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On Team Decision Problems With Nonclassical
Information Structures
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Abstract—In this article, we consider sequential dy-
namic team decision problems with nonclassical informa-
tion structures. First, we address the problem from the
point of view of a “manager” who seeks to derive the
optimal strategy of the team in a centralized process. We
derive structural results that yield an information state for
the team, which does not depend on the control strategy,
and thus, it can lead to a dynamic programming decom-
position where the optimization problem is over the space
of the team’s decisions. We, then, derive structural results
for each team member that yield an information state which
does not depend on their control strategy, and thus, it can
lead to a dynamic programming decomposition where the
optimization problem for each team member is over the
space of their decisions. Finally, we show that the solution
of each team member is the same as the one derived by the
manager. We present an illustrative example of a dynamic
team with a delayed sharing information structure.

Index Terms—Decentralized control, Markov decision
theory, nonclassical information structures, team theory.

I. INTRODUCTION

A. Motivation

T EAM theory [1]–[3] is a mathematical formalism for
decentralized stochastic control problems [4] in which

a “team,” consisting of a number of members, cooperates to
achieve a common objective. It was developed to provide a
rigorous mathematical framework of cooperating members in
which all members have the same objective yet different in-
formation. The underlying structure to model a team decision
problem consists of the following [3]:

1) a number of K ∈ N members of the team;
2) the decisions of each member;
3) the information available to each member, which is dif-

ferent;
4) an objective, which is the same for all members;
5) the existence, or not, of communication between team

members.
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Team theory can be applied effectively in applications that
include informationally decentralized systems such as emerging
mobility systems [5], and in particular, optimal coordination of
connected and automated vehicles at traffic scenarios [6]–[11],
networked control systems [12], [13], mobility markets [14],
smart power grids [15], [16], power systems [17], cooperative
cyber-physical networks [18]–[20], social media platforms [21],
cooperation of robots [22], [23], and Internet of Things
[24]–[26].

B. Related Work

Team theory was established with the seminal work of
Marschak [1], Radner [2], and Marschak and Radner [3] on
static team problems, and with Witsenhausen [27], [28] on
dynamic team problems. In static team problems [29], [30], the
information received by the team members is not affected by the
decisions of other team members [31], while, in dynamic team
problems, the information of at least one team member is af-
fected by the decisions of other members in the team [31]. If there
is a prescribed order in which team members make decisions,
then such a problem is called a sequential team problem. If, how-
ever, the team members make decisions in an order that depends
on the realization of the team’s uncertainty and decisions of other
members, then such a problem is called a nonsequential team
problem. Formulating a well-posed nonsequential team problem
is more challenging as we need to ensure that the problem is
causal and deadlock free [32]–[34]. Teneketzis [35] presented
several results and open questions for nonsequential teams by
using the framework of the Witsenhausen’s intrinsic model [36].
In this article, we restrict our attention to sequential dynamic
team decision problems.

The information structure in a sequential team decision prob-
lem designates who knows what about the status of the team
and when [37], [38]. The information structure may designate
the complexity [39]–[41] of the problem, and can lead to compu-
tational implications [42]. Witsenhausen [43] discussed several
information structures and asserted some optimality results for
team decision problems. Ho [44] investigated information struc-
tures within the context of team decision theory using a simple
thematic example of a team consisting of two individuals who
need to coordinate a meeting. More recently, Mahajan et al. [45]
provided a tutorial paper with a comprehensive characterization
of information structures.

Information structures are classified [37] as follows:
1) classical;
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2) partially nested (alternatively also called overlapping, or
quasiclassical);

3) nonclassical.
In classical information structures, all team members receive

the same information and have perfect recall [46]–[49]. If there
is only one team member, then such information structures are
called strictly classical resulting in team decision problems that
are typical centralized stochastic control problems [50], [51].
In partially nested information structures, there are some team
members who have a nonempty intersection of their information
structures while they have perfect recall. Any information struc-
ture that is not classical, or partially nested, is called nonclassical
and can be further classified [45] as follows:

1) n -step delayed-sharing, n ∈ R, where each team
member has access to the information, i.e., observations
and decisions, of other members after an n-step symmet-
ric delay, i.e., same for all members [52], or asymmetric
delay [53];

2) periodic sharing [54], where each team member has
access to the information, i.e., observations and decisions,
of the other members periodically;

3) delayed observation (or state [55]) sharing information,
where each team member has access to the observations
(or states if completely observable) of other members
after an n-step symmetric, or asymmetric, delay;

4) delayed control sharing information, where each team
member has access to the decisions of other members
after an n-step symmetric, or asymmetric, delay [56];

5) no sharing information, where the team members do not
share any information.

Sequential dynamic team problems with nonclassical in-
formation structures impose the following technical chal-
lenges [57]: 1) the functional optimization problem of selecting
the optimal strategy is not trivial as the class of strategies is
infinitely large, and 2) the data increase with time causing
significant implications on storage requirements and real-time
implementation. In centralized stochastic control theory, these
difficulties are addressed by finding sufficient statistics to com-
press the growing data without loss of optimality [58] using
a conditional probability of the state of the team at time t
given all the data available up until time t. This conditional
probability is called information state, and it takes values in a
time-invariant space. Using this information state can help us
derive results for optimal control strategies in a time-invariant
domain. Results based on data which, even though they increase
with time, are compressed to a sufficient statistic taking values
in a time-invariant space are called structural results (see [59, p.
203]).

In centralized stochastic control, structural results can help
us establish an information state, which does not depend on
the control strategy, and thus, they are related to the concept
of separation between estimation and control. An important
consequence of this separation is that for any given choice of
control strategies and a realization of the team’s variables until
time t, the information states at future times do not depend on the
choice of the control strategy at time t but only on the realization

of the decision at time t (see [50, p. 84]). Thus, the future
information states are separated from the choice of the current
control strategy. The latter is necessary in order to formulate
a classical dynamic program [60]–[62], where at each step the
optimization problem is to find the optimal decision for a given
realization of the information state [50].

Several structural results have been reported in the literature to
date for team decision problems with nonclassical information
structures [43], [52], [53], [63]–[68]. However, these results can
lead to a sequential decomposition of the optimization problem
over a space of functions [52], [69], [70] instead of a space
of decisions to derive optimal strategies. This is due to the
absence of separation between estimation and control which
prevents the formulation of a classical dynamic program. There
are three general approaches currently in the literature that, in
conjunction with these structural results, can be used to derive
optimal strategies in sequential dynamic team problems with
nonclassical information structures:

1) the person-by-person approach;
2) the designer’s approach;
3) the common information approach.

The person-by-person approach aims to convert the problem
into a centralized stochastic control problem from the point
of view of each team member. Namely, we arbitrarily fix the
strategies for all team members except for one, say team member
k ∈ K, K = {1, . . . ,K}, K ∈ N. Then, we derive the optimal
strategy for k given the strategies for all other members. We
repeat this process for all team members until no member can
improve the performance of the team by unilaterally changing
their strategy. Thus, the resulting strategies are person-by-person
optimal [44]. Other research efforts have taken a different
approach using Girsanov’s change of probability measure to
transform the dynamic team problem to a static problem, in
which the information structure is not affected by the members’
decisions, and then applied the stochastic maximum principle to
derive necessary and sufficient optimality conditions for both
team and person-by-person strategies [71]–[75]. An optimal
strategy of the team is necessarily person-by-person optimal
(see [76, p. 195]). However, the converse is not in general true.
In addition, if the team payoff function is concave polyhedral,
i.e., piecewise linear and concave, then the person-by-person
approach is not generally sufficient to determine an optimal
strategy (see [76, p. 191]), although the problem can be reduced
to a linear programming problem. Ho [77] showed that for
a Gaussian team if the observation functions are linear and
the cost function is quadratic, then affine control strategies
are optimal. The person-by-person approach has been used
in teams with broadcast information structures [78], in real-
time communication using encoders and decoders [79]–[84], in
quickest detection problems [85]–[88], and networked control
systems [89], [90].

The designer’s approach was first introduced by Witsen-
hausen [28], as a standard form for sequential stochastic control
with a nonclassical information structure, and extended later
by Mahajan [91] and Yüksel [92]. This approach addresses the
team decision problem from the point of view of a “designer”

Authorized licensed use limited to: Technical University of Crete. Downloaded on September 17,2023 at 22:08:00 UTC from IEEE Xplore.  Restrictions apply. 



MALIKOPOULOS: ON TEAM DECISION PROBLEMS WITH NONCLASSICAL INFORMATION STRUCTURES 3917

who knows the team’s dynamics and statistics of all sources
of uncertainties. Although sequential dynamic team decision
problems are informationally decentralized, the designer’s ap-
proach transforms the problem into a centralized, open-loop
planning problem from the designer’s point of view where
the objective is to derive the strategy of the team before the
team starts evolving. Therefore, no data are observed by the
designer, and thus, this approach leads to a dynamic program-
ming decomposition over a space of functions instead of deci-
sions imposing significant computational implications [57]. The
person-by-person approach has been used in conjunction with
the designer’s approach in real-time communication [80], [93],
[94], and networked control systems [89], [90].

The common information approach [70], [95] was first pre-
sented for problems with partial history sharing [52], where
the team members share a subset of their past observations and
decisions to a shared memory accessible by all members of the
team. The solution is derived by reformulating the problem from
the viewpoint of a “coordinator” with access only to the shared
information (the common information), whose task is to provide
prescription strategies to each team member. At each time t, the
prescription strategies of the team members map their private
history of observations and decisions to their optimal decisions at
t. The common information approach has been used in problems
with control-sharing information structure [96], in stochastic
games with asymmetric information [97], and in teams with
mean-field sharing [98]. There are also some earlier papers that
used similar ideas to analyze specific information structures, or
structure of the team decision problem, e.g., teams with sequen-
tial decompositions [99], teams with partially nested information
and common past [100], teams with delayed state sharing [55],
teams with periodic sharing information structure [54], and
teams with belief sharing information structure [101].

C. Contributions of This Article

In this article, we provide structural results and a classical
dynamic programming decomposition of sequential dynamic
team decision problems. We first address the problem from the
point of view of a “manager” who seeks to derive the optimal
strategy of a team in a centralized process. Then, we address the
problem from the point of view of each team member, and show
that the solution of each team member is the same as the one
derived by the manager.

The contributions of this article are the induction of the
following: 1) structural results for the team from the point of
view of a manager, i.e., through a centralized process that yield
an information state, which does not depend on the control
strategy of the team (Theorem 1), and thus, it leads to a classical
dynamic programming decomposition where the optimization
problem is over the space of the team’s decisions (Theorems 2
and 3); and 2) structural results for each team member that yield
an information state which does not depend on their control
strategy (Theorem 5), and thus, it leads to a classical dynamic
programming decomposition where the optimization problem is
over the space of the decisions of each team member. In addition,
we show that the solution of each team member is the same as

the one derived by the manager (Theorem 7), and therefore, the
team members do not need a centralized intervention.

