(σi), (2.17)

where q(·) is strictly increasing, strictly concave, and differentiable; r(·) is differentiable,

concave, and has its maximum at σi = 1/n. Let us discuss a simple example from [31].

Example 1. We can explicitly define both q and r as:

q(fi) = fi and r(σi) = −1

2

(
σi −

1

n

)2

, (2.18)
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where function q(·) expresses the standard preferences for the payoff functions (2.2);

function r(·) describes in a precise way the collective importance of equal division of

the payoffs (this is also called the “comparative effect.”) Consequently, the further the

allocation moves from player i receiving an equal share, the higher the loss from the

comparative effect.

Our analysis in this subsection follows [160], but we apply it to our game G

defined in (2.3) along with the preference structure. Our goal is to study what influences

strategic agents to non-CAV travel in our game G.

We start our analysis by looking at the necessary and sufficient conditions for

player i to non-CAV travel, i.e.,

ui(fi(NC, k + 1)) ≥ ui(fi(NC, k)). (2.19)

Equivalently, we have from [160] that ai/bi ≤ δ(k), where

δ(k) =

r

(
fi(NC,k+1)

nfi(C,k+1)−(k+1)α

)
− r

(
fi(C,k)

nfi(C,k)−kα

)
q
(
fi(C, k)

)
− q
(
fi(NC, k + 1)

) . (2.20)

From (2.20), we can deduce that player i will non-CAV travel if, and only if, there is

overcompensation for the loss in absolute gain by moving closer to the average gain

[160]. Hence, we can state the general conditions of a NE:

ai/bi ≤ δ(k − 1), for k players non-CAV travel, (2.21)

ai/bi ≥ δ(k), for n− k players CAV travel. (2.22)

We now have a better understanding of how the number of other non-CAV travelers,

and its value can make non-CAV travel a rational strategy.

Lemma 2.1.15. For a given distribution of ERC-types, δ(k − 1) > 0 is necessary but

not sufficient to get a coalition size of k where n − k players free-ride. For a given

payoff structure with δ(k− 1) > 0, there exist ERC-types such that k is an equilibrium

coalition size.
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Proof. If δ(k− 1) < 0, it is impossible for a coalition to form in the game of size k. On

the other hand, if ai/bi > δ(k − 1) then condition (2.21) cannot hold for any player.

However, conditions (2.21) and (2.22) imply that if δ(k − 1) > 0, then there are types

(ai/bi)i∈I such that k players non-CAV travel and n− k players free-ride.

Proposition 2.1.16. By construction of the game G together with the ERC preference

structure, there always exists a Nash equilibrium of universal CAV travel.

Proposition 2.1.16 follows directly from Lemma 2.1.15. We are though interested

in finding a threshold of players that decide to non-CAV travel. The next proposition

will help us do that.

Proposition 2.1.17. The necessary condition for an equilibrium of non-CAV travel

δ(k − 1) > 0 is equivalent to

n [(k − 1)fi(C, k)− kfi(C, k − 1)] + [nfi(C, k − 1)− (k − 1)α] [2k − n] > 0. (2.23)

Proof. In order to obtain δ(k∗ − 1) > 0, it is necessary that by choosing the strat-

egy CAV travel, a player further deviates from the equal share 1/n than by choosing

strategy non-CAV travel, i.e.,

fi(C, k − 1)

nfi(C, k − 1)− (k − 1)α
− 1

n
>

1

n
− fi(NC, k)

nfi(C, k)− kα
. (2.24)

Rearranging and by eliminating the denominators, we get

nfi(C, k − 1)(nfi(C, k)− kα) + n(fi(C, k)− α)(nfi(C, k − 1)− (k − 1)α)

− 2(nfi(C, k − 1)− (k − 1)α)(nfi(C, k)− kα) > 0,

where we have used α = fi(C, k) − fi(NC, k). Substituting the payoff functions from

(2.2) and further simplification yield

n [(k − 1)fi(C, k)− kfi(C, k − 1)] + n(2k − n)fi(C, k − 1)

− (k − 1)α[2k − n] > 0. (2.25)
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Simplifying (2.25) gives

n [(k − 1)fi(C, k)− kfi(C, k − 1)] + [nfi(C, k − 1)− (k − 1)α] [2k − n] > 0. (2.26)

Therefore, the result follows immediately.

We are now ready to prove the main result of the section.

Theorem 2.1.18. For any given vector of types, a rational player chooses to non-CAV

travel when at least half of the players non-CAV travel.

Proof. We only have to check on what conditions relation (2.23) is positive. By con-

struction the payoff functions are non-negative, and thus nfi(C, k− 1)− (k− 1)α > 0,

i.e.,

nfi(C, k − 1)− (k − 1)α = n(c− 1) + (k − 1)(1 + ϕ) (2.27)

which is clearly positive for all values of n, c, and k. Hence, the second component of

(2.23) is positive for 2k − n > 0. Next, we look at the first component of (2.23). By

substituting the payoff function from (2.2), we get

(k − 1)fi(C, k)− kfi(C, k − 1) = 1− c, (2.28)

which is negative for all values of c. We observe though that the second component is

much bigger and dominates the first component as long as 2k−n > 0. Hence, relation

(2.23) is positive and we have δ(k− 1) > 0 for 2k > n. Therefore, for any given vector

of types, if a player cooperates at the equilibrium, then at least half of the players

cooperate.

The interpretation of Theorem 2.1.18 is that for any coalition to exist with size

k ≥ 2, a minimum of n/2 players must join. We showed that given the specific payoff

structure of our game G and along with the ERC preference structure, a coalition of

players choosing strategy non-CAV travel could be formed provided that it is rather

large. Thus, even if we impose a social mechanism that enforces strategy non-CAV
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travel in a society of travelers and satisfying (2.23), a coalition of at least size n/2

must be formed to create an equilibrium of non-CAV travel. Therefore, the social

mechanism will require significant influence over the players’ behaviors in order to

create a state of effective non-CAV travel. On the other hand, this result is promising

as it shows that a social solution can potentially prevent self-centered and destructive

behavior towards society.

2.1.4 Creating an Institutional Arrangement

In this section, we take advantage of the equivalency of our game G to the

Prisoner’s dilemma in order to use the non-cooperative game model of institutional

arrangements framework of [173]. We prove in Theorem 3 that the ratio of non-CAV

travel and CAV travel in a deregulated society as the number of players increases,

tends to zero. In other words, as the society becomes larger and larger, the incentive

to cooperatively agree not to travel in a CAV tends to zero.

Players are free to create a social institution that binds them by selecting their

actions. In other words, players agree to have an institutional arrangement with the

purpose of enforcing an agreement of non-CAV travel. The first stage is the creation of

a social institution, and this is done through participation negotiations, and thus the

first stage is called “participation decision stage.” All players have to decide whether

they will participate in negotiations for collective decision making, or not, without any

knowledge of each others’ decisions. The outcome of the game at this first stage is

either that some group of players is formed or not. All players decide to participate in

negotiations or not based on their expectations about what will happen in the rest of

the game. The possibility of non-CAV travel is significantly affected by the number of

players. That means that the outcome of the institutional arrangements depends on

the players’ decisions in the first stage [173].

Remark 2.1.19. In contrast to Cooperative Game Theory, there is no external bind-

ing enforcement, and players are free to make their decisions (whether it is beneficial
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to them only). Thus, we treat the institutional arrangements framework as a non-

cooperative game.

The goal here is to investigate the question: does the number of travelers affect

the possibility of non-CAV travel? The next proposition addresses the basic cases.

Proposition 2.1.20. ([173]) Let di = 1 denote a player i’s decision to participate in

bargaining for installing an enforcement agency; otherwise di = 0. When k∗ = n, the

participation decision stage has a unique solution d∗ = (1, . . . , 1).

It is interesting enough that in the special case n = 2, both players agree to

create an enforcement agency and also to non-CAV travel in the institutional arrange-

ments.

Definition 2.1.21. The incentive ratio of non-CAV travel and CAV travel can be

defined as a positive number given by:

β =
fi(NC, k

∗ − 1)− fi(C, 0)

fi(C, k∗ − 1)− fi(NC, k∗ − 1)
. (2.29)

In words, β represents the ratio of players’ incentive to form the minimum

group for non-CAV travel, i.e., the group of k∗ non-CAV travelers, over their incentive

to deviate unilaterally from the minimum group for non-CAV travel. Given our game

G defined in (2.3), we have

β =
k∗ϕ− d

d− ϕ
=
k∗(d+ 1)− nd

d(n− 1)− 1
. (2.30)

Proposition 2.1.22. ([173]) The uncooperative solution of the institutional arrange-

ments for our game G prescribes the following player behavior:

1. If n =
⌊
nd
d+1

⌋
+ 1 = k∗, then all players participate in bargaining and they agree

to non-CAV travel.

2. If n ≥
⌊
nd
d+1

⌋
+2, then every player participates in bargaining with probability t(n)

satisfying:

β =
∑

k∗≤k≤n−1

(n− k∗) · . . . · (n− k)

k∗ · . . . · k

(
t

1− t

)k−k∗+1

,
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where k∗ and β are given by Proposition 2.1.12 and (2.30), respectively.

We are ready now to prove our main result of this section, which has to do with

the limiting behavior of β.

Theorem 2.1.23. As the number of players increases, the incentive ratio of non-CAV

travel and CAV travel vanishes, i.e., β tends to zero as n tends to infinity.

Proof. Substitute k∗ =
⌊
nd
d+1

⌋
+ 1 into β to get

β =

(⌊
nd
d+1

⌋
+ 1
)
(d+ 1)− nd

d(n− 1)− 1
. (2.31)

By Proposition 2.1.12, nd
d+1

is not an integer, thus we can write
⌊
nd
d+1

⌋
= nd

d+1
− ε, where

ε > 0. Now taking the limit of β as n goes to infinity gives

lim
n→∞

β = lim
n→∞

(⌊
nd
d+1

⌋
+ 1
)
(d+ 1)− nd

d(n− 1)− 1
, (2.32)

or equivalently

lim
n→∞

β = lim
n→∞

( nd
d+1

− ε+ 1)(d+ 1)− nd

d(n− 1)− 1
(2.33)

= lim
n→∞

nd+ (−ε+ 1)(d+ 1)− nd

d(n− 1)− 1
(2.34)

= lim
n→∞

(−ε+ 1)(d+ 1)

d(n− 1)− 1
. (2.35)

We divide both numerator and denominator by 1/n and using the standard limit

limx→∞
1
x
= 0 gives the result, i.e.,

limn→∞
(−ε+1)(d+1)

n

d− limn→∞
d
n
− limn→∞

1
n

= 0. (2.36)

Thus, we conclude that limn→∞ β = 0.

To complement our understanding, we performed a numerical study of the lim-

iting behavior of t(n), given in Table 2.1. In the table, we have included the additional

probabilities: pA(n) shows the probability of some group of size k∗ or greater reaching
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n k∗ β t(n) pA(n) pI(n) pF (n)

3 3 0.930 1.000 1.000 1.000 0.000
4 3 0.166 0.333 0.111 0.086 0.025
5 4 0.253 0.503 0.192 0.160 0.032
6 5 0.302 0.602 0.236 0.204 0.031
7 5 0.066 0.139 0.001 0.001 0.000
8 6 0.129 0.269 0.006 0.005 0.001
9 7 0.175 0.363 0.014 0.011 0.003
10 7 0.037 0.078 0.000 0.000 0.000
11 8 0.083 0.174 0.000 0.000 0.000
12 9 0.120 0.252 0.000 0.000 0.000
13 9 0.023 0.048 0.000 0.000 0.000
14 10 0.059 0.124 0.000 0.000 0.000
15 11 0.089 0.188 0.000 0.000 0.000
20 14 0.034 0.072 0.000 0.000 0.000
25 17 0.002 0.004 0.000 0.000 0.000
30 21 0.033 0.070 0.000 0.000 0.000
35 24 0.011 0.023 0.000 0.000 0.000
40 28 0.033 0.069 0.000 0.000 0.000
45 31 0.016 0.033 0.000 0.000 0.000
50 34 0.002 0.004 0.000 0.000 0.000

Table 2.1: Numerical study for game G with the institutional arrangements where
d ≈ 2.

an agreement, pI(n) the probability of each player being an insider of some group with

at least k∗ non-CAV travelers, and pF (n) is the probability of each player being a free

rider, i.e., existing outside of a group of at least k∗ non-CAV travelers.

From Theorem 2.1.23, the incentive ratio goes to zero as the number of players

increases. In addition, from the numerical study summarized in Table 2.1 and Figure

2.2, the likelihood of bargaining for an institution, t(n) and probability of being an

insider, pA(n) approach zero as n gets large. This implies that for large societies, the

impact of self-realized non-CAV travel is non-existent, and the universal CAV travel

strategy dominates. For small societies with k∗ = n, it is a certainty that players agree

to bargain and create an institution for CAV travel (which is not ideal).
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Figure 2.2: Plot of t(n) as a function of the number of CAV travelers. The blue line
shows the sequence of t(n) as n increases from 0 to 100.

2.2 A VCG-inspired Mechanism for Efficient Mobility

Emerging mobility systems such as connected and automated vehicles (CAVs)

provide the most intriguing opportunity for more accessible, safe, and efficient trans-

portation. CAVs are expected to significantly improve safety by eliminating the human

factor and ensure transportation efficiency by allowing users to monitor transportation

network conditions and make better operating decisions. However, CAVs could al-

ter the users’ tendency-to-travel, leading to a higher traffic demand than expected,

thus causing rebound effects (e.g., increased vehicle-miles-traveled). In this chapter,

we focus on tackling social factors that could drive an emerging mobility system to

unsustainable congestion levels. We propose a mobility market that models the eco-

nomic in-nature interactions of the travelers in a smart city network with roads and

public transit infrastructure. Using techniques from mechanism design, we introduce
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appropriate monetary incentives (e.g., tolls, fares, fees) and show how a mobility sys-

tem consisting of selfish travelers that seek to travel either with a CAV or use public

transit can be socially efficient. Furthermore, the proposed mobility market ensures

that travelers always report their true travel preferences and always benefit from par-

ticipating in the market; lastly, we also show that the market generates enough revenue

to potentially cover its operating costs.

2.2.1 Theoretical Preliminaries

In this section, we provide the theoretical preliminary material related to this

chapter’s proposed modeling framework, and we formally introduce all important con-

cepts needed to prove our principal results.

Most generic control systems can be viewed as a specification of how decisions

(e.g., how to utilize a number of resources) are determined as a function of the infor-

mation that is known by the agents in the system. What interests us in most cases

is efficiency, i.e., realizing the best possible allocation of resources with the best use

of information to achieve an outcome where collectively agents are satisfied, and there

is no overutilization of the system’s resources [148]. One key challenge in ensuring

efficiency in a control system is the fact that different agents may have conflicting

interests and act selfishly. In other words, systems that incorporate human decision-

making, if remained uninfluenced, are not guaranteed to exhibit optimal performance.

This is well-known to be the case in control theory, and economics [166, 34]. There

are various different theories and approaches that attempt to guarantee efficiency in

such systems and can provide solutions of varying degrees of success. One such theory

is mechanism design, in which we are concerned with how to implement system-wide

optimal solutions to problems involving multiple selfish agents, each with private infor-

mation about their preferences [170, 65]. Within the context of mobility, agents are the

travelers, and their private information can be either tolerance to traffic delays, value

of time, preferred travel time, or any disposition to a specific mode of transportation.
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Our goal in mechanism design is to design appropriate incentives in order to align the

interests of agents with the interests of the system [102]. For example, in mobility,

given that each traveler/driver/passenger “competes” with everyone else to reach their

destination first, we want to ensure that given this inherent conflict of interest, we

can still guarantee uncongested roads, no traffic accidents, and no travel time delays.

Mechanism design can help us design the rules of systems where information is decen-

tralized (different agents know different things), and agents do not necessarily have

an immediate incentive to cooperate [32]. In particular, mechanism design helps us

design rules that align all agents’ decision-making by providing the right incentives to

achieve a well-defined objective for the system (e.g., aggregate optimal performance,

system-level efficiency). Thus, mechanism design entails solving an optimization prob-

lem with sometimes unverifiable and always incomplete information structure [150].

We call such a problem an incentive design and preference elicitation problem.

We start by supposing that there is a system consisted of a finite group of

agents, each competing with each other for a limited, fixed allocation of resources.

Each agent evaluates different allocations based on some private information that is

known only to them. We consider a social planner, playing the role of a centralized

entity, whose task is to align the selfish and conflicting interests of the agents with the

overall system’s objective (e.g., an efficient allocation of resources or the maximization

of social welfare). As it can be seen in Fig. 2.3, there are four components: (1)

There is a group of decision-makers, (2) who make a decision based on their personal

information, and (3) that decision is reported as a message to the social planner who

is tasked to design the rules of which (4) it can be determined what each agent gets.

What follows next is a mathematically formal presentation of the social planner’s task.

Consider a set of selfish agents I, |I| = n ∈ N with preferences over different

outcomes in a set O. Each agent Each agent i ∈ I is assumed to possess private

information, denoted by θi ∈ Θi. Since an agent i’s θi can characterize and influence

their decision-making in a significant way, we call θi the type of agent i. We write
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Figure 2.3: A visualization of how an arbitrary control system (agents, preferences,
allocations) can be viewed under a mechanism design framework. Agents hold private
information, of which they send reports to the social planner who is responsible for
designing a mechanism. How efficient the mechanism is can depend on whether the
agents’ messages are truthful or not.

(θi)i∈I = θ ∈ Θ =
∏

i∈I Θi to represent the type profile of all agents. Next, an

agent i’s preferences over different outcomes can be represented by a utility function

ui : O×Θi → R. Although the exact form of ui can vary depending on the application

of the problem [230, 229, 29, 113], what is common in the literature [219, 32, 171] is a

quasilinear function of the form

ui(o, θi) = vi(o, θi)− pi, (2.37)

where vi : O × Θi → R≥0 represents an arbitrary valuation function, and pi 7→ R is

a monotonically increasing function. If outcome o ∈ O represents an allocation of a

resource, then pi can be thought of as a transfer of agent i’s wealth or a cost imposed to

agent i for that particular allocation o. Intuitively, a quasilinear function defined as in

(2.37) ensures that the marginal value of vi does not depend on how large pi becomes,

and vice-versa. Furthermore, (2.37) assumes ui is linear with respect to pi. We can now

naturally define the social welfare as the collective summation of all agents’ valuations,

i.e.,

w(o, θ) =
∑
i∈I

vi(o, θi). (2.38)
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If our system objective is to maximize w, then immediately we observe that there is an

important obstacle, i.e., any agent imay misreport their type θi in the hopes to increase

their own utility. So, the question is now: How can we incentivize agents to truthfully

report their type? The answer is through the appropriate design of pi. Next, we outline

the building blocks that can help us design pi. Formally, we can define a mechanism as

the tuple ⟨f, p⟩ composed of a social choice function (SCF) f : Θ → O and a vector of

payment functions p = (pi)i∈I , with pi : Θ → R. In words, a mechanism ⟨f, p⟩ defines

the rules of which we can implement a system objective by mapping the agents’ types

to an outcome while using the payments to ensure the optimality or efficiency of that

outcome (see Fig. 2.4 for an illustration of the mechanism design framework). We can

now state the social planner’s problem as follows

max
o∈O

w(o, θ) (2.39)

subject to: θ̂i = θi, ∀i ∈ I, (2.40)∑
i∈I

vi(o, θi) ≥
∑
i∈I

vi(o
′, θi), ∀o′ ∈ O, (2.41)

∑
i∈I

pi(s(θ)) ≥ 0, ∀θ ∈ Θ, (2.42)

vi(f(s(θ)))− pi(s(θ)) ≥ 0, ∀i ∈ I,∀θ ∈ Θ, (2.43)

where θ̂i denotes the reported type of agent i, s(·) is the equilibrium strategy profile

(e.g., Nash equilibrium). Constraints (2.40) ensure the truthfulness in the agents’ re-

ported types, (2.41) impose an efficiency condition, (2.42) make certain that no external

payments are required, and (2.43) incentivize all agents to voluntarily participate in the

mechanism. If we could know for certain the true types of all agents, then we would be

able solve the optimization problem (2.39) - (2.43) using standard optimization tech-

niques. However, as this is unreasonable to expect from selfish decision-makers, the

social planner needs to elicit θ = (θi)i∈I by designing the appropriate p = (pi)i∈I . We

discuss in the next subsection one such mechanism that elicits the private information

of agents truthfully.
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Figure 2.4: A theoretical representation of the mechanism design framework.

2.2.2 The Vickrey-Clarke-Groves Mechanism

In the previous subsection, we reviewed the main concepts of mechanism design

and formulated the incentive design and preference elicitation problem. In words,

we asked “How can we design the payments p = (pi)i∈I so that every agent makes

the decision that agrees with what we have chosen as the system’s objective (e.g.,

efficiency)? To answer this question, in this subsection, we review the Vickrey-Clarke-

Groves (VCG) mechanism [243, 50, 90], one of the most successful mechanisms as it

incentivizes agents to be truthful and guarantees efficiency.

As we discussed earlier, a mechanism is a tuple ⟨f, p⟩. In a VCG mechanism,

the SCF f is defined as an allocation rule (who gets what) based on the optimization

problem (2.39) - (2.43), i.e.,

f(θ̂) = argmax
o∈O

W (o, θ̂i). (2.44)

where θ̂ = (θ̂i)i∈I . In words, assuming that the agents disclose their true information,

(2.44) provides to the social planner who attempts to maximize the social welfare a

formal way to compute the allocations of each agent. At the same time, the VCG

mechanism charges each agent for their allocation as follows

pi(θ̂) =
∑
j ̸=i

vj(f(θ̂−i))−
∑
j ̸=i

vj(f(θ̂)), (2.45)
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where θ̂−i denotes the type profile of all agents except agent i. Note that the payments

defined in (2.45) do not depend on an agent i’s own declaration θ̂i. Let us assume

for a moment that all agents declare their types truthfully. Then, the first sum in

(2.45) computes the value of the social welfare with agent i not participating in the

mechanism. The second sum in (2.45) computes the value of the social welfare of all

other agents j ̸= i with agent i participating in the mechanism. Thus, agent i when

they report θ̂i are made to pay the marginal effect of their decision (in our case that is

agent i’s reported type θ̂i). In other words, this particular design of the payments in

(2.45) internalizes an agent i’s social externality, i.e., agent i’s impact on every other

agents’ welfare.

The VCG mechanism represented by the SCF f defined by (2.44) and the pay-

ment functions p defined by (2.45) satisfies the following properties:

1. For any agent, truth-telling is a strategy that dominates any other strategy that

is available for that agent. We say then that truth-telling is a dominant strategy.

Note that such strategies are “always optimal” no matter what the other agents

decide.

2. The VCG mechanism successfully aligns the agents’ individual interests with the

system’s objective. In our case, that objective was to maximize the social welfare

of all agents. We call this property, economic efficiency.

3. For any agent, the VCG mechanism incentivizes them to voluntarily participate

in the mechanism as no agent loses by participation (in terms of utility).

4. The VCG mechanism ensures no positive transfers are made from the social

planner to the agents. Thus, the mechanism does not incur a loss. We call this

weakly budget balanced.

The VCG mechanism essentially ensures the realization of a socially-efficient outcome,

i.e., satisfying properties 1 - 3, in a system of selfish agents, where each possesses
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private information. It is noteworthy to note how powerful the VCG mechanism is as

it induces a dominant strategy equilibrium maximizing the social welfare while also

making sure no agent is hurt by participating.

We conclude with the following remark: although the main motivation of mech-

anism design is the microeconomic study of institutions and relies heavily on game-

theoretic techniques, it can prove a powerful theory providing a systematic methodology

in the design of systems of asymmetric information, consisted of strategic decision-

makers, and whose performance must attain a specified system objective. The rest

of the chapter shall present how we can use this theory to design a socially-efficient

mobility system consisting of travelers who compete with each other for the utilization

of a limited number of mobility services.

2.2.3 The Emerging Mobility Market

We consider an emerging mobility system consisting of a transportation city

network managed by a social planner and a finite group of travelers who seek to travel

in the network. Informally, this network represents the high-level mobility connections

of multiple and different city neighborhoods. In other words, we move away from

the concept of “personally-owned” modes of transportation and focus our modeling

towards mobility provided as a service. This means that a social planner (e.g., a cen-

tral computer) offers travelers a unified gateway of public and private transportation

providers capable of providing mobility solutions to manage and realize their trip. For

example, travelers can plan their journey via a smartphone app by specifying their

preferences (e.g., cost, time, and convenience) and their desired destination. The so-

cial planner then is tasked to offer a travel recommendation to each traveler, i.e., which

mode of transportation to take. In addition, we consider that multiple and different

travel options can be offered to each traveler focusing on urban modes of transporta-

tion (e.g., CAVs, bus, train). We call these options “mobility services” or “services”

for short. Within this framework, we propose a mobility market for a socially-efficient
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implementation of connectivity and automation in an emerging mobility system. The

goal of the mobility market is twofold: (i) ensure that all travelers voluntarily partici-

pate and truthfully report their travel preferences, and (ii) be economically sustainable

by generating revenue from each traveler and setting a minimum acceptable mobility

payment for each traveler to potentially cover the operating costs.

The proposed mobility market is managed by a social planner who aims to

allocate m ∈ N mobility services to n ∈ N travelers, where n ≥ m ̸= 0. We denote

the set of travelers by I, |I| = n and the set of mobility services by J , |J | = m.

For example, each service j ∈ J can either represent a shared CAV, a train, or a bus.

Both sets I and J are nonempty, disjoint, and finite. The set of all mobility services

J can be partitioned to a finite number of disjoint subsets, each representing a specific

“type” of a mobility service, i.e., J =
⋃H
h=1 Jh, where H ∈ N is the number of subsets

of J . For example, J = J1 ∪ J2, where |J1| represents the number of all available

CAVs, and |J2| represents the number of all available busses. Next, travelers seek

to travel using these mobility services in a transportation network represented by an

undirected multigraph G = (V , E), where each node in V represents a different city area

or neighborhood, and each link e ∈ E represents a sequence of city roads or a public

transit connection. For our purposes, we think of G = (V , E) as a representation of a

smart city network with a road and public transit infrastructure. In G, a traveler i ∈ I

seeks to travel from their current location oi ∈ V to their desired destination di ∈ V .

So, on one hand, each traveler i ∈ I is associated with a origin-destination pair (oi, di).

On the other hand, each type of mobility services (e.g., one type is shared CAVs,

another is trains) is associated with a unique link that connects any two nodes. At the

same time, we do not limit the number of different mobility services that connect any

origin oi to any destination di of any traveler i ∈ I. We suppose that any traveler i ∈ I

has at least two travel options for their origin-destination pair (oi, di). Furthermore,

each traveler i ∈ I can travel in G with any mobility service j ∈ J that satisfies their

origin-destination pair (oi, di) and each service j ∈ J can be used by multiple travelers.
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Remark 2.2.1. Network G represents the upper-level connections of different city

neighborhoods. By connections, we mean either roads or public transit routes. In-

stead of modeling each node to represent travelers’ exact location, we consider dividing

a city into zones. By grouping travelers’ exact locations into such zones, we can use

network G to model the mobility connections between the different city zones.

Next, we partition the set of travelers I into different smaller subsets charac-

terized by a common origin-destination pair.

Definition 2.2.2. The set of travelers with the exact same origin-destination pair is

Ik = {i ∈ I | (oi, di) = (ok, dk)}, k = 1, 2, . . . , K, where K ∈ N is the number of

subclasses over the complete set of travelers, i.e., I =
⋃K
k=1 Ik.

The justification of Definition 2.2.2 is that in an emerging mobility system, we

can acquire verifiable location data of travelers either by using a global positioning

system or estimating the average number of travelers using public transit [51, 235].

Mathematically, the allocation of the finite number of mobility services to trav-

elers can be described by a vector of binary variables.

Definition 2.2.3. The traveler-service assignment is a vector a = (aij)i∈I,j∈J , where

aij is a binary variable of the form:

aij =

1, if i ∈ I is assigned to j ∈ J ,

0, otherwise.

(2.46)

Note that we have (aij)i∈I,j∈J = (a11, . . . , aij, . . . , anm). By partitioning the set

of travelers in K ∈ N subclasses, the traveler-service assignment of subclass Ik is given

by ak = (aij)i∈Ik,j∈J .

Naturally, we need to impose a physical limit on the use of each mobility service

j ∈ J in network G as well as a connection capacity of a mobility service for each

link in the network. Note that each link in G represents a road or a public transit

51



connection, which means that multiple mobility services of one type use that one link.

For example, one link can be a bus lane with stops between two different city areas;

another can be a train route between two stations.

Definition 2.2.4. The usage capacity of any mobility service j ∈ J is given by εj ∈ N.

The link capacity in network G is given by γe ∈ R≥0.

For example, εj can represent the maximum number of travelers (or passengers)

in a shared vehicle or the maximum number of travelers in a train vehicle (seated

and standing). Similarly, γe can represent a critical traffic density of mobility services,

which means that any additional input of vehicles or trains can lead to a reduced traffic

flow and eventually to traffic congestion. For example, we can use the GreenShields

model to define explicitly the critical traffic density [84].

As in any mobility problem that involves travelers, we need to consider the

travelers’ preferences (e.g., preferred travel time, value of time, willingness-to-pay for

service). Hence, we formally define the notion of “personal travel requirements” by

introducing three important parameters (our selection of those three parameters is

justified by recent transportation studies [181, 99].)

Definition 2.2.5. For any traveler i ∈ Ik, k = 1, . . . , K, let αi ∈ (0, 1) be the value

of time, θi ∈ R≥0 the preferred travel time, and v̄i ∈ R≥0 the maximum willingness-

to-pay. Then, the personal travel requirements of traveler i is a tuple of the form

πi = (αi, θi, v̄i).

We offer the intuition behind each parameter: traveler i’s value of time αi

transforms the traveler’s time urgency in monetary units as it can model, for example,

the acceptable amount of compensation for lost time. Similarly, a traveler i’s preferred

travel time θi is a non-negative real value representing how fast traveler i wishes to

reach their destination. The last term in πi captures how much traveler i appraises a

direct and completely convenient mobility service. For example, v̄i can measure the
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maximum willingness-to-pay of traveler i traveling with the fastest and most convenient

service (e.g., taking a taxicab with no co-travelers) to their destination.

For each traveler i ∈ Ik, the tuple πi is considered private information, known

only to traveler i. Hence, as the social planner does not know (πi)i∈I , each traveler i

must report their πi. This is one of the key challenges in the proposed mobility market:

How can we incentivize the travelers to be truthful and elicit the private information

needed to provide a socially-efficient solution to the emerging mobility market? The

answer to this question will be given in Section 2.2.5.

Next, we introduce an “inconvenience” metric for any traveler i ∈ Ik using any

mobility service j ∈ J . Quantitatively, the inconvenience metric can represent the

extra monetary value of travel disutility from any costs, travel delays, or violation of

personal travel requirements caused by the use of a mobility service.

Definition 2.2.6. The mobility inconvenience metric for traveler i ∈ Ik, k = 1, . . . , K,

assigned to service j ∈ J is a function denoted by ϕi

(
αi, θi, θ̃i(ak)

)
7→ R≥0, where

θ̃i(ak) ∈ R≥0 is the experienced travel time. We assume that ϕi is continuous, increas-

ing, and convex.

Note that the mobility inconvenience metric ϕi increases when θ̃i(ak) increases.

From a modeling perspective, traveling with time delays or during peak times can

cause significant inconveniences to any traveler i ∈ Ik. Although, an exact form of

ϕ is beyond the scope of this chapter, our definition of ϕ is consistent with general

inconvenience functions in the literature [68, 55].

Next, a traveler i’s satisfaction is captured by a valuation function vi, which can

reflect the traveler’s willingness-to-pay for their travel, i.e.,

vi(ak) = v̄i − ϕi

(
αi, θi, θ̃i(ak)

)
, (2.47)

where v̄i ∈ R≥0 is the value gained by traveler i ∈ Ik when their origin-destination

pair (oi, di) is satisfied using service j ∈ J without any travel delays, i.e., θi = θ̃i(ak).
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Naturally, for any traveler i and any service j, we have vi(ak) ∈ [0, v̄i], where vi(ak) = 0

means that traveler i is unwilling to use service j. Below we summarize the two extreme

cases and their interpretation:

vi(ak) =

v̄i, if ϕi = 0,

0, if ϕi = v̄i.

(2.48)

When ϕi = 0, we say that traveler i travels to their destination in the fastest and most

convenient mobility service offered by the mobility market (e.g., a taxicab with no

co-travelers). On the other hand, when ϕi = v̄i, we say that traveler i’s personal travel

requirements are not satisfied, and the traveler is most inconvenienced with regards to

mobility.

Although our analysis can treat the valuation function vi in its most general

form, given by (2.47), we explicitly define the second component of (2.47) in our

mathematical exposition. Thus, the explicit form for the inconvenience mobility metric

ϕi is

ϕi

(
αi, θi, θ̃i(ak)

)
= αi · (θ̃i(ak)− θi), (2.49)

Basically, (2.49) gives the monetary value of the difference between the travel times

(experienced vs preferred), and can be interpreted as the travel time tolerance that the

traveler can accept (in monetary units).

In our modeling framework, the total utility ui(ak) of traveler i ∈ Ik, k =

1, . . . , K, is given by

ui(ak) = vi(ak)− pi(ak), (2.50)

where vi(ak) is the willingness-to-pay and pi(ak) ∈ R≥0 is the mobility payment that

traveler i is required to make to use service j ∈ J (e.g., pay road tolls or buy a

public transit fare). Hence, (2.50) establishes a “quasi-linear” relationship between a

traveler’s satisfaction and payment, both measured in monetary units [145].
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In contrast to the traveler’s satisfaction, we also introduce an “operating cost” to

capture the needed investment that public and private mobility providers and operators

make to ensure the proper function of their mobility services.

Definition 2.2.7. The operating cost of service j ∈ J can be computed by

cj(ak) =
∑
i∈Ik

cij(aij), (2.51)

where cij(aij) ∈ R≥0 is traveler i’s corresponding share of the operating cost of vehicle

j ∈ J . In the case of aij = 0, we have cij = 0.

