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ABSTRACT

The advent of cyber-physical systems has revolutionized numerous applications,

including connected and automated vehicles, medicine and healthcare, the Internet

of Things, social media platforms, and robotic swarms. These systems require new

approaches that can utilize the improved computational capabilities of the cyber core

to optimally control their physical components, while accounting for various forms of

incomplete information and uncertain disturbances during real-world implementation.

This dissertation primarily focuses on two areas of research: (1) centralized worst-

case control and learning with partial observations, and (2) decentralized control of

a team of cooperative agents. Additionally, the dissertation presents a mechanism

design approach to effectively coordinate the actions of competing agents, specifically

in a misinformation filtering problem involving competing social media platforms and

a democratic government.

The first contribution of this dissertation is to introduce a general non-stochastic

theory of approximate information states, addressing the computational challenges of

worst-case control and facilitating worst-case reinforcement learning in partially ob-

served systems. An important feature of the proposed framework is that approximate

information states can be constructed using output data in control problems and can

be learned from output data in reinforcement learning problems. Then, these states

facilitate the efficient computation of approximate control strategies while only conced-

ing a bounded loss in worst-case performance. Thus, our proposed framework provides

a principled approach for approximately optimal worst-case control and worst-case

reinforcement learning in systems with partially observed states.

The second contribution of this dissertation is towards the theory of decen-

tralized decision-making for teams with one-directional information sharing, in both

xii



stochastic and non-stochastic formulations. A general information structure, called

nested accessible information, is introduced for teams of two agents with one-directional

communication. This information structure is analyzed in the stochastic setting to de-

rive structural results and a dynamic programming decomposition that computes opti-

mal control strategies. Then, this information structure is extended to multiple agents

residing within nested subsystems, which is analyzed in the non-stochastic setting. As

before, structural results and a dynamic programming decomposition are presented for

control strategies that optimize the worst-case performance of the team. The effec-

tiveness of the results is illustrated using a numerical example in the non-stochastic

setting.

The third contribution of this dissertation is in the application of a mechanism

design approach to a specific problem concerning how a democratic government can

incentivize social media platforms to filter misinformation. This problem is modeled by

drawing upon theoretical and empirical conclusions from political science and sociology.

Then, a mechanism is proposed that takes a fixed budget of the government, creates

incentives for social media platforms and distributes these incentives to encourage an

optimal level of filtering. Key properties of the proposed mechanism, such as budget

balance, voluntary participation of all agents, and implementation of a globally optimal

level of filtering given a budget, are derived.

Collectively, this dissertation contributes towards an improved understanding

of decision-making in cyber-physical systems with partial information. The theoretical

results presented here have potential applications in various cyber-physical systems

subject to uncontrolled disturbances, adversarial attacks, and information asymmetry.
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Chapter 1

INTRODUCTION

The only thing that is certain

is that nothing is certain.

Pliny the Elder, 70 CE

1.1 Motivation

Cyber-physical systems have caused a major paradigm shift in the way we in-

teract with physical processes [1]. They pervade various important applications in-

cluding, but not limited to, connected and automated vehicles [2, 3], medicine and

healthcare [4, 5], internet of things [6, 7], social media platforms [8, 9], and robotic

swarms [10, 11]. Cyber-physical systems consist of physical components monitored

and controlled by powerful digital cores. Thus, they can capture the large amounts

of data generated by the system and utilize it in complex models to generate op-

timal decisions. However, this increased capacity for complex decision-making has

necessitated new approaches to optimally control the evolution of their physical com-

ponents while accounting for various uncertainties. For example, consider a centralized

decision-making problem where an agent must sequentially select actions to control the

system across multiple instances of time to achieve a predetermined objective [12]. In

cyber-physical systems, these problems are often challenging because of a paucity of

information about the system state during operation, or because of incomplete knowl-

edge of the system dynamics a priori. An agent may only obtain noisy and infrequent

observations and they may be unable to accurately predict the impact of an action on

the state’s evolution. In general, deriving an optimal decision-making strategy that

accounts for such incomplete information is a computationally challenging task [13].
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The computational challenge imposed by partial information is compounded in de-

centralized systems consisting of multiple agents. In decentralized problems, multiple

agents act either cooperatively in a team to achieve a shared objective [14], or compete

with each other to achieve individual objectives [15]. Different agents in such a system

may not have access to the same information at any instance of time. For example,

agents seeking to act cooperatively in a team may suffer from restricted communication

or agents competing to achieve their individual objectives may deliberately withhold

private information. This information asymmetry amongst multiple agents adds the

burden of effectively coordinating the actions to the computational challenges imposed

by partial information. Thus, generating an optimal decision-making strategy is even

more computationally challenging in decentralized problems than it is in centralized

problems. Motivated by these challenges to decision-making in cyber-physical systems

under partial information, this dissertation’s primary focus is on the following two areas

of research: (1) centralized worst-case control and learning with partial observations

in Chapter 2, and (2) decentralized control of a team of cooperative agents in Chapter