D. Comparison With Related Work

The one feature which sharply distinguishes previous
approaches, reported in Section I-B, from that undertaken here
is that, in this article, we derive structural results aimed at
establishing an information state that does not depend on the
control strategy, and thus, we can institute separated control
strategies that can lead to a classical dynamic programming de-
composition. More specifically, the results in this article advance
the state of the art in the following ways.

First, in contrast to the person-by-person optimal strat-
egy [78]–[90], which is not always an optimal strategy of the
team (see [76, p. 195]), our structural results for each team mem-
ber (Theorem 5) guarantee that their optimal control strategies
are also optimal for the team (Theorem 7).

Second, while our structural results from the point of view
of a manager impose a centralized process, they yield an in-
formation state which does not depend on the control strategy
of the team (Theorem 1), and thus, it can lead to a classical
dynamic programming decomposition where the optimization
problem is over the space of the team’s decisions (Theorems 2
and 3). The designer’s approach [28], [91], on the other hand,
transforms the problem into a centralized, open-loop planning
problem where the objective is to derive the strategy of the team
before the team starts evolving. Therefore, no data are observed
by the designer, and thus, this approach leads to a dynamic
programming decomposition over a space of functions instead of
decisions which has significant computational implications [57].

Finally, in contrast to the common information approach [52],
[70], where the coordinator’s problem is a centralized stochastic
control problem [102] that leads to a dynamic programming
decomposition where the optimization problem is over a space
of functions, i.e., the prescription functions of the team members,
our structural results from the manager’s point of view lead to
a dynamic programming decomposition where the optimization
problem is over the space of the team’s decisions (Theorems 2
and 3). In addition, our structural results for each team member
yield an information state that leads to a dynamic programming
decomposition for each team member resulting in a solution of
each team member, which is the same as the one derived by the
manager (Theorem 7), and thus, the team members do not need
a centralized intervention.

E. Organization of This Article

The rest of this article organized as follows. In Section II,
we provide the modeling framework, information structure, and
the optimization problem of a team. In Section III, we derive
structural results for the team from the point of view of a
manager, and a dynamic programming decomposition where the
optimization problem is over the space of the team’s decisions.
In Section IV, we derive structural results for each team member,
and a dynamic programming decomposition where the optimiza-
tion problem is over the space of the decisions of each team
member. In Section V, we present an example of a dynamic team
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with a delayed sharing information structure consisting of two
members. This example was used by Varaiya and Walrand [63]
to show that Witsenhausen’s structural result asserted in his
seminal paper [43] is suboptimal. Finally, Section VI concludes
this article.

II. PROBLEM FORMULATION

A. Notation

Subscripts denote time and superscripts index subsystems. We
denote random variables with upper case letters, and their real-
izations with lower case letters, e.g., for a random variableXt,xt
denotes its realization. The shorthand notationX1:K

t denotes the
vector of random variables (X1

t , X
2
t , . . . , X

K
t ), x1:Kt denotes

the vector of their realization (x1t , x
2
t , . . . , x

K
t ), and h1:Kt (·, ·)

denotes the vector of functions (h1t (·, ·), . . . , hKt (·, ·)). The ex-
pectation of a random variable is denoted by E[·], the probability
of an event is denoted by P (·), and the probability density
function is denoted byp(·). For a control strategyg, we use Eg[·],
Pg(·), and pg(·) to denote that the expectation, probability, and
probability density function, respectively, depend on the choice
of the control strategyg. For two measurable spaces (X ,X ) and
(Y,Y ), X ⊗ Y is the product σ-algebra on X × Y generated
by the collection of all measurable rectangles, i.e., X ⊗ Y :=
σ({A×B : A ∈ X , B ∈ Y }). The product of (X ,X ) and
(Y,Y ) is the measurable space (X × Y,X ⊗ Y ).

B. Modeling Framework

We consider a team of K ∈ N members with a measurable
state space (Xt,Xt), whereXt is the set in which the team’s state
takes values at time t = 0, 1, . . . , T − 1, T ∈ N, and Xt is the
associated σ-algebra. The state of the team is represented by a
random variableXt : (Ω,F ) → (Xt,Xt), defined on the prob-
ability space (Ω,F ,P ), where Ω is the sample space, F is the
associated σ-algebra, and P is a probability measure on (Ω,F ).
The decision of each team member k ∈ K, K = {1, . . . ,K}, is
represented by a random variable Uk

t : (Ω,F ) → (Uk
t ,U

k
t ),

defined on the probability space (Ω,F ,P ), and takes values
in the measurable space (Uk

t ,U
k
t ), where Uk

t is team member
ks nonempty feasible set of actions at time t and U k

t is the
associated σ-algebra. Let U1:K

t = (U1
t , . . . , U

K
t ) be the team’s

decision at time t. Starting at the initial state X0, the evolution
of the team is described by the state equation

Xt+1 = ft
(
Xt, U

1:K
t ,Wt

)
(1)

where Wt is a random variable defined on the probability
space (Ω,F ,P ) that corresponds to the external, uncontrollable
disturbance to the team and takes values in a measurable set
(W,W ), i.e., Wt : (Ω,F ) → (W,W ). {Wt : t = 0, . . . , T −
1} is a sequence of independent random variables that are also
independent of the initial stateX0. At time t = 0, 1, . . . , T − 1,
every team member k ∈ K makes an observation Y k

t , which
takes values in a measurable set (Yk,Y k), described by the
observation equation

Y k
t = hkt (Xt, Z

k
t ) (2)

where Zk
t is a random variable defined on the probability space

(Ω,F ,P ) that corresponds to the noise of each member’s sen-
sor and takes values in a measurable set (Zk,Z k), i.e., Zk

t :
(Ω,F ) → (Zk,Z k). {Zk

t : t = 0, . . . , T − 1; k = 1, . . . ,K}
is a sequence of independent random variables that are also
independent of the initial stateX0 and {Wt : t = 0, . . . , T − 1}.

C. Nonclassical Information Structures

The team has a nonclassical information structure that can be
classified as follows.

1) n-Step Delayed Information Sharing: In this case, at
time t, team member k ∈ K observesY k

t , and then-step,n ∈ R,
past observationsY 1:K

0:t−n, and decisionsU1:K
0:t−n of the entire team.

Thus, at time t, the data available to member k consist of the
data Δt available to all team members, i.e.,

Δt := (Y 1:K
0:t−n, U

1:K
0:t−n) (3)

where Y 1:K
0:t−n = {Y 1

0:t−n, . . . , Y
K
0:t−n}, U1:K

0:t−n = {U1
0:t−n,

. . . , UK
0:t−n}, and the data Λk

t known only to member k ∈ K,
i.e.,

Λk
t := (Y k

t−n+1:t, U
k
t−n+1:t−1). (4)

The n-step delayed information sharing can also be asymmet-
ric [53], i.e., for each member k ∈ K, Y k

t−nk
, Uk

t−nk
, where

nk ∈ R, is constant but not necessarily the same for each k.
2) Periodic Information Sharing With Period ω ≥ 1: In

this case, for α = 1, 2, . . . and αω < t ≤ (α+ 1)ω, the pair of
Δt and Λk

t , k ∈ K, becomes

Δt := (Y 1:K
0:αω, U

1:K
0:αω) (5)

Λk
t := (Y k

αω+1:(α+1)ω, U
k
αω+1:(α+1)ω). (6)

3) n-Step Delayed Observation Sharing: In this case, Δt

and Λk
t , k ∈ K, become

Δt := (Y 1:K
0:t−n) (7)

Λk
t := (Y k

t−n+1:t, U
k
0:t−1). (8)

4) n-Step Delayed Control Sharing: In this case, Δt and
Λk
t , k ∈ K, become

Δt := (U1:K
0:t−n) (9)

Λk
t := (Y k

0:t, U
k
t−n+1:t−1). (10)

5) No Sharing Information: In this case,Δt andΛk
t , k ∈ K,

become

Δt := ∅ (11)

Λk
t := (Y k

0:t, U
k
0:t−1). (12)

The collection {(Δt,Λ
k
t ); k ∈ K; t = 0, . . . , T − 1}, is the

information structure of the team and captures who knows what
about the status of the team and when.

In our exposition, we consider that the team imposes ann-step
delayed information sharing, which can be deemed as the general
case of a nonclassical information structure. However, in what
follows, the results hold for any special case (2)–(5) above and
corresponding n.
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D. Optimization Problem

Let (Dt,Dt) and (Lk
t ,L

k
t ), k ∈ K, be the measurable spaces

of all possible realizations of Δt and Λk
t , respectively, where

Dt and L k
t are the associated σ-algebras. Each team member k

makes a decision

Uk
t = gkt (Λ

k
t ,Δt) (13)

where gkt is a control law of k ∈ K, which is a measur-
able function gkt : (Lk

t ×Dt,L k
t ⊗ Dt) → (Uk

t ,U
k
t ). The con-

trol strategy of team member k ∈ K is gk = {gkt ; t = 0, . . . ,
T − 1},gk ∈ Gk, where Gk is the feasible set of the control
strategies for k. Thus, the set of feasible decentralized control
strategies is GDec = ×k∈KGk, i.e., g = {g1, . . . ,gK} ∈ GDec.
If g ∈ G is a centralized control strategy then G =: (L1

t × · · · ×
LK
t ×Dt,L 1

t ⊗ · · · ⊗ L K
t ⊗ Dt).

Problem 1: The problem is to derive the optimal control
strategy g∗ of the team that minimizes the expected total cost

J(g) = Eg

[
T−1∑
t=0

ct(Xt, U
1:K
t ) + cT (XT )

]
(14)

where the expectation is with respect to the joint probability
distribution of the random variablesXt andU1:K

t designated by
the choice of g, ct(Xt, U

1:K
t ) : (Xt ×

∏
k∈K Uk

t ,Xt ⊗ U 1
t ⊗

. . .⊗ U K
t ) → R is the team’s measurable cost function, and

cT (X̂T ) : (XT ,XT ) → R is the measurable cost function at T .
The statistics of the primitive random variables X0, {Wt :

t = 0, . . . , T − 1}, {Zk
t : k ∈ K; t = 0, . . . , T − 1}, the state

equations {ft : t = 0, . . . , T − 1}, the observation equations
{hkt : k ∈ K; t = 0, . . . , T − 1}, and the cost functions {ct :
t = 0, . . . , T} are all known.

III. STRUCTURAL RESULTS FOR THE TEAM

We start our exposition by addressing Problem 1 from the
point of view of a manager who seeks to derive the optimal
strategy g ∈ G of the team.

A. Information State—Team

The first step is to identify an appropriate information state
for the team that can be used to formulate a classical dynamic
programming decomposition for Problem 1.