Intuitively, the operating cost cij captures traveler i’s fair share of the costs of

service j ∈ J . These costs can be associated with fuel/energy consumption, drivers’

labor reimbursement, maintenance, and environmental impact.

Definition 2.2.8. Given the traveler-service assignment ak = (aij)i∈Ik,j∈J , the travel-

ers’ payments are given by the vector pk = (pi(aij))i∈Ik,j∈J . Then, for a subclass Ik,

k = 1, . . . , K, the proposed mobility market can be fully described by the tuple〈
Ik,J , (πi)i∈Ik , (ui)i∈Ik , ak,pk

〉
, (2.52)

where (πi)i∈Ik is considered private information (unknown to the social planner), and

the experienced travel time θ̃i and operation costs cj of all mobility services are consid-

ered known to the social planner.

Note that in Definition 2.2.8, we have also defined the informational structure

of the proposed market. The operation costs (cj)j∈J are considered public information

as well as the minimum acceptable mobility payments (σi)i∈I . In general, though,

any VCG-based mechanism requires agents to report their entire valuation function

[207]. In our case, we can take advantage of more advanced and sophisticated data

gathering techniques so that we may infer the form and shape of a traveler’s valuation

(and utility) function using, for example, historical and empirical data [40, 2]. Hence,

the functional form of vi can be considered known, but the realization of vi(·) is agent
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i’s private information. It is important to note that the evaluation of any traveler i’s

valuation function can be learned using the three-parameter tuple πi, which provides

the personal travel requirements of any traveler i ∈ Ik. In addition, we expect any social

planner of a generic transportation system to have the ability (e.g., using regression

analysis [21]) to approximate the experienced travel time of any mobility service and its

operating costs. Hence, the only private information that we are required to elicit from

the travelers is their personal travel requirements (πi)i∈Ik , k = 1, . . . , K. At the same

time, receiving communication in the form of messages from all travelers regarding the

(πi)i∈Ik , k = 1, . . . , K can be an unrealistic burden. That is why, in our framework,

any traveler i ∈ I is expected to report the evaluation of their valuation function

vi, which depends on their πi. Essentially, we parameterize the private information

of travelers into a one-dimensional number. In future research, we plan to address a

multi-dimensional mechanism to ensure there is no loss of information of the traveler’s

preferences.

On a different note, a natural question to ask here is whether there is any

guarantee that the travelers’ mobility payments will meet the providers’ operating

costs. As we saw in Section 2.2.1, the VCG mechanism can only charge travelers their

social cost or impact into the mobility system. Thus, this might lead to very low

mobility payments for a significant number of travelers, leading to deficits to cover

operating costs for the providers. Since, in reality, we cannot expect any providers

to serve travelers indefinitely when their costs have not been met, we introduce a

“pricing base” for the mobility payments. Essentially, these bases can be chosen by the

providers to ensure that no payment by any traveler is below a set value (e.g., minimum

acceptable payment), which can be determined approximately by the traveler’s location

and destination, supply and demand, and operator’s reimbursement fee [92].

Definition 2.2.9. The minimum acceptable mobility payment of any service j ∈ J

is given by σi(ak) ∈ R≥0, for any traveler i ∈ Ik, k = 1, . . . , K. If for an arbitrary

traveler i, we have pi(ak) ≥ σi(ak), then we say that the mobility market, defined in

56



(2.52), is economically sustainable.

The minimum acceptable mobility payments σ = (σi)i∈I are considered public

information set by the providers and may be different for each traveler i ∈ Ik, k =

1, . . . , K.

In the modeling framework described above, we impose the following assump-

tion:

Assumption 2.2.10. For all subclasses Ik, k = 1, . . . , K, K ∈ N, any traveler i ∈

Ik is modeled as a selfish decision-maker with private information πi = (αi, θi, v̄i).

Traveler i’s objective is to maximize their total utility ui(ak) = vi(ak) − pi(ak) in a

non-cooperative game-theoretic setting.

Assumption 2.2.10 essentially says that each traveler is selfish in the sense that

they are only interested in their own well-being. In economics, such behavior is called

“strategic” since agents attempt to misreport their private information to the social

planner if that means higher individual benefits.

Assumption 2.2.11. The aggregate usage capacities of all mobility services can ade-

quately serve all travel requests of travelers. Mathematically, we have
∑

j∈J εj = n =

|I|.

Intuitively, Assumption 2.2.11 ensures that no traveler will remain unassigned.

We can justify this assumption as follows: our focus is on efficiently allocating the

different mobility services to travelers in a mobility market, a multimodal mobility

system that incorporates public transit services with high traveler capacity capabilities.

A relaxation of this assumption must consider scenarios where the existing mobility

services cannot meet the travelers’ demand, thus transforming our problem into a

“mobility and equity” problem (giving priority to a subset of travelers in a fair way).
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2.2.4 The Optimization Problem Statement of the Emerging Mobility Mar-

ket

In the proposed mobility market, travelers request (via a smartphone app), in

advance, a travel recommendation from the social planner that satisfies their origin-

destination. Given the travelers’ origin-destination pairs, the social planner partitions

all travelers to different subclasses, as described in Definition 2.2.2. Thus, travelers

from the same neighborhood have the same origin. Similarly, travelers going to the

same neighborhood have the same destination. The social planner’s task is to elicit the

travelers’ preferences, attempt to satisfy all travel requests, and provide recommen-

dations to the travelers (e.g., which mobility service to use) by considering the social

optimum subject to the city network’s physical constraints. Hence, we are interested

in minimizing the travel inconvenience of all travelers and the operating costs.

Remark 2.2.12. Without loss of generality and to simplify the mathematical analysis

in our exposition, we consider that both the mobility inconvenience metrics (ϕi)i∈Ik ,

k = 1, . . . , K, the minimum mobility payments (σi)i∈Ik , k = 1, . . . , K, and the operating

costs (cj)j∈J are normalized. This ensures that ϕi, σi, and cj do not dominate each

other in Problem 2.2.13 next, while all three are measured in the same monetary units.

Problem 2.2.13. For each subclass Ik, k = 1, . . . , K, the optimization problem is

min
ak

∑
i∈Ik

[
ϕi

(
αi, θi, θ̃i(ak)

)
+ σi(ak)

]
+
∑
j∈J

cj(ak), (2.53)

subject to:∑
j∈J

aij ≤ 1, ∀i ∈ Ik, (2.54)

∑
i∈Ik

aij ≤ εj, ∀j ∈ J , (2.55)

∑
j∈Jh

∑
i∈Ik

aij ≤ γe, ∀h ∈ {1, 2, . . . , H}, ∀e ∈ E , (2.56)

where (2.54) assures that each traveler i ∈ Ik will be assigned at most one mobility

service, and (2.55) stipulates that service j’s maximum usage capacity εj must not
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be exceeded. Lastly, (2.56) ensures that there will be no congestion on the links that

represent roads or public transit connections. Note also that even though in Problem

2.2.13 we focus only on the kth partition of the set of travelers I, we do not need to do

the same for the mobility services. In other words, since each type of mobility services

is associated with a unique link that connects any two nodes, any services that do not

satisfy (ok, dk) will not be considered in the optimization.

Problem 2.2.13 is similar to the many-to-one assignment problem, and standard

algorithmic approaches (e.g., Jonker-Volgenant algorithm [109]) exist to find its global

optimal solution or, in worst-case scenarios, a second-best optimal approximation of a

solution. We can also reformulate Problem 2.2.13 to a linear program by relaxing to a

non-negativity constraint the binary optimization variable aij for all i ∈ I and j ∈ J .

We can then guarantee that an optimal solution of zeros and ones exists by noting

that the constraint matrix formed by (2.54) - (2.56) satisfies the total unimodularity

property [210]. Note, though, that these approaches assume complete information of

all parameters and variables in the model. Such an assumption is unreasonable to

expect from strategic decision-makers, so, in our framework, travelers are not expected

to report their private information truthfully. This turns our problems to a preference

elicitation problem. Our task in Section 2.2.5 is to provide a theoretical approach that

elicits the necessary private information of all travelers using monetary incentives in

the form of mobility payments (e.g., tolls, fares, fees).

2.2.5 Methodology for the Design of Mobility Incentives

We can reformulate Problem 2.2.13 as a standard social welfare maximization

problem. First, recall that ϕi

(
αi, θi, θ̃i(ak)

)
= v̄i − vi(ak), so the objective function

(2.53) becomes

max
ak

∑
i∈Ik

[vi(ak)− σi(ak)]−
∑
j∈J

cj(ak). (2.57)
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This reformulation will prove useful as the design of the monetary payments relies on

the social welfare impact (or mobility externality) caused by one traveler to the rest of

the travelers in the proposed mobility market.

Problem 2.2.14. We rewrite Problem 2.2.13 as follows:

max
ak

∑
i∈Ik

[vi(ak)− σi(ak)]−
∑
j∈J

cj(ak), (2.58)

subject to:∑
j∈J

aij ≤ 1, ∀i ∈ Ik, (2.59)

∑
i∈Ik

aij ≤ εj, ∀j ∈ J , (2.60)

∑
j∈Jh

∑
i∈Ik

aij ≤ γe, ∀h ∈ {1, 2, . . . , H}, ∀e ∈ E , (2.61)

where ak = (aij)i∈Ik,j∈J denotes the solution of Problem 2.2.14.

In order for the solution of Problem 2.2.14 to be socially-efficient, we would

need a control input in utility function (2.50) to incentivize all travelers to report

their personal travel requirements truthfully. In our case, this control input is the

payments pk, k = 1, . . . , K, which can be designed to be the difference between the

maximum social welfare with traveler ℓ ∈ Ik not participating and the maximum social

welfare of other travelers with traveler ℓ participating. Thus, to capture the first term,

we revise Problem 2.2.14 by adding constraint (2.66) to help us capture the “mobility

externality” of traveler ℓ rejecting any travel recommendations from the social planner.

For example, traveler ℓ may use a taxicab with no other co-travelers. Thus, Problem

2.2.14 takes the following form.

Problem 2.2.15. For each traveler i ∈ Ik, k = 1, . . . , K, we fix traveler ℓ ∈ Ik and
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solve the following optimization problem:

max
bk

∑
i∈Ik

[vi(bk)− σi(bk)]−
∑
j∈J

cj(bk), (2.62)

subject to:∑
j∈J

bij ≤ 1, ∀i ∈ Ik, (2.63)

∑
i∈Ik

bij ≤ εj, ∀j ∈ J , (2.64)

∑
j∈Jh

∑
i∈Ik

bij ≤ γe, ∀h ∈ {1, 2, . . . , H}, ∀e ∈ E , (2.65)

bℓj = 0, ∀j ∈ J , (2.66)

where bk = (bij)i∈Ik,j∈J defined similarly as in (2.46) denotes the solution of Problem

2.2.15, and (2.66) states that traveler ℓ ∈ Ik is not considered in the optimization

problem.

Remark 2.2.16. In what follows, to simplify the mathematical exposition, we introduce

the following notation:

w2(ak) =
∑
i∈Ik

[vi(ak)− σi(ak)]−
∑
j∈J

cj(ak), (2.67)

w3(bk) =
∑
i∈Ik

[vi(bk)− σi(bk)]−
∑
j∈J

cj(bk), (2.68)

where w2 and w3 denote the objective functions of Problems 2.2.14 and 2.2.15, respec-

tively.

We can now propose the exact form of the mobility payment pℓ for an arbitrary

traveler ℓ ∈ Ik, k = 1, . . . , K, of the proposed mobility market. For any subclass Ik,

k = 1, . . . , K, traveler ℓ ∈ Ik makes the following payment:

pℓ(ak,bk) = w3(bk)− [w2(ak)− vℓ(ak)] . (2.69)

Since w3(bk) yields the maximum social welfare from the traveler-service assignment

bk when traveler ℓ ∈ Ik does not participate in the mobility market, it can be viewed by
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traveler ℓ ∈ Ik in (2.69) as a constant, regardless of what traveler ℓ reports to the social

planner about their own personal travel requirements πℓ. The term [w2(ak)− vℓ(ak)]

in (2.69) represents the maximum social welfare of all travelers other than traveler

ℓ ∈ Ik, when traveler ℓ ∈ Ik partakes in the mobility market. As a consequence, pℓ

can be interpreted as the externality caused by traveler ℓ ∈ Ik to all other travelers.

In addition, the computation of the mobility payments (2.69) requires solving Problem

2.2.15 repeatedly for each traveler. As shown in Algorithm 1, first we derive the optimal

solution of Problem 2.2.14, and then we use the optimal solution of Problem 2.2.15 to

compute the monetary payment of each traveler ℓ ∈ Ik.

Algorithm 1: Solution of Problem 2.2.14 with Problems 2.2.15

Data: Ik,J , (πi)i∈Ik , (ui)i∈Ik
Result: a∗

k and pk
Solve for the optimal solution a∗

k of Problem 2.2.14;
for ℓ ∈ Ik do

Solve for the optimal solution b∗
k of Problem 2.2.15;

Next, compute

pℓ(a
∗
k,b

∗
k) = w3(b

∗
k)− [w2(a

∗
k)− vℓ(a

∗
k)] .

end

Before we move on to the next section, we note that informally we talked about

a traveler not participating in the mobility market in solving Problem 2.2.15. This idea

helps us design the mobility payments in (2.69) by identifying the mobility externalities

in the welfare of all travelers. Thus, we introduce the notion of “mobility exclusion,”

which will help us capture the socioeconomic impact of any traveler on the rest of the

mobility market.

Definition 2.2.17. For any subclass Ik, k = 1, . . . , K, given a traveler-service assign-

ment ak of Problem 2.2.14, a traveler ℓ ∈ Ik is said to be mobility excluded if they are

not assigned to any mobility service in the traveler-service assignment bk of Problem

2.2.15.
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Problem 2.2.15 is used to compute the mobility payments for each traveler in the

mobility market by identifying the mobility externality caused by the decision-making

of the traveler to the rest of the market. In addition, however, we are also interested

in identifying the traveler’s impact on (i) operating costs and (ii) overall welfare. We

shall see in the next section how we can achieve this.

2.2.6 Properties of the Mobility Market

Our first result is an immediate and straightforward consequence of Definition

2.2.17. Recall that the operating cost cij(aij) captures traveler i’s fair share of the

mobility service j’s costs that they use under the traveler-service assignment ak.

Corollary 2.2.18. Let bℓk be a feasible traveler-service assignment of Problem 2.2.15.

Given that traveler ℓ ∈ Ik is mobility excluded, the operating cost that is associated

with the traveler-service assignment bℓk is smaller than or equal than the operating cost

associated with the optimal assignment a∗
k of Problem 2.2.14, i.e., we have∑

i∈Ik

cij(a
∗
ij) ≥

∑
i∈Ik\{ℓ}

cij(b
ℓ
ij). (2.70)

Similarly, using Definition 2.2.17, we show that the sum of valuations (or welfare)

of all travelers other than the traveler, who is mobility excluded specifically in Problem

2.2.15, is greater or equal than the sum of valuations evaluated at the traveler-service

assignment of Problem 2.2.14.

Lemma 2.2.19. Let bℓk be a feasible traveler-service assignment of Problem 2.2.15, in

which traveler ℓ ∈ Ik is mobility excluded. Then, we have∑
i∈Ik\{ℓ}

vi(ak) ≤
∑
i∈Ik

vi(b
ℓ
k). (2.71)

Proof. Given that traveler ℓ ∈ Ik is mobility excluded in the traveler-service assignment

bℓk of Problem 2.2.15, we know that there is one less traveler required to be served by

any mobility service in the market. Naturally, this affects the experienced travel times
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of any other traveler i ∈ Ik, i.e., we have either a decreased or constant θ̃i(b
ℓ
k). So,

mathematically this means that with traveler-service assignment ak of Problem 2.2.14,

we have

θ̃i(b
ℓ
k) ≤ θ̃i(ak), (2.72)

where θ̃i(b
ℓ
k) is the experienced travel time of traveler i ∈ Ik evaluated at bℓk and θ̃i(ak)

is the experienced travel time of traveler i evaluated at ak. Intuitively, (2.72) means

there is one less traveler leading to better travel times for other travelers (better here

means less). Hence, since the explicit form of traveler i’s valuation is given by

vi(ak) = v̄i − ϕi

(
αi, θi, θ̃i(ak)

)
= v̄i − αi · (θ̃i(ak)− θi), (2.73)

if we compare the two valuations vi(ak) and vi(b
ℓ
k), we get vi(ak) ≤ vi(b

ℓ
k). This

completes the proof.

Next, we show that for any traveler, their valuation will always be greater or

equal than the minimum mobility payment. This will be instrumental in our attempt

to show individual rationality later on.

Lemma 2.2.20. Let a∗
k denote the optimal solution of Problem 2.2.14. Then the min-

imum mobility payment σℓ in the objective function (2.58) of Problem 2.2.14 ensures

that, for any ℓ ∈ Ik, k = 1, . . . , K, vℓ(a
∗
k) ≥ σℓ(a

∗
k).

Proof. Let a∗
k denote the optimal solution of Problem 2.2.14 and bℓk

∗
the corresponding

solution of Problem 2.2.15. Hence, traveler ℓ has been assigned a mobility service in the

optimal traveler-service assignment a∗
k, but they are mobility excluded in bℓk

∗
. Thus,

we have

w3(b
ℓ
k

∗
) =

∑
i∈Ik

[
vi(b

ℓ
k

∗
)− σi(b

ℓ
k

∗
)
]
−
∑
j∈J

cj(b
ℓ
k

∗
)

≥
∑

i∈Ik\{ℓ}

vi(a
∗
k)−

∑
i∈Ik

σi(b
ℓ
k

∗
)−

∑
j∈J

cj(a
∗
k), (2.74)
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where (2.74) follows from Corollary 2.2.18 and Lemma 2.2.19. Next, we look at the

welfare of an arbitrary traveler i ∈ Ik under a∗
k, i.e.,

w2(a
∗
k) =

∑
i∈Ik

[vi(a
∗
k)− σi(a

∗
k)]−

∑
j∈J

cj(a
∗
k)

=
∑
i∈Ik

vi(a
∗
k)−

∑
i∈Ik

σi(a
∗
k)−

∑
j∈J

cj(a
∗
k), (2.75)

where it also follows that w2(a
∗
k) ≥ w3(b

ℓ
k
∗
) from the fact that bℓk

∗
is not an optimal

solution of Problem 2.2.14. Thus, if we compare (2.74) and (2.75), we get∑
i∈Ik

vi(a
∗
k)−

∑
i∈Ik

σi(a
∗
k)−

∑
j∈J

cj(a
∗
k) ≥

∑
i∈Ik\{ℓ}

vi(a
∗
k)−

∑
i∈Ik

σi(b
ℓ
k

∗
)−
∑
j∈J

cj(a
∗
k). (2.76)

So, by simplifying and rearranging (2.76), we have∑
i∈Ik

vi(a
∗
k)−

∑
i∈Ik\{ℓ}

vi(a
∗
k) ≥

∑
i∈Ik

σi(a
∗
k)−

∑
i∈Ik

σi(b
ℓ
k

∗
),

= σℓ(a
∗
k)− σℓ(b

ℓ
k

∗
) = σℓ(a

∗
k), (2.77)

since σℓ(b
ℓ
k
∗
) = 0 as traveler ℓ is not assigned any mobility service under the traveler-

service assignment bℓk
∗
. Therefore, (2.77) simplifies to vℓ(a

∗
k) ≥ σℓ(a

∗
k).

Our first main result is incentive compatibility, which means that all travelers are

incentivized to report their private information truthfully. Formally, for an arbitrary

traveler i ∈ Ik, k = 1, . . . , K, given that u′i is the utility gained with misreported πi

and ui is the “actual” utility, showing that u′i ≤ ui guarantees truthfulness.

Theorem 2.2.21. The mobility market defined in (2.52) provides the appropriate mon-

etary incentives to each traveler i ∈ Ik, k = 1, . . . , K to report their personal travel

requirements πi = (αi, θi, v̄i) truthfully regardless of what other travelers report.

Proof. It is sufficient to show incentive compatibility only for an arbitrary mobility

market for some arbitrary k ∈ {1, . . . , K}. Suppose some traveler ℓ ∈ Ik misreports
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their personal travel requirements denoted by πℓ = (α′
ℓ, θ

′
ℓ, v̄

′
ℓ) to the social planner.

Thus, we have

v′ℓ(ak) = v̄′ℓ − ϕℓ

(
α′
ℓ, θ

′
ℓ, θ̃ℓ(ak)

)
. (2.78)

The objective function of Problem 2.2.14 becomes

w′
2(ak) =

∑
i∈Ik\{ℓ}

[vi(ak)− σi(ak)]−
∑
j∈J

cj(ak) + v′ℓ(ak), (2.79)

where the feasible solution of (2.79) is subject to the same constraints as in Problem

2.2.14. We denote the optimal solution of the optimization problem that traveler ℓ has

misreported their personal travel requirements πℓ with (2.79) as the objective function

by ã∗
k. Then, for traveler ℓ ∈ Ik their mobility payment can be computed as follows:

p′ℓ(ã
∗
k, b̃

∗
k) = w3(b̃

∗
k)−

[
wℓ2(ã

∗
k)− v′ℓ(ã

∗
k)
]
= w3(b

∗
k)−

[
wℓ2(ã

∗
k)− v′ℓ(ã

∗
k)
]
, (2.80)

where b̃∗
k denotes the optimal solution of Problem 2.2.15 with traveler ℓ ∈ Ik misre-

porting. However, w3(b̃
∗
k) = w3(b

∗
k) since, in Problem 2.2.15, it does not matter what

traveler ℓ ∈ Ik reports. Thus, the total utility of traveler ℓ ∈ Ik is

uℓ(ã
∗
k) = vℓ(ã

∗
k)− p′ℓ(ã

∗
k,b

∗
k), (2.81)

where for traveler ℓ ∈ Ik the term vℓ(ã
∗
k) is the actual satisfaction gained by misreport-

ing their private information. Substituting (2.80) into (2.81) yields

uℓ(ã
∗
k) = vℓ(ã

∗
k)−

[
w3(b

∗
k)−

(
wℓ2(ã

∗
k)− v′ℓ(ã

∗
k)
)]
, (2.82)

which after a few simplifications gives

uℓ(ã
∗
k) = vℓ(ã

∗
k)−w3(b

∗
k)−

 ∑
i∈Ik\{ℓ}

[vi(ã
∗
k)− σi(ã

∗
k)]−

∑
j∈J

cj(ã
∗
k) + v′ℓ(ã

∗
k)

− v′ℓ(ã
∗
k)

 .
(2.83)

Hence, as the term v′ℓ(ã
∗
k) appears in opposite signs in (2.83), we have

uℓ(ã
∗
k) =

[∑
i∈Ik

[vi(ã
∗
k)− σi(ã

∗
k)]−

∑
j∈J

cj(ã
∗
k)

]
− w3(b

∗
k)

= w2(ã
∗
k)− w3(b

∗
k). (2.84)
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Note that ã∗
k is not necessarily the optimal solution of Problem 2.2.14. Thus, we have

w2(ã
∗
k) ≤ w2(a

∗
k). So, we observe that

uℓ(ã
∗
k) = w2(ã

∗
k)− w3(b

∗
k) ≤ w2(a

∗
k)− w3(b

∗
k) = uℓ(a

∗
k). (2.85)

Therefore, from (2.85), it follows immediately that the proposed mobility market is

incentive compatible.

Our next result is individual rationality, which implies that all travelers volun-

tarily participate in the proposed mobility market. Formally, for any traveler i ∈ Ik,

k = 1, . . . , K, if traveler i’s utility ui is non-negative, i.e., ui ≥ 0, then we say traveler i

voluntarily participates in the mobility market. This is important as we can guarantee

for any traveler i that what they are willing to pay, vi, will never be less than what

they actually pay, pi.

Theorem 2.2.22. The mobility market is individually rational. For any subclass Ik,

k = 1, . . . , K, and for any traveler i ∈ Ik, the utility of any traveler is non-negative,

i.e., we have for all i ∈ Ik, ui(ak) ≥ 0. Equivalently, vi(ak) ≥ pi(ak).

Proof. It is sufficient to show the result only for one instance of a mobility market

for some k = {1, . . . , K}. There are two cases to consider. First, let us suppose that

traveler ℓ ∈ Ik rejects any travel recommendations from the social planner; denote such

an assignment by âk. From (2.69), traveler ℓ would be required to make a monetary

payment equal to their maximum willingness-to-pay, i.e., pℓ = v̄ℓ. This implies that

uℓ(âk) = 0. This is justifiable as traveler ℓ seeks to travel and the only alternative

travel option to our mobility market is a taxicab service.

For the second case, let us consider the utility of an arbitrary traveler i ∈ Ik
evaluated at the optimal solution a∗

k is given by

ui(a
∗
k) = vi(a

∗
k)− pi(a

∗
k,b

∗
k). (2.86)
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Note that by Theorem 2.2.21 all travelers report their true private information at

equilibrium. So, substituting (2.69) into (2.86) yields

ui(a
∗
k) = vi(a

∗
k)− [w3(b

∗
k)− [w2(a

∗
k)− vi(a

∗
k)]] = w2(a

∗
k)− w3(b

∗
k). (2.87)

Note that for each k = 1, . . . , K, the feasible regions of Problems 2.2.14 and 2.2.15,

say F2 and F3, respectively, satisfy the relation F3 ⊂ F2. This is because Problem

2.2.15 has the exact same constraints plus an additional one, i.e., (2.66), thus the

maximization of w3 (which is almost similar to the one in Problem 2.2.14) will always

be less or equal than the maximization of w2. Hence, it follows that ui(a
∗
k) = w2(a

∗
k)−

w3(b
∗
k) ≥ 0. Therefore, the result follows.

Next, we establish that the proposed mobility market is economically sustainable

(see Definition 2.2.9).

Theorem 2.2.23. The mobility market is economically sustainable, i.e., it is guaran-

teed to generate revenue from each traveler and always meet the minimum acceptable

mobility payments. In other words, for each subclass Ik, k = 1, . . . , K, and for an

arbitrary ℓ ∈ Ik, we have

pℓ(a
∗
k,b

∗
k) = w3(b

∗
k)− [w2(a

∗
k)− vℓ(a

∗
k)] ≥ σℓ(a

∗
k). (2.88)

Proof. Let b∗
k be an optimal solution of Problem 2.2.15 and bℓk

∗
be the corresponding

feasible solution of Problem 2.2.15 with a∗
k an optimal solution of Problem 2.2.13. Since

bℓk
∗
is only a feasible solution, we have

w3(b
∗
k) ≥ w3(b

ℓ
k

∗
). (2.89)

Given the mobility payments (2.69), if we subtract the term [w2(a
∗
k)− vℓ(a

∗
k)] from

both sides of (2.89), we have

pℓ(a
∗
k,b

∗
k) = w3(b

∗
k)− [w2(a

∗
k)− vℓ(a

∗
k)] ≥ w3(b

ℓ
k

∗
)− [w2(a

∗
k)− vℓ(a

∗
k)] . (2.90)
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The RHS of (2.90) can be expanded as follows:

w3(b
ℓ
k

∗
)− [w2(a

∗
k)− vℓ(a

∗
k)] =

∑
i∈Ik

[
vi(b

ℓ
k

∗
)− σi(b

ℓ
k

∗
)
]
−
∑
j∈J

cj(b
ℓ
k

∗
)

−

[(∑
i∈Ik

[vi(a
∗
k)− σi(a

∗
k)]−

∑
j∈J

cj(a
∗
k)

)
− vℓ(a

∗
k)

]
. (2.91)

After a few simplifications and rearranging of (2.91), we have

pℓ(a
∗
k,b

∗
k) ≥

∑
i∈Ik

vi(b
ℓ
k

∗
)−

∑
i∈Ik\{ℓ}

vi(a
∗
k)

+
∑
i∈Ik

[
σi(a

∗
k)− σi(b

ℓ
k

∗
)
]

+

[∑
j∈J

cj(a
∗
k)−

∑
j∈J

cj(b
ℓ
k

∗
)

]
. (2.92)

So, by Corollary 2.2.18, the last term in (2.92) is non-negative. Similarly, by Lemma

2.2.19, the first term in (2.92) is non-negative. So, we get

pℓ(a
∗
k,b

∗
k) ≥ σℓ(a

∗
k)− σℓ(b

ℓ
k

∗
) = σℓ(a

∗
k), (2.93)

since under bℓk
∗
traveler ℓ has not been assigned any mobility service, thus σℓ(b

ℓ
k
∗
) = 0,

and so the result follows immediately.

2.3 Summary

In this chapter, we addressed the problem of the social consequences of decision-

making of human interaction with connectivity and automation in a game-theoretic

setting. We formulated the problem as a multiplayer normal-form game and showed

that the incentive structure is equivalent to the PD game. The proposed approach has

the benefit of capturing the social dilemma that is expected to arise from the future

social-mobility dilemma. We considered two different approaches: one was with a

preference structure and one with institutions. We investigated and derived conditions

for the unselfish strategy, i.e., non-CAV travel, to appear in the game. In the first case,

we came up with conditions for a NE and derived a threshold for non-CAV travel; in

the second case, we allowed players to create an institution that can enforce non-CAV
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travel. We concluded that the incentive ratio of non-CAV travel over CAV travel tends

to zero as the number of players increases.

This chapter demonstrates how we can model and study the mobility decision-

making of selfish travelers who are faced with the dilemma of “which mode of trans-

portation to use” as an economically-inspired mobility market. First, the proposed

market provides a socially-efficient solution, i.e., the endmost collective travel rec-

ommendation respects and satisfies the travelers’ preferences regarding mobility and

ensures that, implicitly, there will be an alleviation of congestion in the system. We

achieve the latter by introducing appropriate constraints in the optimization problem;

thus, our solution efficiently allocates all the available mobility services to the travel-

ers. Furthermore, we showed that the proposed mobility market attains the properties

of incentive compatibility and individual rationality. In other words, all travelers are

incentivized to participate in the market while also truthfully reporting their personal

travel requirements. Last, we introduced the notion of minimum acceptable mobility

payments to ensure that the tolls and fares collected by the social planner will meet

the mobility services’ operating costs. Hence, the proposed market satisfies a status of

economic sustainability.
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Chapter 3

RESOURCE ALLOCATION AND MARKET-BASED MECHANISMS
FOR MOBILITY SYSTEMS

This chapter has four parts and focuses on resource allocation and market-based

approaches for efficient mobility. First, we focus on the social perspective of the emerg-

ing mobility systems with CAVs. It is widely accepted that CAVs will revolutionize

urban mobility and the way people commute. An example would be for CAVs to make

empty trips, i.e., no travelers, to avoid parking, and thus add extra congestion in the

network [60]. In addition, CAVs could potentially affect drivers’ behavior and have an

impact on traffic performance in general [8]. The question of the actual impact of CAVs

on travel, energy, and carbon demand has attracted considerable attention [246]. De-

pending on different environmental indicators, the authors in [245] provided a practical

microeconomic environmental rebound effect model. So far, there has been research on

the effects of a considerate penetration of shared CAVs in a major metropolitan area

[144]. However, most studies on CAVs have focused on how to coordinate CAVs in

different traffic scenarios [191, 258]. And so, we investigate the travel time provisioning

in transportation networks with CAVs and strategic travelers. The main contribution

of this chapter is the development of an informationally decentralized travel time social

allocation mechanism with strategic travelers possessing the following properties: (i)

existence of at least one Nash equilibrium (NE), (ii) budget balanced at equilibrium,

(iii) individually rational, (iv) strongly implementable at NE, and (v) feasible at or off

of equilibrium. Another contribution is that the design of our mechanism’s tolls for the

travelers’ utilization of the network’s resources is intuitive enough to provide a good

understanding of the practical implementation of the mechanism.
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What if the resource to be allocated in an emerging mobility market needs to

be shared? To answer this, we provide the design of a shared mobility market for the

stable assignment of travelers to shared vehicles. By stable we mean that, considering

the decision-making of both travelers and vehicles’ operators, no other assignment is

preferred. We formulate a binary linear optimization problem and we show that our

shared mobility market can produce optimal assignments with a feasible and stable

traveler-vehicle profit allocation. For the latter, we also give the necessary and sufficient

conditions when stability can be guaranteed.

Next, we offer the development of a game-theoretical framework to study the

economic interactions of travelers and providers in a two-sided many-to-one assignment

game. By two-sided we mean that we consider the preferences of both the travelers

and the providers. By many-to-one we mean that we impose constraints of how many

travelers can be assigned to one provider and how many providers to one traveler. Our

analysis can be divided into two parts. First, we use linear programming arguments to

showcase the existence of an optimal assignment between travelers and providers that

is also stable, i.e., no one will seek to deviate from their match. Second, we consider an

asymmetric informational structure, where no traveler/provider is expected to provide

their private information willingly. We provide a pricing mechanism (Algorithm 2) for

this case and show how we can successfully elicit the private information while also

ensure efficiency (maximization of social welfare).

One key aspect of resource allocation is fairness and equity in how we allocate

the limited resources to the decision-makers. And so, the final part of our chapter

focuses on the game-theoretic development of framework to study the socioeconomic

interactions of travelers in a multi-modal mobility system. We focus our analysis in

the economic sustainability and mobility equity of the mobility system. We offer a

game-theoretic definition of equity based on accessibility, i.e., we ensure our framework

satisfies the following properties: truthfulness, voluntary participation, and budget

fairness. In particular, we formulate our problem as a linear program to compute
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the assignments between travelers and mobility services that maximize the worst-case

revenue of the system. Under an asymmetric informational structure [135], where a

social planner has no knowledge of the individual travelers’ valuations of the services,

we provide a pricing mechanism and show how we can elicit the private information

truthfully (Theorem 3.4.19) while ensuring budget fairness (Theorem 3.4.20). We also

show that every traveler voluntary participates in our proposed framework (Theorem

3.4.21).