3. Subsequently, Chapter 4 reports results on effective coordination of the actions of

competing agents using mechanism design. The results in Chapter 4 are developed for

a specific misinformation filtering problem involving competing social media platforms

and a democratic government.

1.2 Overview and Literature Review

This section presents an overview and a literature review pertaining to the two

primary areas of focus of this dissertation, namely, centralized worst-case decision mak-

ing and decentralized decision making in teams. The relevant literature for mechanism

design and misinformation filtering are presented in the introduction to Chapter 4.
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1.2.1 Centralized Worst-Case Control and Learning With Partial Obser-

vations

A typical centralized decision-making problem considers an agent that sequen-

tially selects actions to control the evolution of a dynamic system using only partial

observations at each instance of time, while simultaneously accounting for interfer-

ence from uncontrolled disturbances. The most common modeling paradigm for such

decision-making problems is the stochastic approach, where all disturbances to the sys-

tem are considered to be random variables with known distributions, and the agent

aims to select a decision-making strategy that minimizes the expected incurred cost [12].

Stochastic models have been utilized for problems in both control theory [16–20] and re-

inforcement learning [14,21–24]. A decision-making strategy derived using the stochas-

tic approach performs optimally on average when it is implemented consistently across

numerous operations of the system. However, this performance degrades rapidly when

there is a mismatch between the distribution of disturbances considered in modeling

and the realizations encountered during implementation [25]. To mitigate this draw-

back, alternative formulations have been considered in the literature, including (1)

robust stochastic formulations, where an agent minimizes the worst-case expected cost

given a set of feasible probability distributions [26, 27]; and (2) risk-averse formula-

tions, where an agent minimizes a combination of both the expected cost and the cost

variance [16,28]. While these formulations improve the performance of a strategy under

a distribution mismatch, many safety-critical applications require further guarantees

on the worst-case performance of a strategy against either adversarial attacks or system

failure.

A non-stochastic formulation provides a more appropriate modeling paradigm

for such safety-critical systems, where all disturbances are considered to belong to

known sets with unknown distributions. The agent aims to select a robust decision-

making strategy that minimizes the worst-case incurred cost across a given time horizon

[29, 30]. Because this approach focuses on robustness against worst-case realizations

of the disturbances, the resulting strategy yields more conservative decisions than the
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stochastic approach. At the expense of average performance, such a robust strategy

provides concrete guarantees on the worst-case performance during each operation of

the system. Thus, this approach has been widely applied to systems under attack

from an adversary, e.g., cyber-security [31] or generic cyber-physical systems [32], and

systems where a single failure can be damaging, e.g., water reservoirs [33], or power

systems [34]. This non-stochastic formulation is maximally robust for a given set of

uncertainties with any feasible set of distributions. It has also been shown to be the

most risk-averse limit in various approaches [28,35,36]. Most of the literature relevant

to the problem of worst-case decision making in a non-stochastic formulation can be

broadly categorized as either control theory or as reinforcement learning. Presented

next is a review of the literature relevant to each of these categories.

1) Control theory: There have been numerous research efforts in control

theory to study dynamic decision-making problems given the system dynamics. For

both stochastic and non-stochastic models, an agent can derive an optimal decision-

making strategy offline using a dynamic programming (DP) decomposition of the prob-

lem [37, 38]. For systems with perfectly observed states, it is known that, at each

instance of time, the agent’s optimal action is simply a function of the state. Us-

ing this property in a DP facilitates the efficient computation of an optimal control

strategy [39, 40]. In contrast, for systems with partially observed states, any optimal

action is generally a function of the agent’s entire memory of past observations and

actions, which grows in size with time [41]. Subsequently, the domain of the optimal

control strategy grows in size with time, and the corresponding DP decomposition of

the problem requires a large number of computations for long time horizons [42]. This

concern is alleviated in the literature for both stochastic and non-stochastic formula-

tions by constructing an optimal DP decomposition for the problem using, instead of

the memory, an information state that takes values in a time-invariant space [43].