Definition 1: An information state,Πt, for the team described
by the state equation (1) (a) is a function of (Δt,Λ

1:K
t ), and (b)

Πt+1 can be determined from Πt, Y 1:K
t+1 , and U1:K

t .
The notation is simpler if we consider densities for all

probability distributions. Let g ∈ G be a control strategy and
(Δt,Λ

1:K
t ) be the information structure of the team. To proceed,

we first need to prove some essential properties of the conditional
probability densities related to the observations of the team
members and team’s state.

Lemma 1: For any control strategy g ∈ G of the team

pg(Y 1:K
t+1 |Xt+1,Δt,Λ

1:K
t , U1:K

t ) = p(Y 1:K
t+1 |Xt+1) (15)

for all t = 0, 1, . . . , T − 1.
Proof: The realization of Y 1:K

t+1 is statistically determined by
the conditional distribution of Y 1:K

t+1 given Xt+1 in (2), hence

pg(Y 1:K
t+1 |Xt+1,Δt,Λ

1:K
t , U1:K

t ) = pg(Y 1:K
t+1 |Xt+1). (16)

However,

pg(Y 1:K
t+1 |Xt+1) = pg(Z1:K

t+1 ∈
∏
k∈K

Bk |Xt+1) (17)

where Bk ∈ Z k, k ∈ K. Since, {Zk
t : k = 1, . . . ,K; t =

0, . . . , T − 1} is a sequence of independent random variables
that are independent of Xt+1

pg(Z1:K
t+1 ∈

∏
k∈K

Bk |Xt+1) = p(Z1:K
t+1 ∈

∏
k∈K

Bk). (18)

Thus

pg(Y 1:K
t+1 |Xt+1) = p(Y 1:K

t+1 |Xt+1). (19)

The result follows from (16) and (19).
Lemma 2: For any control strategy g ∈ G of the team

pg(Xt+1 |Xt,Δt,Λ
1:K
t , U1:K

t ) = p(Xt+1 |Xt, U
1:K
t ) (20)

for all t = 0, 1, . . . , T − 1.
Proof: The realization of Xt+1 is statistically determined by

the conditional distribution ofXt+1 givenXt and U1:K
t , i.e., by

pg(Xt+1 |Xt, U
1:K
t ). From (1), we have

pg(Xt+1 |Xt, U
1:K
t ) = pg(Wt ∈ A |Xt, U

1:K
t ) (21)

whereA ∈ W . Since, {Wt : t = 0, . . . , T − 1} is a sequence of
independent random variables that are independent of Xt and
U1:K
t

pg(Wt ∈ A |Xt, U
1:K
t ) = p(Wt ∈ A). (22)

Next

pg(Xt+1 |Xt,Δt,Λ
1:K
t , U1:K

t )

= pg(Wt ∈ A |Xt,Δt,Λ
1:K
t , U1:K

t ) = p(Wt ∈ A). (23)

The result follows from (21)–(23). �
Lemma 3: For any control strategy g ∈ G of the team

pg(Xt |Δt,Λ
1:K
t ) = p(Xt |Δt,Λ

1:K
t ) (24)

for all t = 0, 1, . . . , T − 1.
Proof: We have

pg(Xt |Δt,Λ
1:K
t )

= pg(Xt |Δt,Λ
1:K
t−2 , Y

1:K
t−1 , Y

1:K
t , U1:K

t−2 , U
1:K
t−1 ). (25)

However, the realization ofXt is statistically determined by the
conditional distribution ofXt givenXt−1 andU1:K

t−1 , which does
not depend on the control strategy g (Lemma 2), so we can drop
the superscript in (25), and thus (24) follows immediately. �

Remark 1: As a consequence of Lemma 3, and sinceXt does
not depend on U1:K

t , we have

pg(Xt |Δt,Λ
1:K
t , U1:K

t ) = p(Xt |Δt,Λ
1:K
t ). (26)

Given that the manager can observe the data (Δt,Λ
1:K
t ) of

the team, our hypothesis is that we can compress these data to
a sufficient statistic of the state of the team. This statistic is the
probability density function p(Xt |Δt,Λ

1:K
t ). The next result

proves our hypothesis and shows that such information state
does not depend on the team’s control strategy.

Theorem 1 (Information State—Team): For any control
strategy g ∈ G of the team, the conditional probability
density pg(Xt |Δt,Λ

1:K
t ) does not depend on the control

strategy g. It is an information state Πt(Δt,Λ
1:K
t )(Xt),

i.e., Πt(Δt,Λ
1:K
t )(Xt) = p(Xt |Δt,Λ

1:K
t ) with

∫
Xt

Πt(Δt,
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Λ1:K
t )(Xt)dXt = 1 that can be evaluated fromΔt,Λ

1:K
t . More-

over, there is a function θt, which does not depend on the control
strategy g, such that

Πt+1(Δt+1,Λ
1:K
t+1)(Xt+1)

= θt
[
Πt(Δt,Λ

1:K
t )(Xt), Y

1:K
t+1 , U

1:K
t

]
(27)

for all t = 0, 1, . . . , T − 1.
Proof: See Appendix A. �
Note that the information state Πt+1(Δt+1,Λ

1:K
t+1)(Xt+1) =

p(Xt+1 |Δt+1,Λ
1:K
t+1) of the team is the entire probabil-

ity density function and not just its value at any particu-
lar realization of (Δt+1,Λ

1:K
t+1). This is because to compute

Πt+1(Δt+1,Λ
1:K
t+1)(Xt+1) for any particular Xt+1, we need

the probability density functions p( · |Δt,Λ
1:K
t , U1:K

t ) and
p( · |Δt,Λ

1:K
t ). This implies that the information state takes val-

ues in the space of these probability densities on the measurable
space (Xt,Xt), which is an infinite-dimensional space.

B. Optimal Control Strategy of the Team

In what follows, to simplify notation, the information state
Πt(Δt,Λ

1:K
t ) of the team at t is denoted simply by Πt. We use

its argumentsΔt andΛ1:K
t only if it is required by our exposition.

Definition 2: A control strategy g = {gt; t = 0, . . . , T − 1}
is said to be separated if gt depends onΔt andΛ1:K

t only through
the information state, i.e., U1:K

t = gt(Πt(Δt,Λ
1:K
t )). Let Gs ⊆

G denote the set of all separated control strategies.
In implementing a separated control strategy, we first need

to compute the conditional probability Πt(Δt,Λ
1:K
t ), and then

choose the control, since the task of estimation and control are
separated. Next, we use the information state to define recur-
sive functions which are analogous to the comparison principle
(see [50, p. 74]).

Theorem 2: Let Vt(Πt(Δt,Λ
1:K
t )) be functions defined re-

cursively for all g ∈ Gs by

VT
(
ΠT (ΔT ,Λ

1:K
T )

)
:= Eg [cT (XT ) |ΠT = πT ] (28)

Vt
(
Πt(Δt,Λ

1:K
t )

)
:= inf

u1:K
t ∈∏k∈K Uk

t

Eg
[
ct(Xt, U

1:K
t )

+ Vt+1

(
θt
[
Πt(Δt,Λ

1:K
t ), Y 1:K

t+1 , U
1:K
t

]) |Πt = πt

U1:K
t = u1:Kt

]
(29)

where cT (XT ) is the cost function at T , and πT , πt, u1:Kt are
the realizations ofΠT ,Πt, andU1:K

t , respectively. Then, for any
control strategy g ∈ G,

Vt
(
Πt(Δt,Λ

1:K
t )

) ≤ Jt(g) := Eg

[
T−1∑
l=t

cl(Xl, U
1:K
l )

+ cT (XT ) |Δt,Λ
1:K
t

]
(30)

where Jt(g) is the cost-to-go of the team at time t corresponding
to the control strategy g ∈ G.

Proof: We prove (30) by induction. For t = T

JT (g) := Eg
[
cT (XT )|ΔT ,Λ

1:K
T

]
=

∫
XT

cT (XT )ΠT (ΔT ,Λ
1:K
T )(XT ) dXT (31)

and so (30) holds with equality.
Suppose that (30) holds for t+ 1. Then

Jt(g) = Eg

[
T−1∑
l=t

cl(Xl, U
1:K
l ) + cT (XT ) |Δt,Λ

1:K
t

]

= Eg

[
ct(Xt, U

1:K
t ) +

T−1∑
l=t+1

cl(Xl, U
1:K
l )

+ cT (XT ) |Δt,Λ
1:K
t

]
= Eg

[
Eg

[
ct(Xt, U

1:K
t )

+

T−1∑
l=t+1

cl(Xl, U
1:K
l ) + cT (XT ) |Δt,Λ

1:K
t , U1:K

t

]

|Δt,Λ
1:K
t

]

≥ Eg

[
Eg

[
ct(Xt, U

1:K
t )

+ Vt+1

(
θt
[
Πt(Δt,Λ

1:K
t ), Y 1:K

t+1 , U
1:K
t

]) |Πt

× (Δt,Λ
1:K
t ) U1:K

t

] |Δt,Λ
1:K
t

]

= Eg

[
Vt

(
Πt(Δt,Λ

1:K
t )

) |Δt,Λ
1:K
t

]

= Vt
(
Πt(Δt,Λ

1:K
t )

)
(32)

where in the inequality, we used the hypothesis and, in the last
equality, we used (29). Thus, (30) holds for all t. �

In view of Theorem 2, we show that an optimal strategy of the
team is separated and obtain a classical dynamic programming
decomposition where the optimization problem is over the space
of the team’s decisions.

Theorem 3: Let

Vt
(
Πt(Δt,Λ

1:K
t )

)
:= inf

u1:K
t ∈∏k∈K Uk

t

Eg
[
ct(Xt, U

1:K
t )

+ Vt+1

(
θt
[
Πt(Δt,Λ

1:K
t ), Y 1:K

t+1 , U
1:K
t

]) |Πt = πt

U1:K
t = u1:Kt

]
(33)

and let g ∈ Gs be a separated control strategy that achieves the
infimum in (33). Then, g ∈ Gs is optimal and

Vt
(
Πt(Δt,Λ

1:K
t )

)
= Jt(g) (34)

with probability 1.
Proof: We first prove (34) by induction. For t = T

JT (g) := Eg
[
cT (XT ) |ΔT ,Λ

1:K
T

]
=

∫
XT

cT (XT )ΠT (ΔT ,Λ
1:K
T )(XT )dXT . (35)

Suppose that (33) holds for t+ 1. Then

inf
u1:K
t ∈∏k∈K Uk

t

Eg

[
T−1∑
l=t

cl(Xl, U
1:K
l ) + cT (XT )|Δt,Λ

1:K
t

]
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= inf
u1:K
t ∈∏k∈K Uk

t

Eg

[
ct(Xt, U

1:K
t ) +

T−1∑
l=t+1

cl(Xl, U
1:K
l )

+ cT (XT ) |Δt,Λ
1:K
t

]
= inf

u1:K
t ∈∏k∈K Uk

t

Eg

[
Eg

[
ct(Xt, U

1:K
t )

+
T−1∑
l=t+1

cl(Xl, U
1:K
l ) + cT (XT )|Δt,Λ

1:K
t , U1:K

t

]

|Δt,Λ
1:K
t

]

= inf
u1:K
t ∈∏k∈K Uk

t

Eg

[
Eg

[
ct(Xt, U

1:K
t )

+ Vt+1

(
θt
[
Πt(Δt,Λ

1:K
t ), Y 1:K

t+1 , U
1:K
t

]) |Πt(Δt,Λ
1:K
t )

U1:K
t

] |Δt,Λ
1:K
t

]

= Eg

[
Vt

(
Πt(Δt,Λ

1:K
t )

) |Δt,Λ
1:K
t

]
= Vt

(
Πt(Δt,Λ

1:K
t )

)
(36)

where in the third equality, we used the hypothesis and, in the
forth equality, u1:Kt achieves the infimum. Thus, (33) holds for
all t.