In Section 3.1.1, we present the mathematical formulation of our proposed mech-

anism. Then, in Section 3.1.2, we formally show that our proposed mechanism has

properties (a) - (e). Finally, we draw some concluding remarks and discuss potential

avenues for future research. The remainder of the chapter is structured as follows. In

Section 3.2.1, we present the mathematical formulation of our shared mobility market,

which forms the basis for the rest of the chapter. In Section 3.2.2, we provide a feasi-

bility and stability analysis of the shared mobility market. In Section 3.3.1, we present

the mathematical formulation of the proposed game-theoretic framework. In Section

3.3.2, we derive the theoretical properties of the proposed framework, and finally, we

discuss the implementation of the proposed framework and provide a numerical exam-

ple in 3.3.3. Then in Section 3.4.1, we present the mathematical formulation of the

proposed mobility game which forms the basis of our theoretical study for the rest of

the chapter. In Section 3.4.3, we derive the theoretical properties of our framework,

and finally, in Section 3.4.4, we discuss the implementation of the proposed framework.

3.1 Social Resource Allocation in a Mobility System with Connected and

Automated Vehicles: A Mechanism Design Problem

In this chapter, we investigate the social resource allocation in an emerging mo-

bility system consisting of connected and automated vehicles (CAVs) using mechanism

design. CAVs provide the most intriguing opportunity for enabling travelers to mon-

itor mobility system conditions efficiently and make better decisions. However, this
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new reality will influence travelers’ tendency-of-travel and might give rise to rebound

effects, e.g., increased-vehicle-miles traveled. To tackle this phenomenon, we propose

a mechanism design formulation that provides an efficient social resource allocation of

travel time for all travelers. Our focus is on the socio-technical aspect of the problem,

i.e., by designing appropriate socio-economic incentives, we seek to prevent potential

rebound effects. In particular, we propose an economically inspired mechanism to in-

fluence the impact of the travelers’ decision-making on the well-being of an emerging

mobility system.

3.1.1 Mathematical Formulation

We consider a transportation network represented by a graph G = (V , E), where

V = {1, . . . , V } corresponds to the index set of vertices and E = {1, . . . , E} the index

set of directed edges. Each edge e ∈ E has a fixed capacity, i.e., ce ∈ R>0, e.g., a high

capacity ce corresponds to a highway while a low capacity corresponds to an urban

road. There are n ∈ N≥2 travelers represented by the set I = {1, 2, . . . , n}. Each

traveler i is associated with an origin-destination pair (oi, di) ∈ V ×V . The utilization

of the roads in G is done by the use of CAVs, where each CAV corresponds to one

traveler. We consider 100% penetration rate of CAVs.

Definition 3.1.1. A traveler i ∈ I seeks to commute from oi to di via a given and

fixed route pi(oi, di) at preferred travel time, denoted by θi ∈ Θi = [0,+∞). In game

theoretic terms, θi is the type of traveler i. We denote the type profile of all travelers

by θ = (θ1, θ2, . . . , θn).

In addition, each edge e ∈ E in the network is characterized by θe which repre-

sents the minimum possible travel time that any traveler can experience if edge e ∈ E

is an empty (uncongested) road. This allows us to take into account rural or urban

roads of different traffic capacities in the transportation network G.

Next, each traveler i ∈ I has a cost function vi which expresses the “commute-

satisfaction” that traveler i experiences from commuting in (oi, di) with travel time θi.
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We expect vi and θi to be traveler i’s private information (i.e., unknown to the network

manager).

Assumption 3.1.2. Assume that vi : R≥0 → R is continuously differentiable, strictly

concave, and strictly decreasing in θi with vi(0) = 0.

Next, we denote by ti the monetary payment made by traveler i to the network

manager. We have ti ∈ R, i.e., a positive ti means that traveler i pays a toll and a

negative ti means that i receives a monetary subsidy. Thus, in our mechanism, traveler

i’s total utility is given by

ui(θi, ti) = vi(θi)− ti, (3.1)

where recall that vi represents traveler i’s satisfaction function and θi is traveler i’s

travel time.

We consider that all travelers are rational and intelligent decision-makers in the

system. Each traveler i ∈ I has two objectives: (i) to reach their destination, and (ii) to

maximize their own utility. A social consequence of the travelers’ behavior is that there

is an individual disregard of the overall good of the system and it is natural to expect

that at least one edge e ∈ E will exceed its maximum capacity. If the network manager

does not intervene, then congestion is to be expected. So, using appropriate monetary

payments, the network manager can incentivize travelers to report truthfully their

type θi and allocate travel time on each edge e ∈ E in such a way that all travelers are

satisfied and congestion is prevented. To achieve this, the network manager’s objective

is to maximize the overall “social welfare” of the network and ensure that the network

remains congestion-free. The social welfare function is defined as the
∑

i∈I vi(θi) and

denoted by W . We choose to define the social welfare as the sum of the utilities of

all travelers because we follow the utilitarian principles, i.e., we measure the collective

benefits gained by the travelers in the transportation network.

Next, note that the travelers’ strategic behavior indicates a natural competition

over the utilization of the edges.
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Definition 3.1.3. Given e ∈ E, we define the following sets: (i) the set Se of all

travelers that edge e is part of their route that connects oi and di, and (ii) the set Ri

of traveler i’s edges that consist of their route pi(oi, di).

Before we continue, we introduce the notion of reverse value of time, say pa-

rameter αi ∈ R≥1, that can vary among each traveler i ∈ I. The social parameter

αi ∈ (α, α), where α ≥ 1, can be interpreted as follows. If αi → α, traveler i is willing

to tolerate a slightly higher travel time, while if αi → α, traveler i is not willing to tol-

erate a higher travel time. We assume that each traveler i ∈ I can be classified based

on socio-economic demographic data (e.g., mobility choices and travel tendencies, civil

status and income) [35].

Problem 3.1.4. The centralized social-welfare maximization problem is presented be-

low:

max
θei

∑
i∈I

∑
e∈Ri

vi(θ
e
i ),

subject to: θei ≥ θe, ∀e ∈ E , ∀i ∈ I, (3.2)∑
i∈Se

αi · θei ≤ ce, ∀e ∈ E , (3.3)

where θei is the travel time of traveler i on edge e with θi =
∑

e∈Ri
θei , and vi(θi) =∑

e∈Ri
vi(θ

e
i ); inequalities (3.2) ensure that each traveler i’s travel time θei on all edges

e ∈ E is non-negative but not zero at any case; and inequality (3.3) expresses the

network’s capacity on each edge e ∈ E.

By Assumption 3.1.2, it is imperative to impose a network threshold on the

feasible values of each traveler i’s travel time. We can achieve this in (3.2) by only

accepting travelers’ travel times that are above θe. Also, we interpret θi = 0 to be the

case of traveler i not seeking to commute instead of wishing to commute in zero time.

Problem 3.1.4 would be a standard convex optimization problem if the strate-

gic travelers were expected to report their private information truthfully. As this is
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unreasonable to expect from strategic decision-makers, the network manager in order

to solve Problem 3.1.4 is tasked to elicit the necessary information using monetary

incentives.

In our formulation, we use the NE as our solution concept. However, a NE

requires complete information. But, we can interpret a NE as the fixed point of an

iterative process in an incomplete information setting [188, 91]. This is in accordance

with J. Nash’s interpretation of a NE, i.e., the complete information NE can be a

possible equilibrium of an iterative learning process.

In this section, we present the fundamentals of an indirect and decentralized

resource allocation mechanism following the framework presented in [102]. First, we

need to specify a set of messages that all travelers have access and are able to use in

order to communicate information. Based on this information, travelers make decisions

which affect the reaction of the network manager. Once the communication between

the network manager and the travelers is complete, we say that the mechanism induces

a game; strategic travelers then compete for the network’s resources. In this line of

reasoning, we define formally below what we mean by indirect mechanism and induced

game.

An indirect mechanism can be described as a tuple of two components, namely

⟨M, g⟩. We writeM = (M1,M2, . . . ,Mn), whereMi defines the set of possible messages

of traveler i. Thus, the travelers’ complete message space is M =M1 × · · · ×Mn. The

component g is the outcome function defined by g : M → O which maps each message

profile to the output space O = {(θ1, . . . , θn), (t1, . . . , tn) | θi ∈ R≥0, ti ∈ R}, i.e., the

set of all possible travel time allocations to the travelers and the monetary payments

(e.g., toll, subsidies) made or received by the travelers. The outcome function g deter-

mines the outcome, namely g(µ) for any given message profile µ = (m1, . . . ,mn) ∈ M.

The payment function ti : M → R determines the monetary payment made or received

by a traveler i ∈ I.
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Definition 3.1.5. A mechanism ⟨M, g⟩ together with the utility functions (ui)i∈I in-

duce a game ⟨M, g, (ui)i∈I⟩, where each utility ui is evaluated at g(µ) for each traveler

i ∈ I.

Definition 3.1.6. Consider a game ⟨M, g, (ui)i∈I⟩. The solution concept of NE is a

message profile µ∗ such that ui(g(m
∗
i ,m

∗
−i)) ≥ ui(g(mi,m

∗
−i)), for all mi ∈Mi and for

each i ∈ I, where m−i = (m1, . . . ,mi−1,mi+1, . . . ,mn).

Definition 3.1.7. Let the utility of no participation of a traveler i ∈ I to be given

by ui(0, 0) = vi(0) = 0. Then, we say that a mechanism is individually rational if

ui(g(µ
∗)) ≥ 0, for all i ∈ I, and all NE µ∗ ∈ M.

We show now how the network manager can design monetary incentives which

achieve the desirable goal, i.e., align everyone’s decisions by incentivizing them to send

social-welfare supporting messages. But first, we need to establish the informational

structure of our mechanism. The network manager has complete knowledge of the

network’s topology and resources and travelers know only their own utility which they

report privately to the network manager. Before we continue, let us define explicitly

a traveler’s message. For each i ∈ I, message mi ∈ Mi is given by mi = (θ̃i, τi),

where θ̃i = (θ̃ei : e ∈ Ri) is the reported preferred travel time of traveler i, and

τi = (τ ei : e ∈ Ri) is the price traveler i is willing to pay for θ̃i along their route.

Definition 3.1.8. The average price of all travelers that compete to utilize edge e ∈ E

other than traveler i is given by τ e−i =
∑

j∈Se:j ̸=i
τej

|Se|−1
.

Next, for each traveler i and for each edge e ∈ E of their route, we endow a fair

share for each edge e ∈ E , i.e., ce/|Se|. This can help us design the monetary payments

that each traveler is asked to pay. Using Definition 3.1.8, we propose the following

payments, for a particular edge e ∈ E ,

tei (µ) = τ e−i ·
(
αi · θ̃ei −

ce
|Se|

)
+ (τ ei − νe)

2 + τ e−i · (τ ei − τ e−i) ·

(
ce −

∑
i∈Se

αi · θ̃ei

)2

. (3.4)
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The first term in (3.4) is the monetary payments (e.g., toll, subsidies) made or received

by traveler i corresponding to their travel time allocation θ̃ei on edge e ∈ E . Intuitively,

this means that traveler i will pay a toll that is determined by the other travelers’

recommendations and only for the excess of the fair share of travelers over a particular

edge. Using this formulation, there is no incentive for traveler i to lie in an attempt

to reduce their payment to the network. The second term in (3.4) corresponds to a

penalty that traveler i will pay if she reports a different price τ ei from νe, where νe

represents the Lagrange multiplier corresponding to the capacity constraint defined

formally next. The third term in (3.4), collectively incentivizes all travelers to bid the

same price per unit of travel time and to utilize the full capacity of each edge e ∈ E .

Thus, given any message profile µ, the total monetary payment ti(µ) for traveler

i is

ti(µ) =
∑
e∈Ri

tei (µ) + ϕi(θ̃i), (3.5)

where ϕi is a monetary incentive that encourages traveler i to report a reasonable

travel time demand respecting road rules and the network’s efficiency goals. In detail,

we have

ϕi(θ̃i) =



γ, ∃e ∈ Ri, s.t. θ̃
e
i > θe and |Se| = 1,

0, ∃e ∈ Ri, s.t. θ̃
e
i > θe and |Se| ≥ 2,

δ, ∃e ∈ Ri, s.t. θ̃
e
i = θe and |Se| ≥ 2,

0, ∃e ∈ Ri, s.t. θ̃
e
i = θe and |Se| = 1,

(3.6)

where γ, δ ∈ R>0 represent the imposition of very high penalties. It is necessary to

impose such penalties since for the first case in (3.6), traveler i violates the goal of

efficiency in the network and for the third case in (3.6), traveler i violates the goal of

road safety. In the severe case of θ̃ei < θe, we have ϕi(θ̃i) = +∞.

3.1.2 Properties of the Mechanism

In this section, we present the properties of our proposed mechanism.

79



Lemma 3.1.9. Problem 3.1.4 has a unique optimal solution.

Proof. The objective function of Problem 3.1.4 is a sum of several strictly concave

functions. Hence, it is strictly concave. Thus, the necessary KKT conditions are also

sufficient for optimality. Since the feasible region is non-empty, convex, and compact,

we conclude that Problem 3.1.4 has always a unique optimal solution.

Lemma 3.1.10. A solution to Problem 3.1.4 is unique and optimal if, and only if, it

satisfies the feasibility conditions of Problem 3.1.4 and there exist Lagrange multipliers

λ = (λei : e ∈ E)i∈I and ν = (νe)e∈E that satisfy the following conditions:

∂vi(θ
e
i
∗)

∂θei
+ λei

∗ −
∑
e∈Ri

αi · ν∗e = 0, (3.7)

λei
∗ · (θei ∗ − θe) = 0, ∀e ∈ E , ∀i ∈ I, (3.8)

ν∗e ·

(∑
i∈Se

αi · θei ∗ − ce

)
= 0, ∀e ∈ E , (3.9)

λei
∗, ν∗e ≥ 0, ∀e ∈ E , ∀i ∈ I. (3.10)

Proof. First, let us derive the Lagrangian of Problem 3.1.4:

L(θ, λ, ν) =
∑
i∈I

∑
e∈Ri

vi(θ
e
i ) +

∑
i∈I

∑
e∈E

λei · (θei − θe)−
∑
e∈E

νe ·

(∑
i∈Se

αi · θei − ce

)
. (3.11)

From (3.11), it is easy to derive the KKT conditions, i.e.,

∂vi(θ
e
i
∗)

∂θei
+ λei

∗ −
∑
e∈Ri

αi · ν∗e = 0, (3.12)

λei
∗ · (θei ∗ − θe) = 0, ∀e ∈ E , ∀i ∈ I, (3.13)

ν∗e ·

(∑
i∈Se

αi · θei
∗ − ce

)
= 0, ∀e ∈ E , (3.14)

λei
∗, ν∗e ≥ 0, ∀e ∈ E , ∀i ∈ I. (3.15)

Since the KKT conditions are necessary and sufficient to guarantee the optimality of

any allocation of travel time that satisfies them, it is enough to find λei
∗ and ν∗e such

that the above conditions are satisfied.
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Theorem 3.1.11 (Feasibility). For any message profile µ, the corresponding travel

time allocation θ is a feasible point of Problem 3.1.4.

Proof. Consider any traveler i and denote by C the constraint set of Problem 3.1.4.

Then, for a reported preferred travel time θ̃i, the travel time θi of Problem 3.1.4 gen-

erated by the outcome function is equal to (i) θ̃i if θ̃i ∈ C; or (ii) θ0i if θ̃i /∈ C, where

θ̃i = (θ̃ei : e ∈ Ri), and θ
0
i is the point on the boundary of C (i.e., we ignore the “un-

reasonable” demand of traveler i and allocate only the portion of the resource that is

available). By construction, it follows immediately that if θ̃i ∈ C, then the allocation

θi is feasible for any traveler i ∈ I. In the case of θ̃i /∈ C, the allocation is on the

boundary of C, hence it is still feasible as the constraint set of Problem 3.1.4 is closed.

Thus, the result follows.

Lemma 3.1.12. Let µ∗ be a NE of the induced game. Then, we have τ ei
∗ = ν∗e , for all

i ∈ I and each e ∈ Ri. In addition, it follows that τ e−i =
∑

j∈Se:j ̸=i
τej

|Se|−1
= τ ei

∗.

Proof. Suppose there is one traveler, say i, that deviates from the NE message profile

µ∗ and instead reports the message mi = (θ̃∗i , τi). This deviation to be justifiable has

to provide a higher utility to traveler i ∈ I. But, we have

vi(θ̃
∗
i )− ti(m

∗
i ,m

∗
−i) ≥ vi(θ̃

∗
i )− ti(mi,m

∗
−i). (3.16)

Next, we substitute (3.4) into (3.16). For ease of notational exposition, let ξ =(
ce −

∑
i∈Se

αi · θ̃ei ∗
)2
. Thus,∑

e∈Ri

(τ ei
∗ − ν∗e )

2 + τ e−i
∗ · (τ ei

∗ − τ e−i
∗) · ξ ≤

∑
e∈Ri

(τ ei − ν∗e )
2 + τ e−i

∗ · (τ ei − τ e−i
∗) · ξ. (3.17)

Since traveler i behaves as a utility-maximizer, we need to minimize the right hand side

of (3.17). Thus, the best price is τ ei = τ e−i
∗, and also the solution of the minimization

problem min(τei )

∑
e∈Ri

(τ ei − ν∗e )
2. Therefore, at µ∗, we have τ ei

∗ = ν∗e , for all e ∈ E and

for all i ∈ I and τ e−i =
∑

j∈Se:j ̸=i
τej

|Se|−1
= τ ei

∗ follows immediately.
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Lemma 3.1.13. Let µ∗ be a NE of the induced game. Then, for every traveler i ∈ I,

we have ϕi(θ̃
∗
i ) = 0.

Proof. We prove this by contradiction. Suppose there exists a NE message µ∗ = (m∗
i =

(θ̃∗i , τ
∗
i ))i∈I such that ϕi(θ̃

∗
i ) ̸= 0 for traveler i ∈ I. By (3.6), we only have two cases to

consider: let θ̃ei
∗ > θe with |Se| = 1 (the proof for the other case is similar). Suppose

traveler i deviates from the NE with message mi = ((θ̃ei = θe : e ∈ Ri), τ
∗
i ). By

Definition 3.1.6, we have

ui(g(mi,m
∗
−i)) ≤ ui(g(m

∗)). (3.18)

Substitute (3.1), (3.4), and (3.6) into (3.18) and then Lemma 3.1.12 gives

[vi(θ̃i)− vi(θ̃i
∗)]−

∑
e∈Se

αi · ν∗e · (θ̃ei − θ̃ei
∗) + ϕi(θ̃

∗
i ) ≤ 0, (3.19)

where by Assumption 3.1.2, the first difference term of (3.19) is negative; likewise the

difference of (θ̃ei − θ̃ei
∗) is positive. Thus, it follows that, since ϕi(θ̃

∗
i ) ≫ 0, traveler i

rightfully deviates from the NE µ∗ = (m∗
i = (θ̃∗i , τ

∗
i ))i∈I such that ϕi(θ̃

∗
i ) ̸= 0 as (3.19)

cannot be true (by construction of (3.6)). Since the case of θ̃ei < θe, where ϕi(θ̃i) = +∞

is straightforward to show, and the proof is complete.

Theorem 3.1.14 (Budget Balance). Let the message profile µ∗ be a NE of the in-

duced game. The proposed mechanism at µ∗ does not require any external or internal

monetary payments, i.e.,
∑

i∈I ti(µ
∗) = 0 for all µ∗.

Proof. Summing (3.4) over all travelers yields
∑

i∈I ti(µ
∗) =

∑
i∈I
[∑

e∈Ri
tei (µ

∗)
]
=∑

e∈H
∑

i∈Se
tei (µ

∗), where H is the set of competitive edges in the network (i.e., any

edge utilized by more than two travelers). Hence,

∑
i∈I

ti(µ
∗) =

∑
e∈H

∑
i∈Se

τ e−i
∗ ·
(
αi · θ̃ei ∗ −

ce
|Se|

)
+ (τ ei

∗ − ν∗e )
2

+ τ e−i
∗ · (τ ei

∗ − τ e−i
∗) ·

(
ce −

∑
i∈Se

αi · θ̃ei ∗
)
. (3.20)
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By Lemma 3.1.12, we have for all e ∈ H,
∑

i∈I ti(µ
∗) =

∑
e∈H ν

∗
e ·
(∑

i∈Se
αi · θ̃ei ∗ − ce

)
,

which is equal to zero by the KKT conditions in Lemma 3.1.10.

Theorem 3.1.15 (Individually Rational). The proposed mechanism is individually

rational. In particular, each traveler prefers the outcome of any NE of the induced

game to the outcome of no participation.

Proof. Let the message profile µ∗ be an arbitrary NE of the induced game. We need

to show that ui(µ
∗) ≥ ui(0) = 0 for each traveler i (see Definition 3.1.7). Consider

the message mi = (θ̃i, τi) with θ̃i = 0 and τi = (τ ei = νe : e ∈ Ri). That is, traveler i

deviates with mi while the other travelers adhere to the NE µ∗. By Definition 3.1.6,

we have the following:

ui(g(µ
∗)) ≥ ui(g(mi,m

∗
−i))

= vi(0)−
∑
e∈Ri

τ e−i
∗ ·
(
0− ce

|Se|

)
=
∑
e∈Ri

ν∗e ·
(
ce
|Se|

)
≥ 0. (3.21)

Thus, from (3.21), the result follows.

In our next result, we show that our mechanism is strongly implementable at

NE. Strong implementation ensures that the efficient allocation of travel time to the

travelers is implemented by all equilibria of the induced game [151].

Theorem 3.1.16 (Strong Implementation). At an arbitrary NE µ∗ of the induced

game, the allocation travel time (θ̃∗i )i∈I is equal to the optimal solution (θ∗i )i∈I of Prob-

lem 3.1.4 for each i ∈ I.

Proof. Suppose µ∗ is a NE of the induced game. Then, by Lemma 3.1.12, it follows

that τ ei
∗ = τ e−i

∗ = ν∗e for each e ∈ Ri. Next, consider some traveler i that participates

in the mechanism and has preferred travel time θi. The utility of traveler i for such an

allocation is given by

ui(g(mi,m
∗
−i)) = vi(θi)− ti(mi,m

∗
−i), (3.22)
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where ti(mi,m
∗
−i) =

∑
e∈Ri

ν∗e

(
αi · θei − ce

|Se|

)
. By Definition 3.1.6, it follows that at NE

no traveler should have an incentive to deviate. Hence, the maximization of traveler

i’s utility (3.22) must be attained at the NE travel time allocation, i.e., θ∗i = θ̃∗i . The

Nash-maximization problem is

θ̃ei
∗ = argmax

θei

[∑
e∈Ri

vi(θ
e
i )−

∑
e∈Ri

ν∗e

(
αi · θei −

ce
|Se|

)]
, (3.23)

subject to the exact same constraints as in Problem 3.1.4. Now, it is easy to derive

the KKT conditions that will give the optimal “Nash solution.” By Lemma 3.1.10, the

KKT conditions are necessary and sufficient to guarantee the optimality of any travel

time allocation (θi)i∈I that satisfies them. Thus, it is sufficient to show that there exist

appropriate Lagrange multipliers λei
∗ and ν∗e such that (3.7) - (3.9) are satisfied. By

setting λei = 0 and νe = τ ei for all e ∈ E , by differentiation of (3.4) with respect to θei

and τ ei , we get

∂vi(θ̃
e
i
∗)

∂θ̃ei
=
∑
e∈Ri

αi · ν∗e , ∀i ∈ I, (3.24)

ν∗e ·

(∑
i∈Se

αi · θ̃ei ∗ − ce

)
= 0, ∀e ∈ E . (3.25)

It is straightforward to see that (3.24) and (3.25) are identical to (3.7) and (3.9), re-

spectively. Condition (3.8) in both problems holds trivially. Consequently, the solution

θ̃∗ = (θ̃∗1, . . . , θ̃
∗
n) of (3.24) and (3.25) along with the specification of the payment func-

tions (3.4) are equivalent to the optimal unique solution of Problem 3.1.4. Thus, at

any NE µ∗, we get an identical allocation g(µ∗) = (θ̃∗1, . . . , θ̃
∗
n, t

∗
1, . . . , t

∗
n) that is equal

to the optimal solution of Problem 3.1.4, and the proof is complete.

Theorem 3.1.17 (Existence). Let θ∗ be the optimal solution of Problem 3.1.4 and ν∗e

be the corresponding Lagrange multipliers of the KKT conditions. If for each i ∈ I,

m∗
i = (θ̃∗i = θ∗i , τ

∗
i ), where τ

∗
i = (τ ei

∗ = ν∗e : ∀e ∈ Ri) and ϕi(θ̃
∗
i ) = 0 for all i ∈ I, then

the message µ∗ = (m∗
i )i∈I is a NE of the induced game.
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Proof. We show that the message profile µ∗ = (m∗
i )i∈I wherem

∗
i = (θ̃i = θ∗i , τ

∗
i ) is a NE.

By Lemma 3.1.10, it follows that θ∗ along with the appropriate Lagrange multipliers

satisfies the KKT conditions of Problem 3.1.4 and is the only feasible allocation. For

any traveler i, the utility at message µ∗ is ui(g(µ
∗)) = vi(θ̃

∗
i )−

∑
e∈Ri

ν∗e ·
(
αi · θ̃ei ∗ − ce

|Se|

)
.

Now, suppose traveler i deviates from µ∗ by changing their message while all the other

travelers adhere to the message µ∗ (though we would still have τ e−i
∗ = ν∗e ). We have

ui(g(mi,m
∗
−i)) ≤ vi(θ̃

′
i)−

∑
e∈Ri

ν∗e ·
(
αi · θ̃ei ′ −

ce
|Se|

)

≤ max
θ̃′i

[
vi(θ

′
i)−

∑
e∈Ri

ν∗e ·
(
αi · θ̃ei ′ −

ce
|Se|

)]
. (3.26)

The maximization problem (3.26) is equivalent to (3.23). As the message µ∗ clearly

satisfies the KKT conditions of (3.23), we have θi = θ̃i = θ̃′i, which in turn implies:

ui(g(mi,m
∗
−i)) ≤ vi(θ̃

∗
i )−

∑
e∈Ri

ν∗e ·
(
αi · θ̃ei −

ce
|Se|

)
, (3.27)

where the right hand side of (3.27) is equal to ui(g(µ
∗)), for all m∗

i and all i ∈ I.

Therefore, message µ∗ is a NE.

3.2 Design and Stability Analysis of a Shared Mobility Market

In recent years, we have witnessed a remarkable surge of usage in shared vehicles

in our cities. Shared mobility offers a future of no congestion in busy city roads

with increasing populations of travelers, passengers, and drivers. Given the behavioral

decision-making of travelers and the shared vehicles’ operators, however, the question is

“how can we ensure a socially-acceptable assignment between travelers and vehicles?”

In other words, how can we design a shared mobility system that assigns each traveler

to the “right” vehicle? In this chapter, we design a shared mobility market consisted

of travelers and vehicles in a transportation network. We formulate a binary linear

program problem and derive the optimal assignment between travelers and vehicles.

In addition, we provide the necessary and sufficient conditions for the stable traveler-

vehicle profit allocation. Our objective is to (1) maximize the social welfare of all
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travelers with the optimal assignment, and (2) ensure the feasibility and stability of

the traveler-vehicle profit allocation while respecting the decision-making of both the

travelers and the vehicles’ operators.

3.2.1 Mathematical Formulation

We consider a mobility system managed by a social planner whose objective is

to assign m ∈ N vehicles to n ∈ N travelers, where n ≥ m. We denote the set of

travelers by I = {0} ∪ {1, 2, . . . , n} and the set of vehicles by J = {1, 2, . . . ,m}. In

I, the index 0 has no practical meaning other than helping us to assign any vehicles

that have not been assigned to travelers. Travelers seek to travel in a transportation

network represented by a directed multi-graph G = (V , E), where each vertex in V

represents a different city area, or neighborhood, and each edge e ∈ E represents a city

road connection. In this network, an arbitrary traveler i ∈ I wants to travel from their

current location oi ∈ V to their self-chosen destination di ∈ V . So, we say that traveler

i ∈ I is associated with an origin-destination pair (oi, di). Similarly, each vehicle is

associated with a route, i.e., a specific sequence of edges. Hence, the social planner

aims to assign any traveler i to a vehicle so that their (oi, di) can be satisfied by the

vehicle’s route.

Definition 3.2.1. The traveler-service assignment is a vector

a = (a11, . . . , aij, . . . , anm) = (aij)i∈I,j∈J , (3.28)

where aij is a binary variable of the form:

aij =

1, if i ∈ I is assigned to j ∈ J ,

0, otherwise.

(3.29)

A traveler i’s satisfaction is represented by a valuation function vi(aij) ∈ [vi, v̄i]

when assigned to vehicle j ∈ J , where vi ∈ R≥0 represents the lower bound of traveler

i’s satisfaction, and v̄i ∈ R≥0 represents the upper bound of traveler i’s satisfaction.
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Intuitively, a traveler’s satisfaction reflects the traveler’s value of the service they expect

to receive from a vehicle j ∈ J .

The satisfaction vi(·) can be defined in terms of several factors (e.g., preferred

and experienced number of co-travelers, in-vehicle travel time, or pickup time) that

measure how satisfied the traveler can be with vehicle j ∈ J . For example, a traveler

can have a preferred travel time and their satisfaction can measure the monetary value

of the difference between preferred and experienced travel time. The disutility caused

by vehicle j ∈ J to traveler i ∈ I is given by ϕi(aij) ∈ R≥0. We call ϕi(·) the

inconvenience cost as it can measure the travel inconvenience caused to traveler i.

Thus, we have

vi(aij) = v̄i − ϕi(aij). (3.30)

where v̄i is the upper bound of traveler i’s satisfaction. Although our analysis will treat

vi(aij) in its most general form (3.30), one can explicitly define vi(aij) as follows,

vi(aij) =


v̄i, if ϕi = 0,

λi · v̄i, if ϕi = (1− λi) · v̄i,

0, if ϕi = v̄i,

(3.31)

where λi ∈ (0, 1) is a discount rate.

Next, the total utility of traveler i ∈ I is given by

ui(aij) = vi(aij)− ti(aij), (3.32)

where ti ∈ R>0 is the monetary payment that traveler i ∈ I, e.g., a fare that traveler

i ∈ I may make for the services of vehicle j ∈ J . Hence, (3.32) establishes a “quasi-

linear” relationship between a traveler’s satisfaction and payment, both measured in

monetary units.

Definition 3.2.2. For each vehicle j ∈ J , the vehicle maximum capacity εj ∈ N

yields how many travelers can receive a ride from vehicle j ∈ J .
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Definition 3.2.3. The social welfare of the shared mobility market is the collective

summation of all travelers’ utilities, i.e., W (a) =
∑

i∈I ui(aij).

As we will see at a later subsection, our objective is to maximize the social

welfare.

Definition 3.2.4. The operating cost of vehicle j ∈ J denoted by cj ∈ R>0 is shared

(not necessarily equally) by each traveler i ∈ I assigned to vehicle j ∈ J and can be

given by

cj =
∑

i∈I\{0}

cij(aij), (3.33)

where cij(aij) is traveler i’s share of the operating cost of vehicle j ∈ J .

So far, we have described how the shared mobility market works to assign trav-

elers to shared vehicles. Next, we explicitly define the “end” of our market in terms of

monetary payments and net profits for both the travelers and the vehicles.

Definition 3.2.5. At the end of travel, each traveler is asked to make a payment ti(aij)

for the service of vehicle j ∈ J (e.g., a share-mobility fare). The monetary net profit

ρij(aij) of vehicle j ∈ J from traveler i ∈ I is given by

ρij(aij) = ti(aij)− cij(aij). (3.34)

On the other hand, the monetary net profit of traveler i ∈ I is

πij(aij) = vi(aij)− ti(aij)− vi. (3.35)

We call (πij(aij), ρij(aij))i∈I,j∈J the traveler-vehicle profit allocation.

Remark 3.2.6. Naturally, (3.34) gives the net profit of a vehicle j ∈ J generated by

one traveler i ∈ I as the difference between the monetary payment ti (e.g., fare) made

by the traveler, and the traveler’s share of the operating cost, cij. In a similar line of

arguments, in (3.35) the net profit of traveler i ∈ I is the difference between what they

are willing to pay, vi, what they actually pay, ti, and the minimum accepted value that

they expect to get from vehicle j ∈ J .
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Next, following a similar notion from [223], we define when the traveler-vehicle

profit allocation (πij(aij), ρij(aij)) for each traveler i ∈ I and each vehicle j ∈ J is

feasible.

Definition 3.2.7. Let Ĵ ⊆ J denote the set of all vehicles that are actually assigned

to travelers. We say (πij(aij), ρij(aij))i∈I,j∈J is feasible if (i) for all vehicles j ∈ Ĵ ,

both the traveler’s and vehicle’s net profit are nonnegative, i.e., πij(aij), ρij(aij) ≥ 0;

(ii) the net profit of any traveler i ∈ I assigned to any vehicle j ∈ J and its net profit

is equal to the total utility of traveler i ∈ I minus the operating cost of vehicle j ∈ J ,

i.e.,

πij(aij) + ρij(aij) = ui(aij)− cij(aij); (3.36)

(iii) for all unassigned vehicles j ∈ J \ Ĵ , ρij(aij) = 0; and (iv) for any traveler i ∈ I

left unassigned, πij(aij) = 0.

Definition 3.2.8. A feasible traveler-vehicle profit allocation (πij(aij), ρij(aij))i∈I,j∈J

is stable if for all i ∈ I,

ui(aij)− cij(aij) ≥ ui(a
′
ij)− cij(a

′
ij), (3.37)

for any assignment a′ij.

In other words, Definition 3.2.8 implies that for any traveler i and any vehicle

j that are not assigned together, if ui(aij) − cij(aij) < ui(a
′
ij) − cij(a

′
ij), then neither

traveler i or vehicle j would be satisfied with that assignment. If we can eliminate those

cases, then the traveler-vehicle profit allocation is socially-acceptable and no traveler,

or vehicle, will seek to deviate.

In our modeling framework of a shared mobility market we impose the following

assumptions.

Assumption 3.2.9. All travelers participate in the market since sharing a vehicle is

the only commute option.
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We impose Assumption 3.2.9 in our modeling framework since the focus is on

identifying the best assignment between travelers and shared vehicles. By including

alternative commute options, we would just add complexity in our analysis without any

compelling reason. However, in future work, we plan to relax this assumption, and allow

travelers to have multiple commute options using different modes of transportation to

reach their destination in the network.

Assumption 3.2.10. The travel satisfaction or costs of any traveler’s utility is repre-

sented in monetary units. Also, we have u0(a0j) = cj for any vehicle j ∈ J .