The most commonly used information state in stochastic control is the belief

state, i.e., a distribution on the state space conditioned on the agent’s memory [44,45].

A general notion of information states for stochastic control was recently defined in [46].
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For non-stochastic control problems, the DP decomposition has been simplified using

two well known information states: (1) the conditional range, which is the set of feasible

states at any time consistent with the agent’s memory [47] and can be used in both

terminal cost [48–51] and instantaneous cost problems [52–54]; and (2) the maximum

cost-to-come, which is the maximum accrued cost at any time for each state in the

conditional range [35] and can be used in additive cost problems [36, 55, 56]. The

advantage of using information states is that in many applications they do not grow

in size with time. Thus, they generally yield a more computationally efficient DP

decomposition than the entire memory.

Information states have also been derived for mixed problems considering both

stochastic and non-stochastic objectives in [57]. Robust stochastic formulations have

been considered for perfectly observed problems in [26, 27, 58, 59] and for partially

observed problems using variations of information states in [60–63]. Information states

have also been derived for various forms of partially observed risk-sensitive control

problems [16,35,36,64,65]. A complimentary approach is to view the worst-case control

problem as a zero-sum games with two players, one being the agent and one being

nature who acts as an adversary [27,30]. While this perspective has not been explicitly

considered within dissertation, more details concerning this approach can be found

in [30,66–68] and the references therein.

2) Reinforcement learning: The literature on reinforcement learning is con-

cerned with decision-making when the agent may not have prior knowledge of the

system’s dynamics [69]. For systems with perfectly observed states, these problems

have been addressed using a variety of approaches [70]. In the stochastic formulation,

both model-based [71, 72] and model-free approaches [73] have been utilized. These

include off-policy approaches such as Q-learning [74–77] and soft-actor critic meth-

ods [78,78], and on policy approaches [79] such as policy gradient methods [80–82] and

actor-critic methods [83]. In the non-stochastic formulation, the worst-case reinforce-

ment learning problem was formulated and analyzed in [84]. Worst-case Q-learning was

proposed for reinforcement learning problems in [85–88] and extended to problems with
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output-feedback and partially known dynamics in [89]. Actor-critic methods [90] and

model-based off-policy learning approaches [91] have also been developed for robust

control. For perfectly observed systems with a robust stochastic formulation, robust

Q-learning algorithms [92, 93] and robust policy gradient methods [93, 94] have been

developed. Similarly, model-based approaches have also been developed for robust

stochastic reinforcement learning [95]. Adaptive approaches for worst-case control of

linear systems were presented in [96] and alternate non-stochastic adaptive algorithms

in [97, 98]. However, in general, reinforcement learning is challenging when the agent

can only access partial observations, since without knowledge of the system dynamics,

the information state must be learned from data [99].

In the stochastic formulation, approximate information states was presented

in [100] to address the challenges of control and learning with partial observations.

Approximate information states can improve the computational tractability of control

problems with large state spaces at the cost of a bounded loss in performance [101]. The

explicit performance bounds of a finite-memory based approximate information state

were derived in [102]. In reinforcement learning, approximate information states can be

learned from output data and function as surrogate states to compute approximately

optimal strategies, whose performance has been empirically validated in robotics [103]

and medical care [104]. A related approach to accommodate partial observations in

reinforcement learning is a world model [105] and a predictive state representation [106].

However, these do not provide any theoretical performance bounds and have only been

validated empirically [107,108].

1.2.2 Decentralized Control of a Team of Cooperative Agents

The framework of a team comprises of several agents who collaborate to achieve

the same shared objective [109, 110]. The basic components of a team decision prob-

lem are [111]: (1) the number of agents K ∈ N; (2) the decision of each agent; (3) the

information available to each agent; (4) the communication pattern and restrictions
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for the agents; and (5) a common objective for all agents. Examples of team decision-

making problems are systems with interdependent subsystems and limited or delayed

communication, such as robot swarms [10], power systems [34], large hierarchical orga-

nizations [112], connected and automated vehicles [2] and vehicle platoons [113]. The

communication restrictions among the agents in a team leads to decentralization of in-

formation where different agents have access to different information [114]. Generally,

in a decentralized problem, no single agent has both: (1) access to all information in

the system and (2) the ability to assign all actions. Thus, as each agent must select an

action at any time using only locally available information, the optimal coordination of

actions among agents is a challenging problem for teams. This is in sharp contrast to

centralized problems with a single agent, where a key assumption is that the agent per-

fectly recalls all past control actions and observations. Note that in a manner similar to

centralized problems, agents in decentralized problems also suffer from computational

intractability resulting from partial observations.