For t = 0, (34) yields J0(g) = V0(Π0(Δ0,Λ
1:K
0 )). Taking

expectations

J(g) = Eg [J0(g)] = Eg
[
V0

(
Π0(Δ0,Λ

1:K
0 )

)]
. (37)

By Theorem 2, it follows that for any other g′ ∈ G
J(g′) ≥ Eg

[
V0

(
Π0(Δ0,Λ

1:K
0 )

)]
. (38)

The following results are derived by using ideas from [103]
and [104].

Lemma 4: Let Vt(Πt(Δt,Λ
1:K
t )) be functions defined recur-

sively for all g ∈ Gs by

VT
(
ΠT (ΔT ,Λ

1:K
T )

)
:= Eg [cT (XT ) |ΠT = πT ] (39)

Vt
(
Πt(Δt,Λ

1:K
t )

)
:= inf

u1:K
t ∈∏k∈K Uk

t

Eg
[
ct(Xt, U

1:K
t )

+ Vt+1

(
θt
[
Πt(Δt,Λ

1:K
t ), Y 1:K

t+1 , U
1:K
t

]) |Πt = πt

U1:K
t = u1:Kt

]
(40)

where cT (XT ) is the cost function at T , and πT , πt, u1:Kt are
the realizations of ΠT , Πt, and U1:K

t , respectively. Then, for all
t = 0, . . . , T , Vt(Πt(Δt,Λ

1:K
t )) is positive homogeneous, i.e.,

for any ρ > 0, Vt(ρΠt(Δt,Λ
1:K
t )) = ρ Vt(Πt(Δt,Λ

1:K
t )).

Proof: See Appendix B. �
Theorem 4: Let

Vt
(
Πt(Δt,Λ

1:K
t )

)
:= inf

u1:K
t ∈∏k∈K Uk

t

Eg
[
ct(Xt, U

1:K
t )

+ Vt+1

(
θt
[
Πt(Δt,Λ

1:K
t ), Y 1:K

t+1 , U
1:K
t

]) |Πt = πt

U1:K
t = u1:Kt

]
(41)

where cT (XT ) is the cost function at T , and πT , πt, u1:Kt are
the realizations of ΠT , Πt, and U1:K

t , respectively. Then, for

all t = 0, . . . , T , Vt(Πt(Δt,Λ
1:K
t )) is concave with respect to

Πt(Δt,Λ
1:K
t ).

Proof: See Appendix C. �

IV. STRUCTURAL RESULTS FOR THE TEAM MEMBERS

In this section, we address Problem 1 from the point of view of
a team member k ∈ K who seeks to derive their optimal strategy
gk = {gkt ; k ∈ K; t = 0, . . . , T − 1}, which will constitute the
team’s strategy g = {g1, . . . ,gK} ∈ GDec.

A. Information State—Team Members

We first identify an appropriate information state for mem-
ber k ∈ K that can be used to formulate a classical dynamic
programming decomposition for Problem 1.

Definition 3: An information state, Πk
t , for member k ∈ K

of a team described by the state equation (1) (a) is a function
of (Δt,Λ

k
t ), and (b) Πk

t+1 can be determined from Πk
t , Y 1:K

t−n+1,
U1:K
t−n+1, Y k

t+1, and Uk
t .

To proceed, we first need to prove some essential properties of
the conditional probabilities densities related to the observation
of team member k ∈ K and the team’s state.

Lemma 5: For any control strategy g = {g1, . . . ,gK} of the
team

pg(Y k
t+1 |Xt+1,Δt+1,Λ

k
t , U

k
t ) = p(Y k

t+1 |Xt+1) (42)

for all t = 0, 1, . . . , T − 1.
Proof: The realization of Y k

t+1 is statistically determined by
the conditional distribution of Y k

t+1 given Xt+1 in (2), hence

pg(Y k
t+1 |Xt+1,Δt+1,Λ

k
t , U

k
t ) = pg(Y k

t+1 |Xt+1). (43)

However

pg(Y k
t+1 |Xt+1) = pg(Zk

t+1 ∈ Bk |Xt+1) (44)

where Bk ∈ Z k. Since, {Zk
t : t = 0, . . . , T − 1; k =

1, . . . ,K} is a sequence of independent random variables
that are independent of Xt+1, we have

pg(Zk
t+1 ∈ Bk |Xt+1) = p(Zk

t+1 ∈ Bk). (45)

Thus

pg(Y k
t+1 |Xt+1) = p(Y k

t+1 |Xt+1). (46)

The result follows from (43) and (46). �
Lemma 6: For any control strategy g = {g1, . . . ,gK} of the

team, pg(Xt+1 |Δt+1,Λ
k
t , U

k
t ) does not depend on the control

strategy gk of member k. It depends only on the strategy g−k =
(g1, . . . ,gk−1,gk+1, . . . ,gK), of the other team members, i.e.,

pg(Xt+1 |Δt+1,Λ
k
t , U

k
t ) = pg

−k

(Xt+1 |Δt+1,Λ
k
t , U

k
t ) (47)

for all t = 0, 1, . . . , T − 1.
Proof: Since Xk

t+1 = ft(Xt, U
1:K
t ,Wt) and Λk

t :=
(Y k

t−n+1:t, U
k
t−n+1:t−1), and Y k

t = hkt (Xt, Z
k
t ) we have

pg(Xt+1 |Δt+1,Λ
k
t , U

k
t )

= pg(Wt ∈ A,U−k
t , Zk

t ∈ Bk |Δt+1,Λ
k
t , U

k
t )

= pg(Wt ∈ A |Δt+1,Λ
k
t , U

k
t ) · pg(U−k

t |Δt+1,Λ
k
t , U

k
t )

· pg(Zk
t ∈ Bk |Δt+1,Λ

k
t , U

k
t )

= p(Wt ∈ A |Δt+1,Λ
k
t , U

k
t ) · pg−k(U−k

t |Δt+1)
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· p(Zk
t ∈ Bk |Δt+1,Λ

k
t , U

k
t ) (48)

where A ∈ W , Bk ∈ Z k, and U−k
t = (U1

t , . . . , U
k−1
t ,

Uk+1
t , . . . , UK

t ). In the last equality, the second term
depends only on g−k while we dropped the superscript g
in p(Wt ∈ A |Δt+1,Λ

k
t , U

k
t ) and p(Zk

t ∈ Bk |Δt+1,Λ
k
t , U

k
t )

since bothWt andZk
t are two sequences of independent random

variables, and the evolution of their probability measure does
not depend on the control strategy.

Theorem 5 (Information State—Team Members): For any
control strategy g = {g1, . . . ,gK} ∈ GDec of the team, the con-
ditional probability density p(Xt |Δt,Λ

k
t ) does not depend on

the control strategy gk of member k. It depends only on the
strategyg−k = (g1, . . . ,gk−1,gk+1, . . . ,gK) of the other team
members. It is an information state of the team member k, i.e.,
Πk

t (Δt,Λ
k
t )(Xt) = pg

−k
(Xt |Δt,Λ

k
t ), that can be evaluated

from Δt and Λk
t . Moreover, there is a function θkt , which does

not depend on the control strategy gk of member k, such that

Πk
t+1(Δt+1,Λ

k
t+1)(Xt+1)

= θkt
[
Πk

t (Δt,Λ
k
t )(Xt),Δt+1,Λ

k
t+1

]
(49)

for all t = 0, 1, . . . , T − 1.
Proof: See Appendix D. �
Note that the information state Πk

t+1(Δt+1,Λ
k
t+1)(Xt+1) =

p(Xt+1 |Δt+1,Λ
k
t+1) of member k is the entire probabil-

ity density function and not just its value at any partic-
ular realization of (Δt+1,Λ

k
t+1). This is because to com-

pute Πk
t+1(Δt+1,Λ

k
t+1)(Xt+1) for any particular Xt+1, we

need the probability density functions p( · |Δt,Λ
k
t , U

k
t ) and

p( · |Δt,Λ
k
t ). This implies that the information state takes values

in the space of these probability densities on the measurable
space (Xt,Xt), which is an infinite-dimensional space.

Lemma 7: The information state of the team
Πt+1(Δt+1,Λ

1:K
t+1)(Xt+1) is a function of the information

state Πk
t+1(Δt+1,Λ

k
t+1)(Xt+1) of each team member k ∈ K,

Δt+1, and Λ1:K
t+1 for all t = 0, 1, . . . , T − 1.

Proof: By applying Bayes’ rule, for all t = 0, 1, . . . , T − 1,
we have

Πt+1(Δt+1,Λ
1:K
t+1)(Xt+1) = p(Xt+1 |Δt+1,Λ

1:K
t+1)

=
p(Λ−k

t+1 |Xt+1,Δt+1,Λ
k
t+1)p(Xt+1 |Δt+1,Λ

k
t+1)·p(Δt+1,Λ

k
t+1)

p(Δt+1,Λ1:K
t+1)

=
p(Λ−k

t+1 |Xt+1,Δt+1,Λ
k
t+1)Π

k
t+1(Δt+1,Λ

k
t+1)(Xt+1)·p(Δt+1,Λ

k
t+1)

p(Δt+1,Λ1:K
t+1)

(50)

where Λ−k
t = (Λ1

t , . . . ,Λ
k−1
t ,Λk+1

t , . . . ,ΛK
t ). Thus, for each

team member k ∈ K, we can select an appropriate function ϑkt
such that

Πt+1(Δt+1,Λ
1:K
t+1)(Xt+1)

= ϑkt+1

(
Πk

t+1(Δt+1,Λ
k
t+1)(Xt+1),Δt+1,Λ

1:K
t+1

)
. (51)

Corollary 1: For each team member k ∈ K, the functionϑkt+1

is increasing with Πk
t+1(Δt+1,Λ

k
t+1).