Although Assumption 3.2.10 allows us to simplify the mathematical modeling,

it is also natural in a realistic market of shared mobility to assume that all valuations

and transactions between travelers and vehicles are done using money. Intuitively,

u0(a0j) = cj for any vehicle j ∈ J ensures that for any assignment the vehicle’s

operating cost is covered.

Assumption 3.2.11. The total operating cost of all vehicles
∑

j∈J cj remains fixed.

Assumption 3.2.11 implies that the operating cost of all vehicles cannot be

altered in the long run while accommodating the travelers’ desired origin-destination

requests. In other words, the traveler-service assignments cannot really alter the total

operating cost of all vehicles.

Problem 3.2.12. The optimization problem formulation of the shared mobility market

is

max
aij

W (a) = max
aij

∑
i∈I

ui(aij), (3.38)

subject to:∑
j∈J

aij ≤ 1, ∀i ∈ I, (3.39)

∑
i∈I

aij ≤ εj, ∀j ∈ J , (3.40)
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where (3.39) ensures that each traveler i ∈ I is assigned to only one vehicle j ∈ J ,

and (3.40) ensures that the vehicle maximum capacity is not exceeded while the vehicle

shared by travelers.

Remark 3.2.13. We note that the solution of Problem 2.2.13 will always assign a

vehicle that can satisfy the origins and destinations of all the travelers that are assigned

to it.

3.2.2 Main Results

Theorem 3.2.14. Let a∗ denote an optimal assignment of Problem 2.2.13. Then,

the objective function (2.53) evaluated at a∗ is mathematically equivalent to the classic

maximization of the social welfare at a∗ with utility function defined as

ui(aij) = vi(aij)− ti(aij)− cij(aij), (3.41)

where vi(aij) is the satisfaction of traveler i ∈ I, ti(aij) is the monetary payment made

by traveler i ∈ I for using vehicle j ∈ J , and cij(aij) is the operating cost of vehicle

j ∈ J assigned to traveler i ∈ I.

Proof. By Assumption 3.2.10, we can write the objective function (2.53) of Problem

2.2.13 as follows

max
aij

∑
i∈I

ui(aij) = max
aij

∑
i∈I\{0}

ui(aij) +
∑
j∈J

c0j(a0j), (3.42)

where the term
∑

j∈J c0j(a0j) represents the total operating cost of all the vehicles that

are unassigned to travelers, and can be written as∑
j∈J

c0j(a0j) =
∑
j∈J

cj −
∑
j∈Ĵ

cj. (3.43)

Substituting (3.43) into (3.42) yields

max
aij

∑
i∈I

ui(aij) = max
aij

∑
i∈I\{0}

ui(aij) +
∑
j∈J

cj −
∑
j∈Ĵ

cj. (3.44)
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Since
∑

j∈J cj is constant by Assumption 3.2.11, it can be neglected from the maxi-

mization problem. Hence, by optimality, we have
∑

j∈Ĵ cj =
∑

j∈J
∑

i∈I\{0} cij(aij),

and since the series is finite, (3.44) becomes

max
aij

∑
i∈I\{0}

ui(aij)−
∑

i∈I\{0}

∑
j∈J

cij(aij) =

max
aij

∑
i∈I\{0}

(vi(aij)− ti(aij)− cij(aij)) , (3.45)

where in the last equation we have used the fact that∑
i∈I\{0}

ui(aij) =
∑

i∈I\{0}

∑
j∈J

ui(aij), (3.46)

and the result immediately follows.

Proposition 3.2.15. Let the traveler-vehicle profit allocation (πij(aij), ρij(aij))i∈I,j∈J

under the traveler-vehicle assignment a of Problem 2.2.13 form a space, denoted by S.

Then, S is convex.

Proof. It is straightforward to see that the space of stable solutions S is defined by a

set of linear constraints. Therefore, the space of stable solutions S is convex.

Theorem 3.2.16 (Stability). If (πij(aij), ρij(aij))i∈I,j∈J is stable, then a is an optimal

assignment of Problem 2.2.13.

Proof. Let a and a′ denote two different traveler-vehicle assignments of Problem 2.2.13.

It is sufficient to consider the case where (πij(aij), ρij(aij))i∈I,j∈J is stable under a and

only feasible under a′. Then, we want to show that a′ is not optimal. So, by Definition

3.2.8, we have

πij(aij) + ρij(aij) = ui(aij)− cij(aij)

≥ ui(a
′
ij)− cij(a

′
ij). (3.47)

We take the summation over i ∈ I \ {0} and j ∈ Ĵ of (3.47) as follows∑
i∈I\{0}

∑
j∈Ĵ

(πij(aij) + ρij(aij)) ≥
∑

i∈I\{0}

∑
j∈Ĵ

(
ui(a

′
ij)− cij(a

′
ij)
)
. (3.48)
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So, the RHS of (3.48) becomes∑
i∈I\{0}

∑
j∈Ĵ

(
ui(a

′
ij)− cij(a

′
ij)
)
=

∑
i∈I\{0}

∑
j∈J

(
ui(a

′
ij)− (1− a′0j) · cij(a′ij)

)
. (3.49)

By using conditions (ii) and (iii) from Definition 3.2.7, the LHS of (3.48) becomes∑
i∈I\{0}

∑
j∈Ĵ

(πij(aij) + ρij(aij)) =
∑

i∈I\{0}

∑
j∈J

(ui(aij)− (1− a0j) · cij(aij)) . (3.50)

Thus, substituting (3.49) and (3.50) into (3.48) yields∑
i∈I\{0}

∑
j∈J

(ui(aij)− (1− a0j) · cij(aij)) ≥
∑

i∈I\{0}

∑
j∈J

(
ui(a

′
ij)− (1− a′0j) · cij(a′ij)

)
,

(3.51)

which simplifies to, for any assignment a′ij,∑
i∈I

ui(aij) ≥
∑
i∈I

ui(a
′
ij), (3.52)

since the summation over the j ∈ J is redundant. Hence, the social welfare under

assignment a is greater or equal than the social welfare under a′. Therefore, we conclude

that if (πij(aij), ρij(aij))i∈I,j∈J is stable, then the assignment a is necessarily optimal.

Theorem 3.2.17. If there are two optimal assignments of Problem 2.2.13, denoted

by a and ã, respectively, then the resulted traveler-vehicle profit allocation, denoted by

(πij(aij), ρij(aij))i∈I,j∈J , is feasible and stable under both assignments.

Proof. Let a and ã denote two optimal assignment. What we have to show is that if

(πij(aij), ρij(aij))i∈I,j∈J is stable under assignment a and feasible under ã, then it is

also stable under ã. We follow the same arguments up until (3.48) to get∑
i∈I\{0}

∑
j∈Ĵ

(πij(aij) + ρij(aij)) ≥
∑

i∈I\{0}

∑
j∈Ĵ

(
ui(a

′
ij)− cij(a

′
ij)
)
. (3.53)

Hence, we observe that if ã is an optimal assignment, then by Definition 3.2.8, (3.53)

will hold at equality. Thus, the feasibility equation (3.36) is satisfied. Therefore, under

the optimal assignment ã, we conclude that (πij(aij), ρij(aij))i∈I,j∈J is stable.
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Proposition 3.2.18. If there are two arbitrary travelers with the same needs that are

assigned to different vehicles, then there is no difference in their utility.

Proof. Suppose there are two travelers i, i′ ∈ I with the same needs and two vehicles

j, j′ ∈ J . We want to show that in our market both travelers will receive the same

utility even under different assignments. So, we assume that there are two assignments

a and a′, where in a traveler i ∈ I is assigned to vehicle j ∈ J while in a′ traveler

i ∈ I is assigned to vehicle j′. Similarly, for traveler i′. For an optimal a, the stability

conditions of (πij(aij), ρij(aij))i∈I,j∈J are

πij(aij) +
∑

ℓ∈I\{i}

(πℓj(aℓj) + ρij(aij)) = ui(aij) +
∑

ℓ∈I\{i}

(ui(aℓj)− cℓj(aℓj)) , (3.54)

we have then

πij(aij) +
∑

ℓ∈I\{i′}

(πℓj(aℓj) + ρij′(aij′)) ≥ ui(aij′) +
∑

ℓ∈I\{i′}

(ui(aℓj′)− cℓj′(aℓj′)) . (3.55)

Similarly, for traveler i′, we have the following:

πi′j(ai′j)+
∑

ℓ∈I\{i′}

(πℓj(aℓj) + ρij′(aij′)) ≥ ui(ai′j′)+
∑

ℓ∈I\{i′}

(ui(aℓj′)− cℓj′(aℓj′)) , (3.56)

then, we have

πi′j(ai′j) +
∑

ℓ∈I\{i}

(πℓj(aℓj) + ρij(aij)) = ui(ai′j) +
∑

ℓ∈I\{i}

(ui(aℓj)− cℓj(aℓj)) . (3.57)

In a similar way, we can argue that since a′ is optimal, the stability conditions of

(πij(aij), ρij(aij))i∈I,j∈J are

πij(aij) +
∑

ℓ∈I\{i}

(πℓj(aℓj) + ρij′(aij′)) = ui(aij′) +
∑

ℓ∈I\{i}

(ui(aℓj′)− cℓj′(aℓj′)) , (3.58)

which yields

πij(aij) +
∑

ℓ∈I\{i′}

(πℓj(aℓj) + ρij(aij)) ≥ ui(aij) +
∑

ℓ∈I\{i′}

(ui(aℓj)− cℓj(aℓj)) . (3.59)
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Similarly, for traveler i′, we have the following:

πi′j(ai′j) +
∑

ℓ∈I\{i′}

(πℓj(aℓj) + ρij(aij)) = ui(ai′j) +
∑

ℓ∈I\{i′}

(ui(aℓj)− cℓj(aℓj)) , (3.60)

which gives us

πi′j(ai′j) +
∑

ℓ∈I\{i}

(πℓj(aℓj) + ρij′(aij′)) ≥ ui(ai′j′) +
∑

ℓ∈I\{i}

(ui(aℓj′)− cℓj′(aℓj′)) . (3.61)

Recall that both travelers i, i′ ∈ I have the same needs. Thus, ui(aij) = ui′(ai′j)

and ui(aij′) = ui′(ai′j′). Therefore, from (3.54) - (3.61), it follows that πij(aij) =

πi′j(ai′j).

3.3 An Analytical Study of a Two-Sided Mobility Game

In this chapter, we consider a mobility system of travelers and providers, and

propose a “mobility game” to study when a traveler is matched to a provider. Each

traveler seeks to travel using the services of only one provider, who manages one spe-

cific mode of transportation (e.g., car, bus, train, bike). The services of each provider

are capacitated and can serve up to a fixed number of travelers at any instant of time.

Thus, our problem falls under the category of many-to-one assignment problems, where

the goal is to find the conditions that guarantee the stability of assignments. We for-

mulate a linear program of maximizing the social welfare of travelers and providers

and show how it is equivalent to the original problem and relate its solutions to sta-

ble assignments. We also investigate our results under informational asymmetry and

provide a “mechanism” that elicits the information of travelers and providers. Finally,

we investigate and validate the advantages of our method by providing a numerical

simulation example.

3.3.1 Modeling Framework

We consider a mobility system of two finite, disjoint, and non-empty groups of

agents of which one represents the travelers and the other the providers. We denote
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the set of travelers by I, |I| = I ∈ N and the set of providers by J , |J | = J ∈ N. In a

typical mobility system, we expect to have more travelers than available providers, so

I ≫ J . Each provider represents a company (e.g., Uber, Lyft, Amtrak, DART, Lime)

that manages a fleet of vehicles (cars, trains, busses, bicycles). We focus our study in

static settings, in this chapter, thus, each provider can serve up to a fixed number of

travelers within a fixed time period. For example, in a generic city neighborhood, on

any given weekday morning, there are at most a certain number of ride-sharing vehicles

available (Uber/Lyft). Formally, for each provider j ∈ J , we impose a physical traveler

capacity, denoted by εj ∈ N. Naturally, each provider can serve a different number

of travelers, so we expect εj to vary significantly. For example, a train company

can provide travel services per hour to hundreds of travelers compared to a bikeshare

company in a city. Next, travelers seek to travel using the services of at most one

provider. We do not focus our modeling in routing or path-allocation (such problems

have been studied extensively [124, 34]), rather we are interested in an optimal collective

assignment of travelers to providers. Both travelers and providers have preferences and

can be characterized by their type; thus, this is a two-sided mobility game.

Remark 3.3.1. Without loss of generality, we expect the aggregate travel demands

of all the travelers to be exactly met by the aggregate capacities of all the providers’

mobility services. Thus, we have
∑

j∈J εj = |I| = I.

Remark 3.3.2. Intuitively, via a smartphone app, travelers book in advance for their

travel needs and report their preferences and request a travel recommendation (which

provider to use). The app collects all requests from specific neighborhoods at a fixed

time, and then assigns each traveler to a provider by taking into account both the

traveler’s as well as the provider’s preferences.

Definition 3.3.3. The traveler-provider assignment is a vectorX = (x11, . . . , xij, . . . , xIJ) =

(xij)i∈I,j∈J , where xij is a binary variable of the form:

xij =

1, if i ∈ I is assigned to j ∈ J ,

0, otherwise.

(3.62)
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We call xij the mobility outcome of each traveler i and each provider j and denote by

X the set of such outcomes.

Definition 3.3.4. For any traveler i ∈ I, θi = maxj∈J {θij} ∈ Θi, where θij ∈ [0, 1],

is traveler i’s personal predisposition of provider j ∈ J .

We denote by θ−i for the personal predisposition profile of all travelers except

traveler i. Intuitively, a traveler might have a great affinity towards a taxicab service

and a lower affinity towards a bus service. So, we expect different travelers to have

different preferences on the mode of transportation to use.

Next, we represent the preferences of each traveler with a utility function con-

sisted of two parts: the traveler’s valuation of the mobility outcome and the associated

payment required for the realization of the outcome. In other words, any traveler is

expected to pay a toll or ticket fee for the services of a provider.

Definition 3.3.5. Each traveler i’s preferences are summarized by a utility function

ui : X × Θi → R that determines the monetary value of the overall payoff realized by

traveler i from their assignment to provider j. Let tij ∈ [t, t̄] ⊂ R denote traveler i’s

mobility payment. Thus, traveler i receives a total utility in the form

ui(xij, θi) = vi(xij, θi)− tij, (3.63)

where vi : X × Θi → R≥0 is a linear valuation function that represents the maximum

amount of money that traveler i is willing to pay for the mobility outcome xij.

Remark 3.3.6. If for any traveler i ∈ I, we have xij = 0 for all j ∈ J , then ui = 0.

Naturally, this means that for any traveler i with xij = 0 for all j ∈ J we have tij = 0.

On similar lines, we define the providers’ utility function.

Definition 3.3.7. A provider j’s utility is given by

uj(xij, δj) = tij − cj(xij, δj), (3.64)
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where δj ∈ (0, 1] represents the type of provider j, and cj is a linear cost function

related to the operation of the mobility services provided by j ∈ J . We denote by δ−j

for the type profile of all providers except provider j.

Remark 3.3.8. Intuitively, δj can be interpreted as the “operational value” of provider

j for the mobility services it provides and operates. In other words, the monetary value

of the entire process of its service to serve a traveler on a given location and time.

In both (3.63) and (3.64), the “payment component” tij is not expected to

dominate either the traveler’s or the provider’s utility function. This is because tij have

an alternate sign in (3.63) and (3.64), so a high value (or low) can lead to negative utility

for the travelers (or the providers) leading to a unfavorable match between traveler i and

provider j. We will see later in the chapter how we can ensure unfavorable matchings

do not happen.

Definition 3.3.9. Under the assignment xij of traveler i and provider j, their mobility

(i, j)-matching payoff is given by

aij(xij) = ui(xij, θi) + uj(xij, δj), (3.65)

where aij measures the combined payoff or benefit measured in monetary units of trav-

eler i being assigned to provider j.

Remark 3.3.10. By Remark 3.3.6, if xij = 0, then aij = 0.

Definition 3.3.11. The utility assignment matrix A is constructed with |I| rows and

|J | columns and each entry represents the (i, j)-matching utility aij between traveler i

and provider j for all i ∈ I and all j ∈ J .

Based on Definition 3.3.11, we can construct matrix A as follows:

A =


a11 a12 a13 . . . a1J

a21 a22 a23 . . . a2J
...

...
...

. . .
...

aI1 aI2 aI3 . . . aIJ

 . (3.66)
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The mobility game of travelers and providers is a collection of four objects,

namely set of agents, vector of assignments, matrix of utilities, and a vector of capaci-

ties. Formally, we state the next definition.

Definition 3.3.12. The mobility game can be fully characterized by the tuple M =

⟨I ∪ J ,X = (xij)i∈I,j∈J ,A, (εj)j∈J ⟩.

Definition 3.3.13. A feasible assignment is a vector X = (xij)i∈I,j∈J , xij ∈ {0, 1}

that satisfies constraints ∑
j∈J

xij ≤ 1, ∀i ∈ I, (3.67)

∑
i∈I

xij ≤ εj, ∀j ∈ J , (3.68)

where (3.67) ensures that each traveler i ∈ I is assigned to only one mobility service

j ∈ J , and (3.68) ensures that the traveler capacity of each provider j is not exceeded

while its services are shared by multiple travelers. An optimal assignment is a feasible

assignment (xij)i∈I,j∈J such that∑
i∈I

∑
j∈J

aij(xij) ≥
∑
i∈I

∑
j∈J

aij(x
′
ij), (3.69)

for all feasible assignments x′ij.

Definition 3.3.14. A feasible assignment X = (xij)i∈I,j∈J , xij ∈ {0, 1} is stable if

there exist non-negative vectors ϕ = (ϕi)i∈I and ψ = (ψj)j∈J such that∑
i∈I

ϕi +
∑
j∈J

εj · ψj =
∑
i∈I

∑
j∈J

aij(xij) (3.70)

with ϕi + ψj ≥ aij for all i ∈ I and all j ∈ J .

We will see later in Section 4.1.1 the mathematical and physical interpretation

of ϕ and ψ.

Definition 3.3.15. Let (t∗ij)i∈I,j∈J denote the mobility payments associated with the

stable assignment, denoted by (x∗ij)i∈I,j∈J . Then the equilibrium (x∗ij, t
∗
ij)i∈I,j∈J is called

an ideal-mobility equilibrium.
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From Definition 3.3.14, it is easy to see that Definition 3.3.15 implies that an

ideal-mobility equilibrium in mobility game M ensures that (i) providers are assigned

to travelers up to their capacity (thus, maximizing revenue), and (ii) travelers receive

the best-possible utility being assigned to a provider (thus, maximizing welfare).

Assumption 3.3.16. Every aspect of the mobility game M is considered known in-

formation to every traveler and provider.

Assumption 3.3.16 seems strong but it will prove instrumental in Section 4.1.1.

Our analysis will focus on how to show existence, optimality, and stability of traveler-

provider assignments and then in Subsection 3.3.2.2, we will relax Assumption 3.3.16

and show how we can elicit the private information of both travelers and providers.

3.3.1.1 The Optimization Problem

In the mobility game M, we are interested to know what are its stable as-

signments (alternatively called stable equilibria), whether they exist and under what

conditions.

Problem 3.3.17. The maximization problem of M is

max
xij

∑
i∈I

∑
j∈J

aij(xij), (3.71)

subject to: (3.67), (3.68),

where xij ∈ {0, 1} for all i ∈ I and all j ∈ J .

We can relax the binary variable constraint to a non-negativity constraint vari-

able in Problem 3.3.17. We will show in the next section that this does not affect

the optimal solutions of Problem 3.3.17 as we can ensure all optimal solutions of the

equivalent linear program are binary valued.
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Problem 3.3.18 (Linear Program). The linear program formulation of mobility game

M is

max
xij

∑
i∈I

∑
j∈J

aij(xij) (3.72)

subject to: (3.67), (3.68), and

xij ≥ 0, ∀i ∈ I, ∀j ∈ J , (3.73)

where (3.73) transforms the (binary) assignment problem to a (continuous) linear pro-

gram of which xij can be interpreted as the probability that traveler i is matched to

provider j.

3.3.2 Analysis and Properties of the Mobility Game

3.3.2.1 Existence, Optimality, and Stability of Assignments

In this subsection, we show that for Problems 3.3.17 and 3.3.18 at least one

optimal solution exists (thus, ensuring stability).

Theorem 3.3.19. The stable assignments of mobility game M are the same with

the optimal solutions of Problem 3.3.17. Furthermore, the set of optimal solutions of

Problem 3.3.17 is non-empty.

Proof. By relaxing the binary constraint of Problem 3.3.17, we get a linear program

(Problem 3.3.18). Its set of all real-valued solutions is a polytope whose vertices have all

integer-valued coordinates. Since the solutions are also guaranteed to be non-negative,

the set of solutions is non-empty [209]. Thus, Problem 3.3.18 has at least one solution

with integer components (in our case 0-1 components). Hence, the set of all optimal

solution of Problem 3.3.17 is non-empty [209]. By Definition 3.3.13, assignments are

stable as long as no agent in I ∪ J has an incentive (e.g., higher utility) to break

their matching pair. So, finding a stable assignment is equivalent to finding the best

in terms of aggregate utility among all possible feasible assignments. Mathematically,
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(3.69) naturally leads to a maximization problem. Therefore, the existence of a stable

assignment of mobility game M is guaranteed.

Next, we derive the dual of Problem 3.3.18.

Problem 3.3.20. The dual of Problem 3.3.18 is given below:

min
ϕ,ψ

∑
i∈I

ϕi +
∑
j∈J

εj · ψj, (3.74)

subject to:

ϕi + ψj ≥ aij, ∀i ∈ I, ∀j ∈ J , (3.75)

ϕi ≥ 0, ∀i ∈ I, (3.76)

ψi ≥ 0, ∀j ∈ J , (3.77)

where ϕ is a |I|-dimensional vector and ψ is a |J |-dimensional vector.

Our objective is to establish a method for the mobility game M’s stable assign-

ments by solving Problem 3.3.18. In turn, we want to solve Problem 3.3.20 to find the

stable assignments. This is possible only if we can guarantee strong duality (satisfying

the conditions of complementary slackness). Formally, a feasible assignment xij and a

feasible solution (ϕ, ψ) are optimal if and only if∑
i∈I

∑
j∈J

aij(xij) =
∑
i∈I

ϕi +
∑
j∈J

εj · ψj. (3.78)

The conditions that guarantee optimality are given by the theorem of complementary

slackness, i.e.,

ϕi + ψj − aij = 0, ∀i ∈ I, ∀j ∈ J , (3.79)∑
j∈J

(xij − 1) · ϕi = 0, ∀i ∈ I, (3.80)

∑
i∈I

(xij − εj) · ψj = 0, ∀j ∈ J . (3.81)

Lemma 3.3.21. The set of solutions of Problem 3.3.20 is non-empty and convex.
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Proof. We have already established that Problem 3.3.18 has at least one solution.

Thus, it follows easily that Problem 3.3.20 has at least one solution too. Any solution

of Problem 3.3.20 has a specific structure due to the geometry of the constraint set

(3.75) - (3.77). Since at least one solution will be in 0-1 components, the constraints

will force this solution to be in at a corner of a polyhedra. Thus, the set of solutions

of Problem 3.3.20 is non-empty and has to be convex.

Remark 3.3.22. Intuitively, a dual solution (ϕ, ψ) can be seen as a method to share

the “gains of mobility” among travelers and providers at an ideal-mobility equilibrium

(see Definition 3.3.15). For example, component of vector ϕ describes the realized gain

of traveler i when assigned to provider j (thus enjoying the mobility services of provider

j). A component of vector ψ describes the per unit gain of provider j.

Corollary 3.3.23. The set of solutions of Problem 3.3.20 is a compact subset of R|I|×

R|J |.

Proof. By Lemma 3.3.21 and Remark 3.3.22, it is straightforward to show that the set

of solutions of Problem 3.3.20 is compact.

Corollary 3.3.24. There always exists at least one profile of mobility payments (tij)i∈I,j∈J

under assignment (xij)i∈I,j∈J .

Proof. By definition of the mobility game M for any (feasible) assignment (xij)i∈I,j∈J ,

there must be an associated profile of mobility payments (tij)i∈I,j∈J .

Next, we show that the existence of an optimal profile of mobility payments

(tij)i∈I,j∈J can be guaranteed by the formulation of the dual program of Problem

3.3.18 and the computation of its solutions.

Theorem 3.3.25. There exists an optimal profile of mobility payments (t∗ij)i∈I,j∈J

under stable assignment (x∗ij)i∈I,j∈J . Furthermore, we must have ϕi = ui and ψj = uj

for all i ∈ I and all j ∈ J .
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Proof. Suppose x∗ = (x∗ij)i∈I,j∈J is a stable assignment for mobility game M. Un-

der x∗, we can calculate
∑

i∈I
∑

j∈J aij(xij), which by the theorem of strong duality

and the definition of stability, (3.78) holds true. This is because (3.79) - (3.81) are

equivalent to the conditions that ensure stability. Thus, there exist vectors (ϕ∗, ψ∗)

from Problem 3.3.20 that feasible and optimal. By Definition 3.3.15, it follows that the

mobility payments associated with the optimal assignments of travelers and providers

are essentially the same with the optimal solutions of Problems 3.3.18 and 3.3.20.

Therefore, by the established existence of solutions to Problems 3.3.18 and 3.3.20 as

long as there exists a stable assignment (x∗ij)i∈I,j∈J an optimal profile of mobility pay-

ment (t∗ij)i∈I,j∈J must exist. By Remark 3.3.22 and Definition 3.3.14 at an optimal

assignment we have ϕi = ui and ψj = uj for all i ∈ I and all j ∈ J .

3.3.2.2 Asymmetric Information in the Mobility Game

So far, we have implicitly assumed that both the travelers and providers have

complete information of the entire information structure of the mobility game M. In

other words, each traveler knows every other travelers’ and providers’ information,

i.e., travelers know each others’ utilities and valuations, providers know each other

providers’ types and cost functions. In a realistic setting, this implicit assumption

is unreasonably restrictive. Thus, for the rest of the chapter, we focus on a “mech-

anism” that induces the mobility game M by eliciting the private information of all

the travelers and providers. First, we relax Assumption 3.3.16 and consider that the

types of travelers, i.e., θ = (θi) and of providers, i.e., δ = (δj) are private information,

i.e., known only to themselves. Next, we denote by X−i the assignment of travelers

in I \ {i} to providers in J . Similarly, we denote by X−j the assignment of travelers

in I to providers in J \ {j}. Furthermore, we assume that travelers are charged by

the mechanism, say ti ∈ R, and providers are compensated by the mechanism, say

tj ∈ R. The proposed mechanism ensures to collect all funds from the travelers and

compensate accordingly the providers.
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Algorithm 2: Pricing Mechanism

Data: I,J , (θi)i∈I , (δj)j∈J
Result: x∗ and (tij)i∈I,j∈J
Define the valuation functions of every traveler and provider and use them
to construct matrix A. Solve for the optimal solution x∗ of Problem
3.3.17;
for i ∈ I do

Solve for the optimal solution X∗
−i of Problem 3.3.17;

Set the mobility payment for each traveler i:

ti =
∑

ℓ∈I\{i}

∑
j∈J

uℓ(xij, θ−i)−
∑

ℓ∈I\{i}

∑
j∈J

uℓ(xij, θℓ)

end
for j ∈ J do

Solve for the optimal solution x∗
−j of Problem 3.3.17;

Set the mobility payment for each provider j:

tj =
∑
i∈I

∑
κ∈J\{j}

uκ(xij, δ−j)−
∑
i∈I

∑
κ∈J\{j}

uκ(xij, δκ)

end

Theorem 3.3.26 (Voluntary Participation). No traveler i ∈ I and no provider j ∈ J

can gain for better individual utility by matching externally compared to the utility

gained by participating in the induced mobility game M.

Proof. It is sufficient to show that no agent in I ∪ J can gain negative utility by

participating in the induced game M, i.e., we must have ui, uj ≥ 0 for all i, j ∈ I ∪J .

First, note that the maximization of
∑

i∈I
∑

j∈J aij(xij) is the highest possible value we

can achieve. Removing even one agent, does not increase this value under any scenario.

Thus, by definition, both payments ti and tj are non-negative. At equilibrium, the

utilities of any traveler and provider are equivalent to the solutions (ϕ, ψ) of Problem

3.3.20 (as we showed in Theorem 3.3.25). Since (ϕ, ψ) ensures non-negativity it follows

that ui, uj ≥ 0 for all i, j ∈ I ∪ J .

Theorem 3.3.27 (Truthfulness). Misreporting does not benefit any traveler or provider.
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Proof. Let us assume that all agents in I ∪J voluntary participate in the mechanism.

We consider two cases when traveler i misreports their true type, i.e., θ̂i ≥ θi and

θ̂i ≤ θi, where θ̂i is traveler i’s report. If traveler i reports θ̂i that is lower than their

true type, then traveler i cannot improve their utility as ti is necessarily non-negative

and a lower misreporting θ̂i ≤ θi can only lead to lower utilities. Suppose now that

traveler i reports θ̂i that is higher than their true type. The exact value of θ̂i can be

chosen by the following maximization problem

max
θ̂i

ui(xij, θ̂i) = max
θ̂i

vi(xij, θ̂i)− ti, (3.82)

where ti is given by Algorithm 2. Note though that the maximization of vi(xij, θ̂i) −∑
ℓ∈I\{i}

∑
j∈J uℓ(xij, θ̂−i)−

∑
ℓ∈I\{i}

∑
j∈J uℓ(xij, θ̂ℓ) is equivalent to the maximization

of
∑

i∈I
∑

j∈J vi(xij, θ̂i) with respect to the assignment xij. After all that is the goal

of traveler i, namely by misreporting their type to lead the mechanism to a better

assignment. Let x̂∗ij and x
∗
ij denote the optimal assignment with θ̂i and θi, respectively.

Hence, we have

argmax
x̂∗ij

∑
i∈I

∑
j∈J

vi(x̂
∗
ij, θ̂i) ≤ argmax

x∗ij

∑
i∈I

∑
j∈J

vi(x
∗
ij, θi) (3.83)

for each traveler i. It follows immediately from (3.83) that traveler i can maximize their

utility by minimizing the mobility payments as defined in Algorithm 2. This is only

possible when θ̂i = θi. Thus, traveler i cannot improve their utility by misreporting.

Therefore, we conclude that, with the proposed pricing mechanism (Algorithm 2),

under no circumstance can traveler i improve their utility by misreporting about their

type θi. In other words, any traveler i has a strategy to always truthfully report

their type to the mechanism. We can follow the same arguments to show this for the

providers. Therefore, the proof is completed.

Proposition 3.3.28. If traveler i is matched to provider j while having misreported

their type to the mechanism, then traveler i does not gain a better utility compared to

the utility gained under the true type.

106



Proof. We show this only for the travelers as the arguments are similar for the providers.

By construction of the mobility payments in Algorithm 2 non-negativity of the pay-

ments for each traveler is guaranteed, i.e., ti ≥ 0. By definition, the valuation of each

traveler is non-negative under any assignment. Thus, the utility defined in (3.63) is

also non-negative. At equilibrium, we have

max
xij

∑
i∈I

vi(xij, θi) ≤
∑
i∈I

vi(x
∗
ij). (3.84)

Thus, it follows that

ui(xij, θi) = vi(xij, θi)− ti

=
∑
i∈I

vi(x
∗
ij)−

∑
ℓ∈I\{i}

vℓ(xij, θℓ) ≥ 0. (3.85)

Therefore, no traveler can hope for better utility by misreporting.

Proposition 3.3.29 (Social Efficiency). The proposed mechanism satisfies social effi-

ciency as it ensures the maximization of the aggregate social welfare of both travelers

and providers.

Proof. By construction of the mobility payments in Algorithm 2, it follows immediately

that the optimal solution maximizes the social welfare.

3.3.3 Simulation Results

In this section, we present a numerical example, its solution and discuss its physi-

cal interpretation. Consider a mobility system of four providers J = {bike, car, bus, train}

and twenty travelers I = {1, 2, . . . , 20}. Each provider has traveler capacities, namely

we have εbike = 1, εcar = 4, εbus = 5, and εtrain = 10. Moreover, we partition the set

of travelers I into four types, i.e., students, commuters, tourists, consumers with sizes

|Istudents| = 3, |Icommuters| = 5, |Itourists| = 4, |Iconsumers| = 8. Each type of travelers can
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represent the personal predisposition θ = (θi)i∈I . Next, with a slight abuse of notation,

we generate a random utility assignment matrix

A =


1 2 0.5

2.5 2 1.5

2.5 4 1.5

2.5 5 6.5

 , (3.86)

where each row represents a type of travelers and each column represents a provider.

The entry aij of A represents the overall utility of assignment xij.

We solve Problem 3.3.18 and compute with an optimal solution that maximizes

the aggregate utilities of each traveler and each provider according to the travelers’

preferences and maximizing the capacities of each provider. The computational com-

plexity of the proposed method is relatively low as long as the number of travelers and

providers remain small. This is reasonable to expect as at any given moment there can

only less than five different travel options (so, the number of providers is always small).

By ensuring we partition the travelers’ requests according to origin, destination, and

type, we can make certain that the number of travelers does not make the optimization

problems untrackable.

We can see from Fig. 3.1 that an efficient allocation of the providers’ resources

and services to different types of travelers can be attained using a game-theoretic

framework. The assignment shown in Fig. 3.1 is stable, maximizes the social welfare,

and maximizes the capacity of the providers (thus, maximizing their utilities too).

3.4 Mobility Equity and Economic Sustainability Using Game Theory

In this chapter, we consider a multi-modal mobility system of travelers each with

an individual travel budget, and propose a game-theoretic framework to assign each

traveler to a “mobility service” (each one representing a different mode of transporta-

tion). We are interested in equity and sustainability, thus we maximize the worst-case

revenue of the mobility system while ensuring “mobility equity,” which we define it
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Figure 3.1: Optimal assignment of travelers to providers with 20 travelers and 4
providers.

in terms of accessibility. In the proposed framework, we ensure that all travelers are

truthful and voluntarily participate under informational asymmetry, and the solution

respects the individual budget of each traveler. Each traveler may seek to travel using

multiple services (e.g., car, bus, train, bike). The services are capacitated and can

serve up to a fixed number of travelers at any instant of time. Thus, our problem

falls under the category of many-to-one assignment problems, where the goal is to find

the conditions that guarantee the stability of assignments. We formulate a linear pro-

gram of maximizing worst-case revenue under the constraints of mobility equity, and

we fully characterize the optimal solution. Finally, we conclude our work by providing

a numerical example to illustrate the proposed framework.
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3.4.1 Modeling Framework

In this section, we present the mathematical formulation of our game-theoretic

framework.