The literature on decentralized control has predominantly focused on a stochas-

tic formulation with the goal of minimizing the expected cost shared by all agents.

The research originated with the study of static team problems where the information

received by each agent is independent of the actions of all other agents [111,115,116].

The dynamic team problem or decentralized control problem considers the more gen-

eral case where at least one agent’s information is affected by the decisions of other

agents [117, 118] and the agents select actions sequentially across multiple time steps.

Dynamic teams are characterized by their information structure, which describes who

knows what at any instance of time [119]. The information structure can designate the

complexity of a problem [120] and have implications on the tractability of computing

optimal decisions [121]. Different information structures can be classified as [19, 20]:

(1) Classical, where all agents communicate perfectly and recall all information they

have received [17,122,123]; (2) Quasi-classical, if agent 1 can affect the state of agent

2, and the information available to agent 1 is also available to agent 2 [124]; and (3)
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Non-classical, where agents can affect each others’ states with incomplete informa-

tion [45,125]. Non-classical systems typically suffer from doubly exponential growth in

computations required to generate optimal control strategies with an increase in the

planning horizon [126]. Furthermore, the growth in the memory of each agent within

the team makes it impractical to derive control strategies offline and to implement

them online. Recall that in centralized control, this problem was alleviated using the

notion of an information state which takes values in a time invariant space and thus,

can be utilized to construct a DP decomposition of the problem. However, deriving

such information states for decentralized problems with non-classical information struc-

tures is not trivial. The following approaches have been proposed in the literature to

derive optimal control strategies using DP in problems with non-classical information

structures:

1) The person-by-person approach aims to transform the problem into a

centralized stochastic control problem from the point of view of a single agent. This is

done by arbitrarily fixing the control policies for all agents except for one agent i. The

control policy of the chosen agent is then optimized for this new problem, assuming the

fixed strategies used by the other agents are known to agent i. This allows for the use of

techniques from centralized stochastic control including derivation of structural results

and DP. This process of fixing all other strategies and optimizing the individual strategy

is then repeated for all agents until a stable equilibrium is attained. A control policy

leading to this equilibrium is called a person-by-person optimal strategy. In general,

this solution is not globally optimal, but it was proved in [127, 128] that a person-

by-person strategy is globally optimal for quasi-classical information structures with

linear dynamics, Gaussian disturbances and quadratic costs. An alternate approach is

to use a Girasinov transformation on the probability measure to transform a dynamic

team problem into a static team problem and solve for person-by-person optimality

[129,130]. The person-by-person approach can be used to identify structural properties

for globally optimal strategies, given the fact that every globally optimal strategy

must necessarily be person-by-person optimal. Structural properties often guarantee
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the existence of an optimal control policy where all control strategies have a time-

invariant domain. An early application of this approach was found in problems of

real-time communication using encoders and decoders [131–135]. It has also been

used in decentralized hypothesis testing and quickest detection problems [136, 137],

broadcast information structures [138], in networked control systems [139], and team

decision problems with partially nested information structures [140–142].

2) The designer’s approach addresses decentralized control from the point

of view of a designer with knowledge of the system model and statistics of all sources

of randomness in the system. The designer’s action at any instance of time is the

optimal control law mapping the memory of each agent to their control actions at that

instance of time. This is resolved by first transforming the problem into a centralized

planning problem from the designer’s point of view, and then using DP to derive the

optimal strategy as a centralized open-loop problem. This approach yields a globally

optimal solution, however, the DP involves solving an optimization problem over a

space of control laws, which are functions, at each instance of time. This renders the

designer’s approach computationally challenging. This approach was first introduced

in [143] for a centralized system with one agent and later extended to decentralized

systems in [144] and [145]. The person-by-person has been used in conjunction with

the designer’s approach in real-time communication problems [132,146–148], in systems

with a broadcast information structure [138], and in networked control systems [139].