Proof: The function ϑkt+1 is continuous and differen-
tiable in [0, 1], while the variation of ϑkt+1 with respect to
Πk

t+1(Δt+1,Λ
k
t+1) is positive. �

B. Optimal Control Strategy of the Team Members

In view of Theorem 5, we show that the optimal separated con-
trol strategy gk = {gk0 , . . . , gkT−1}, i.e.,Uk

t = gkt (Π
k
t (Δt,Λ

k
t )),

derived by each team member k ∈ K yields the same solution
as the one by the manager’s optimal separated control strategy
g ∈ Gs (Theorem 7), and thus, the team members do not need
a centralized intervention. We obtain a classical dynamic pro-
gramming decomposition for member k ∈ K over the space of
their decisions.

Lemma 8: Let gk be a separated control strategy of team
member k ∈ K and g = {g1, . . . ,gK} be the team’s control
strategy. We fix g−k = (g1, . . . ,gk−1,gk+1, . . . ,gK), and let
V k
t (Πt(Δt,Λ

k
t )) be functions defined recursively for all g by

V k
T

(
ΠT (ΔT ,Λ

k
T )

)
:= Eg

[
cT (XT ) |Πk

T = πk
T

]
(52)

V k
t

(
Πt(Δt,Λ

k
t )
)
:= inf

uk
t ∈Uk

t

Eg
[
ct(Xt, U

k
t , U

−k
t ) + V k

t+1 (Πt+1

(Δt+1,Λ
k
t+1)

) |Πk
t = πk

t ,Δt = δt,Λ
k
t = λk

t , U
k
t = ukt )

]
(53)

where cT (XT ) is the cost function at T , and πk
t , δt, λk

t , ukt
are the realizations of Πk

t , Δt, Λk
t , and Uk

t , respectively. Then,
V k
t (Πt(Δt,Λ

k
t )) is positive homogeneous, i.e., for any ρ > 0,

V k
t (ρΠt(Δt,Λ

k
t )) = ρ V k

t (Πt(Δt,Λ
k
t )).

Proof: The proof is similar to the proof of Lemma 4. �
Theorem 6: Let gk be a separated control strategy of team

member k ∈ K and g = {g1, . . . ,gK} be the team’s control
strategy. We fix g−k = (g1, . . . ,gk−1,gk+1, . . . ,gK), and let
V k
t (Πt(Δt,Λ

k
t )) be functions defined recursively for all g by

V k
t

(
Πt(Δt,Λ

k
t )
)
:= inf

uk
t ∈Uk

t

Eg
[
ct(Xt, U

k
t , U

−k
t )

+ V k
t+1

(
Πt+1(Δt+1,Λ

k
t+1)

) |Πk
t = πk

t ,Δt = δt

Λk
t = λk

t , U
k
t = ukt )

]
(54)

where πk
t , δt, λk

t , ukt are the realizations of Πk
t , Δt, Λk

t , and Uk
t ,

respectively. Then, V k
t (Πt(Δt,Λ

k
t )) is concave with respect to

Πt(Δt,Λ
k
t ).

Proof: The proof is similar to the proof of Theorem 4. �
Theorem 7: Let Vt(Πt(Δt,Λ

1:K
t )) be functions defined re-

cursively by

VT
(
ΠT (ΔT ,Λ

1:K
T )

)
:= Eg [cT (XT ) |ΠT = πT ] (55)

Vt
(
Πt(Δt,Λ

1:K
t )

)
:= inf

u1:K
t ∈∏k∈K Uk

t

Eg
[
ct(Xt, U

1:K
t )

+ Vt+1

(
Πt+1(Δt+1,Λ

1:K
t+1)

) |Πt = πt, U
1:K
t = u1:Kt

]
(56)

where πt, u1:Kt are the realizations ofΠt andU1:K
t , respectively,

and let g∗ ∈ Gs be the manager’s optimal separated control
strategy which achieves the infimum in (55)–(56) for all t =
0, 1, . . . , T − 1. Let g = (g1, . . . ,gk−1,gk,gk+1, . . . ,gK) be
the team’s strategy, where gk = {gk0 , . . . , gkT−1} is a sep-
arated control strategy of member k ∈ K such that Uk

t =
gkt (Π

k
t (Δt,Λ

k
t )). Let V k

t (Πk
t (Δt,Λ

k
t )) be functions defined

recursively by each team player k ∈ K after fixing g−k =
(g1, . . . ,gk−1,gk+1, . . . ,gK), by

V k
T

(
Πk

T (ΔT ,Λ
k
T )

)
:= Egk [

cT (XT ) |Πk
T = πk

T

]
(57)
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and

V k
t

(
Πk

t (Δt,Λ
k
t )
)
:= inf

uk
t ∈Uk

t

Egk [
ct(Xt, U

k
t , U

−k
t )

+ V k
t+1

(
Πk

t+1(Δt+1,Λ
k
t+1)

) |Πk
t = πk

t ,Δt = δt

Λk
t = λk

t , U
k
t = ukt )

]
(58)

where U−k
t = (U1

t , . . . , U
k−1
t , Uk+1

t , . . . , UK
t ), and πk

t , δt, λk
t ,

ukt are the realizations of Πk
t , Δt, Λk

t , and Uk
t , respectively.

Then, the solution of the manager in (55), (56) is the same as
the solution derived by each player k in (57), (58) for all t =
0, 1, . . . , T − 1.

Proof: See Appendix E. �

V. EXAMPLE

We present an example of a delayed sharing pattern team
consisting of two members (K = 2). This example was used by
Varaiya and Walrand [63] to show that Witsenhausen’s structural
result asserted in his seminal paper [43] is suboptimal.

A. Problem Formulation

In this example, the team evolves for a time horizon T = 3
while there is a delay n = 2 on information sharing between
the two team members. The state Xt = (X1

t , X
2
t ), t = 1, 2, 3,

of the team is two-dimensional, and the initial state (primitive
random variable), X0 = (X1

0 , X
2
0 ), of the team is a Gaussian

random variable with zero mean, variance 1, and covariance
0.5.

The team’s state evolves as follows:

X0 = (X1
0 , X

2
0 ) (59)

X1 = (X1
1 , X

2
1 ) = (X1

0 +X2
0 , 0) (60)

X2 = (X1
2 , X

2
2 ) = (X1

1 , U
2
2 ) = (X1

0 +X2
0 , U

2
2 ) (61)

X3 = (X1
3 , X

2
3 ) = (X1

2 −X2
2 − U1

3 , 0)

= (X1
0 +X2

0 − U2
2 − U1

3 , 0). (62)

The observation equations are

Y k
t = Xk

t−1, k = 1, 2; t = 1, 2, 3. (63)

Each team member’s feasible sets of actions Uk
t are specified by

Uk
t =

{
R, if (k, t) = (1, 3) or (2, 2)

0, otherwise
. (64)

Thus, a control strategy g = {gkt ; k = 1, 2; t = 1, 2, 3},g ∈ G,
of the team consists only of the pair g = {g13 , g22} since gkt ≡ 0
for the remaining (k, t). Given the modeling framework above,
the information structure {(Δt,Λ

k
t ); k = 1, 2; t = 1, 2, 3} of

the team is

Δ1 = ∅, Δ2 = ∅ (65)

Δ3 = {Y 1
1 , Y

2
1 } = {X1

0 , X
2
0}. (66)

Note that since g11 ≡ 0 and g21 ≡ 0, the realizations of U1
1 and

U2
1 are zero, and thus Δ3 includes only the observations in (66).

The data Λk
t , k = 1, 2, available to the team member k for the

feasible control laws are

Λ2
2 = {Y 2

1 , Y
2
2 } = {X2

0 , X
2
1} = {X2

0} (67)

Λ1
3 = {Y 1

2 , Y
1
3 } = {X1

0 +X2
0 , X

1
0 +X2

0} = {X1
0 +X2

0}.
(68)

The problem is to derive the optimal control strategy g∗ =
{g1∗3 , g2∗2 }, which is the solution of

J(g) = min
u2
2∈U2

2 ,u
1
3∈U1

3

1

2
Eg

[
(X1

3 )
2 + (U1

3 )
2
]

= min
u2
2∈U2

2 ,u
1
3∈U1

3

1

2
Eg

[
(X1

0 +X2
0 − U2

2 − U1
3 )

2 + (U1
3 )

2
]
.

(69)

B. Optimal Solution

The feasible set G of control strategies of the team consists of
all g = {g13(Λ1

3,Δ3), g
2
2(Λ

2
2,Δ2)}, i.e.,

g22 : Δ2 × Λ2
2 → U2

2 , or g22 : X2
0 → R (70)

g13 : Δ3 × Λ1
3 → U1

3 , or g13 : {X1
0 , X

2
0} → R. (71)

The problem (69) has a unique optimal solution (see [63])

U2
2 =

1

2
X2

0 , U1
3 =

1

2
(X1

0 +X2
0 )−

1

4
X2

0 . (72)

C. Solution Given by Theorem 3

Varaiya and Walrand [63] adopted the notation used by Wit-
senhausen [43] to describe chronologically the evolution of the
team in their example, which proceeds as follows: The initial
state X0 of the team is generated at t = 0. Then, at the next
time step t = 1, each team member k = 1, 2 observes Y k

1 = X0

and makes a decision Uk
1 = gk1 (Δ1,Λ

k
1). The transition of the

team to the next state occurs at the same time t = 1, i.e.,
X1 = f1(X0, U

1:K
1 ), and the process is repeated until t = T.

Given that the decision of each team member k at time t depends
on Δt and Λk

t , and that the state of the team evolves after the
realization of U1:2

t , to be consistent, from a notation point of
view, with the state equation (1) in Section II-B, the evolution
of the state of the team needs to be revised as follows:

X0 = (X1
0 , X

2
0 ) (73)

X1 = (X1
1 , X

2
1 ) = (X1

0 , X
2
0 ) (74)

X2 = (X1
2 , X

2
2 ) = (X1

0 +X2
0 , 0) (75)

X3 = (X1
3 , X

2
3 ) = (X1

0 +X2
0 , U

2
2 ) (76)

X4 = (X1
4 , X

2
4 ) = (X1

3 −X2
3 − U1

3 , 0)

= (X1
0 +X2

0 − U2
2 − U1

3 , 0) (77)

where we essentially included a degenerate transition at
t = 1. Given the modeling framework presented in Section II-B,
the information structure {(Δt,Λ

k
t ); k = 1, 2; t = 1, 2, 3} of the

team is

Δ1 = ∅, Δ2 = ∅ (78)

Δ3 = {Y 1
0 , Y

2
0 , Y

1
1 , Y

2
1 } = {X1

0 , X
2
0 , X

1
1 , X

2
1} = {X1

0 , X
2
0}.
(79)

Since g11 ≡ 0 and g21 ≡ 0, the realizations ofU1
1 andU2

1 are zero,
and thus, Δ3 includes only the observations in (68). The data
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Λk
t , k = 1, 2, available to the team member k for the feasible

control laws are

Λ2
2 = {Y 2

0 , Y
2
1 , Y

2
2 } = {X2

0 , X
2
1 , X

2
2} = {X2

0} (80)

Λ1
3 = {Y 1

2 , Y
1
3 } = {X1

0 +X2
0 , X

1
0 +X2

0} = {X1
0 +X2

0}.
(81)

We solve problem (69) by using the structural results
presented in Section III considering the control strategies
gk = {gkt ; k = 1, 2; t = 0, 1, 2, 3} for each team member k,
where the control law is of the form gkt (Π(Δt,Λ

k
t )) =

gkt (P (Xt |Δt,Λ
k
t )).