We consider a mobility system where I ∈ N≥2 travelers, indexed by i ∈ I,

|I| = I, are interested in a non-empty set of J ∈ N mobility services, indexed by

j ∈ J , made available by a central authority in a city. For our purposes, we call this

authority “social planner.” In addition, expect I < J . Any j ∈ J represents the

service that can be offered to a traveler i. So, for example, a taxicab service, say some

j ∈ J , can satisfy the travel needs of up to five travelers; thus, any service j can be

divided to multiple travelers based on the service j’s physical capacity. Each traveler

i ∈ I has a private valuation vij associated with each of the services j ∈ J , which is

not known to the social planner.

Travelers are constrained by a travel budget, bi ∈ R≥0, for any traveler i ∈

I. Thus, we can only charge travelers payments that do not exceed their individual

budgets. We write B = {b1, b2, . . . , bI}. For the purposes of this work, we assume

that the budgets of each traveler are known to the social planner. Our reasoning

here is twofold: A probabilistic distribution for unknown private budgets leads to an

impossibility result for socially-efficient mechanisms [66, 67]. In addition, based on

transportation literature, it is reasonable to expect travelers to submit their travel

budget on a mobility app [87, 236].

For each service j ∈ J , we model the social planner’s beliefs on the realization

of the private valuations for service j as real values from some subset of real values.

Definition 3.4.1. For each traveler i ∈ I, the traveler i’s valuation profile of all

mobility services is vi = (vi1, vi2, . . . , viJ), vij ∈ R. We write

v−ij = (v1j, . . . , v(i−1)j, v(i+1)j, . . . , vIj) (3.87)

for the valuation profile of all travelers except i for service j and denote by v−i =

(v−i1, . . . , v−iJ) the profile of valuations of all services of all travelers except traveler i.
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Then, v = (vi, v−i) ∈ V ⊂ RI×J is the valuation profile of all travelers for all mobility

services.

For an arbitrary traveler i, the valuation vij can represent the realization of a

satisfaction function that captures, for example, the maximum amount of money that

traveler i is willing to pay for mobility service j.

Remark 3.4.2. The travelers can use multiple services to satisfy their mobility needs,

i.e., to reach their destination, via a smartphone app. The social planner then compiles

all travelers’ origin-destination requests and other information (e.g., preferred travel

time, value of time, and maximum willingness-to-pay) in order to provide a travel

recommendation to each traveler.

Remark 3.4.3. In the modeling framework, we consider that the travelers’ budgets are

known to the social planner as it is reasonable to expect travelers to submit their travel

budget on a mobility app [87, 236]. However, the valuations of any traveler for each

different mobility service is considered private information. Realistically, we cannot

expect any traveler to provide truthfully their preferences for any service.

Mathematically, the allocation of the finite number of mobility services to trav-

elers can be described by a vector of binary variables.

Definition 3.4.4. The traveler-service assignment is a vector a = (aij(v))i∈I,j∈J ,

where aij is a binary variable of the form:

aij(v) =

1, if i ∈ I is assigned to j ∈ J ,

0, otherwise.

(3.88)

Note that the assignment aij(v) between traveler i and service j depends on the

valuation vi of traveler i and the valuations of all other travelers, i.e., v−i.

Furthermore, it is possible in our framework for a traveler to reject all assign-

ments with any service. However, we show in Theorem 3.94 how to avoid such an
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unfortunate outcome by providing the right incentives to travelers to use at least one

service.

Naturally, each service can accommodate up to a some number of travelers,

different for each type of services. So, we expect the “physical traveler capacity” of

each service to vary significantly.

Definition 3.4.5. Each service j ∈ J is associated with a current traveler capacity,

denoted by εj ∈ N and εj ≤ ε̄j, where ε̄j denotes the maximum traveler capacity of

service j.

For example, a bus can provide travel services to a hundred travelers (seated

and standing) compared to a bike-sharing company’s bike (since one traveler per bike).

Definition 3.4.6. A feasible assignment is a vector a = (aij)i∈I,j∈J , aij ∈ {0, 1} that

satisfies ∑
j∈J

aij(v) ≤ δi, ∀i ∈ I, ∀v ∈ V , (3.89)

∑
i∈I

aij(v) ≤ ε̄j, ∀j ∈ J , ∀v ∈ V , (3.90)

where (3.89) ensures that each traveler i ∈ I is assigned to at most δi ∈ N mobility

service j ∈ J , and (3.90) ensures that the traveler capacity of each service j is not

exceeded while it is shared by multiple travelers.

Next, we represent the preferences of each traveler with a utility function con-

sisted of two parts: the traveler’s valuation of the mobility outcome and the associated

payment required for the realization of that outcome. In other words, any traveler is

expected to pay a toll or ticket fee for the mobility service used.

Definition 3.4.7. Each traveler i’s preferences are summarized by a utility function

ui : V × R → R that determines the monetary value of the overall payoff realized by

traveler i from their assignment to service j. Thus, traveler i receives a total utility

ui((vi, v−i), pi) =
∑
j∈J

vijaij(vi, v−i)− pi(vi, v−i), (3.91)
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where pi ∈ R denotes traveler i’s mobility payment.

Note that each traveler’s goal is to choose a strategy/action that will maximize

their own utility only.

We now formally present the definition of “mobility equity” of our game-theoretic

framework.

Definition 3.4.8. A mobility system ⟨I,J ,V , (ui)i∈I , (pi)i∈I⟩ admits an equilibrium

that is mobility equitable if (i) travelers truthfully report their private information, (ii)

travelers voluntarily participate, and (iii) travelers can afford travel.

Next, we formally define the relation that ensures “economic sustainability” for

our game-theoretic framework.

Definition 3.4.9. Let linear function w : V×R → R≥0 that depends on the valuations,

assignments, and individual budgets of all the travelers denote the worst-case revenue.

Mathematically, we have∑
i∈I

∑
j∈J

wi(vij, aij, bi) ≤
∑
i∈I

pi(v), ∀v ∈ V . (3.92)

Our intuition behind Definition 3.4.9 is conceptually based on what the United

Nations Development Programme has developed as part of their Sustainable Devel-

opment Goals. In particular, our goal in this work is to ensure long-term economic

growth in the worst possible cases (thus, maximizing (3.92)) under the constraints of

Definition 3.4.8.

We now formally define the constraints that will ensure mobility equity in our

framework’s solutions based on Definition 3.4.8.

Definition 3.4.10. For the travelers to have no incentive to misreport their valuations

to the social planner, we need∑
j∈J

vijaij(ṽi, v−i)− pi(ṽi, v−i)−
∑
j∈J

vijaij(vi, v−i) + pi(vi, v−i) ≤ 0, (3.93)
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for all v = (vi, v−i) ∈ V, any ṽi ∈ V, and for all travelers i ∈ I using any mobility

service j ∈ J . We call ṽi traveler i’s reported valuation that deviates from the true

valuation vi. If (3.93) holds, then we say that the mechanism induces truthfulness.

Definition 3.4.11. The travelers in the mobility system voluntarily participate (VP)

if, for any traveler i ∈ I,

pi(vi, v−i) ≤
∑
j∈J

vijaij(vi, v−i), ∀v ∈ V . (3.94)

We say then that the proposed mechanism induces voluntary participation from all

travelers.

Definition 3.4.12. The mechanism induces on individual level budget fairness (BF),

if for any traveler i ∈ I, we have

pi(v) ≤ bi, ∀v ∈ V . (3.95)

3.4.2 The Optimization Problem

Problem 3.4.13. The maximization problem is formulated as follows

max
aij

∑
i∈I

∑
j∈J

wi(vij, aij, bi), (3.96)

subject to: (3.89), (3.90), (3.92), (3.93), (3.94), (3.95),

where aij ∈ {0, 1} for all i ∈ I and all j ∈ J .

We note here that Problem 3.4.13 is a special case of the many-to-many as-

signment problem that is known to be very hard to solve analytically. Thus, we relax

the integer constraint and focus our analysis on deriving the optimal solutions of a

linearized version of Problem 3.3.17. Thus, we introduce a non-negativity constraint

variable as follows.
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Problem 3.4.14. The linear program formulation is

max
aij

∑
i∈I

∑
j∈J

wi(vij, aij, bi) (3.97)

subject to: (3.89), (3.90), (3.92), (3.93), (3.94), (3.95), and

aij ≥ 0, ∀i ∈ I, ∀j ∈ J , (3.98)

where (3.98) transforms the (binary) assignment problem to a (continuous) linear pro-

gram.

Remark 3.4.15. Intuitively, in Problem 3.3.18, if aij > 0 it implies that traveler i ∈ I

is assigned to service j ∈ J .

Problem 3.4.14 is a constrained linear maximization problem that admits at

least one solution under certain conditions. A solution of Problem 3.4.14 ensures the

assignments between the travelers and services are mobility equitable and economic

sustainable. In particular, we maximize the worst-case revenue of the mobility system

under the constraints of truthfulness, VP, and BF. Next, inspired from Myerson’s

auction [165] and the Vickrey-Clarke-Groves (VCG) auction mechanism, we introduce

two key variables that can helps us solve Problem 3.3.18, i.e., nominal assignments

and reservation payments.

Definition 3.4.16. For any traveler i ∈ I, there is a reservation payment for each

mobility service j ∈ J , denoted by rij ∈ R≥0, representing the minimum necessary

mobility payment of traveler i to get assigned to mobility service j.

Definition 3.4.17. The final assignment aij(v) evaluated at the realized valuation

profile v ∈ V is computed as the sum of the nominal assignment āij and the adapted

assignment ãij(v), i.e., we have

aij(vi, v−i) = āij + ãij(vi, v−i). (3.99)

We provide the exact methodology of computing āij and ãij(v) in the next

section.
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3.4.3 Analysis and Properties of the Mechanism

In this section, we show formally that the proposed mechanism satisfies the

desired properties of mobility equity as defined in Definition 3.4.8, i.e., truthfulness,

voluntary participation, and budget fairness for all travelers. We start our exposition

by presenting the derivation of the dual program of Problem 3.3.18.

Lemma 3.4.18. The dual problem of Problem 3.3.18 is

min
∑
v∈V

[∑
i∈I

ξi1(v)δi +
∑
j∈J

ξj2(v)ε̄j +
∑
i∈I

ξi4(v)bi

]
(3.100)

subject to: ξi1(v) + ξj2(v) +
∑
ṽi∈V

ṽijξ
i
4(v, ṽi)

−vij
∑
ṽi

ξi4(v, ṽi)− vijξ
i
5(v) ≥ 0, ∀v ∈ V , (3.101)

∑
ṽi∈V

ξi4(v, ṽi)−
∑
ṽi∈V

ξi4(v−i, ṽi, vi)− ξ3(v)

+ξi5(v) + ξi6(v) = 0, ∀v ∈ V , (3.102)∑
v∈V

ξ3(v) = 1, (3.103)

ξ1(v), ξ
j
2(v), ξ3, ξ

i
4(v, ṽi), ξ

i
5(v), ξ

i
6(v) ≥ 0, (3.104)

where ξi1, ξ
j
2, ξ3, ξ

i
4, ξ

i
5, and ξ

i
6 are the dual variables for constraints (3.89), (3.90), (3.92),

(3.93), (3.94), and (3.95), respectively.

Proof. The computations here are straightforward following standard techniques from

[204], hence we omit them due to space limitations.

Based on Lemma 3.4.18, we can now compute the nominal assignments and
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reservation payments as follows: we formulate the optimization problem for the assign-

ments

max
aij

∑
i∈I

∑
j∈J

vijaij (3.105)

subject to: (3.89), (3.90), and

vijaij(ṽi, v−i)− vijaij(vi, v−i) ≤ 0, (3.106)

∀ṽi ∈ V , ∀i ∈ I, ∀j ∈ J ,∑
j∈J

vijaij(vi, v−i) ≤ bi, ∀i ∈ I, (3.107)

aij ≥ 0, ∀i ∈ I, ∀j ∈ J , (3.108)

where solving (3.105) gives us the valuation profile vworst = (vworstij )i∈I,j∈J at the worst

case and the associated nominal assignment āij. Next, we derive ξ
i
1, ξ

j
2, ξ

i
5, and ξ

i
6 from

Lemma 3.4.18 and then compute

rij = ξi1 + ξj2 + ξi5v
worst
ij + ξi6v

worst
ij . (3.109)

The next step now is to present the pricing mechanism for any traveler k ∈ I of our

proposed framework. But first, we define γij = argminṽ∈V
∑

j∈J āij ṽij. Then, we have

pk(v) =
∑
j∈J

ãkj(v)rkj +
∑
j∈J

ākjrkj −
∑
j∈J

ākjξ
k
5γkj

+
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)−
∑

i∈I\{k}

∑
j∈J

ãij(v)(vij − rij), (3.110)

where ãij;k represents a “temporary” assignment of travelers to mobility services expect-

ing traveler k (we see how to estimate this variable in (3.121)). We formally present how

to compute such an assignment in Theorem 3.4.20. The term
∑

i∈I
∑

j∈J ãij(v)(vij −

rij) represents the “social welfare” of all travelers based on the valuations of each

mobility service j and the reservation mobility payments rij. We motivate our mobil-

ity pricing mechanism (3.110) as follows: with the help of the reservation payments

we parameterize the totals of social welfare in terms of the travelers’ valuations. So,
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the first three terms capture the parameterized social welfare for all services from the

point of view of one traveler. Then the other two terms represent the social welfare

excluding traveler k’s contribution. Using these reservation payments, we then intro-

duce a mobility payment pk for traveler k that charges the minimum required payment

for traveler k to get assigned to mobility service j while keeping all other travelers’

reported valuations fixed.

Next, we show that our mechanism induces truthfulness from all travelers, i.e.,

no traveler has an incentive to misreport or lie to the social planner.

Theorem 3.4.19. The proposed framework induces all travelers to report their valua-

tions v ∈ V truthfully to the social planner under the pricing mechanism (3.110).

Proof. Consider traveler k with a true valuation vkj for each service j ∈ V . By reporting

v′kj, traveler k is assigned service j with ãkj(v
′
k, v−k). We formulate the following

optimization problem

(ãij(v))i∈I,j∈J = argmax
ã∈A

∑
i∈I

∑
j∈J

ãij(vij − rij), (3.111)

where A is the set of positive values for ã that satisfies the following two constraints:∑
i∈I

ãij ≤ 1−
∑
i∈I

āij, ∀j ∈ J , (3.112)

∑
j∈J

ãij ṽij ≤ bi −
∑
j∈J

āijrij +
∑
j∈J

ākjξ
i
5γij, ∀i ∈ I, (3.113)

where (3.113) must hold for all ṽ ∈ V , and γij = argminṽ∈V
∑

j∈J āij ṽij. Since A does

not depend on any specific valuation profile, we have (ãij(v
′
k, v−k))ij ∈ A. Thus, we

have ∑
i∈I

∑
j∈J

ãij(vk, v−k)(vij − rij) ≥
∑
i∈I

∑
j∈J

ãij(v
′
k, v−k)(vij − rij). (3.114)

Using Definition 3.4.7, we now compare the utilities of traveler k under the two different

valuations. So, we have

uk(vk, v−k) =
∑
j∈J

akj(vk, v−k)vkj − pk(vk, v−k), (3.115)
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which, by Definition 3.4.17 and (3.110), we can expand as follows

uk(vk, v−k) =
∑
j∈J

ãkj(vk, v−k)vkj +
∑
j∈J

ākjvkj −
∑
j∈J

ãkjrkj −
∑
j∈J

ākjrkj +
∑
j∈J

ākjξ
k
5γkj

−
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij) +
∑

i∈I\{k}

∑
j∈J

ãij(vk, v−k)(vij − rij) (3.116)

=
∑
i∈I

∑
j∈J

ãij(vk, v−k)(vij − rij)−
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)

+
∑
j∈J

ākjvkj −
∑
j∈J

ākjrkj +
∑
j∈J

ākjξ
k
5γkj (3.117)

≥
∑
i∈I

∑
j∈J

ãij(v
′
k, v−k)(vij − rij)−

∑
i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)

+
∑
j∈J

ākjvkj −
∑
j∈J

ākjrkj +
∑
j∈J

ākjξ
k
5γkj (3.118)

=
∑
j∈J

ãkj(v
′
k, v−k)vkj +

∑
j∈J

ākjvkj −
∑
j∈J

ãkj(v
′
k, v−k)rkj −

∑
j∈J

ākjrkj

−
∑

i∈I\{k}

∑
j∈J

ãij(v−k)(vij − rij) +
∑

i∈I\{k}

∑
j∈J

ãij(vk, v−k)(vij − rij), (3.119)

where the last equality (3.119) follows by simple rearrangement using (3.110); thus,

(3.119) is equal to uk(v
′
k, v−k). Therefore, the result follows.

Theorem 3.4.20. The proposed framework ensures that no traveler pays more than

their budget for their assignment, i.e., under the pricing mechanism (3.110), for any

traveler i ∈ I, we have pi(v) ≤ bi, for all v ∈ V.

Proof. The mobility payment (3.110) of any traveler k can be written as

pk(v) =
∑
j∈J

ãkj(v)rkj +
∑
j∈J

ākjrkj −
∑
j∈J

ākjξ
k
5γkj

+
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)−
∑
i∈I

∑
j∈J

ãij(v)(vij − rij). (3.120)

119



Next, we formulate the following optimization problem:

(ãij;k(v−k))i∈I\{k},j∈J = argmax
ã∈Ak

∑
i∈I\{k}

∑
j∈J

ãij(vij − rij), (3.121)

where ãij;k(v−k) takes positive values from set Ak with constraints:∑
i∈I\{k}

ãij ≤ 1−
∑
i∈I

āij, ∀j ∈ J , (3.122)

∑
j∈J

ãij ṽij ≤ bi −
∑
j∈J

āijrij, (3.123)

where (3.123) holds for all ṽ ∈ V and i ∈ I\{k}. Thus, we have (ãij;k(v−k))i∈I\{k},j∈J ∈

Ak, which yields ∑
i∈I\{k}

ãij;k(v−k) ≤ 1−
∑
i∈I

āij, ∀j ∈ J , (3.124)

∑
j∈J

ãij;k(v−k)ṽij ≤ bi −
∑
j∈J

āijrij, (3.125)

where (3.125) holds for all ṽ ∈ V and for all i ∈ I \ {k}. If we construct an assignment

α = (αij) such that

αij =

ãij;k(v−k), ∀i ∈ I \ {k}, ∀j ∈ J ,

0, i = k, ∀j ∈ J ,
(3.126)

then we have ∑
i∈I

αij =
∑

i∈I\{k}

ãij;k(v−k)

≤ 1−
∑
i∈I

āij, ∀j ∈ J , (3.127)

∑
j∈J

αij ṽij =
∑
j∈J

ãij;k(v−k)ṽij

≤ bi −
∑
j∈J

āijrij, (3.128)
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where (3.128) holds for all ṽ ∈ V and for all i ∈ I \ {k}. Similarly, for traveler k, it

follows from (3.105)-(3.108) that∑
j∈J

αkj ṽkj = 0 ≤ bk −
∑
j∈J

ākjrkj. (3.129)

Thus, it follows immediately that α ∈ A which results to the following inequality:∑
i∈I

∑
j∈J

ãij(v)(vij − rij) ≥
∑
i∈I

∑
j∈J

αij(vij − rij)

=
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij). (3.130)

From (3.120), we subtract
∑

j∈J ãkj(vk, v−k)vkj to obtain

pk(v) =
∑
j∈J

ãkj(v)rkj +
∑
j∈J

ākjrkj −
∑
j∈J

ākjξ
k
5γkj

+
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)−
∑
i∈I

∑
j∈J

ãij(v)(vij − rij). (3.131)

So, from (3.130) and (3.131), we get

pk(v) ≤
∑
j∈J

ãkj(v)vkj +
∑
j∈J

ākjrkj −
∑
j∈J

ākjξ
k
5γkj, (3.132)

which leads to pk(v) ≤ bk.

Theorem 3.4.21. The proposed framework induces all travelers to voluntary partici-

pate under the pricing mechanism (3.110), and thus satisfy the last necessary property

for mobility equity.

Proof. By Theorem 3.4.19, we have

ui(vk, v−k) =
∑
i∈I

∑
j∈J

ãij(vk, v−k)(vij − rij)

−
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij) +
∑
j∈J

ākjvkj −
∑
j∈J

ākjrkj +
∑
j∈J

ākjξ
k
5γkj, (3.133)

which leads to

ui(vk, v−k) ≥
∑
j∈J

ākjvkj −
∑
j∈J

ākjrkj +
∑
j∈J

ākjξ
k
5γkj, (3.134)
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where we have used (3.130). From Lemma 3.4.18 it follows straightforwardly that∑
j∈J

āijrij −
∑
j∈J

āijv
′
ij ≤ 0, v′ij ∈ V , ∀i ∈ I, (3.135)

āijrij = āijv
worst
ij , ∀i ∈ I, ∀j ∈ J . (3.136)

Thus, we have ∑
j∈J

ākjvkj ≥
∑
j∈J

ākjzkj (3.137)

=
∑
j∈J

ākjrkj (3.138)

≥
∑
j∈J

ākjrkj −
∑
j∈J

ākjξ
k
5γkj. (3.139)

Note that ākj, ξ
k
5 , and γij are non-negative. Thus, we have, for any traveler i ∈ I,

ui(vk, v−k) ≥ 0.

3.4.4 Implementation

In this subsection, we outline how our proposed framework could be potentially

implemented. We consider a typical major metropolitan area with an extensive road

and public transit infrastructure; a good example is Boston. Several key areas in

Boston are connected by roads, buses, light rail, and bikes, thus any traveler has easy

access to any of the four available modes of transportation, namely car, bus, light rail,

or bike. By applying the MaaS concept, a social planner (a central computer) can offer

travel services (e.g., navigation, location, booking, payment) to all passing travelers at

certain travel hub locations (e.g., train stations with bus stops and taxi waiting line).

Information can be shared among all travelers via a “mobility app,” which allows trav-

elers to access the services offered by the social planner. Using this app, travelers will

be able to pay for their travel needs while providing their individual budget and valua-

tions. This can be done using a “preferences” questionnaire in the mobility app. Each

mode of transportation offers different benefits in utility; for example, a car is more
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convenient than a bus and is expected to be in high demand. This justifies our model-

ing choice of each traveler having valuations for each mobility service. Our framework

guarantees that by the design of the payments (3.110) no traveler has an incentive to

misreport these preferences (Theorem 3.4.19). In addition, travelers are incentivized

to use the mobility app multiple times for their travels and interact with each other

more than once (Theorem 3.4.21). Hence, our framework provides an efficient and fair

way for travelers to travel using different modes of transportation from one place to

another while competing with many other travelers and pay a ticket or a toll always

within their individual budget using the mobility app (Theorem 3.4.20).

3.5 Summary

In this chapter, we formulated the routing of strategic travelers that use CAVs

in a transportation network as a social resource allocation mechanism design problem.

Considering a Nash-implementation approach, we showed that our proposed informa-

tionally decentralized mechanism efficiently allocates travel time to all travelers that

seek to commute in the network. Our mechanism induces a game which at least

one equilibrium prevents congestion (a significant rebound effect), while also attaining

the properties of individually rationality, budget balanced, strongly implementability.

Ongoing work includes conducting a simulation-based analysis under different traffic

scenarios to showcase the practical implications of our mechanism. Extending and

enhancing the traveler-behavioral model, motivated by a social-mobility survey can

be a worthwhile undertaking as a future research direction allowing the study of the

relationship of emerging mobility and the intricacies of human decision-making.

In this chapter, we provided an answer to how one can ensure a socially-

acceptable assignment between travelers and the shared vehicles’ operators. We fo-

cused on the behavioral decision-making of both the travelers and the vehicles’ oper-

ators and designed a shared mobility market consisted of travelers and vehicles in a

transportation network. We formulated a binary linear program and derived necessary
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and sufficient conditions for its solution to be an assignment between travelers and ve-

hicles that cannot be improved any further. Consequently, we showed that our optimal

assignment maximizes the social welfare of all travelers, and ensures the feasibility and

stability of the traveler-vehicle profit allocation while respecting the decision-making

of both the travelers and the vehicles’ operators.

In this chapter, we provided a theoretical study of a two-sided game for a mo-

bility system of travelers and providers focusing on how to discretely assign travelers

to providers when both have preferences. We formulated a binary program and its

equivalent linear program and showed that at least one optimal solution exists and

derived the conditions for such solution to be stable. We then allowed informational

asymmetry in the proposed mobility game and provided a pricing mechanism to ensure

we can elicit the private information of all travelers and providers. We showed that our

mechanism guarantees economic efficiency in terms of maximizing the social welfare,

and ensures voluntary participation, thus making sure that all agents have a unique

dominant strategy.

In this chapter, we have provided a game-theoretic framework for a multi-modal

mobility system where travelers can travel using different modes of transportation and

each has a different and unique travel budget. Our goal in this chapter was to ensure

economic sustainability by maximizing the worst-case revenue of the mobility system

under the constraints of mobility equity, which we defined explicitly as truthfulness,

voluntary participation, and budget fairness. We proved that our framework ensures

budget fairness in the sense that no budget is violated. Under informational asym-

metry, we showed that no traveler has an incentive to misreport and they voluntarily

participate. Thus, our framework satisfies mobility equity by ensuring access to mo-

bility to all travelers.
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3.5.1 Limitations

One important limitation of our framework is the lack of a transportation net-

work’s dynamics. In addition, our framework although trackable it cannot solve this

problem online. Realistically, we cannot expect travelers to access a mobility app and

wait for travel recommendations in a static transportation setting. Future work will

take into consideration the dynamics of a multi-modal transportation network (traffic

network, road capacities). A potential direction for future research should also relax

the assumption that travelers act rationally and accept the optimal and beneficial to

them travel recommendations. We can explore this problem using prospect theory and

analyze the optimal assignments between travelers and assignments under a behavioral

model that takes into consideration risks and uncertainties. Another interesting direc-

tion for future research is to expand the current framework by explicitly designing the

valuation functions and relaxing the linearity assumption. Nonlinearity in a mechanism

like ours can complicate the derivation of the best possible equilibrium in a mobility

system.
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Chapter 4

A TRAVELER-CENTRIC MOBILITY GAME: EFFICIENCY AND
STABILITY UNDER RATIONALITY AND PROSPECT THEORY

4.1 A Traveler-centric Mobility Game: Efficiency and Stability Under Ra-

tionality and Prospect Theory

In this chapter, we study a routing and travel-mode choice problem for mobility

systems with a multimodal transportation network as a “mobility game” with coupled

action sets. We develop a game-theoretic framework to study the impact on efficiency

of the travelers’ behavioral decision making. In our framework, we introduce a mobility

“pricing mechanism” in which we model traffic congestion using linear cost functions

while also considering the waiting times at different transport hubs. We show that

travelers’ selfish actions lead to a pure-strategy Nash equilibrium. We then perform a

Price of Anarchy analysis to establish that the mobility system’s inefficiencies remain

relatively low as the number of travelers increases. We deviate from the standard

game-theoretic analysis of decision making by extending our modeling framework to

capture the subjective behavior of travelers using prospect theory. Finally, we provide

a simulation study as a proof of concept for our proposed mobility game.

In this chapter, we propose a game-theoretic framework for the travelers’ rout-

ing and travel-mode choices in a multimodal transportation network. We study the

existence of a NE and the resulting inefficiencies of the travelers’ decision making. One

of the most significant aims of our work is to show that although we cannot guaran-

tee equilibrium uniqueness, we can provide an upper bound for the inefficiency that

arises from the individual strategic interactions of the travelers. In particular, our
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modeling framework (called mobility game), considers the impacts of “negative con-

gestion externalities” and waiting costs in the travelers’ decision making. That way,

we offer an improved look at the socioeconomic factors that can affect the efficient and

sustainable distribution of travel demand in a transportation network with multiple

different modes of transportation (e.g., car, bus, light rail, bike). Moreover, we study

the travelers’ decision making under two behavioral models: (1) rational choice theory,

where decision makers are selfish and seek to maximize only their own utility; and

(2) prospect theory, where the decision-makers’ biases and subjectivity is taken into

account when decisions are made under risk.

The features that distinguish our work from the state of the art are as follows:

1. we model the interactions between travelers using a mobility game, a combination

of a routing game and a a potential game with travel-mode choices and coupled

action sets (see Section 4.1.1);

2. we take into account the traffic congestion cost factors using linear cost functions

for the waiting time of travelers at different transport hubs; each transport hub

allows a traveler to choose any of available modes of transportation to utilize for

their travel needs (see Section 4.1.1);

3. we introduce a mobility token-based pricing mechanism to control travel demand

and study the inefficiencies at a NE by showing that a NE exists (Theorem 4.1.16)

and deriving a bound that remains small enough as the number of travelers

increases (Theorem 4.1.21); and

4. we incorporate a behavioral model (prospect theory) for the travelers’ decision

making under the uncertainty of the mobility tokens (Theorem 4.1.25).

The remainder of the chapter is structured as follows. First, in Section 4.1.1, we

present the mathematical formulation of our mobility game, which forms the basis of

our theoretical study in this chapter. Then, in Section 4.1.1, we derive the properties of
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our mobility game showing NE existence and bounding the Price of Anarchy (PoA) in

Subsection 4.1.2. Then we prove that a NE exists under prospect theory in Subsection

4.1.4. Finally, we draw conclusions and offer a discussion of future research.

4.1.1 Modeling Framework

We consider a mobility system of two finite, disjoint, and non-empty sets, (1) the

set of travelers I, |I| = I ∈ N≥2, and (2) the set of mobility services by J , |J | = J ∈ N.

For example, j ∈ J can represent either a car, a bus, a light rail vehicle, or a bike. We

consider that in our mobility game, I < J . The set of all mobility services J can be

partitioned to a finite number of disjoint subsets, each representing a specific type of a

mobility service, i.e., J =
⋃H
h=1 Jh, where H ∈ N is the total number of subsets of J .

For example, if there are only two modes of transportation, say cars and buses, then

J = J1 ∪ J2, where J1 represents the subset of all available cars, and J2 represents

the subset of all available buses.

Definition 4.1.1. The set of all different types of services is H = {1, . . . , H}, H ∈ N,

where each element h ∈ H represents a possible travel option. We denote the type of

service j used by traveler i by hi ∈ H.

For example, suppose H = 4. Then each element h ∈ H can be associated

one-to-one to the elements of the set {car, bus, light rail, bike}.

Naturally, each service can accommodate up to a finite number of travelers, that

is different for each type of service. So, we expect the “physical traveler capacity” of

each service to vary significantly.

Definition 4.1.2. Each service j ∈ J is characterized by a current physical trav-

eler capacity, i.e., εj ∈ {0, 1, 2, . . . , ε̄j}, where ε̄j ∈ N denotes the maximum traveler

capacity of service j.

For example, one bus can provide travel services up to eighty travelers (seated

and standing) compared to a bike-sharing company’s bike (one bike per traveler).
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Travelers seek to travel in a transportation network represented by a directed

multigraph G = (V , E), where each node in V represents a city area (neighborhood)

with a “transport hub,” i.e., a central place where travelers can use different modes

of transportation. Each edge E represents a sequence of city roads with public transit

lanes. For our purposes, we think of G = (V , E) as a representation of a smart city

network with a road and public transit infrastructure. In network G, any traveler i ∈ I

seeks to travel from an origin o ∈ V to a destination d ∈ V while making optional stops

at a self-chosen transport hub vi ∈ V . So, on one hand, all travelers are associated

with the same origin-destination pair (o, d). On the other hand, travelers can make a

stop along their route. Next, each type of mobility services h ∈ H is associated with a

sequence of edges, i.e., a route that connects at least two nodes (or transport hubs). We

say that there exists a set of routes for each traveler i where each route connects their

origin-destination pair (o, d) and can be traveled by any mobility service. Formally, we

have P(o,d) ⊂ 2E to denote the set of routes available to traveler i in origin-destination

(o, d), where each route in P(o,d) consists of a set of edges connecting o to d.

Each traveler i ∈ I seeks to travel in network G using one of the available

mobility services j ∈ J of type h ∈ H. Thus, any traveler can choose the type of

mobility service they prefer for their specific travel needs. Note that any j ∈ J can

use any edge. Thus, travelers compete with each other for the available services in the

transportation network. For the purposes of this work, we restrict our attention to all

available modes of transportation that use the road infrastructure. In addition, each

transport hub (including the ones at (o, d) allows travel by any mobility service (any

mode of transportation), thus a traveler’s travel preferences or needs can be satisfied by

many and different mobility services (as one expects from a multimodal transportation

network).

Selfish behavior, however, may lead to inefficiencies. Therefore, as part of our

efforts to control the inefficiencies that arise from the travelers’ selfishness (and thus

control the emergence of rebound effects), in our mobility game, we introduce the idea of

129



a “mobility pricing mechanism” to incentivize travelers to use services in public transit

for their travel needs. Informally, each transport hub starts with a budget, collects

payments for services, and then provides monetary incentives (pricing mechanism)

to travelers to ensure a socially-efficient utilization of services in the network. By

“socially-efficient,” we mean that the endmost collective travel outcomes must achieve

two objectives: (i) respect and satisfy the travelers’ preferences regarding mobility, and

(ii) ensure the alleviation of congestion in the system. We formalize the idea of our

mobility pricing mechanism in the following definitions.

Definition 4.1.3. Each traveler i starts with a mobility wallet represented in monetary

units by θi ∈ [0, θ̄i], where θ̄i ∈ R>0 is the maximum amount of traveler i’s monetary

units. Traveler i uses their wallet θi to pay for their travels in-network G.