3) The common information approach was formalized in problems with

partial history sharing [45], where agents share a subset of their past observations

and decisions to a shared memory accessible by all other agents. The solution is

derived by reformulating the problem from the viewpoint of a coordinator with access

only to the shared information (the common information), whose task is to provide

prescriptions to each agent. At each instance of time, the prescription corresponding

to any agent maps the private history of that agent’s observations and decisions to

their optimal action at that time. This yields a centralized DP decomposition from

the perspective of the coordinator which involves optimizing over a space of partially
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evaluated functions, i.e., prescriptions. This approach has been used in problems with

delayed information sharing [149], control sharing information structures [125], mean-

field sharing information structures [150], belief sharing [118] and other non-classical

information structures [151–153]. This has also been used in conjunction with the

person-by-person approach to address teams with partially nested information [124],

one-directional communication [154,155] and unreliable communication [156,157]. For

such systems, current methods focus on identifying specific dynamics and information

structures which yield computationally tractable solutions [125,155]. More recently, the

common information approach has been used to also compress the private information

of each agent [158] and to approximately compress both the common and private

information [24].

4) The manager’s approach and team approach are the most recent de-

velopment in the theory of decentralized teams [20]. The manager’s approach views the

team from the perspective of a manager with access to the entire history of observation

and control actions and which can assign control actions to the various agents. This

yields a centralized DP decomposition that yields a globally optimal control strategy for

each agent. Then, the team approach utilizes the information available at each agent

to define an offline DP decomposition for each agent. It is shown that the strategies

derived using the individual DP decomposition for each agent yields the same perfor-

mance as that of the manager. This approach has also been extended to problems

involving both learning and control [14].

While the literature in decentralized control described above has predominantly

focused on minimizing the expected cost shared by all agents, an alternate formulation

involves minimizing a given norm of a shared cost in linear time-invariant systems

[140, 159, 160] for specific information structures. More recently, there has also been

an interest in decentralized control problems with a worst-case cost. The common

information approach has been extended to worst-case problems with a terminal cost

[50], and has been used to analyse the worst-case pointwise performance of real-time

communication [54].
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1.3 Contributions of This Dissertation

Over the course of my Ph.D., I have primarily produced results in the two fields

of study described in the literature review. In this section, I first explicitly summarize

the contributions of this dissertation towards advancing the state of the art in each of

these research areas. Subsequently, I also summarize the contributions to mechanism

design for competing agents, for which the literature review is given in Chapter 4.

1.3.1 Centralized Worst-Case Control and Learning With Partial Obser-

vations

As highlighted in the literature review, worst-case decision for partially observed

systems is computationally challenging because the default DP decomposition utilizes

the memory, which grows in size with time. Thus, research efforts have primarily

focused on deriving information states with time-invariant domains that yield a DP

decomposition more tractable than a memory-based DP decomposition to compute

an optimal control strategy. However, in problems with large state spaces, utiliz-

ing information states may not sufficiently simplify the DP to be practical [161, 162].

Furthermore, information states cannot be accurately determined in systems with un-

known dynamics or unknown state-space models. Instead, they must be learned from

output data. Both of these challenges were addressed in stochastic problems by intro-

ducing the notion of approximate information states [100] which can facilitate control

and reinforcement learning with a bounded loss in expected performance. However,

no analogous notions and results exist for either worst-case control or reinforcement

learning problems.

Chapter 2 of this dissertation addresses this research gap by presenting a gen-

eral non-stochastic theory of approximate information states. The theoretical develop-

ment utilizes the mathematical framework of uncertain variables [163] with set-valued

uncertainties, which distinguishes the presented theory from the corresponding work

in the stochastic formulation. Non-stochastic approximate information states can be

constructed from output data when the system dynamics are known and thus, they
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can facilitate computationally efficient control with bounded loss in worst-case perfor-

mance. Furthermore, they can be learned from output data in problems with unknown

dynamics, and thus, they provide a principled approach to reinforcement learning using

partial observations. Specifically, the contributions of this dissertation within towards

worst-case control and learning are: (1) the introduction of a general notion of infor-

mation states which yields an optimal DP decomposition for worst-case control with

both pointwise and additive performance criteria; (2) the introduction of the notion of

approximate information states that can either be constructed from output variables or

learned from output data; (3) the formulation of an approximate DP which computes

a control strategy with a bounded loss of optimality; (4) the exposition of examples

of approximate information states along with theoretical approximation bounds; (5)

the extension of the notion of information states to infinite horizon problems with a

discounted performance criterion; (6) an extension of the notion of approximate in-

formation states and derivation of performance bounds for infinite horizon problems

in systems with perfectly observed costs, which facilitates partially observed reinforce-

ment learning; and (7) the illustration of the proposed approach in various worst-case

control and reinforcement learning problems for both finite and infinite time horizons

using numerical examples. The contributions of Chapter 2 were previously published

in the following articles:

• [164]: Aditya Dave, Nishanth Venkatesh, and Andreas A. Malikopoulos, “Ap-
proximate information states for worst-case control of uncertain systems,” in
Proceedings of the 61th IEEE Conference on Decision and Control (CDC), pages
4945–4950, 2022.