For t = 3, the manager formulates the dynamic program

V3(Π3)

= min
u2
2∈U2

2 ,u
1
3∈U1

3

1

2
Eg1 [

(X1
0 +X2

0 − U2
2 − U1

3 )
2

+ (U1
3 )

2 |Π3

(
Δ3,Λ

1
3

)
, U1

3

]
= min

u2
2∈U2

2 ,u
1
3∈U1

3

1

2
Eg1 [

(X1
0 +X2

0 − U2
2 − U1

3 )
2

+ (U1
3 )

2 |P (X1
0 +X2

0 , U
2
2 |X1

0 , X
2
0 , X

1
0 +X2

0 ), U
1
3

]
(82)

where for any given realization of ((X1
0 +X2

0 ), U
2
2 ) in the

information state Π3, the manager selects U1
3 to achieve the

lower bound in (82). Thus

U1
3 =

1

2
(X1

0 +X2
0 )−

1

2
U2
2 . (83)

Substituting (83) into (82) yields

V3(Π3) = min
u2
2∈U2

2 ,u
1
3∈U1

3

1

2
Eg1

[(
X1

0 +X2
0 − U2

2

)2
2

|

P (X1
0 +X2

0 , U
2
2 |X1

0 , X
2
0 , X

1
0 +X2

0 ), U
1
3

]
. (84)

For t = 2, the manager formulates the following dynamic
program:

V2(Π2)

= min
u2
2∈U2

2 ,u
1
3∈U1

3

1

2
Eg2 [

V3(Π3) | Π2

(
Δ2,Λ

2
2

)
, U2

2

]

= min
u2
2∈U2

2 ,u
1
3∈U1

3

1

2
Eg2 [

V3(Π3) |P (X1
0 +X2

0 |X2
0 ), U

2
2

]

= min
u2
2∈U2

2 ,u
1
3∈U1

3

1

2
Eg2

[(
X1

0 +X2
0 − U2

2

)2
2

|P (X1
0 +X2

0 |

X2
0 ), U

2
2

]
. (85)

Since

U2
2 = g22

(
P (X2 |Δ2,Λ

2
2)
)
= g22

(
P (X1

0 +X2
0 |X2

0 )
)

(86)

the problem of the manager in (85) is to choose, for any given
X2

0 , the estimate of (X1
0 +X2

0 ) that minimizes the mean squared
error (X1

0 +X2
0 − U2

2 )
2 in (85). Given the Gaussian statistics,

the optimal solution is

U2
2 =

1

2
X2

0 . (87)

Substituting (87) into (83) yields

U1
3 =

1

2
(X1

0 +X2
0 )−

1

4
X2

0 . (88)

Therefore, the control laws of the form gkt (Π(Δt,Λ
k
t )) =

gkt (P (Xt |Δt,Λ
k
t )) yield the unique optimal solution (72) of

problem (69).

VI. CONCLUDING REMARKS AND DISCUSSION

In this article, we provided structural results and a classical
dynamic programming decomposition of sequential dynamic
team decision problems. We first addressed the problem from
the point of view of a manager who seeks to derive the optimal
strategy of a team in a centralized process. Then, we addressed
the problem from the point of view of each team member, and
showed that their solutions is the same as the ones derived by
the manager. The key contributions of this article are 1) the
structural results for the team from the point of view of a manager
that yield an information state which does not depend of the
control strategy of the team, and 2) the structural results for
each team member that yield an information state which does
not depend on their control strategy. These results allow us to
formulate two dynamic programming decompositions: (a) one
for the team where the manager’s optimization problem is over
the space of the team’s decisions, and (b) one for each team
member where the optimization problem is over the space of the
decision of each member. Finally, we showed that the solution of
each team member is the same as the one derived by the manager.
Therefore, each team member can derive their optimal strategy,
which is also optimal for the team, without the manager’s inter-
vention. One particular limitation of the proposed approach is
that the solution of the dynamic programming decompositions
might become computationally intensive since the cost-to-go
functions are defined on an infinite dimensional space. This
a typical challenge in problems of partial observed Markov
decision processes. However, given the characterization of the
value functions (Theorems 4 and 6) computationally efficient
algorithms can be found.

A potential direction for future research should explore the
intersection of learning and control for team decision prob-
lems with nonclassical information structures. For example,
cyber-physical systems, in most instances, represent systems of
systems with informationally decentralized structure. In such
systems, however, there is typically a large volume of data
with a dynamic nature which is added to the system gradually
and not altogether in advance. Therefore, neither traditional
supervised (or unsupervised) learning nor typical model-based
control approaches can effectively facilitate feasible solutions
with performance guarantees. These challenges could be cir-
cumvented at the intersection of learning and control [105].
Given that the control strategies presented here are separated,
a similar separation could be established between learning and
control, and thus, combine the online and offline advantages
of both traditional supervised (or unsupervised) learning and
typical model-based control approaches.
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APPENDIX A

PROOF OF THEOREM 1

By applying Bayes’ rule, we have

pg(Xt+1 |Δt+1,Λ
1:K
t+1)

=
pg(Y 1:K

t+1 |Xt+1,Δt+1,Λ
1:K
t ,U1:K

t )·pg(Xt+1,Δt+1,Λ
1:K
t ,U1:K

t )

pg(Δt+1,Λ1:K
t+1)

=
p(Y 1:K

t+1 |Xt+1)p
g(Xt+1,Δt+1,Λ

1:K
t ,U1:K

t )

pg(Δt+1,Λ1:K
t+1)

=
p(Y 1:K

t+1 |Xt+1)p
g(Xt+1 |Δt+1,Λ

1:K
t ,U1:K

t )·pg(Δt+1,Λ
1:K
t ,U1:K

t )

pg(Δt+1,Λ1:K
t+1)

(89)

where in the second equality we used Lemma 1.
Next

pg(Δt+1,Λ
1:K
t+1) = pg(Δt+1,Λ

1:K
t , Y 1:K

t+1 , U
1:K
t )

=

∫
Xt+1

pg(Xt+1,Δt+1,Λ
1:K
t , Y 1:K

t+1 , U
1:K
t ) dXt+1

=

∫
Xt+1

pg(Y 1:K
t+1 |Xt+1,Δt+1,Λ

1:K
t , U1:K

t )

· pg(Xt+1,Δt+1,Λ
1:K
t , U1:K

t ) dXt+1

=

∫
Xt+1

pg(Y 1:K
t+1 |Xt+1,Δt+1,Λ

1:K
t , U1:K

t )

· pg(Xt+1 |Δt+1,Λ
1:K
t , U1:K

t )

· pg(Δt+1,Λ
1:K
t , U1:K

t ) dXt+1

where by Lemma 1, the last equation becomes

pg(Δt+1,Λ
1:K
t+1)

=

∫
Xt+1

p(Y 1:K
t+1 |Xt+1) p

g(Xt+1 |Δt+1,Λ
1:K
t , U1:K

t )

· pg(Δt+1,Λ
1:K
t , U1:K

t ) dXt+1. (90)

Note that pg(Xt+1 |Δt+1, Λ1:K
t , U1:K

t ) = pg(Xt+1 |Δt,
Λ1:K
t , U1:K

t ) since Y 1:K
t−n+1 and U1:K

t−n+1 are already included in
Λ1:K
t , hence, we can write (90) as

pg(Δt+1,Λ
1:K
t+1)

=

∫
Xt+1

p(Y 1:K
t+1 |Xt+1) p

g(Xt+1 |Δt,Λ
1:K
t , U1:K

t )

· pg(Δt+1,Λ
1:K
t , U1:K

t ) dXt+1. (91)

Substituting (91) into (89), we have

pg(Xt+1 |Δt+1,Λ
1:K
t+1)

=
p(Y 1:K

t+1 |Xt+1) p
g(Xt+1 |Δt,Λ

1:K
t , U1:K

t )∫
Xt+1

p(Y 1:K
t+1 |Xt+1) pg(Xt+1 |Δt,Λ1:K

t U1:K
t ) dXt+1

(92)

which we can write as

pg(Xt+1 |Δt+1,Λ
1:K
t+1)

= φt
[
pg(· |Δt,Λ

1:K
t , U1:K

t ), Y 1:K
t+1

]
(Xt+1) (93)

with the function φt chosen appropriately.
Next

pg(Xt+1 |Δt,Λ
1:K
t , U1:K

t )

=

∫
Xt

pg(Xt+1 |Xt,Δt,Λ
1:K
t , U1:K

t )

· pg(Xt |Δt,Λ
1:K
t , U1:K

t ) dXt. (94)

By Lemma 2 and Remark 1, (94) becomes

pg(Xt+1 |Δt,Λ
1:K
t , U1:K

t )

=

∫
Xt

p(Xt+1 |Xt, U
1:K
t ) p(Xt |Δt,Λ

1:K
t ) dXt (95)

which we can write as

pg(Xt+1 |Δt,Λ
1:K
t , U1:K

t )

= ψt

[
p(· |Δt,Λ

1:K
t ), U1:K

t

]
(Xt+1) (96)

with the function ψt chosen appropriately.
Substituting (96) into (93) yields

pg(Xt+1 |Δt+1,Λ
1:K
t+1)

= φt
[
ψt

[
p(· |Δt,Λ

1:K
t ), U1:K

t

]
, Y 1:K

t+1

]
(Xt+1). (97)

Therefore, pg(Xt+1 |Δt+1,Λ
1:K
t+1) does not depend on the con-

trol strategy g, so we can drop the superscript. Moreover, we
can choose appropriate function θt such that

p(Xt+1 |Δt+1,Λ
1:K
t+1) = Πt+1(Δt+1,Λ

1:K
t+1)(Xt+1)

= θt
[
Πt(Δt,Λ

1:K
t )(Xt), Y

1:K
t+1 , U

1:K
t

]
. (98)

APPENDIX B

PROOF OF LEMMA 4

Obviously, for t = T

VT
(
ρΠT (ΔT ,Λ

1:K
T )

)
=

∫
XT

cT (XT ) ρΠT (ΔT ,Λ
1:K
T )(XT ) dXT

= ρ VT
(
ΠT (ΔT ,Λ

1:K
T )

)
. (99)

For t = 0, . . . , T − 1, by assigning Πt = ρΠt [recall
p(Xt |Δt,Λ

1:K
t ) = Πt(Δt,Λ

1:K
t )], (40) becomes

Vt
(
ρΠt(Δt,Λ

1:K
t )