The mobility wallet for each traveler represents the financial resources avail-

able to them, i.e., the amount of money they have to spend on transportation. In

addition, by introducing mobility wallets, we can realistically model the travelers’

cost-constrained decision-making, where different transportation options have differ-

ent costs.

Definition 4.1.4. Any traveler i is required to pay a fee, called “mobility payment,”

for using a mobility service in network G. This mobility payment is given by function

πi : H× N → R≥0, where 0 ≤ πi(hi, εj) ≤ θi.

Note that πi(hi, εj) has the same monetary units as θi in Definition 4.1.3. In-

tuitively, a traveler i pays πi for using mobility service j of type hi. The mobility

payment πi of any traveler i varies extensively for each type of service hi and increases

fast as εj tends to ε̄j. To ensure our exposition is compact, we omit the arguments of

πi(hi, εj), and simply write πi.

In mobility game M, each traveler i pays for using a mobility service j of type

hi on route ρi with origin-destination pair (o, d) making an optional stop at transport

hub vi. At each transport hub, available funds can be offered to incentivize travelers to
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use public transit services. Our mobility game can be thought of as a static game that

is played repeatedly [249], thus travelers are assumed to take different actions multiple

times. Therefore, the pricing mechanism needs to consider both the payments of all

travelers for each type of service and the available funds at each transport hub. We

formalize this idea for the allocation of mobility payments for each traveler i by stating

the following definition.

Definition 4.1.5. Suppose traveler i ∈ I chooses route ρi ∈ P(o,d) and makes a stop

at transport hub vi along that route using some service j ∈ J of type hi ∈ H. Then,

the set of co-travelers at vi ∈ V is Svi = {k ∈ I | vk = vi}.

In words, Svi groups all travelers including traveler i who have made a stop at

transport hub vi. Next, we formally define the available budget at transport hub vi.

Definition 4.1.6. Let b(vi) ∈ R be the number of funds available for transactions at

traveler i’s transport hub vi ∈ V \ {(o, d)} over all types of services h ∈ H.

Intuitively, b(vi) represents the available funds (e.g., after covering all expenses),

in the same monetary units as θi and πi, that transport hub vi may allocate to travelers.

Practically, even though our proposed mobility game is not dynamic, b(vi) can be

computed based on historical data (e.g., along similar lines presented in [14]), and thus

capture the “demand” of services at a particular vi. Each traveler i ∈ I starts with a

mobility wallet θi and pays πi while they make a stop at transport hub vi. Note that we

are interested in modeling the travelers’ decision-making in regards to commuting with

cars and public transportation. That is why, in our model, each traveler is required

to pass through a specific vertex, such as a transfer station (e.g., business district).

Our justification is that many public transportation trips involve transferring between

different modes of transportation or commuters must pass through a specific locations

as part of their daily trip.

We can capture the travelers’ preferences of different outcomes using a “utility

function.” Travelers are expected to act as utility maximizers. Thus, we can influence
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the travelers’ behavior by introducing a control input in the utility function. In our

mobility game, we consider a mobility pricing mechanism, as a control input, that

aims to reward or penalize each traveler i (either by increasing a traveler’s utility or

decreasing it). We offer here an informal description of our pricing mechanism. The

total excess amount of mobility funds is b(vi)−
∑

i∈Svi
πi. The total excess amount of

mobility funds at transport hub vi excluding traveler i is b(vi) −
∑

k∈Svi\{i}
πk. Given

the available mobility funds already present at vi, we can redistribute the “mobility

wealth” based on the types of services and roads utilized by the travelers as follows: we

consider a quadratic-based pricing mechanism τ(vi, πi), defined formally next, which is

the same for all travelers. Under this pricing mechanism, we observe the following two

interesting properties: for high values of πi, τ is strictly decreasing; for low values of πi,

τ is strictly increasing. Thus, if traveler i pays a high payment πi (e.g., which implies

traveler i uses a car), then disincentive is also high to use this mobility service. Thus,

this serves as an indirect incentive for a traveler to use public transit or a different

transport hub (this becomes clear in (4.4)). Furthermore, the pricing mechanism τ

can take negative values, and actually strictly decreases fast as πi takes high values

for any traveler i. So, travelers can get penalized if they choose a “high-demand” type

of service (thus, leading to a high valued
∑

k∈Svi\{i}
πk). Even if a traveler has the

means to pay (i.e., the traveler has a large mobility wallet), the pricing mechanism can

penalize the traveler with hefty fees, thus all travelers have the incentive to minimize

the penalties and choose public transit services or less congested transport hubs. For

example, when a traveler uses a bike, their mobility payment will be low and so they

can earn (instead of paying for the service). This incentivizes a sustainable allocation

of services to all travelers. We offer the formal definition of the pricing mechanism next

for the allocation of the mobility funds and payments.

Definition 4.1.7. The pricing mechanism is a multivariable function τ 7→ R that

depends on a traveler i’s transport hub vi and mobility payment πi, and is explicitly

132



given by

τ(vi, πi) =

b(vi)− ∑
k∈Svi\{i}

πk

2

−

b(vi)− ∑
i∈Svi

πi

2

. (4.1)

Recall that the term b(vi) captures the demand of a transport hub vi based on

what types of services in general travelers have been using (e.g., if a transport hub has

a lot of money, it means travelers use cars significantly).

Remark 4.1.8. If we expand (4.1) and simplify, we obtain the following relation

τ(vi, πi) = 2πi

b(vi)− πi
2
−

∑
k∈Svi\{i}

πk

 . (4.2)

The behavior of (4.1) is rather interesting. Obviously, as traveler i’s payment increases,

then (4.1) decreases. However, given that b(vi) >
∑

k∈Svi\{i}
πk, for small values of πi,

τ increases up to a maximum point, and then starts to decrease. This characteristic

of (4.1) serves as a strong incentive for travelers to choose services that are “cheap”

(bikes) or uncongested (buses) since then πi will be small. Otherwise, τ can take very

high negative values as πi increases.

As long as b(vi) is higher than
∑

k∈Svi\{i}
πk, then the pricing mechanism (4.1)

redistributes wealth back to each traveler i based on what is available on the self-chosen

transport hub vi and how much travelers pay by taking into consideration traveler i’s

contribution at transport hub vi.

Since the travelers’ objective is to maximize their payoff, we need a way to

“incentivize” travelers to avoid decisions that may lead to an empty mobility wallet.

Thus, we introduce an empty wallet “disincentive” for an arbitrary traveler i.

Definition 4.1.9. Given the current amount of mobility wallet θi of any traveler i, the

disincentive of having an empty wallet is a decreasing function g : [0, θ̄i] → R given by

g(θi) =
θ̄i

θi + ηiπi
, (4.3)
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where ηi ∈ (0, 1) is a socioeconomic characteristic of traveler i and affects the impact

of how much they choose to spend or save in terms of their mobility wallet.

Definition 4.1.9 establishes mathematically a disincentive as a function where θ̄i

is proportional to the sum of the current mobility wallet θi and the weighted mobility

payment ηiπi. We expect each traveler to avoid as much as possible an empty wallet;

hence, (4.3) ensures to “penalize” travelers with a low mobility wallet θi while choosing

to spend ηiπi ≈ θi. Thus, (4.3) grows fast as θi decreases. We offer now the formal

definition of a traveler’s action set.

Definition 4.1.10. For an arbitrary traveler i ∈ I, the action set is Ai = P(o,d)×V ×

R≥0, where P(o,d) is the set of routes that connects traveler i’s origin-destination pair

(o, d), V is the set of nodes in network G that includes all possible transports hubs vi,

and πi ∈ R≥0 is the mobility payment of traveler i.

Note that, by Definition 4.1.10, the action set Ai of an arbitrary traveler i

is a coupled set with discrete values (route, transport hub, source/destination pair),

and continuous values (mobility payment). Thus, the action profile ai ∈ Ai of trav-

eler i ∈ I is a vector of discrete and continuous values. We write A = A1 ×

A2 × · · · × AI for the Cartesian product of all the travelers’ action sets. We write

a−i = (a1, a2, . . . , ai−1, ai+1, . . . , aI) for the action profile that excludes traveler i ∈ I.

Next, for the aggregate action profile, we write a = (ai, a−i), a ∈ A. We also denote

by a∗, aNash an action profile at a social optimum and at a NE, respectively.

Next, we introduce a travel time latency function to capture the congestion cost

that travelers may experience.

Definition 4.1.11. Let the total number of services of all types h = 1, . . . , H on

road e ∈ E with at least one traveler be Je =
∑

h∈H ωh|Je,h|, where Jh,e is the set of

all services on road e of type h, and (ωh)h∈H, ωh ∈ [0, 1] are weight parameters that

depend on the type h to capture the different impact of services on the traffic. Then,
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the travel time latency function is a strictly increasing linear function ce : N → R, with

explicit form ce(Je) = ξ1Je + ξ2, where ξ1, ξ2 are constants.

Notice that we assume linearity in the travel time latency functions ce, which is

not unique in the literature [202, 200, 71]. The justification behind linearity is that it

is the simplest yet most useful way for a mathematical analysis to capture the travel

costs in terms of distance or road capacity and the traffic congestion costs. The choice

of the constants ξ1 and ξ2 play an important role, namely ξ2 can represent the length

of road e and ξ1 normalizes the number of services on road e so that both components

of ce have the same units.

We can now formally define the utility of any traveler i ∈ I.

Definition 4.1.12. The utility ui : A → R of traveler i ∈ I is what traveler i receives

under the risk-neutral setting given by

ui(a) = τ(vi, πi)− g(θi)− ζ1

 ∑
e∈ρi:ρi∈P(o,d)

ce(Je)

− ζ2

(
|Svi |

σ(vi, hi)

)
, (4.4)

where σ(vi, hi) is the rate of travel service at transport hub vi for type of service hi

(how many travelers per hour can travel using type of service hi from transport hub vi),

and ζ1, ζ2 ∈ R are unit parameters that transform time to money (that way the units

of (4.4) are consistent).

Note that both constants ζ1, ζ2 get absorbed by the constants of function ce (as

defined in Definition 4.1.11) and parameter σ, respectively. So, we can safely omit

them from the mathematical analysis. In (4.4), the first term represents the pricing

mechanism and is the amount of mobility funds redistributed to traveler i for paying

πi. The second term is the disincentive as defined in Definition 4.1.9, and the third

term is the congestion cost of traveler i due to traffic on road e. Finally, the last term

in (4.4) is a waiting cost for joining transport hub vi, where the number of travelers at

transport hub vi is proportional to the rate of travel service at transport hub vi.

Next, we characterize fully and formally the mobility game.
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Definition 4.1.13. The mobility game is fully characterized by the tuple

M = ⟨I,J , (Ai)i∈I , (ui)i∈I⟩, (4.5)

a collection of sets of travelers, mobility services, actions, and a profile of utilities.

The mobility game M is a non-cooperative repeated routing game with a mul-

timodal transportation network and coupled action sets. Travelers have a travel-mode

choice to make that will satisfy their travel needs. The benefit of ensuring that our

mobility game M is a repeated game is that it eliminates the possibility of unassigned

travelers. At this point also, we clarify the information structure of the mobility game

M (“who knows what?” [135]). All travelers have complete knowledge of the mobil-

ity system (network, travel time latencies, waiting costs, and utility functions). Each

traveler knows their own information (action and utility) as well as the information of

other travelers. For the purposes of our work, we observe that a NE is most fitting to

apply as a solution concept as it requires complete information.

Before we continue to the analysis of our mobility game M, we summarize the

notation that has been introduced so far in our paper.

Analysis and Properties

In this section, our goal is to establish the existence of at least one NE in the

mobility game M, derive an upper bound for the PoA, and perform a prospect theory

analysis.

We start our exposition by summarizing two necessary preliminary concepts and

results of game theory that we use throughout the paper.

Definition 4.1.14. A game M is an exact potential game if there exists a potential

function Φ : A → R such that for all i ∈ I, for all a−i, and for all ai, a
′
i ∈ Ai, we have

Φ(ai, a−i)− Φ(a′i, a−i) = ui(ai, a−i)− ui(a
′
i, a−i). (4.6)
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Table 4.1: A summary of our notation.

Symbol Description
I Set of travelers
J Set of mobility services
Jh Set of mobility services of type h
H Set of different types of services
εj Physical traveler capacity for service

j ∈ J
ε̄j Maximum traveler capacity of service

j ∈ J
G Network with set of edges E and set of

nodes V
vi Node in network G that represents a

transport hub

P(o,d) Set of routes that connect the origin o
to destination d

θi Mobility wallet for traveler i ∈ I
θ̄i Maximum amount of travelers i’s mon-

etary units for the wallet θi
πi Mobility payment of traveler i ∈ I
ρi Route chosen by traveler i ∈ I
Svi Set of co-travelers at transport hub vi

for traveler i ∈ I
b(vi) Amount of funds available for transac-

tions at transport hub for traveler i ∈ I
τ Pricing mechanism
g Empty wallet disincentive
ηi Socioeconomic characteristic of traveler

i ∈ I
Ai Set of actions for traveler i ∈ I
A Cartesian product of all action sets
Je Total number of services of all types on

road e ∈ E
ce Travel time latency function
σ Rate of travel service

Definition 4.1.15. An action profile aNash = (aNash
i , aNash

−i ) is called a pure-strategy

Nash equilibrium for game M if, for all i ∈ I, we have ui(a
Nash
i , aNash

−i ) ≥ ui(a
′
i, a

Nash
−i ),

for all a′i ∈ Ai.
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The potential function Φ is a useful tool in showing whether a game has a NE

and analyzing its properties. This is because, by construction, the effect on the utility

of any traveler’s action is expressed by one function common for all travelers.

4.1.2 Existence of a Nash Equilibrium

In this subsection, we prove that for the mobility game M, as defined in Defini-

tion 4.1.13 (please also see Table 4.1), there exists at least one NE. The key idea of our

proof is the use of a potential function, as defined in Definition 4.1.14, that captures

the changes in utility of an arbitrary traveler that deviates in their action.

Theorem 4.1.16. The mobility game M admits a pure-strategy NE.

Proof. As it is standard in the existence of NE results for potential games (see Chapter

2 [126]), we start by stating the explicit form of the potential function for the mobility

game M, i.e.,

Φ(a) =
∑
v∈V

(
b(v)−

∑
i∈Sv

πi

)2

−
∑
i∈I

θ̄i
θi + ηiπi

−
∑
e∈E

Je∑
k=1

ce(k)−
∑
v∈V

∑
i∈I

|Sv|(|Sv|+ 1)

2σ(v, hi)
,

(4.7)

Our goal now is to verify Definition 4.1.14, thus showing that M is a potential

game. Mathematically, for an arbitrary traveler i and for any two actions ai = (ρi ∈

P(o,d), vi, πi) and a
′
i = (ρ′i ∈ P(o,d), v′i, π

′
i), we need to show

Φ(ai, a−i)− Φ(a′i, a−i) = ui(ai, a−i)− ui(a
′
i, a−i). (4.8)

Note here that any traveler i that deviates in their action ai to a
′
i by changing

their route ρi to ρ
′
i that does not require an additional service j on any new roads

e ∈ ρ′i, then traveler i’s impact to congestion is negligent. Thus, traveler i can change

routes and still travel along an existing service j in road e ∈ ρ′i if that service j has

not reached its maximum capacity ε̄j. If traveler i changes their route from ρi to ρ
′
i

and the traveler capacities of all services on that route are not maxed out, then the
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number of services Je does not change in the roads that remain the same along both

routes (any e ∈ ρi ∩ ρ′i). However, the number of services Je increases by one in any

road e ∈ ρ′i \ ρi since we require an additional service j in road e for traveler i. Thus,

we have
∑

e∈ρ′i
ce(Je) =

∑
e∈ρ′i∩ρi

ce(Je) +
∑

e∈ρ′i\ρi
ce(Je + 1).

If traveler i changes their transport hub vi to v
′
i, then their new waiting cost is

|Sv′
i
|+1

σ(v′i,h)
, where Sv′i = {k ∈ I \ {i} | vk = v′i}. We make a similar argument for πi and π

′
i,

and thus, we can write

ui(a
′
i, a−i) =

b(v′i)− ∑
k∈Sv′

i
\{i}

πk


2

−

b(v′i)− π′
i −

∑
k∈Sv′

i
\{i}

πk


2

− θ̄i
θi + ηiπ′

i

−
|Sv′i |

σ(v′i, hi)
−

 ∑
e∈ρ′i∩ρi

ce(Je) +
∑

e∈ρ′i\ρi

ce(Je + 1)

 , (4.9)

where the first component represents the squared remaining cost that traveler i has

to pay for deviating to the alternative transport hub v′i without taking into account

their π′
i. Thus, it accounts for the base cost of the deviation in the transport hub

and mobility payment and the sum of prices paid by other the travelers. The second

component represents the squared remaining cost that traveler i has to pay for the

alternative transport hub v′i when actually they do consider their π′
i, along with the

sum of prices paid by other travelers. We note here that the difference between these

two terms highlights the impact of traveler i’s price π′
i and v′i on their ui when they

deviate and choose an alternative action. If traveler i chooses a higher payment, the

remaining cost decreases, and this difference will have a negative impact on their utility.

Conversely, if traveler i chooses a lower payment, the remaining cost increases, and this

difference will have a positive impact on their utility. Next, we subtract (4.9) from (4.4)
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to get

ui(ai, a−i)− ui(a
′
i, a−i) =

b(vi)− ∑
k∈Svi\{i}

πk

2

−

b(vi)− ∑
i∈Svi

πi

2

−

b(v′i)− ∑
k∈Sv′

i
\{i}

πk


2

+

b(v′i)− π′
i −

∑
k∈Sv′

i
\{i}

πk


2

−
∑

e∈ρi\ρ′i

ce(Je)

+
∑

e∈ρ′i\ρi

ce(Je + 1)− |Svi |
σ(vi, hi)

+
|Sv′i |+ 1

σ(v′i, hi)
+

ηiθ̄i(πi − π′
i)

(θi + ηiπi)(θi + ηiπ′
i)
, (4.10)

where
∑

e∈ρi\ρ′i
ce(Je) =

∑
e∈ρi ce(Je) −

∑
e∈ρ′i∩ρi

ce(Je). Now, we denote all four com-

ponents of (4.7) as follows: ϕ1 = −
∑

v∈V
(
b(v)−

∑
i∈Sv

πi
)2
, ϕ2 = −

∑
i∈I

θ̄i
θi+ηiπi

,

ϕ3 = −
∑

e∈E
∑Je

k=1 ce(k), and ϕ4 = −
∑

v∈V
∑

i∈I
|Sv |(|Sv |+1)
2σ(v,hi)

. Step by step, we compute

the difference of all four different ϕ’s under ai and a
′
i as follows

ϕ1(ai, a−i)− ϕ1(a
′
i, a−i) =

b(v′i) + ∑
i∈Sv′

i

π′
i


2

−
∑
v∈V

(
b(v)−

∑
i∈Sv

πi

)2

−
∑

v∈V\{v′i}

(
b(v)−

∑
i∈Sv

πi

)2

=

b(vi)− ∑
k∈Svi\{i}

πk

2

−

b(vi)− ∑
i∈Svi

πi

2

−

b(v′i)− ∑
k∈Sv′

i
\{i}

πk


2

+

b(v′i)− π′
i −

∑
k∈Sv′

i
\{i}

πk


2

, (4.11)

where we note that in
∑

v∈V both vi and v
′
i are included, so if we expand the summations

that involve the unrelated nodes in V , then most terms cancel out (what remains are

only the terms that involve the deviations of traveler i, thus we get (4.11)). Next, we

have

ϕ2(ai, a−i)− ϕ2(a
′
i, a−i) = −

∑
i∈I

θ̄i
θi + ηiπi

+

 ∑
k∈I\{i}

θ̄k
θk + ηkπk

+
θ̄i

θi + ηiπ′
i


=
∑
i∈I

ηiθ̄i(πi − π′
i)

(θi + ηiπi)(θi + ηiπ′
i)
. (4.12)
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ϕ3(ai, a−i)− ϕ3(a
′
i, a−i) = −

∑
e∈E

Je∑
k=1

ce(k) +
∑

e∈E\{e∈ρ′i}

Je−1∑
k=1

ce(k) +
∑

e∈E\{e∈ρi}

Je+1∑
k=1

ce(Je)

= −
∑

e∈ρi\ρ′i

ce(Je) +
∑

e∈ρ′i\ρi

ce(Je + 1), (4.13)

ϕ4(ai, a−i)− ϕ4(a
′
i, a−i) =

∑
v∈V

∑
i∈I

|Sv|(|Sv|+ 1)

2σ(v, hi)
−

∑
v∈V\{vi}∪{v′i}

∑
k∈I\{i}

[
|Sv|(|Sv|+ 1)

2σ(v, hk)

]

− |Svi |(|Svi | − 1)

2σ(vi, hi)
−

(|Sv′i |+ 1)(|Sv′i |+ 2)

2σ(v′i, hi)
=

|Svi |
σ(vi, hi)

−
|Sv′i |+ 1

σ(v′i, hi)
, (4.14)

We define Φ(ai, a−i) − Φ(a′i, a−i) =
∑4

k=1 [ϕk(ai, a−i)− ϕk(a
′
i, a−i)]. We take the sum

of (4.11) - (4.14) and thus, we obtain Φ(ai, a−i)−Φ(a′i, a−i) = ui(ai, a−i)− ui(a
′
i, a−i).

This proves that the mobility game M is a potential game, and so following from key

results (see [126]), we conclude that M admits a pure-strategy NE.

Note that this existence result is not straightforward as the action set of any

traveler is a coupled set composed of countable and uncountable subsets.

Corollary 4.1.17. If the mobility game M is played repeatedly, then the travelers’

actions converge to a pure-strategy NE in finite time.

Proof. We aim to show that if the mobility game M is played repeatedly, the travelers’

actions will converge to a pure-strategy NE in finite time. This proof relies on Theorem

4.1.16 and Theorem 2.6 (pp. 33) from [126]. The mobility game M can be classified

as a repeated routing game with complete information since each traveler i ∈ I has

full knowledge of the mobility system (travel time latencies, network congestion, and

other relevant parameters) when making their decisions. We demonstrate convergence

to a pure-strategy NE by considering the decision-making process of the travelers; so

we outline the iterative process: (i) Traveler i ∈ I chooses their initial action ai based

on the current state of the mobility system. (ii) After observing traveler i’s action, all

other travelers k ∈ I, k ̸= i choose their actions ak accordingly, taking into account the

updated state of the mobility system. (iii) The mobility system’s state is updated again,
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reflecting the actions of all travelers in the current round. (iv) Traveler i now evaluates

their action ai and decides whether to deviate to a′i based on the updated state of the

mobility system. (v) These steps are repeated for all travelers until no traveler has an

incentive to change their action, leading to a convergence to a pure-strategy NE. we

observe that travelers compete and as a result, each traveler’s actions are influenced by

the actions of others. So, continuous deviations eventually will lead to a pure strategy

NE by an iterative process (see Theorem 2.6 from [126]). In conclusion, by showing

that the mobility game M is a repeated routing game with complete information and

that the iterative decision-making process of the travelers leads to a stable equilibrium,

we have demonstrated that the travelers’ actions will converge to a pure-strategy NE

in finite time.

4.1.3 Price of Anarchy and Stability Analysis

An existence result (Theorem 4.1.16) leads to the problem of multiple NE and

raises questions about the efficiency of each equilibrium. For example, an important

concern is the efficiency of the equilibrium that the travelers will reach (as it is guaran-

teed by Corollary 4.1.17). To address this concern, we provide an analysis based on the

Price of Anarchy (PoA) [122], which is one of the most widely-used metrics to mea-

sure the inefficiency in a system and provides an understanding of how the travelers’

decision-making affect the overall performance of the system. We provide the formal

definition of the PoA.

Definition 4.1.18. Let the social welfare of the mobility game M be represented by

J(a) =
∑

i∈I ui(a). Then, the PoA is the ratio of the maximum optimal social welfare

over the minimum social welfare at a NE, i.e.,

PoA =
maxa∈A

∑
i∈I ui(a)

mina∈ANash

∑
i∈I ui(a)

≥ 1, (4.15)

where ANash is the set of NE, which is guaranteed to be non-empty according to Theorem

4.1.16.
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Next, we show that, for the mobility game M, (4.15) is as low as possible at

an arbitrary NE. Thus, it follows that our PoA result yields an upper bound for the

inefficiencies at a NE of the mobility game M.

But first, we prove two useful lemmata that are necessary for our work.

Lemma 4.1.19. Let a∗i = (ρ∗i , v
∗
i , π

∗
i ) denote the optimal action of traveler i ∈ I, define

b̃2 =
∑

v∈V
(∑

h∈H b(v, h)
)2

=
∑

v∈V (b(v))
2, and at a NE:

J3(a) =
∑
i∈I

[b(v∗i )− ∑
i∈Sv∗

i

πi

2

−

b(v∗i )− π∗
i −

∑
k∈Sv∗

i
\{i}

πk

2

− θ̄i
θi + ηiπ∗

i

]
. (4.16)

Then, we have

∑
i∈I

[b(v∗i )− ∑
k∈Sv∗

i
\{i}

πk

2

−

b(v∗i )− π∗
i −

∑
k∈Sv∗

i
\{i}

πk

2

− θ̄i
θi + ηiπ∗

i

]

≤ J3(a
∗)−

√
(b̃2 + 2(J3(aNash)− Iθ̄i))(b̃2 + 2(J3(a∗)− Iθ̄i))− 4Iθ̄i − b̃2

− b̃

(√
b̃2 + 2(J3(aNash)− Iθ̄i) +

√
b̃2 + 2(J3(a∗)− Iθ̄i)

)
. (4.17)

Proof. At social optimum, the pricing mechanism is given by

τ ∗(v∗i , π
∗
i ) =

b(v∗i )− ∑
k∈S∗

v∗
i
\{i}

π∗
k


2

−

b(v∗i )− ∑
i∈S∗

v∗
i

π∗
i


2

=

b(v∗i )− ∑
k∈S∗

v∗
i
\{i}

π∗
k


2

−

b(v∗i )− π∗
i −

∑
k∈S∗

v∗
i
\{i}

π∗
k


2

= 2π∗
i b(v

∗
i )− (π∗

i )
2 − 2π∗

i

∑
k∈S∗

v∗
i
\{i}

π∗
k. (4.18)
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Summing over all travelers now gives

∑
i∈I

[
2π∗

i b(v
∗
i )− (π∗

i )
2 − 2π∗

i

∑
k∈S∗

v∗
i
\{i}

π∗
k

]

= 2
∑
i∈I

π∗
i b(v

∗
i )−

∑
v∈V

2

∑
i∈S∗

v∗

π∗
i

2+
∑
i∈I

(π∗
i )

2

= 2
∑
v∈V

b(v)
∑
i∈S∗

v∗
i

π∗
i −

∑
v∈V

2

∑
i∈S∗

v∗

π∗
i

2+
∑
i∈I

(π∗
i )

2. (4.19)

So, we use the Cauchy-Schwarz inequality to bound (4.19), i.e.,

J3(a
∗)−

∑
i∈I

θ̄i
θi + ηiπ∗

i

≤ 2

√√√√√∑
v∈V

(b(v))2
∑
v∈V

∑
i∈S∗

v∗

π∗
i

2

−2
∑
v∈V

∑
i∈S∗

v∗

π∗
i

2

+
∑
i∈I

(π∗
i )

2.

(4.20)

For any traveler i, it is always true that θ̄i
θi+ηiπ∗

i
> 0, π∗

i ∈ [0, θ̄i], and also b̃2 =∑
v∈V(b(v))

2. Thus, (4.20) simplifies to

∑
v∈V

∑
i∈S∗

v∗

π∗
i

2

− b̃

√√√√√∑
v∈V

∑
i∈S∗

v∗

π∗
i

2

− 1

2

(
J3(a

∗)− I · θ̄i
)
≤ 0, (4.21)

Note that (4.21) is a second-order polynomial with respect to

√∑
v∈V

(∑
i∈S∗

v∗
π∗
i

)2
.

Thus, we compute the discriminant ∆∗ = b̃2+2
(
J3(a

∗)− I · θ̄i
)
, where ∆∗ denotes the

discriminant at the social optimum, so clearly ∆∗ ≥ 0. So, from (4.21), we get

2

√√√√√∑
v∈V

∑
i∈S∗

v∗

π∗
i

2

≤ b̃+
√
∆∗. (4.22)

We need to follow the same steps to obtain a similar relation as (4.22) for a NE. Hence,

we have

2

√√√√∑
v∈V

(∑
k∈Sv

πk

)2

≤ b̃+
√
∆, (4.23)
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where ∆ = b̃2 + 2
(
J3(a

Nash)− I · θ̄i
)
. Next, the LHS of (4.17), if expanded, can be

simplified as follows:

∑
i∈I

[b(v∗i )− ∑
k∈Sv∗

i
\{i}

πk

2

−

b(v∗i )− π∗
i −

∑
k∈Sv∗

i
\{i}

πk

2

− θ̄i
θi + ηiπ∗

i

]

= 2
∑
i∈I

b(v∗i )π∗
i − π∗

i

∑
k∈Sv∗

i
\{i}

πk −
1

2
(π∗

i )
2

−
∑
i∈I

θ̄i
θi + ηiπ∗

i

. (4.24)

J3(a
∗)− 2

∑
i∈I

π∗
i

∑
k∈Sv∗

i
\{i}

πk + 2
∑
i∈I

π∗
i

∑
k∈S∗

v∗
i
\{i}

π∗
k

= J3(a
∗)− 2

∑
i∈I

π∗
i

 ∑
k∈Sv∗

i
\{i}

πk −
∑

k∈S∗
v∗
i
\{i}

π∗
k


= J3(a

∗)− 2
∑
i∈I

π∗
i

∑
k∈Sv∗

i

π∗
k − πi(v

∗
i )−

∑
k∈S∗

v∗
i

π∗
k + π∗

i

 , (4.25)

where πi(v
∗
i ) denotes traveler i’s payment at an optimal v∗i , and thus, (4.25) can be

simplified by noting that

2
∑
i∈I

π∗
i

∑
k∈Sv∗

i

π∗
k − πi(v

∗
i )−

∑
k∈S∗

v∗
i

π∗
k + π∗

i


= 2

∑
i∈I

[
(π∗

i )
2 − π∗

i πi(v
∗
i )
]
+ 2

∑
v∈V

∑
k∈S∗

v∗

π∗
k

∑
k∈Sv

πk − 2
∑
v∈V

∑
k∈S∗

v∗

π∗
k

2

, (4.26)

Using (4.26), we impose an upper bound to (4.25) as follows

J3(a
∗)− 2

∑
i∈I

π∗
i

∑
k∈Sv∗

i

π∗
k − πi(v

∗
i )−

∑
k∈S∗

v∗
i

π∗
k + π∗

i


≤ J3(a

∗)− 4Iθ̄i − 2
∑
v∈V

∑
k∈S∗

v∗

π∗
k

∑
k∈Sv

πk

 . (4.27)
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We continue by upper bounding the summations in (4.27):

∑
v∈V

∑
k∈S∗

v∗

π∗
k

∑
k∈Sv

πk

 ≤

√√√√√∑
v∈V

∑
k∈S∗

v∗

π∗
k

2∑
v∈V

(∑
k∈Sv

πk

)2

≤ 1

2

(√
b̃2 +

√
∆
)(√

b̃2 +
√
∆∗
)

=
1

2

√
∆∆∗ +

b̃

2

(√
∆+

√
∆∗
)
+
b̃2

2
, (4.28)

by the Cauchy-Schwartz inequality and relations (4.22) and (4.23). Finally, we substi-

tute ∆ = b̃2 + 2(J3(a
Nash) − Iθ̄i) and ∆∗ = b̃2 + 2(J3(a

∗) − Iθ̄i) into (4.28) and with

(4.27) we obtain the desired bound.

Lemma 4.1.20. We have

J(a∗)

J(aNash)
≤ 1−

√√√√( b̃2
I
+

2J(a∗)

J(aNash)

)(
b̃2

I
+ 2

)
− b̃2

I
− 4θ̄i

− b̃√
I

√ b̃2

I
+

2J(a∗)

J(aNash)
+

√
b̃2

I
+ 2

 . (4.29)

Proof. We can show this result by expanding and rearranging (4.29) to obtain a sim-

plified relation. So, we have

J(a∗)

J(aNash)
−

(
1 +

b̃2

I
− 4θ̄i

)
+

b̃√
I

√
b̃2

I
+ 2 ≤ −

√ b̃2

I
+ 2 +

b̃√
I

√ b̃2

I
+

2J(a∗)

J(aNash)
.

(4.30)

We seek to solve for J(a∗)
J(aNash)

, so we remove the square roots by squaring both sides of

(4.30), i.e.,

J(a∗)

J(aNash)
− 2(D + E2)

J(a∗)

J(aNash)
+

(
D2 − b̃2E2

I

)
≤ 0, (4.31)

where E =
√

b̃2

I
+ 2 + b̃√

I
and D =

(
1 + b̃2

I
− 4θ̄i

)
− b̃√

I

√
b̃2

I
+ 2. We solve (4.31) by

noting the positivity of the coefficients to obtain

J(a∗)

J(aNash)
≤ E2 +D + E

√
E2 + 2D +

b̃2

I
. (4.32)
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We observe that E2 + 2D + b̃2

I
≤
(
E + D

E
+ b̃2

2EI

)2
, and so, an upper bound exists for

(4.32). Thus, we have J(a∗)
J(aNash)

≤ 2E2 + 2D + b̃2

2I
. We substitute back both E and D

and get

J(a∗)

J(aNash)
≤ 2 +

3b̃2

2I
+

3b̃√
I

√
b̃2

I
+ 2 +

5b̃2

2I

= 2 +
4b̃2

I
+

b̃√
I

√
b̃2

I
+ 2. (4.33)

Hence, since b̃2

I
+ 2 ≤

(
b̃√
I
+

√
I
b̃

)2
, the result follows.

We are ready now to state and prove our PoA result.

Theorem 4.1.21. Any inefficiencies of any NE of the mobility game M remain low as

close to a constant as the number of travelers |I| = I tends to infinity. Mathematically,

we have

PoA ≤ 2 +
5

I

∑
v∈V

(∑
h∈H

b(v, h)

)2

. (4.34)

Proof. From Definition 4.1.15, for some arbitrary traveler i ∈ I, it is clear that

ui(a
Nash
i , a−i) ≤ ui(a

∗
i , a−i), so if we expand the RHS of it, we get

ui(a
∗
i , a−i) =

b(v∗i )− ∑
k∈Sv∗

i
\{i}

πk

2

−

b(v∗i )− π∗
i −

∑
k∈Sv∗

i
\{i}

πk

2

−
∑

e∈ρ∗i \ρi

ce(Je + 1)−
∑

e∈ρ∗i∩ρi

ce(Je)−
|Sv∗i |

σ(v∗i , hi)
− θ̄i
θi + ηiπ∗

i

, (4.35)

where b(v∗i ) is the budget at an optimal v∗i and Sv∗i = {k ∈ I | v∗k = v∗i }. Summing

over all travelers in (4.35), and keeping note of ui(a
Nash
i , a−i) ≤ ui(a

∗
i , a−i) yields

J(aNash) ≤
∑
i∈I

ui(a
∗
i , a−i). (4.36)
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At this point, we recall that the travel time latency functions are linear. Thus, we can

write

J1(a
Nash) =

∑
i∈I

∑
e∈ρNash

i

ce(J
Nash
e ) =

∑
e∈E

JNash
e (ξ1J

Nash
e + ξ2), (4.37)

J1(a
∗) =

∑
i∈I

∑
e∈ρ∗i

ce(J
∗
e ) =

∑
e∈E

J∗
e (ξ1J

∗
e + ξ2), (4.38)

where JNash
e and J∗

e denote the number of services on road e at a NE and social optimum,

respectively. Inspired from [10], we impose an upper bound on each component of the

RHS of (4.36), and thus we have the following∑
i∈I

( ∑
e∈ρ∗i \ρi

ce(Je + 1) +
∑

e∈ρ∗i∩ρi

ce(Je)

)
≤
∑
i∈I

∑
e∈ρ∗i

ce(Je + 1)

=
∑
e∈E

ξ1J
∗
eJe + J∗

e (ξ1 + ξ2)

≤
√∑

e∈E

ξ1J2
e ξ1(J

∗
e )

2 +
∑
e∈E

J∗
e (ξ1J

∗
e + ξ2)

≤
√∑

e∈E

(ξ1J2
e + ξ2Je)(ξ1(J∗

e )
2 + ξ2J∗

e ) +
∑
e∈E

J∗
e (ξ1J

∗
e + ξ2)

=
√
J1(aNash)× J1(a∗) + J1(a

∗), (4.39)

where we simplified the notation as JNash
e = Je, used ce(Je) ≤ ce(Je + 1) for each

e ∈ ρ∗i ∩ ρi, and applied the Cauchy-Schwarz inequality twice. Note that ξ1J
∗
e + ξ2 ≤

ξ1(J
∗
e )

2 + ξ2J
∗
e at any e ∈ E . Next, we introduce notation: J2(a

Nash) =
∑

i∈I
|SNash

vi
|

σ(vNash
i ,hi)

and J2(a
∗) =

∑
i∈I

|Sv∗
i
|

σ(v∗i ,hi)
. We have∑

i∈I

|Sv∗i |
σ(v∗i , hi)

≤
√
J2(a∗)J2(aNash) + J2(a

∗). (4.40)

Now we introduce the following notation:

J3(a
Nash) =

∑
i∈I

[b(vNash
i )−

∑
k∈SNash

vi
\{i}

πNash
k

2

−

b(vNash
i )−

∑
i∈SNash

vi

πNash
i

2

− θ̄i
θi + ηiπNash

i

]
, (4.41)
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where b(vNash
i ) is the budget at a vNash

i , and

J3(a
∗) =

∑
i∈I

[b(v∗i )− ∑
k∈S∗

v∗
i
\{i}

π∗
k


2

−

b(v∗i )− ∑
i∈S∗

v∗
i

π∗
i


2

− θ̄i
θi + ηiπ∗

i

]
. (4.42)

By Lemma 4.1.19, we have a bound for the first two components of (4.36), thus

∑
i∈I

[b(v∗i )− ∑
k∈Sv∗

i
\{i}

πk

2

−

b(v∗i )− π∗
i −

∑
k∈Sv∗

i
\{i}

πk

2

− θ̄i
θi + ηiπ∗

i

]

≤ J3(a
∗)−

√
(b̃2 + 2(J3(aNash)− Iθ̄i))(b̃2 + 2(J3(a∗)− Iθ̄i))− 4Iθ̄i − b̃2

− b̃

(√
b̃2 + 2(J3(aNash)− Iθ̄i) +

√
b̃2 + 2(J3(a∗)− Iθ̄i)

)
, (4.43)

We combine all relations together (4.39), (4.40), and (4.43) and substitute them into

(4.36) to get

J(aNash) ≤
√
J1(aNash)J1(a∗) + J1(a

∗) +
√
J2(a∗)J2(aNash) + J2(a

∗)− b̃2 + J3(a
∗)

+

√
(b̃2 + 2(J3(aNash)− Iθ̄i)(b̃2 + 2(J3(a∗)− Iθ̄i))

− b̃

(√
b̃2 + 2(J3(aNash)− Iθ̄i) +

√
b̃2 + 2(J3(a∗)− Iθ̄i)

)
≤ J(a∗)− b̃

(√
b̃2 + 2J3(aNash) +

√
b̃2 + 2J3(a∗)

)

−

√√√√(b̃2 + 2

(
3∑

k=1

Jk(a∗)− Iθ̄k

))(
b̃2 + 2

(
3∑

k=1

Jk(aNash)− Iθ̄k

))
− 4Iθ̄i − b̃2,

(4.44)

where we have used the fact that for any four numbers (γk ∈ R>0), k = 1, 2, 3, 4, we

have
√
γ1γ2 +

√
γ3γ4 ≤

√
(γ1 + γ3)(γ2 + γ4). Then (4.44) leads to

J(a∗)−
√

(b̃2 + 2J(a∗))(b̃2 + 2J(aNash))

− b̃

(√
b̃2 + 2J3(aNash) +

√
b̃2 + 2J3(a∗)

)
− 4Iθ̄i − b̃2

≤ J(a∗)−
√

(b̃2 + 2J(a∗))(b̃2 + 2J(aNash))

− b̃

(√
b̃2 + 2J(aNash) +

√
b̃2 + 2J(a∗)

)
− 4Iθ̄i − b̃2. (4.45)
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So, we have the following after a simple rearrangement

J(a∗) ≤ J(aNash)−
√

(b̃2 + 2J(a∗))(b̃2 + 2J(aNash))

− b̃

(√
b̃2 + 2J(aNash) +

√
b̃2 + 2J(a∗)

)
− 4Iθ̄i − b̃2. (4.46)

We divide both sides of (4.46) by J(aNash) to obtain

J(a∗)

J(aNash)
≤ 1−

√√√√( b̃2
I
+

2J(a∗)

J(aNash)

)(
b̃2

I
+ 2

)
− b̃2

I
− 4θ̄i

− b̃√
I

√ b̃2

I
+

2J(a∗)

J(aNash)
+

√
b̃2

I
+ 2

 , (4.47)

By Lemma 4.1.20, we reach the desired bound.

Next, we discuss the intuition behind Theorem 4.1.21. The travelers of the

mobility game M are considered selfish and non-cooperative. Thus, one important

question is what will be the impact of selfishness on the efficiency of the mobility

system. Since the existence of a NE is guaranteed by Theorem 4.1.16 and the mobility

game M converges to at least one NE, we can compare the level of inefficiency at a

NE to the social optimum (this is exactly what the PoA does). The bound we have

derived in (4.34) under certain conditions ensures the mobility system’s inefficiency is

guaranteed to remain within a constant, and as the number of travelers increases, this

bound becomes smaller and smaller. So, our mobility game M can ensure in a realistic

setting (big city with road infrastructure) with a large number of travelers a sufficiently

efficient operation of the mobility system as it could ideally be operated by a central

authority “ordering” the travelers how to travel. Our bound in (4.34) is strong in the

sense that it excludes any other possibility of an improvement in efficiency compared

to what we can achieve at a NE.

It happens that we can also upper bound using the “potential function method”

(as used in [171]) the Price of Stability (PoS) for our mobility game M. The PoS is
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defined as a ratio comparing social optimum and the best possible social welfare at a

NE, i.e.,

PoS =
maxa∈A

∑
i∈I ui(a)

maxa∈ANash

∑
i∈I ui(a)

. (4.48)

Theorem 4.1.22. With linear travel time latency functions and pricing (4.1.7), the

PoS for the mobility game M is upper bounded, i.e.,

PoS =
J(a∗)

J(ãNash)
≤ 1

2
+ max

i∈I

[
θ̄i(θ̄i − 1)

]
+

1

I

∑
v∈V

(b(v))2. (4.49)

Proof. Recall that the social welfare of the mobility game M is represented by J(a) =∑
i∈I ui(a). We aim to compare the J(a) with the potential function Φ(a). So, we have

Φ(a) =
∑
v∈V

(
b(v)−

∑
i∈Sv

πi

)2

−
∑
i∈I

θ̄i
θi + ηiπi

−
∑
e∈E

Je∑
k=1

(ξ1k+ξ2)−
∑
v∈V

∑
i∈I

|Sv|(|Sv|+ 1)

2σ(v, hi)
,

(4.50)

where we have substituted ce(Je) = ξ1Je + ξ2. Next, we have

Φ(a) =
∑
v∈V

(b(v))2 − 2
∑
v∈V

(
b(v)

∑
i∈Sv

πi

)
+
∑
v∈V

(∑
i∈Sv

πi

)2

−
∑
i∈I

θ̄i
θi + ηiπi

−
∑
e∈E

(ξ1J
2
e + (ξ1 + 2ξ2)Je)−

∑
v∈V

∑
i∈I

|Sv|(|Sv|+ 1)

2σ(v, hi)
. (4.51)

We also have the following

J(a) =
∑
i∈I

ui(a) =
∑
i∈I

2πi

b(vi)− πi
2
−

∑
k∈Svi\{i}

πk

−
∑
i∈I

θ̄i
θi + ηiπi

−
∑
i∈I

∑
e∈ρi:ρi∈P(o,d)

(ξ1Je + ξ2)−
∑
i∈I

|Svi |
σ(vi, hi)

, (4.52)

which leads to

J(a) =
∑
i∈I

2πi

b(vi)− πi
2
−

∑
k∈Svi\{i}

πk

−
∑
i∈I

θ̄i
θi + ηiπi

−
∑
e∈E

(ξ1J
2
e + ξ2Je)−

∑
i∈I

|Svi |
σ(vi, hi)

, (4.53)
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By comparing now (4.51) and (4.53), we note that

1

2
J(a) ≤ Φ(a) ≤ J(a) +

∑
v∈V

(b(v))2 + 2
∑
i∈I

∑
k∈Svi\{i}

πiπk (4.54)

≤ J(a) + 2I max
i∈I

[
θ̄i(θ̄i − 1)

]
+
∑
v∈V

(b(v))2. (4.55)

Our next step is to define a NE that happens to maximize the potential function, say

ãNash to get

J(ãNash) ≤ Φ(ãNash) ≤ Φ(a∗) ≤ J(a∗) + 2I max
i∈I

[
θ̄i(θ̄i − 1)

]
+
∑
v∈V

(b(v))2. (4.56)

Therefore, if we divide by J(ãNash), we get the following relation

PoS =
J(a∗)

J(ãNash)
≤ 1

2
+ max

i∈I

[
θ̄i(θ̄i − 1)

]
+

1

I

∑
v∈V

(b(v))2. (4.57)

Theorem 4.1.22 helps us understand the mobility game’s NE and provides a

metric for how close any NE might be to the social optimum. We can ensure that as

the number of travelers increases, the smaller the PoS becomes, guaranteeing that the

closer the mobility game’s NE is to the social optimum.

4.1.4 Prospect Theory Analysis

In this subsection, we introduce prospect theory and its main concepts [247, 15].

We then incorporate prospect theory to our game M. One of the main questions

prospect theory attempts to answer is how a decision-maker may evaluate different

possible actions/outcomes under uncertain and risky circumstances. Thus, prospect

theory is a descriptive behavioral model and focuses on three main behavioral factors:

1. Reference dependence: decision makers make decisions based on their utility,

which is measured from the “gains” or “losses.” However, the utility is a gain or

loss relative to a reference point that may be unique to each decision-maker. It has
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been shown in experimental studies [15] the reference dependence captures the

tendency of a decision-maker to be more affected in their decisions by the changes

in attributes than by the absolute magnitudes. For example, the shortest/average

travel time between two locations.

2. Diminishing sensitivity : changes in value have a greater impact near the reference

point than away from the reference point. For example, an individual is highly

likely to discriminate between a 1 and 2 hours travel time but not very likely to

notice the difference between 18 and 19 hours travel time.

3. Loss aversion: decision-makers are more conservative in gains and riskier in

losses. For example, a traveler may prefer to secure a 45 min commute rather

than risking for a 1.5 hours commute.

One way to mathematize the above behavioral factors (1) - (3) is to consider an action

by a decision-maker as a “gamble” with objective utility value z ∈ R (e.g., money).

We say that this decision maker perceives z subjectively using a value function [238, 3]

ν(z) =

(z − z0)
β1 , if z ≥ z0,

−λ(z0 − z)β2 , if z < z0,

(4.58)

where z0 represents a reference point, β1, β2 ∈ (0, 1) are parameters that represent the

diminishing sensitivity. Both β1, β2 shape (4.58) in a way that the changes in value

have a greater impact near the reference point than away from the reference point.

We observe that (4.58) is concave in the domain of gains and convex in the domain

of losses. Moreover, λ ≥ 1 reflects the level of loss aversion of decision makers (see

Fig. 4.1).

Remark 4.1.23. To the best of our knowledge, there does not exist a widely-agreed

theory that determines and defines the reference dependence [110, 116, 18]. In en-

gineering [100, 71], it is assumed that z0 = 0 captures a decision maker’s expected

status-quo level of the resources.
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Figure 4.1: The value function for three different values of λ.

As we discussed earlier in this subsection, prospect theory models the subjective

behavior of decision-makers under uncertainty and risk. Each objective utility z ∈ R

is associated with a probabilistic occurrence, say p ∈ [0, 1]. Decision makers, though,

are subjective and perceive p in different ways depending on its value. To capture this

behavior, we introduce a strictly increasing function w : [0, 1] → R with w(0) = 0 and

w(1) = 1 called the probability weighting function. This function allows us to model

how decision-makers may overestimate small probabilities of objective utilities, i.e.,

w(p) > p if p is close to 0, or underestimate high probabilities, i.e., w(p) < p if p is

close to 1 (see Fig. 4.2). For the purposes of this work, we use the probability weighting

function first introduced in [182],

w(p) = exp
(
−(− log(p))β3

)
, p ∈ [0, 1], (4.59)

where β3 ∈ (0, 1) represents a rational index, i.e., the distortion of a decision-makers

probability perceptions. Mathematically, β3 controls the curvature of the weighting
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function (see Fig. 4.2). Although there are many different formulations for the proba-

bility weighting function, we use (4.59) defined in [182] as a single-parameter function

and easier computationally to estimate.

Figure 4.2: The probability weighting function for three different values of the rational
index β3.

Next, we define a prospect which is a tuple of the objective utility (gain or loss)

and its probability of happening.

Definition 4.1.24. Suppose that there are K ∈ N possible outcomes available to a

decision-maker and zk ∈ R is the kth gain/loss of objective utility. Then a prospect ℓk

is a tuple of the utilities and their respective probabilities

ℓk = (z0, z1, z2, . . . , zK ; p0, p1, p2, . . . , pK), (4.60)

where k = 1, 2, . . . , K. We denote the kth prospect more compactly as ℓk = (zk, pk).

We have that
∑K

k=0 pk = 1 and ℓk is well-ordered, i.e., z0 ≤ x1 ≤ · · · ≤ zK. Un-

der prospect theory, the decision-maker evaluates their “subjective utility” as u(ℓ) =
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∑
0≤k≤K v(zk)w(pk), where ℓ = (ℓk)

K
k=1 is the profile of prospects of K outcomes.

In the remainder of this subsection, we apply the prospect theory to our game,

clearly define the mobility outcomes (objective and subjective utilities), and then show

that the prospect-theoretic mobility game M admits a NE.

Travelers may be uncertain about the available amount of mobility funds at

any transport hub, that is why we define a mobility prospect to represent as a random

variable Z with objective utilities z1, z2, . . . , zK and their probabilities p1, p2, . . . , pK .

Each zk now represents the uncertain b(vi). In addition, the reference dependence of

each traveler i is represented by z0i ∈ R. For any traveler i, the probability weighting

function is wi : [0, 1] → R and the value function is νi(zk, z
0
i ) : R2 → R, k = 1, 2, . . . , K.

Thus, we have

E[Z] =
K∑
k=1

νi(zk, z
0
i )wi(pk), (4.61)

where wi(pk) is given by (4.59), and

νi(zk, z
0
i ) =

(zk − z0i )
β, if zk ≥ z0i ,

−λ(z0i − zk)
β, if zk < z0i ,

(4.62)

where β = β1 = β2. We can justify β1 = β2 in the above definition as it has been

verified to produce extremely good results, and the outcomes are consistent with the

original data [238]. Next, we explicitly define the reference point for the mobility

game M as follows z0i =
(∑

k∈Svi\{i}
πk

)2
−
(∑

i∈Svi
πi

)2
where z0i represents the ideal

redistribution of wealth to traveler i (since no transport hub vi should make a profit,

i.e., b(vi) = 0). For the random variable Z, we assume a continuous distribution F

with zero mean and a probability density function f , and explicitly have

Z =

F −
∑

k∈Svi\{i}

πk

2

−

F −
∑
i∈Svi

πi

2

. (4.63)
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So, by (4.61), we have E[Z] =
∑

n∈R νi(z(n), z
0
i )wi(f(n)), where z(n) represents at each

transport hub vi of an arbitrary traveler i the realization of Z with n ∈ R available

mobility funds. The total utility now under prospect theory for a traveler i is

uPTi (a) = z0i + E[Z]− θ̄i
θi + ηiπi

−
∑

e∈ρi:ρi∈P(o,d)

ce(Je)−
|Svi |

σ(vi, hi)
. (4.64)

Next, we show that our mobility game M under prospect theory is guaranteed

to have at least one NE.

Theorem 4.1.25. The mobility game M under prospect theory admits a pure-strategy

NE.

Proof. We expand z(n) and subtract z0i and simplify to get

z(n) =

n−
∑

k∈Svi\{i}

πk

2

−

n−
∑
i∈Svi

πi

2

z(n)− z0i = 2n

 ∑
k∈Svi\{i}

πk −
∑
i∈Svi

πi

 = 2nπi. (4.65)

where z0i =
(∑

k∈Svi\{i}
πk

)2
−
(∑

i∈Svi
πi

)2
. Substituting (4.65) into (4.64) yields

uPTi (a) = z0i +
∑
n∈R

νi ·(2nπi)·wi(f(n))−
∑

e∈ρi:ρi∈P(o,d)

ce(Je)−
|Svi |

σ(vi, hi)
− θ̄i
θi + ηiπi

, (4.66)

where vi is given by (4.62). The next step is explicitly defining a new potential function

under prospect theory. We have

Ψ(a) =
∑
i∈I

∑
n∈R

νi · (2nπi) · wi(f(n))−
∑
e∈E

Je∑
k=1

ce(k)

−
∑
v∈V

|Sv|(|Sv|+ 1)

2σ(v, hi)
−
∑
i∈I

θ̄i
θi + ηiπi

+
∑
v∈V

(∑
k∈Sv

πk

)2

. (4.67)

Next, we show that Ψ as given in (4.67) is an exact potential function. We notice

that
∑

n∈R νi · (2nπi) · wi(f(n)) does not depend on a−i, i.e., the actions of the other
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travelers except traveler i. Hence, following similar arguments as in Theorem 4.1.16,

we obtain uPTi (ai, a−i) − uPTi (a′i, a−i) = Ψ(ai, a−i) − Ψ(a′i, a−i). Hence, Ψ is indeed an

exact potential function for the mobility game M under prospect theory. Therefore,

since any action profile that minimizes Ψ results in a NE, the mobility game M admits

a NE under prospect theory.

Corollary 4.1.26. For the mobility game M under prospect theory, the sequence of

best responses of an arbitrary traveler i ∈ I converges to a NE.

Proof. It is sufficient to note that the action set Ai of any traveler i is compact. Thus,

it follows from the results in [162] that the sequence of best responses of any traveler

i ∈ I converges to a NE.

Both Theorem 4.1.25 and Corollary 4.1.26 ensure that the mobility game M

under the prospect-theoretic behavioral model admits a NE and prospect-based travel-

ers will eventually converge to it. Both results establish that we can still ensure that an

equilibrium can be reached under certain conditions for the cost and pricing functions.

4.2 Modeling Travel Behavior in Mobility Systems with an Atomic Rout-

ing Game and Prospect Theory

We now present a game-theoretic modeling framework for studying travel be-

havior in mobility systems by incorporating prospect theory. As part of our motivation,

we conducted an experiment in a scaled smart city to investigate the frequency of er-

rors in actual and perceived probabilities of a highway route under free-flow conditions.

Based on these findings, we provide a game that captures how travelers distribute their

traffic flows in a transportation network with splittable traffic, utilizing the Bureau of

Public Roads function to establish the relationship between traffic flow and travel time

cost. Given the inherent non-linearities, we propose a smooth approximation function

that helps us estimate the prospect-theoretic cost functions. As part of our analysis,

we characterize the best-fit parameters and derive an upper bound for the error. We
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then show a Nash Equilibrium existence. Finally, we present a numerical example and

simulations to verify the theoretical results and demonstrate the effectiveness of our

approximation.

4.2.1 Motivational Example

It is well established in the literature that travel behavior is a rather complex and

complicated part of mobility that requires sophisticated models to capture the “actual”

travel behavior and conditions. Travelers are frequently tasked to engage in a mobility

system and make routing decisions under uncertainties. Such decisions are influenced

by many factors (e.g., individual preferences, traffic accidents, and bad weather). Trav-

elers then may fail to interpret the probabilities of congestion or traffic accident the

right way and, thus, exhibit irrational behavior or become risk-averse. A key observa-

tion is that prospect-theoretic players aim to minimize their potential/expected losses.

Figure 4.3: Frequency of errors of perceived/actual probabilities.
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To better understand the factors that influence routing decisions under un-

certainty, we designed and conducted an experiment with 20 participants using the

Intelligent Driver Model (IDM) for all cars. We created artificial traffic congestion

on different routes by controlling the speed of the preceding vehicles in a 1:25 scaled

robotic testbed called IDS Lab’s Scaled Smart City (IDS3C) [41]. During the experi-

ment, the participants were asked to choose the route they preferred the car to take

based on information provided on different traffic conditions: free flow and traffic de-

lays. One of our key results from analyzing the data can be seen in Fig. 4.3. Here we

have a histogram that shows the percentage error, and frequency means the number of

cases. The total number of cases is about 60 because we had 3 different estimations for

each participant. This shows that a majority of the participants failed to accurately

perceive the actual probabilities of the traffic scenarios we presented to them, and

most interestingly, other participants overestimated the actual probabilities by 15%.

Our goal here is to understand what drives and influences a traveler’s decision as they

try to minimize their travel time cost. In addition, we aim to strongly motivate mod-

eling that directly captures how the individuals’ perceptions of probability affect their

decision-making. We leverage the results of our experiment to motivate the modeling

framework that follows in the Section.

4.2.2 Modeling Framework

We consider a routing game with a finite non-empty set of players I, |I| = n ∈ N.

Each player i represents a traveler with a connected and automated vehicle (CAV) who

controls a significant amount of traffic, say xi ∈ R≥0. The interpretation of this is that

xi represents the flow of traffic that player i contributes to a transportation network.

We define traffic flow in this setting as the number of CAVs passing through each point

in the network over time. This decision variable is non-negative as travelers make trips

using the CAVs over time in the transportation network. This is in contrast to non-

atomic routing games, where players only control an infinitesimal amount of traffic. We
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also assume that traffic is splittable. Players seek to travel in the transportation network

represented by a directed multigraph G = (V , E), where each node in V may represent

different city areas or neighborhoods (e.g., Braess’ paradox network). Each edge e ∈ E

may represent a road. For our purposes, we think of G = (V , E) as a representation of

a smart city network with a road infrastructure that can support CAVs. Any player

i ∈ I seeks to travel from an origin o ∈ V to a destination d ∈ V . So, all players

are associated with the same unique origin-destination pair (o, d) ∈ V × V . Next,

each player may use a sequence of edges that connects the OD pair (o, d). We have

R(o,d) ⊂ 2E to denote the set of routes available to any player i ∈ I, where each route

ri consists of a sequence of edges connecting the origin-destination pair (o, d). We are

interested in how such players may compete over the routes in the network for routing

their traffic flows (e.g., this is a multiple-route traffic flow decision-making problem).

We say that each player i ∈ I seeks to route their traffic in G represented by a

traffic flow xi where each of its elements takes values in R≥0. For each i ∈ I, the set

of actions is

Xi =

{
xi ∈ R|R|

≥0 :
∑
ri∈R

xrii = x̄i

}
, (4.68)

where xi = (x
r1i
i , x

r2i
i , . . . , x

r
|R|
i
i ), x̄i ∈ R≥0, is the total flow of player i, and rki denotes the

kth route in the network. We write X = X1 ×X2 × · · · ×Xn for the Cartesian product

of all the players’ action sets. We also write x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn) for

the action profile that excludes player i ∈ I. Next, for the aggregate action profile, we

write x = (xi, x−i), x ∈ X .

Definition 4.2.1. The flow on edge e ∈ E is the sum of the part of all players’ traffic

flows that have chosen a route that includes edge e, i.e., fe(x) =
∑

i∈I
∑

ri∋e x
ri
i .

In our routing game where each player i ∈ I chooses their own traffic demand

vector xi over a common set of paths R, if player i chooses to send a traffic demand xrii

along route ri, then this traffic demand will be distributed along all the edges in the

route ri. This is because the traffic demand on a particular route ri is a single quantity
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that is distributed among the edges in the route. Therefore, if player i chooses to send

a traffic demand xi(ri) along route ri, this traffic demand will be split among all the

edges e in the path pi that player i uses.

Next, we introduce a travel time latency function to capture the cost that players

may experience. Intuitively, we capture the players’ preferences for different outcomes

using a “cost function,” in which players are expected to act as cost minimizers. For

each e ∈ E , we consider non-negative cost functions ce : R≥0 → R≥0. We assume

that the cost functions at each edge e are convex, continuous, and differentiable with

respect to fe. One standard way to define in an exact form ce is by the BPR function,

as it is a commonly used model for the relationship between flow and travel time.

Mathematically, we have

ce(fe) = c0e

(
1 +

3

20

(
fe

fCRTe

)4
)
, (4.69)

where for any edge e ∈ E , c0e is the free-flow travel time and fCRTe is the critical capacity

of traffic flow on road e. We note that the BPR function is non-linear, continuous,

differentiable, strictly increasing, and strictly convex for fe ≥ 0.

Definition 4.2.2. If the maximum flow on edge e ∈ E is fmax
e ∈ R>0, then for the

critical flow, fCRTe , on edge e ∈ E we have fCRTe < fmax
e .

Next, for some route ri of any player i, its cost is the sum of the costs on the

edges that constitute route ri, i.e., cri(x) =
∑

e∈ri ce(fe(x)). Now, the total cost of

some player i is

ci(x) =
∑
ri∈R

cri(x) =
∑
ri∈R

[∑
e∈ri

ce(fe)

]
, (4.70)

which simplifies to ci(x) =
∑

ri∈R
∑

e∈ri ce(fe).

Definition 4.2.3. The game is fully characterized by the tuple M = ⟨I, (Xi)i∈I , (ci)i∈I⟩,

a collection of sets of players, actions, and a profile of costs. This game is a simultaneous-

move game where players make decisions at the same time and commute in (o, d) of

network G.
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The game M is a non-cooperative routing game with a transportation network

and continuous action sets. Players are behaving according to prospect theory and

aim to minimize their costs (e.g., travel time latencies). Naturally, players compete

with each other over the available yet limited routes and how to utilize them in the

transportation network. Indirectly, players make route choices that satisfy their travel

needs (modeled through traffic flow).

Next, we clarify “who knows what?” in our routing game. All players have

complete knowledge of the game and the network. Each player knows their own infor-

mation (action and cost) as well as the information of other players. At equilibrium,

we want to ensure that no player has an incentive to unilaterally deviate from their

chosen decisions and change how they distribute their traffic flows over the available

routes in the network. So, for the purposes of our work, we observe that a NE in pure

strategies is most fitting to apply as a solution concept. We formally define a NE in

terms of the players’ traffic flows.

Definition 4.2.4. A feasible flow profile x∗ = (xrii )
ri∈R
i∈I ∈ X constitutes a NE if for

each player i ∈ I, ci(x∗i , x∗−i) ≤ ci(xi, x
∗
−i), for all xi ∈ Xi.

In other words, a flow profile x∗ is a NE if no player can reduce their total cost by

unilaterally changing how they distribute their total traffic flow over the available routes

in the network. In a NE, each player’s specific xi has the lowest possible cost among

all possible distributions over the routes, given the choices made by other players.

4.2.2.1 Prospect Theory Analysis

In this subsection, we provide a brief introduction to prospect theory and its

main concepts [247]. One of the main questions prospect theory attempts to answer is

how a decision-maker may evaluate different possible actions/outcomes under uncertain

and risky circumstances. Thus, prospect theory is a descriptive behavioral model and

focuses on three main behavioral factors: (i) Reference dependence: decision makers
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make decisions based on their utility, which is measured from the “gains” or “losses.”

However, the utility is a gain or loss relative to a reference point that may be unique

to each decision-maker. (ii) Diminishing sensitivity : changes in value have a greater

impact near the reference point than away from the reference point. (iii) Loss aver-

sion: decision-makers are more conservative in gains and riskier in losses. One way

to mathematize the above behavioral factors (1) - (3), is to consider an action by a

decision-maker as a “gamble” with objective utility value z ∈ R. We say that this

decision maker perceives z subjectively using a value function [238, 3]

v(z) =

(z − z0)
β1 , if z ≥ z0,

−λ(z0 − z)β2 , if z < z0,

(4.71)

where z0 represents a reference point, β1, β2 ∈ (0, 1) are parameters that represent the

diminishing sensitivity. Both β1, β2 shape (4.71) in a way that the changes in value

have a greater impact near the reference point than away from the reference point.

We observe that (4.71) is concave in the domain of gains and convex in the domain

of losses. Moreover, λ ≥ 1 reflects the level of loss aversion of decision makers. To

the best of our knowledge, there does not exist a widely-agreed theory that determines

and defines the reference dependence [110]. In engineering [100, 71], it is assumed that

z0 = 0 captures a decision-makers expected status-quo level of the resources.

Prospect theory models the subjective behavior of decision-makers under un-

certainty and risk. Each objective utility z ∈ R is associated with a probabilistic

occurrence, say p ∈ [0, 1]. Decision makers, though, are subjective and perceive p

in different ways depending on its value. To capture this behavior, we introduce a

strictly increasing function w : [0, 1] → [0, 1] with w(0) = 0 and w(1) = 1 called the

probability weighting function. This function allows us to model how decision-makers

may overestimate small probabilities of objective utilities, i.e., w(p) > p if p is close

to 0, or underestimate high probabilities, i.e., w(p) < p if p is close to 1. For the pur-

poses of this work, we use the probability weighting function first introduced in [182],

w(p) = exp
(
−(− log(p))β3

)
, p ∈ [0, 1], where β3 ∈ (0, 1) represents a rational index,

164



i.e., the distortion of a decision-maker’s probability perceptions. Mathematically, β3

controls the curvature of the weighting function.

Next, we define a prospect which is a tuple of the objective utility (gain or loss)

and its probability of happening.

Definition 4.2.5. Suppose that there are K ∈ N possible outcomes available to a

decision-maker and zk ∈ R is the kth gain/loss of objective utility. Then a prospect ℓk

is a tuple of the utilities and their respective probabilities

ℓk = (z0, z1, z2, . . . , zK ; p0, p1, p2, . . . , pK), (4.72)

where k = 1, 2, . . . , K. We denote the kth prospect more compactly as ℓk = (zk, pk).

We have that
∑K

k=0 pk = 1 and ℓk is well-ordered, i.e., z0 ≤ z1 ≤ · · · ≤ zK. Un-

der prospect theory, the decision-maker evaluates their “subjective utility” as u(ℓ) =∑
0≤k≤K v(zk)w(pk), where ℓ = (ℓk)

K
k=1 is the profile of prospects of K outcomes.

In the remainder of this subsection, we apply the prospect theory to our model-

ing framework, clearly define the mobility outcomes (objective and subjective utilities),

and then show that the prospect-theoretic game M admits a NE. Players may be un-

certain about the value of the traffic disturbances as it is affected by unexpected factors,

and so that is why we use Prelec’s probability weighting function w : [0, 1] → [0, 1] to

capture how different traveler populations “perceive” probabilities. In addition, we are

interested in capturing how players may perceive their gains or losses regarding their

travel time costs with respect to the costs at critical density. The mobility prospect is

whether the fe will reach its critical or jammed point. Formally, πe is the probability

that fe ∈ (0, fCRTe ), and 1 − πe is the probability for fe ∈ (fCRTe , fmax
e ]. We then use

the prospect-theoretic S-shaped value function v(ce(fe)) : R≥0 → R to capture how

players may perceive such costs. Hence, we have

v(ce(fe)) =

λ(c
0
e − ce(fe))

β, if ce(fe) ≤ c0e,

−(ce(fe)− c0e)
β, if ce(fe) > c0e,

(4.73)
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where the reference dependence is represented by c0e = ce(f
CRT
e ), β1 = β2 = β ∈ (0, 1),

and for each e ∈ E , we have πe ∈ [0, 1]. We can justify β1 = β2 in the above definition as

it has been verified to produce extremely good results, and the outcomes are consistent

with the original data [238]. We define

c̃e(fe) =

c
0
e − ce(fe), if ce(fe) < c0e,

ce(fe)− c0e, if ce(fe) > c0e.