)
= inf

u1:K
t ∈∏k∈K Uk

t

[ ∫
Xt

ct(Xt, U
1:K
t ) ρΠt(Δt,Λ

1:K
t )(Xt) dXt

+

∫
Yt+1

∫
Xt+1

∫
Xt

Vt+1

(
ρΠt+1(Δt+1,Λ

1:K
t+1)

)
· p(Y 1:K

t+1 |Xt+1) p(Xt+1 |Xt, U
1:K
t ) ρ p(Xt |Δt,Λ

1:K
t )

dXt dXt+1 dY
1:K
t+1

]
(100)

where Yt+1 = ⊗k∈KY k.
Next, from (27) Substituting (101) shown at the bottom of the

next page, into (100), we have

Vt
(
ρΠt(Δt,Λ

1:K
t )

)
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= inf
u1:K
t ∈∏k∈K Uk

t

[ ∫
Xt

ct(Xt, U
1:K
t ) ρΠt(Δt,Λ

1:K
t )(Xt) dXt

+

∫
Yt+1

∫
Xt+1

∫
Xt

Vt+1

(
Πt+1(Δt+1,Λ

1:K
t+1)

)
· p(Y 1:K

t+1 |Xt+1) p(Xt+1 |Xt, U
1:K
t ) ρ p(Xt |Δt,Λ

1:K
t )

dXt dXt+1 dY
1:K
t+1

]

= ρ Vt
(
Πt(Δt,Λ

1:K
t )

)
. (102)

APPENDIX C

PROOF OF THEOREM 4

We start with (41)

Vt
(
Πt(Δt,Λ

1:K
t )

)
= inf

u1:K
t ∈∏k∈K Uk

t

[ ∫
Xt

ct(Xt, U
1:K
t )Πt(Δt,Λ

1:K
t )(Xt) dXt

+

∫
Yt+1

∫
Xt+1

∫
Xt

Vt+1

(
Πt+1(Δt+1,Λ

1:K
t+1)

)
· p(Y 1:K

t+1 |Xt+1) p(Xt+1 |Xt, U
1:K
t ) p(Xt |Δt,Λ

1:K
t )

dXt dXt+1 dY
1:K
t+1

]
(103)

where Yt+1 = ⊗k∈KY k.
Choosing

ρ =

∫
Xt+1

∫
Xt

p(Y 1:K
t+1 |Xt+1)

· p(Xt+1 |Xt, U
1:K
t ) p(Xt |Δt,Λ

1:K
t ) dXt dXt+1 (104)

we can use the positive homogeneity of Vt(Πt(Δt,Λ
1:K
t ))

(Lemma 4) to write the second part of (103) as follows:∫
Yt+1

∫
Xt+1

∫
Xt

Vt+1

(
Πt+1(Δt+1,Λ

1:K
t+1)

)
· p(Y 1:K

t+1 |Xt+1) p(Xt+1 |Xt, U
1:K
t ) p(Xt |Δt,Λ

1:K
t )

dXt dXt+1 dY
1:K
t+1

=

∫
Yt+1

Vt+1

(
ρΠt+1(Δt+1,Λ

1:K
t+1)

)
dY 1:K

t+1

=

∫
Yt+1

Vt+1

(
p(Y 1:K

t+1 |Xt+1)

∫
Xt

p(Xt+1 |Xt, U
1:K
t )

p(Xt |Δt,Λ
1:K
t ) dXt

)
dY 1:K

t+1 (105)

where in the last equality, we substituted (104) and (27).
Thus, we can write (103) as

Vt
(
Πt(Δt,Λ

1:K
t )

)
= inf

u1:K
t ∈∏k∈K Uk

t

[ ∫
Xt

ct(Xt, U
1:K
t )Πt(Δt,Λ

1:K
t )(Xt) dXt

+

∫
Yt+1

Vt+1

(
p(Y 1:K

t+1 |Xt+1)

∫
Xt

p(Xt+1 |Xt, U
1:K
t )

p(Xt |Δt,Λ
1:K
t ) dXt

)
dY 1:K

t+1

]
. (106)

The remainder of the proof follows by induction. Suppose
that Vt+1(Πt+1(Δt+1,Λ

1:K
t+1)) is concave. Since

Vt+1

(
p(Y 1:K

t+1 |Xt+1)

∫
Xt

p(Xt+1 |Xt, U
1:K
t )

p(Xt |Δt,Λ
1:K
t ) dXt

)
(107)

is the composition of a concave function and increasing linear
function, it follows that it is concave. However, concavity is
preserved by integration (see [106, p. 79]), hence∫

Yt+1

Vt+1

(
p(Y 1:K

t+1 |Xt+1)

∫
Xt

p(Xt+1 |Xt, U
1:K
t )

p(Xt |Δt,Λ
1:K
t ) dXt

)
dY 1:K

t+1 (108)

is concave. Since the pointwise infimum of concave functions is
concave, (106) is concave.

APPENDIX D

PROOF OF THEOREM 5

By applying Bayes’ rule, we have

pg(Xt+1 |Δt+1,Λ
k
t+1)

=
pg(Y k

t+1 |Xt+1,Δt+1,Λ
k
t ,U

k
t )·pg(Xt+1,Δt+1,Λ

k
t ,U

k
t )

pg(Δt+1,Λk
t+1)

=
p(Y k

t+1 |Xt+1)p
g(Xt+1,Δt+1,Λ

k
t ,U

k
t )

pg(Δt+1,Λk
t+1)

=
p(Y k

t+1 |Xt+1)p
g(Xt+1 |Δt+1,Λ

k
t ,U

k
t )·pg(Δt+1,Λ

k
t ,U

k
t )

pg(Δt+1,Λk
t+1)

(109)

where in the second equality, we used Lemma 5.
Next

pg(Δt+1,Λ
k
t+1) = pg(Δt+1,Λ

k
t , Y

k
t+1, U

k
t )

=

∫
Xt+1

pg(Xt+1,Δt+1,Λ
k
t , Y

k
t+1, U

k
t ) dXt+1

ρΠt+1(Δt+1,Λ
1:K
t+1)

=
p(Y 1:K

t+1 |Xt+1)
∫

Xt
p(Xt+1 |Xt, U

1:K
t ) \ρ p(Xt |Δt,Λ

1:K
t ) dXt∫

Xt+1
p(Y 1:K

t+1 |Xt+1)
∫

Xt
p(Xt+1 |Xt, U1:K

t ) ·\ρ p(Xt |Δt,Λ1:K
t ) dXt dXt+1

= Πt+1(Δt+1,Λ
1:K
t+1). (101)
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=

∫
Xt+1

pg(Y k
t+1 |Xt+1,Δt+1,Λ

k
t , U

k
t )

· pg(Xt+1,Δt+1,Λ
k
t , U

k
t ) dXt+1

=

∫
Xt+1

pg(Y k
t+1 |Xt+1,Δt+1,Λ

k
t , U

k
t )

· pg(Xt+1 |Δt+1,Λ
k
t , U

k
t ) p

g(Δt+1,Λ
k
t , U

k
t ) dXt+1 (110)

where by Lemma 5, the last equation becomes

pg(Δt+1,Λ
k
t+1)

=

∫
Xt+1

p(Y k
t+1 |Xt+1) p

g(Xt+1 |Δt+1,Λ
k
t , U

k
t )

· pg(Δt+1,Λ
k
t , U

k
t ) dXt+1. (111)

Substituting (111) into (109), we have

pg(Xt+1 |Δt+1,Λ
k
t+1)

=
p(Y k

t+1 |Xt+1) p
g(Xt+1 |Δt+1,Λ

k
t , U

k
t )∫

Xt+1
p(Y k

t+1 |Xt+1) pg(Xt+1 |Δt+1,Λk
t , U

k
t ) dXt+1

(112)

which we can write as

pg(Xt+1 |Δt+1,Λ
k
t , U

k
t )

= φkt
[
pg(Xt+1 |Δt+1,Λ

k
t , U

k
t ), Y

k
t+1

]
(Xt+1) (113)

with the function φkt chosen appropriately.
By Lemma 6, pg(Xt+1 |Δt+1,Λ

k
t , U

k
t ) depends

only on the control strategy g−k, so we can write
pg

−k
(Xt+1 |Δt+1,Λ

k
t , U

k
t ). Next

pg
−k

(Xt+1 |Δt+1,Λ
k
t , U

k
t )

=

∫
Xt

pg
−k

(Xt+1 |Xt,Δt+1,Λ
k
t , U

k
t )

· pg−k

(Xt |Δt+1,Λ
k
t , U

k
t ) dXt (114)

where the last term in (114) can be written as

pg
−k

(Xt |Δt+1,Λ
k
t , U

k
t ) = pg

−k

(Xt |Δt, Y
1:K
t−n+1, U

1:K
t−n+1

Λk
t ) = pg

−k

(Xt |Δt, Y
−k
t−n+1, U

−k
t−n+1,Λ

k
t )

= pg
−k

(Xt |Δt,Λ
k
t ) · pg

−k

(Y −k
t−n+1, U

−k
t−n+1 |Δt,Λ

k
t ) (115)

where Y −k
t−n+1 = (Y 1

t−n+1, . . . , Y
k−1
t−n+1, Y

k+1
t−n+1, . . . , Y

K
t−n+1),

and U−k
t−n+1 = (U1

t−n+1, . . . , U
k−1
t−n+1, U

k+1
t−n+1, . . . , U

K
t−n+1).

In the second equality, we dropped Y k
t−n+1, U

k
t−n+1 from

conditioning since they both are included in Λk
t . Substituting

(115) into (114) yields

pg
−k

(Xt+1 |Δt+1,Λ
k
t , U

k
t ) =

∫
Xt

pg
−k

(Xt+1 |Xt,Δt+1

Λk
t , U

k
t ) · pg

−k

(Xt |Δt,Λ
k
t ) · pg

−k

(Y −k
t−n+1, U

−k
t−n+1 |Δt,Λ

k
t )

· dXt =

∫
Xt

pg
−k

(Xt+1 |Xt,Δt, Y
1:K
t−n+1, U

1:K
t−n+1,Λ

k
t , U

k
t )

· pg−k

(Xt |Δt,Λ
k
t ) · pg

−k

(Y −k
t−n+1, U

−k
t−n+1 |Δt,Λ

k
t ) dXt.