(4.74)

Remark 4.2.6. It is easy to note that our prospect-theoretic value function is “re-

versed,” capturing the way the player will perceive the gains in travel time through a

cost function. Using as a reference point the critical traffic flow on edge e, we can pin-

point the exact point that any more delays become socially unacceptable, i.e., a higher

flow causes a higher travel time that the traveler will not tolerate.

Under prospect theory, the new “cost function” is given by

cPTe (fe) = w(πe) · λ · [c̃e(fe | ce(fe) < c0e)]
β − w(1− πe) · [c̃e(fe | ce(fe) > c0e)]

β. (4.75)

The total cost on some route ri for player i under prospect theory is

cPTri (x) =
∑
e∈ri

cPTe (fe). (4.76)

Now, the total cost of some player i is given by

cPTi (x) =
∑
ri∈R

∑
e∈ri

cPTe (fe). (4.77)

Note, however, that in this case, the prospect-theoretic cost is capturing the gains and

losses of a traveler. Thus, the aim is to maximize this function to maximize the gains.

In other words, by minimizing the actual cost, we maximize the perceived gains in

travel time by the traveler.

What we observe in (4.77) is that it is rather cumbersome to analyze it in game

theory as issues in the smoothness of the function arise quickly. The key problem in
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analyzing such a function is that the exponent takes values in (0, 1). However, we

propose a new function that approximates the prospect-theoretic function and, most

importantly, can be shown to have useful properties. Hence, we define the following

function

σ(fe) =
δ1

1 + exp
(
δ2−fe
δ3

) + δ4, (4.78)

where δ1, δ2, δ3, δ4 ∈ R, and fe ∈ [0, fmax
e ]. So we can write

cPTi (x) =
∑
ri∈R

∑
e∈ri

σ(fe). (4.79)

4.2.3 Analysis and Properties of the Game

In this section, we provide a formal analysis of the properties of our proposed

modeling framework and show that our game admits a NE in pure strategies.

Lemma 4.2.7. The strategy space of the game M is non-empty, compact, and convex.

Proof. To show that the set Xi = {xi ∈ R|R|
≥0 :

∑
ri∈R x

ri
i = x̄i} is non-empty, compact,

and convex, we need to examine each property individually. (i) Non-empty: Consider

the strategy where player i allocates all of their traffic, x̄i, to a single route, say r1, and

allocates zero traffic traffic to the remaining routes. Then, we have xi = (x̄i, 0, . . . , 0) ∈

R|R|
≥0 , which satisfies the constraint:

∑
ri∈R x

ri
i = x̄i. Thus, Xi is non-empty for every

player i ∈ I. (ii) Compact: To show that Xi is bounded and closed, we only need to

note that for each xi ∈ Xi, we must have 0 ≤ xrii ≤ x̄i for any route ri. (iii) Convex:

We need to show that for each player i ∈ I, the set Xi is convex, i.e., for any xi, yi ∈ Xi

and any µ ∈ [0, 1], we have µxi + (1 − µ)yi ∈ Xi. Let xi, yi ∈ Xi and λ ∈ [0, 1]. We
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want to show that zi = λxi + (1 − λ)yi ∈ Xi. We know that xi, yi ∈ Xi satisfy the

constraint:
∑

ri∈R x
ri
i = x̄i and

∑
ri∈R y

ri
i = x̄i. Now, consider the weighted sum:∑

ri∈R

zrii =
∑
ri∈R

(µxrii + (1− µ)yrii )

= µ
∑
ri∈R

xrii + (1− µ)
∑
ri∈R

yrii

= µx̄i + (1− µ)x̄i = x̄i. (4.80)

Since zi also satisfies the constraint, we have zi ∈ Xi. Therefore, Xi is convex for each

player i ∈ I. In conclusion, for each player i ∈ I, the strategy space Xi is non-empty,

compact, and convex.

Next, we characterize the coefficients of σ function.

Lemma 4.2.8. The approximation function given by (4.78) in the interval [0, κ], κ <

fmax
e , is strictly concave with respect to fe when δ3 > 0, δ4 ∈ R, and (i) δ1 > 0, δ2 > fe,

or alternatively (ii) δ1 < 0, δ2 < fe.

Proof. Given that fe ≥ 0, we analyze the second-order derivative of the function

σ(fe) =
δ1

1+exp
(

δ2−fe
δ3

) + δ4 to determine the conditions for strict concavity. First, let us

find the first and second-order derivatives of σ with respect to fe, i.e.,

σ′(fe) =
−δ1 exp ( δ2−feδ3

)

δ3(1 + exp ( δ2−fe
δ3

))2
, (4.81)

σ′′(fe) =
2δ1 exp (

δ2−fe
δ3

)(1− exp ( δ2−fe
δ3

))

δ23(1 + exp ( δ2−fe
δ3

))3
. (4.82)

Now, we examine the conditions for σ′′(fe) < 0. First, δ1 controls the sign of the

second-order derivative as follows: if δ1 < 0 and δ3 > 0, σ′′(fe) will be negative when

1−exp ( δ2−fe
δ3

) < 0, which simplifies to δ2 > fe. If δ3 < 0 in either of the cases, then the

signs are reversed. We do require though that δ23 is well-defined, so δ3 ̸= 0. On greater

detail, 1 − exp ( δ2−fe
δ3

) determines the conditions for σ′′(fe) to be negative. If δ1 < 0,
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we need 1 − exp ( δ2−fe
δ3

) > 0, which implies that fe > δ2 − δ3 log (1) (since fe ≥ 0). If

δ1 < 0, we need 1− exp ( δ2−fe
δ3

) < 0, which implies that fe < δ2 − δ3 log (1).

Combining these insights, we can conclude that the function

σ(fe) =
δ1

1 + exp ( δ2−fe
δ3

)
+ δ4 (4.83)

becomes strictly concave in the entire interval. So, it is strictly concave for fe ≥ 0 if: (i)

δ1 > 0, δ3 > 0 and fe < δ2; (ii) δ1 < 0, δ3 > 0, and fe > δ2. If δ3 < 0, then the relation

between fe and δ2 is naturally reversed. Note that the parameter δ4 does not affect the

convexity of the function, as it only shifts the function vertically. Therefore, we have

derived the necessary conditions that ensure σ′′(fe) is negative for all fe, making σ(fe)

strictly concave.

It follows easily that it is strictly decreasing, continuous, and (continuously)

differentiable with respect to the traffic flow fe ∈ [0, fmax
e ] for any edge e ∈ E .

Now we provide a discussion of the error characterization of our approximation

function. Let us define the error function Φ as the squared difference between cPTe (fe)

and σ(fe), integrated over the interval [0, κ]:

Φ(δ1, δ2, δ3, δ4) =

∫ κ

0

(
cPTe (fe)− σ(fe)

)2
dx. (4.84)

The goal is to minimize Φ with respect to the parameters δ1, δ2, δ3, and δ4. First,

we find the critical points of Φ by setting its gradient to zero and solving the result-

ing system of equations: ∇Φ(δ1, δ2, δ3, δ4) = 0. This results in a system of equations

involving the partial derivatives of Φ with respect to each of the parameters, i.e.,

∂Φ
∂δ1

= 0, ∂Φ
∂δ2

= 0, ∂Φ
∂δ3

= 0, and ∂Φ
∂δ4

= 0. To compute these partial derivatives, we

need to differentiate the integrand with respect to each parameter and then integrate

it again, for example, ∂Φ
∂δ1

=
∫ κ
0

∂
∂δ1

(
cPTe (fe)− σ(fe)

)2
dx. This process needs to be

repeated for all parameters. However, due to the complexity of the function cPTe (fe)

(being a non-linear piecewise function), it is not possible to obtain an explicit analyt-

ical expression for these partial derivatives. For our purposes, we rely on numerical
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optimization techniques to find the exact best-fit parameters that minimize the error

function, as these methods can easily handle complex and non-linear optimization. In

the next subsection, we provide a numerical example that showcases the efficacy of the

approximation function.

Theorem 4.2.9. The error ϕ(·) =
(
cPTe (fe)− σ(fe)

)
is upper bounded by γ + ε, where

γ is some real number and ε > 0.

Proof. For the purposes of this proof we assume that β = 0.5, λ = 2 and c0e = 13

and fCRT
e = 1 and c0e = 14.95. We substitute now the known equations to get

ϕ(δ1, δ2, δ3, δ4) = −w(1−πe) · [c̃e(fe | ce(fe) > c0e)]
β− δ1

1+exp
(

δ2−fe
δ3

) −δ4. Using a straight-

forward computation of the second-order derivative, we can get the inflection point of

ϕ, which will lie in (1, 1 + ε). This means that it is sufficient for us to compute ϕ at

fe = 1, and focus on ϕ for fe > 1. Since σ is smooth and strictly concave in that

interval, it approximates the worst cPTe around the inflection point. So, we have the

following ϕ(δ1, δ2, δ3, δ4) = −w(1−πe)(ce(fe)−c0e)β− δ1

1+exp
(

δ2−fe
δ3

) −δ4. This expression
simplifies to

ϕ = −w(1− πe)

[
13

(
1 +

3

20
(fe)

4

)
− 14.95

]β
− δ1

1 + exp
(
δ2−fe
δ3

) − δ4, (4.85)

where we have δ1 < 0 and δ2, δ3, δ4 > 0, and δ2 > fe. Since w(1− πe) is only a positive

parameter constant, it is negligible, and so we drop it from our analysis. The first

component simplifies to
[
39
20
(1− (fe)

4)
]β
, which is negative when we evaluate near the

inflection point. Next, it follows that the second component is positive for small values

of δ2 and δ3. We use the Taylor series expansion evaluated at fe = 1 + ε, where ε is a

small positive number to get

−
[
39

20

(
(fe)

4 − 1
)]β

= −
√

39

5

√
ε − 3

4

√
39

5
ε

3
2 − 7

32

√
39

5
ε

5
2 + O(ε

7
2 ), (4.86)
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which is clearly negative. For the second component, we use the Taylor series expansion

again at the same point fe = 1 + ε, and get the following

δ1

1 + exp
(
δ2−(1+ε)

δ3

) =
δ1

1 + exp
(
δ2−1
δ3

) +
δ1 exp

(
δ2−1
δ3

)
δ3

(
1 + exp

(
δ2−1
δ3

))2 · ε

1

2

δ1 exp
(

1
δ3
+ δ2

δ3

)(
exp

(
1
δ3

)
− exp

(
δ2
δ3

))
δ23

(
exp

(
1
δ3

)
+ exp

(
δ2
δ3

))3 · ε2 +O(ε3) (4.87)

We combine the expressions for the first and second components. From what we have

established so far we get that the error is given by

ϕ = −
√

39

5

√
ε− 3

4

√
39

5
ε

3
2 − 7

32

√
39

5
ε

5
2 +O(ε

7
2 )

+
δ1

1 + exp
(
δ2−1
δ3

) +
δ1 exp

(
δ2−1
δ3

)
δ3

(
1 + exp

(
δ2−1
δ3

))2 · ε

+
1

2

δ1 exp
(

1
δ3
+ δ2

δ3

)(
exp

(
1
δ3

)
− exp

(
δ2
δ3

))
δ23

(
exp

(
1
δ3

)
+ exp

(
δ2
δ3

))3 · ε2 +O(ε3). (4.88)

We want to find an upper bound for the error, which means we need to show that

(4.88) is less than or equal to γ + ε for some γ ∈ R. Note that for any a, b ∈ R with

a < 0 and b > 0, it is always true that a+ b ≤ max{a, b}. Thus, we can write

ϕ ≤ max

{
−
√

39

5

√
ε− 3

4

√
39

5
ε

3
2 − 7

32

√
39

5
ε

5
2 +O(ε

7
2 ),

δ1

1 + exp
(
δ2−1
δ3

) +
δ1 exp

(
δ2−1
δ3

)
δ3

(
1 + exp

(
δ2−1
δ3

))2 · ε

+
1

2

δ1 exp
(

1
δ3
+ δ2

δ3

)(
exp

(
1
δ3

)
− exp

(
δ2
δ3

))
δ23

(
exp

(
1
δ3

)
+ exp

(
δ2
δ3

))3 · ε2 +O(ε3)

}
. (4.89)

As ε is positively small, we take the limit as ε → 0. We note that the term −
√

39
5

√
ε

dominates as ε → 0, and so the first component approaches −∞ as ε → 0. For the
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second component, the term δ1

1+exp
(

δ2−1
δ3

) dominates as ε → 0, and since δ1 < 0 and

δ2, δ3 > 0, the second component is positive. Therefore, we can write

lim
ε→0

ϕ ≤ lim
ε→0

max

−
√

39

5

√
ε,

δ1

1 + exp
(
δ2−1
δ3

)
 . (4.90)

As ε→ 0, we have −
√

39
5

√
ε→ −∞, hence

lim
ε→0

ϕ ≤ lim
ε→0

max

−
√

39

5

√
ε,

δ1

1 + exp
(
δ2−1
δ3

)


=
δ1

1 + exp
(
δ2−1
δ3

) . (4.91)

Now, let γ = δ1

1+exp
(

δ2−1
δ3

) . Since the second component is positive, we have γ > 0, thus

ϕ ≤ γ+ε. Therefore, we have shown that the error ϕ is upper bounded by γ+ε, where

γ ∈ R and ε > 0.

Lemma 4.2.10. A traffic flow x∗ is a NE if and only if, for all x ∈ X , for all i ∈ I,

we have
〈
∇ici(x

∗
i , x

∗
−i), xi − x∗i

〉
≥ 0, where by the chain rule with respect to the xrii we

can take the partial derivatives on the cost function to get〈∑
ri∈R

∑
e∈ri

σ′(f ∗
e ), xi − x∗i

〉
≥ 0. (4.92)

Proof. We apply the chain rule with respect to the xrii and substituting the given cost

function ci(x) and flow fe(x). The traffic flow x∗ is a NE if and only if, for all x ∈ X

and for all i ∈ I, we have
〈
∇ici(x

∗
i , x

∗
−i), xi − x∗i

〉
≥ 0, where ci(x) =

∑
ri∈R

∑
e∈ri σ(fe)

and fe(x) =
∑

i

∑
ri∋e x

ri
i . Now, we compute the gradient of the cost function with

respect to xi:

∇ici(x
∗
i , x

∗
−i) =

∑
ri∈R

∑
e∈ri

∂σ(fe)

∂xrii
. (4.93)

To compute the partial derivative ∂σ(fe)

∂x
ri
i

, we use the chain rule: ∂σ(fe)

∂x
ri
i

= σ′(fe) · ∂fe
∂x

ri
i

,

where σ′(fe) is the derivative of the function σ with respect to fe. Since fe(x) =
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∑
i

∑
ri∋e x

ri
i , we have

∂fe
∂x

ri
i

= 1. Now, we can substitute this back into the gradient ex-

pression ∇ici(x
∗
i , x

∗
−i) =

∑
ri∈R

∑
e∈ri σ

′(f ∗
e ). Finally, we can rewrite the NE condition

using the gradient 〈∑
ri∈R

∑
e∈ri

σ′(f ∗
e ), xi − x∗i

〉
≥ 0. (4.94)

This is the necessary and sufficient first-order condition for x∗i of any player i to be a

minimum of cost function ci(·).

Theorem 4.2.11. The game M admits at least one NE.

Proof. We formally prove the existence of a NE in the prospect-theoretic routing

game using Brouwer’s fixed point theorem. Recall that for any player i, cPTi (x) =∑
ri∈R

∑
e∈ri σ(fe(x)), where σ is our smooth and monotonic approximation func-

tion. We define the best-response correspondence for each player i as: bi(x−i) =

argmaxxi c
PT
i (x). Smoothness in the approximation function σ implies that it is con-

tinuous and has continuous derivatives. This implies that we can estimate the utility

function cPTi (x) continuously with respect to the traffic vector x. To show that the

best-response correspondence bi(x−i) is continuous, we need the argmax operator to

be continuous. Since the set of maximizers is compact, which actually follows from

the compactness of the strategy space by Lemma 4.2.7. By Lemma 4.2.8, we have

that σ is concave on a specific interval [0, κ]. This implies that we can estimate the

utility function cPTi (x) within the interval [0, κ] pointwise in a strictly decreasing and

concave curve with respect to xi for any player i ∈ I. However, a strictly concave

function has at most one unique maximum, which ensures the single-validness of the

best-response correspondence bi(x−i). We now define the combined best-response cor-

respondence B(x) = (b1(x−1), b2(x−2), . . . , bn(x−n)). Since each bi(x−i) is continuous,

B(x) is also continuous, and thus it maps the strategy space to itself. Hence now we

can apply Brouwer’s fixed point theorem, which guarantees that there exists a fixed

point x∗ = B(x∗); the result then follows.
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4.2.4 Simulation Results

Figure 4.4: The plot of the errors.

In this section, we offer a numerical example to showcase the efficacy of our

approach. We used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to min-

imize the error between function cPTe (·) and our approximation function σ(·) on the

interval [0, 3/2]. We used the SciPy optimization function minimize() with the BFGS

method to find the optimized parameters for σ(·) that minimize pointwise the smallest

sum of squared errors. Table 4.2a shows the optimized parameters found by the BFGS

algorithm, and Table 4.2b shows the error bound on the interval [0, 3/2]. The maxi-

mum error was 0.5072, the minimum error was 0, and the average error was 0.1043.

These results provide an important summary of the performance of our approxima-

tion function and the best-fit parameters in estimating the prospect-theoretic function

cPTe (·).
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Figure 4.5: The plot of the original and approximation functions.

Parameter Value
δ1 -5.232
δ2 1.015
δ3 0.109
δ4 2.776

(a) Optimized Parameters.

Error Measure Value
Maximum Error 0.5072
Minimum Error 0.0000
Average Error 0.1043

(b) Error Bound on [0, 3/2].

Table 4.2: Summarizing the parameters of the numerical example and the aver-
age/range of the error.

4.3 Summary

In this chapter, for the first part, we proposed a mobility game to study the

behavioral interactions of travelers in a multimodal transportation network. First, we

formulated a repeated non-cooperative routing game with a finite number of travelers.
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In our first result, we showed that the mobility game admits a NE under the assump-

tion of rationality. In our second result, we derived a bound for the PoA. Although

we cannot have uniqueness at an equilibrium, our upper bound guarantees that the

inefficiencies is as low as possible if the number of travelers is large enough (which is

naturally expected in a mobility system). We also derived an upper bound for the

PoS, showing that the greater the number of travelers, the close some NE can be to

the social optimum. Next, we extended our game to consider the subjective behavior

of travelers under prospect theory, and showed that our mobility game admits a NE.

In the second part of the chapter, we presented a prospect-theoretic game-

theoretic modeling framework that incorporates an atomic splittable routing game

with prospect theory to study travel behavior in mobility systems. We modeled the

overestimation/underestimation of probabilities using Prelec’s probability weighting

function and we took into account the traffic uncertainties and travelers’ perception

of gains/losses in travel time using a prospect-theoretic S-shaped value function. We

proposed an approximation function to address the non-linear and piecewise nature

of the prospect-theoretic cost functions and showed that at least one NE exists. In

addition, we derived an upper bound for the error. Lastly, we provided a numerical

example and demonstrated the efficacy of our approximation for the routing game and

summarized our results the best-fit parameters and range/average errors.

4.3.1 Implementation

In this subsection, we outline how our proposed mobility game can be potentially

implemented. We consider a major metropolitan area with an extensive road and

public transit infrastructure; a good example is Boston. Several key areas in Boston

are connected by roads, buses, light rail, and bikes. These areas can serve as transport

hubs from which travelers can utilize any of the available modes of transportation.

We can apply the MaaS concept and offer on each transport hub travel services (e.g.,

navigation, location, booking, payment) to all passing travelers. Information can be
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shared among all travelers via a “mobility app,” which allows travelers to access the

services on the transport hubs. Using this app, travelers can pay for their travel needs

and, at the same time, receive mobility payments. For example, a traveler who informs

the app and uses a bike multiple times (per day or per week) can receive mobility

payments. In addition, travelers travel multiple times and interact with each other

more than once. So, travelers seek to move from one place to another while competing

with many other travelers, use the transport hubs to access their preferred mode of

transportation, and pay using a mobility app. Each mode of transportation offers

different benefits in utility; for example, a car is more convenient than a bus and is

expected to be in high demand. This naturally will lead to inefficiency and congestion.

The mobility game M with the utility structure defined in (4.4) captures the

key factors that may play a role in a traveler’s decision-making. It can be seen by

Theorem 4.1.16 and Corollary 4.1.17 that an equilibrium exists and can be reached

by the travelers without direct intervention from a central authority. The particular

pricing mechanism we have proposed in (4.1) ensures all travelers with the computa-

tional power of their cellphone can quickly derive the NE strategy (route, transport

hub, payment). This is important as we can avoid solving a mixed-integer nonlinear

program for all the travelers in the mobility system. In addition, by Theorem 4.1.21

we can guarantee that the inefficiency of the mobility system stays low as long as the

number of travelers remains large (something that is expected in a typical mobility

system). We can guarantee that a NE will stay close to the social optimum as the

number of travelers increases. Thus, even though we cannot guarantee the uniqueness

of a NE, we can ensure that all NE are similarly efficient and nearly as efficient as the

social optimum as long as the number of travelers is high.

Using prospect theory, we can also consider how a traveler can feel uncertain

about whether they may receive mobility payments for choosing a more sustainable

mode of transportation (e.g., bike). Under certain conditions, we show that indeed a

NE exists (Theorem 4.1.25) and it can be reached by the travelers as they can travel
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from the hub that is nearest to their home to the hub that is nearest to their work

(Corollary 4.1.26). Thus, our game M framework is proved to lead to a NE under two

different behavioral models and capture the impact of the travelers’ decision-making.

4.3.2 Technical Discussion and a Numerical Example

In this subsection, we discuss in more detail the technical implementation of

our mobility game. So, we can compute a NE using the potential function, leveraging

the fact that our game is a potential game with a finite set of travelers (as shown in

Theorem 4.1.16). Note that this means that there exists a potential function (given by

(4.7)) that maps each strategy profile to a real value. Intuitively, any change in any

traveler’s utility that unilaterally deviates from a strategy is equal to the change in

our potential function. Hence, we can find the strategy profiles that simply maximize

our potential function. One approach to achieve this for mixed-integer optimization

problems is to use the branch-and-bound algorithm [196]. So, by Corollary 4.1.17,

convergence to a pure strategy NE is guaranteed, thus we can find a NE, compute it,

and use for our PoA analysis.

Typically, we solve numerically the optimization problem that arises from the

routing game. We can either employ a gradient-based methods or a learning algorithm

(e.g., fictitious play). The gradient-based method involves updating the travelers’

strategies by moving in the direction of the gradient of the potential function. However,

since the action sets are coupled and include route choices, the optional stop at a

transport hub along the route, and the payment for the mobility service, the standard

way solve this problem is as a mixed-integer nonlinear program (MINLP) (in such a

case use the branch-and-bound or branch-and-cut algorithm). Alternatively, we can

first use the specialized algorithm Dijkstra and find the best route and transport hub

through the network based on criteria such as shortest distance and least time. Once

we have this optimal route, we then use “fmincon” to compute the optimal value of

the mobility payments along that route and transport hub.
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We now offer a numerical example with a simple transportation network that

has one unique origin-destination (OD) pair. In this network, there are three routes,

namely route 1, route 2, and route 3. We assume that there are two mobility services:

car and bike. The travel time on each route depends on the volume of traffic and the

service. We have the following

Route 1: t1(car) = 10 + x1, t1(bike) = 8, (4.95)

Route 2: t2(car) = 5 + 2x2, t2(bike) = 7, (4.96)

Route 3: t3(car) = 15, t3(bike) = 5 + x3, (4.97)

where xk denotes the fraction of travelers choosing either of routes k = 1, 2, 3 using a

car. We also consider that the pricing functions for the two modes: car and bike take

the explicit form as τ(car) = 10 and τ(bike) = −2. So, travelers receive a $2 incentive

for choosing a bike. Suppose we have 50 travelers in total, with 30 travelers preferring

route 1 and route 2 (we call this Group A), while the remaining 20 travelers prefer

route 2 and route 3 (we call this Group B). Now, say that Group A chooses to utilize

route 1 with a car, and Group B chooses to utilize route 3 using a car. We can now

compute the utilities for each traveler:

Route 1: t1(car) = 10 + 30 = 40, utility = −40− 10 = −50, (4.98)

Route 2: t2(car) = 5, utility = −5− 10 = −15, (4.99)

Route 3: t3(car) = 15, utility = −15− 10 = −25. (4.100)

So, for Group A the utility for route 2 (car) is higher than route 1 (car), thus all

travelers in Group A will deviate to route 2 (car). Similarly, in Group B the utility for

route 3 (bike) is higher than Route 3 (car), and so all travelers will deviate to route 3
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(bike). Let us now compute the utilities for any arbitrary traveler, i.e.,

Route 1: t1(car) = 10, u = −10− 10 = −20, (4.101)

Route 1: t1(bike) = 8, u = −8 + 2 = −6, (4.102)

Route 2: t2(car) = 5 + 2(30) = 65, u = −65− 10 = −75, (4.103)

Route 2: t2(bike) = 7, u = −7 + 2 = −5, (4.104)

Route 3: t3(car) = 15, u = −15− 10 = −25, (4.105)

Route 3: t3(bike) = 5, u = −5 + 2 = −3. (4.106)

We continue our equilibrium analysis as follows: for Group A, the utility for route 1

(bike) is higher than Route 2 (car), so travelers will deviate to route 1 (bike). Next,

Group B will not deviate as route 3 (bike) (already highest utility). Hence, we have

reached the point in which no traveler can deviate and receive better utility; thus we

have a NE. We notice that all travelers from Group A and Group B choose route 1 and

route 3 utilizing bikes, respectively. We conclude that it is possible as we showed in our

theoretical analysis for a NE to exist and it is easily converged to based on our pricing

mechanism in this simple multimodal transportation network. Next, at this Ne, all

travelers have chosen to utilize the mobility service: bike, which is a sustainable and

environmentally-friendly mode of transportation. Our pricing mechanism naturally

will favor such modes of transportation and provide incentives to travelers for better

utilization. Thus, we can control travel demand and effectively reduce any inefficiencies

that may arise from congestion or higher pollution levels caused by car usage. One

last note: in this example, we used a similar method to the best-response dynamics

approach and found the NE using only a few iterations. Although our example quickly

leads to an equilibrium solution, for larger and more complex transportation networks,

we cannot draw the same conclusion and thus, it remains future work to adopt more

advanced optimization and algorithmic techniques in order to find and compute our

mobility game’s NE.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have made significant contributions to the understand-

ing of human behavior and the impact of selfish decision-making in mobility systems.

Our research has broader implications for both society and academia, as it bridges the

gap between behavioral economics, microeconomics, game theory, control, and trans-

portation engineering. Our motivation stems from the desire to ensure accessibility and

efficiency in the mobility systems of the future, as technological advancements make

it easier for travelers to rely on cars. By examining traveler preferences, we aim to

develop smart strategies for handling travel demand in a sustainable manner.

In Chapter 1, we identified research gaps in the existing literature and provided

an overview of our research focus on social dilemmas in mobility decision-making. By

doing so, we laid the foundation for our interdisciplinary approach, which combines

insights from behavioral economics, game theory, control, and transportation engi-

neering. In Chapter 2, we explored the social ramifications of human decision-making

in connectivity and automation within a game-theoretic context. We investigated two

methodologies for addressing the evolving social-mobility dilemma and derived condi-

tions under which altruistic strategies emerge in the game. By investigating distinct

methodologies, we offer novel insights into how mobility systems can handle travel

demand while considering human preferences, ultimately promoting accessibility and

efficiency in future transportation networks.

In Chapter 3, we delved into strategic traveler routing and mobility market

design, examining various aspects of social resource allocation mechanism design in
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transportation networks. We proposed informationally decentralized mechanisms to

efficiently allocate travel time and prevent congestion while achieving individual ra-

tionality, budget balance, and strong implementability. Furthermore, we explored a

two-sided game for mobility systems and investigated the conditions for optimal, stable

solutions in the presence of informational asymmetry. This interdisciplinary approach

allows us to develop innovative solutions that address the challenges of congestion and

resource allocation, paving the way for sustainable and efficient mobility systems in

the future.

In Chapter 4, we investigated behavioral interactions in multimodal transporta-

tion networks using a mobility game. By incorporating prospect theory into our game-

theoretic modeling framework, we examined travel behavior in mobility systems and

provided insights into the existence of Nash equilibria under different behavioral as-

sumptions. Our research contributes to the intellectual merit of the field by bridging

theories from various disciplines, such as game theory, microeconomics, prospect the-

ory, control, and transportation engineering, providing a comprehensive understanding

of mobility systems and traveler routing. By incorporating these diverse perspectives,

we provide a comprehensive understanding of travel behavior and routing decisions,

ultimately informing the design of smart, efficient, and accessible mobility systems for

the future.

In more detail the contributions in this dissertation can be characterized within

the state of the art in the fields of mobility systems through the lens of game theory.

The contributions of this dissertation are summarized as follows:

1. Provide a sociotechnical game-theoretic framework to study emerging mobility

systems, setting up the stage for a holistic analysis of the social implications

and consequences of CAVs while incorporating the social behavioral dynamics of

travelers, passengers, and drivers (Chapter 2).

2. Comprehensive Mobility Market Design: advance our understanding of strategic
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traveler routing and mobility market design by examining various aspects, such

as two-sided games, shared mobility markets, and multi-modal mobility systems.

It investigates the assignment of travelers to providers, the stability of such as-

signments, and the incorporation of informational asymmetry in mobility games.

This research contributes to the development of economically sustainable, equi-

table, and efficient mobility markets by considering factors such as individual

preferences, social welfare maximization, feasibility, stability, and budget fair-

ness.(Chapter 3).

3. Behavioral Interactions in Multimodal Transportation Networks: This research

contributes to the field by proposing a game-theoretic framework that incorpo-

rates both rational and subjective traveler behaviors within multimodal trans-

portation networks. It demonstrates the existence of Nash equilibria under dif-

ferent behavioral assumptions and provides bounds for the Price of Anarchy and

Price of Stability. By integrating prospect theory into the atomic splittable rout-

ing game, the research captures the nuances of traveler behavior in the face of

traffic uncertainties and varying perceptions of travel time gains and losses, offer-

ing a more comprehensive understanding of travel behavior in modern mobility

systems (Chapter 4).

In conclusion, this dissertation presents a significant contribution to the under-

standing of human behavior in mobility systems and offers valuable insights into the

implications of selfish decision-making on the future of transportation. By bridging

theories from different disciplines, our research provides a solid foundation for the de-

velopment of innovative solutions that ensure accessibility, efficiency, and sustainability

in the mobility systems of the future.

5.1 Future Work

In general, from an engineering standpoint, mechanism design is characterized

by its trade-off between the design of optimal and efficient solutions that all agents
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will accept and realistic and system-wide properties such as simplicity, robustness, and

computational trackability. As control problems are commonly dynamic, complex, and

unpredictable [226], it still remains an open question to devise mechanisms are simple

yet dynamic, robust, and trackable. At the same time, a key open question is to look at

the intersection of mechanism design and machine learning allowing mechanisms with

incentives that lead to efficient equilibria that can be learned in dynamic environments

(i.e., extending the typical mechanism to address dynamic control problems). It is

the authors’ belief that engineering applications (e.g., communication networks, infor-

mation systems, transportation networks) of large-scale systems, which are dynamic

in nature, impose rather crucial challenges to the theoretical framework of mecha-

nism design, and thus, inspire novel new mechanisms that will circumvent some of the

limitations of the theory. The goal, of course, is to improve the applicability of these

mechanisms in real-life problems and translate the usefulness of the theoretical insights

into practice. Finally, game theory allows us to model the strategic interactions of sys-

tems consisted of multiple agents/players and who compete over resources. The theory

of mechanism design allows us to adopt an objective-first approach and model the best

possible game and its rules. As new developments and applications are continuous, it

remains to be seen the next chapters of mechanism design in engineering and its true

impact in solving the big problems.

One important limitation of our work in this dissertation is the assumption of

complete information. Realistically, we cannot expect travelers to have accurate and

complete knowledge of other travelers or the system’s capabilities (network, road ca-

pacities). A potential direction for future research should relax this assumption by only

allowing travelers to know their own actions and utilities. In the literature, attempts

have been made to investigate the emergence of cooperation among selfish travelers and

how to bound rationality/irrationality in travel-choice problems [74, 103, 118, 63]. A

standard technique is Bayesian game-theoretic analyses, and recently, and techniques to

learn representations of unknown information from observed data [12, 225, 136, 242, 57].
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Another interesting direction for future research is to expand the current framework by

explicitly designing the socially-efficient pricing functions to achieve the best possible

equilibrium in the mobility system using techniques from mechanism design. Further-

more, to showcase the benefits of the proposed game-theoretic approach, a necessary

extension of our work is using machine learning techniques [13, 183, 244, 131, 117] with

real-life data.

Future work should also include conducting a simulation-based analysis under

different traffic scenarios to showcase the practical implications of our work. An inter-

esting research direction would involve to extend and enhance the traveler-behavioral

model, motivated by a social-mobility survey. The objective with such a survey would

be to observe any correlations between behavioral tendencies or attitudes of travelers

and how they use shared vehicles (e.g., Uber, Lyft, taxicabs). One should address the

following unanswered questions: (i) “will CAVs play a role and have a significant impact

on the travelers’ tendencies and behavior regarding mobility?” and (ii) “in emerging

mobility systems, how likely will people share CAVs and will be the implications of

a major mode of transportation shift?” We can provide asnwers to these question by

including an extention and enhancement of the traveler-behavioral model, motivated

by a social-mobility survey. Such an objective is to observe any correlations between

behavioral tendencies or attitudes of travelers and their mode of transportation pref-

erence (including CAVs). For example, how likely are people to use CAVs instead

of public transit? Will CAVs impact travelers’ tendencies and behavior; if yes, then

in what way? Answers can help us refine the proposed mobility market and improve

our understanding of the socioeconomic impact of CAVs. Future research efforts will

also focus on using methods, techniques, and insights from behavioral economics and

mixed integer optimization theory to develop a holistic framework of the societal im-

pact of connectivity and automation in mobility and provide socially-efficient, real-time

solutions while tackling any potential rebound effects.
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