(116)

Substituting (116) into (113) yields

pg(Xt+1 |Δt+1,Λ
k
t+1)

= φkt

[
ψk
t

[
pg

−k

(· |Δt,Λ
k
t ), Y

1:K
t−n+1, U

1:K
t−n+1,Δt,Λ

k
t , U

k
t

]
Y k
t+1

]
(Xt+1). (117)

Therefore, pg(Xt+1 |Δt+1,Λ
k
t+1), does not depend on the

control strategy gk of the team member k, so we can adjust
the subscript accordingly. Moreover, we can choose appropriate
function θkt such that

pg
−k

(Xt+1 |Δt+1,Λ
k
t+1) = Πk

t+1(Δt+1,Λ
k
t+1)(Xt+1)

= θkt
[
Πk

t (Δt,Λ
k
t )(Xt), Y

1:K
t−n+1, U

1:K
t−n+1,Δt,Λ

k
t , Y

k
t+1, U

k
t

]
= θkt

[
Πk

t (Δt,Λ
k
t )(Xt),Δt+1,Λ

k
t+1

]
. (118)

APPENDIX E

PROOF OF THEOREM 7

Let g∗ = {g∗1, . . . ,g∗k−1,g∗k, g∗k+1, . . . ,g∗K} be the op-
timal separated control strategy of the manager, which achieves
the infimum in (55) and (56). Starting with (56), we have

Vt
(
Πt(Δt,Λ

1:K
t )

)
= inf

u1:K
t ∈∏k∈K Uk

t

Eg∗ [
ct(Xt, U

1:K
t )

+ Vt+1

(
Πt+1(Δt+1,Λ

1:K
t+1)

) |Πt = πt, U
1:K
t = u1:Kt

]
= inf

uk
t ∈Uk

t

inf
u−k
t ∈∏i∈K\{k} Ui

t

Eg∗ [
ct(Xt, U

k
t , U

−k
t )

+ Vt+1

(
Πt+1(Δt+1,Λ

1:K
t+1)

) |Πt = πt, U
1:K
t = u1:Kt

]
= inf

uk
t ∈Uk

t

inf
u−k
t ∈∏i∈K\{k} Ui

t

[ ∫
Xt

ct(Xt, U
k
t , U

−k
t )Πt(Δt

Λ1:K
t )(Xt) dXt + Eg∗ [

Vt+1

(
Πt+1(Δt+1,Λ

1:K
t+1)

)
|Πt = πt, U

1:K
t = u1:Kt

] ]
. (119)

The function Vt(Πt(Δt,Λ
1:K
t )) is concave with respect

to Πt(Δt,Λ
1:K
t ) (Theorem 4) for all t = 0, 1, . . . , T . Since

Πt(Δt,Λ
1:K
t ) is increasing with Πk

t (Δt,Λ
k
t ) for all k (Corol-

lary 1), it follows that Vt(Πt(Δt,Λ
1:K
t )) is also increasing

with respect to Πk
t (Δt,Λ

k
t ) for all k. Thus, the manager can

solve (119) for each member k ∈ K separately by fixing u−k
t =

(u1t , . . . , u
k−1
t , uk+1

t , . . . , uKt ). By substituting (51) into (119)
and for any arbitrary u−k

t , we have

Vt
(
Πt(Δt,Λ

1:K
t )

)
= inf

uk
t ∈Uk

t

[ ∫
Xt

ct(Xt, U
k
t , U

−k
t )

· ϑkt
(
Πk

t (Δt,Λ
k
t )(Xt),Δt,Λ

1:K
t

)
dXt

+Eg∗
[
Vt+1

(
ϑkt+1

(
Πk

t+1(Δt+1,Λ
k
t+1)(Xt+1),Δt+1,Λ

1:K
t+1

)) ∣∣∣
Πk

t = πk
t ,Δt = δt,Λ

1:K
t = λ1:K

t , Uk
t = ukt

] ]
(120)

where πk
t , δt, λ1:K

t , and Uk
t = ukt are the realizations of Πk

t ,
Δt, Λ1:K

t , and Uk
t , respectively. Given that the function ϑkt is

increasing with Πk
t (Δt,Λ

k
t ) for all k and t (Corollary 1), from
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(120), it follows that at t = T − 1 and for any u−k
T−1

arg inf
uk
T−1∈Uk

T−1

[ ∫
XT−1

cT−1(XT−1, U
k
T−1, U

−k
T−1)

· ϑkT−1

(
Πk

T−1(ΔT−1,Λ
k
T−1)(XT−1),ΔT−1,Λ

1:K
T−1

)
dXT−1

+

∫
XT

cT (XT ) · ϑkT
(
Πk

T (ΔT ,Λ
k
T )(XT ),ΔT ,Λ

1:K
T

)
dXT

]

= arg inf
uk
T−1∈Uk

T−1

[ ∫
XT−1

cT−1(XT−1, U
k
T−1, U

−k
T−1)

·Πk
T−1(ΔT−1,Λ

k
T−1)(XT−1) dXT−1

+

∫
XT

cT (XT ) ·Πk
T (ΔT ,Λ

k
T )(XT ) dXT

]
(121)

or, alternatively, from (55) to (56) and (57) to (58), (121) can be
written as

arg inf
uk
T−1∈Uk

T−1

[
VT−1

(
ΠT−1(ΔT−1,Λ

1:K
T−1)

) ]

= arg inf
uk
T−1∈Uk

T−1

[
V k
T−1

(
Πk

T−1(ΔT−1,Λ
k
T−1)

) ]
(122)

Continuing backward in time, it follows that for all t =
0, 1, . . . , T , and for any u−k

t

arg inf
uk
t ∈Uk

t

[ ∫
Xt

ct(Xt, U
k
t , U

−k
t )ϑkt

× (
Πk

t (Δt,Λ
k
t )(Xt),Δt,Λ

1:K
t

)
· dXt + Eg∗ [

Vt+1

(
ϑkt+1

(
Πk

t+1(Δt+1,Λ
k
t+1)(Xt+1),Δt+1

Λ1:K
t+1

)) ∣∣∣Πk
t = πk

t ,Δt = δt,Λ
1:K
t = λ1:K

t , Uk
t = ukt

] ]

= arg inf
uk
t ∈Uk

t

[∫
Xt

ct(Xt, U
k
t , U

−k
t )Πk

t (Δt,Λ
k
t )(Xt) dXt

+ Egk

[
V k
t+1

(
Πk

t+1(Δt+1,Λ
k
t+1)

) |Πk
t = πk

t ,Δt = δt

Λk
t = λk

t , U
k
t = ukt )

]]
. (123)

Therefore, the solution of the manager in (55) and (56) is the
same as the solution derived by each member k in (57) and (58)
for all t = 0, 1, . . . , T − 1.
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[66] A. Gupta, S. Yüksel, T. Başar, and C. Langbort, “On the existence of
optimal policies for a class of static and sequential dynamic teams,” SIAM
J. Control Optim., vol. 53, no. 3, pp. 1681–1712, 2015.

[67] A. Dave and A. A. Malikopoulos, “Decentralized stochastic control in
partially nested information structures,” IFAC-PapersOnLine, Chicago,
IL, USA, vol. 52, no. 20, pp. 97–102, 2019.

[68] A. Dave and A. A. Malikopoulos, “Structural results for decentralized
stochastic control with a word-of-mouth communication,” in Proc. 2020
Amer. Control Conf., 2020, pp. 2796–2801.

[69] A. Nayyar and D. Teneketzis, “Common knowledge and sequential team
problems,” IEEE Trans. Autom. Control, vol. 64, no. 12, pp. 5108–5115,
Dec. 2019.

[70] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochas-
tic control with partial history sharing: A common information ap-
proach,” IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1644–1658, Jul.
2013.

[71] C. D. Charalambous and N. U. Ahmed, “Equivalence of decentralized
stochastic dynamic decision systems via Girsanov’s measure transforma-
tion,” in Proc. 53rd IEEE Conf. Decis. Control, 2014, pp. 439–444.

[72] C. D. Charalambous, “Decentralized optimality conditions of stochastic
differential decision problems via Girsanov’s measure transformation,”
Math. Control, Signals, Syst., vol. 28, no. 3, p. 19, 2016.

[73] C. D. Charalambous and N. U. Ahmed, Team Theory and Information
Structures of Stochastic Dynamic Decentralized Decision. Berlin, Ger-
many: Springer, 2015, pp. 155–163.

[74] C. D. Charalambous and N. U. Ahmed, “Centralized versus decentralized
optimization of distributed stochastic differential decision systems with
different information structures—Part I: A general theory,” IEEE Trans.
Autom. Control, vol. 62, no. 3, pp. 1194–1209, Mar. 2017.

[75] C. D. Charalambous and N. U. Ahmed, “Centralized versus decentralized
optimization of distributed stochastic differential decision systems with
different information structures—Part II: Applications,” IEEE Trans.
Autom. Control, vol. 63, no. 7, pp. 1913–1928, Jul. 2018.

[76] C. B. McGuire and R. Radner, Eds., Decision and Organization: A.
Volume in Honor of Jacob Marschak (Studies in Mathematical and
Managerial Economics). Amsterdam, The Netherlands: North-Holland
Pub. Co., 1972.

[77] Y.- C. Ho and K.-C. Chu, “Team decision theory and information struc-
tures in optimal control problems—Part I,” IEEE Trans. Autom. Control,
vol. AC-17, no. 1, pp. 15–22, Feb. 1972.

[78] J. Wu and S. Lall, “A dynamic programming algorithm for decentralized
Markov decision processes with a broadcast structure,” in Proc. IEEE
Conf. Decis. Control, 2010, pp. 6143–6148.

[79] H. Witsenhausen, “On the structure of real time source coders,” Bell Syst.
Tech. J, vol. 58, no. 6, pp. 1437–1451, 1979.

[80] P. Varaiya and J. Walrand, “Optimal causal coding-decoding problems,”
Math. Oper. Res. Bell Syst. Tech. J. Bell Syst. Tech. J, vol. 59, no. 8,
pp. 814–820, 1983.

Authorized licensed use limited to: Technical University of Crete. Downloaded on September 17,2023 at 22:08:00 UTC from IEEE Xplore.  Restrictions apply. 



3930 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 7, JULY 2023

[81] D. Teneketzis, “On the structure of optimal real-time encoders and
decoders in noisy communication,” IEEE Trans. Inf. Theory, vol. 52,
no. 9, pp. 4017–4035, Sep. 2006.

[82] A. Nayyar and D. Teneketzis, “On jointly optimal real-time encoding and
decoding strategies in multi-terminal communication systems,” in Proc.
IEEE Conf. Decis. Control, 2008, pp. 1620–1627.

[83] Y. Kaspi and N. Merhav, “Structure theorem for real-time variable-rate
lossy source encoders and memory-limited decoders with side informa-
tion,” in Proc. IEEE Int. Symp. Inf. Theory, 2010, pp. 86–90.

[84] S. Yüksel, “On optimal causal coding of partially observed Markov
sources in single and multiterminal settings,” IEEE Trans. Inf. Theory,
vol. 59, no. 1, pp. 424–437, Jan. 2013.

[85] D. Teneketzis and P. Varaiya, “The decentralized quickest detection
problem,” IEEE Trans. Autom. Control, vol. AC-29, no. 7, pp. 641–644,
Jul. 1984.
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