• [165]: Aditya Dave, Nishanth Venkatesh, and Andreas A. Malikopoulos, “On
robust control of partially observed uncertain systems with additive costs,” in
Proceedings of the 2023 American Control Conference (ACC), pp. 4639-4644,
2023.

• [166]: Aditya Dave, Nishanth Venkatesh, and Andreas A. Malikopoulos, “Ap-
proximate Information States for Worst-Case Control and Learning in Uncertain
Systems,” arXiv:2301.05089, 2023 (in review).
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• [167]: Aditya Dave, Ioannis Faros, Nishanth Venkatesh, and Andreas A. Ma-
likopoulos, “Worst-Case Control and Learning Using Partial Observations Over
an Infinite Time Horizon,” arXiv:2303.16321, 2023 (in review).

1.3.2 Decentralized Control of a Team of Cooperative Agents

The common information approach has been the default approach towards de-

centralized control of teams [45,50,168] for both stochastic and non-stochastic formula-

tions. When the private information of all agents does not grow in size with time, this

approach yields control strategies with time-invariant domains which improves the com-

putational tractability of the resulting DP decomposition. However, teams with one-

directional information sharing such as large hierarchical organizations [112], connected

and automated vehicles [2] and vehicle platoons [113] may not satisfy the restriction on

private information. Thus, the common information approach cannot be directly used

to compute optimal control strategies for such teams. Research efforts on decision-

making in such teams in the stochastic formulation have focused primarily on identify-

ing specific information structures that can yield control strategies with time-invariant

domains, and a corresponding DP decomposition [124, 154–157, 169]. Furthermore, in

the non-stochastic formulation, information structures with one-directional communi-

cation have only been studied for real time communication problems [54]. Chapter 3

of this dissertation advances the state of the art on decentralized decision making in

teams with one-directional information sharing for both stochastic and non-stochastic

formulations.

A stochastic formulation is analyzed in Section 3.1. In this section, I consider a

team of two agents and identify a general information structure, called nested accessible

information. This information structure subsumes as special cases previously studied

information structures, including instantaneous or delayed one-directional communica-

tion [154], partially nested systems [124,156], transmission of data using an unreliable

communication channel [157], real time communication from one agent to another [155];

and decentralized control with unreliable communication among agents [169]. Then,
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for this general information structure, I derive results on the structure of optimal con-

trol strategies and present a DP decomposition which can improve the tractability of

computing the optimal control strategy. The specific contributions of this section of

Chapter 3 to the state of the art are: (1) the establishment of a structural form for

optimal control strategies in systems with nested accessible information which restricts

their domain to a space which does not grow in size with time; (2) a DP decomposition

utilizing these structural results to obtain optimal control strategies; (3) a simplifica-

tion of the structural results for teams with decoupled dynamics for each agent; and

(4) an approximation scheme which can improve the computational tractability of the

resulting DP decomposition. While I restrict my attention to a team of two agents to

simplify the exposition, these results can be easily extended to systems with multiple

agents which follow similar information structures. This contribution of Chapter 3 was

previously published in the following article:

• [170]: Aditya Dave, Nishanth Venkatesh, and Andreas A. Malikopoulos, “On
decentralized control of two agents with nested accessible information,” in Pro-
ceedings of the 2022 American Control Conference (ACC), pages 3423–3430,
2022.

Next, I analyze a non-stochastic formulation in Section 3.2. Here, I consider an

extension of the nested accessible information structure to a team of multiple agents

organized within nested subsystems that seek to minimize a worst-case terminal cost.

Teams with nested subsystems allow for one-directional communication amongst vari-

ous subsystems and thus, they generalize the information structures previously studied

for non-stochastic control of teams [50,54]. The specific contributions of this section of

Chapter 3 to the state of the art are: (1) the derivation of a structural form for optimal

control strategies in decentralized worst-case problems with nested subsystems which

restricts their domain to a space which does not grow in size with time; (2) a DP de-

composition utilizing these structural results to obtain optimal control strategies; and

(3) an extension of our results to worst-case additive cost problems. The effectiveness

of these results is also illustrated using a numerical example. This contribution of

Chapter 3 was previously published in the following article:
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• [171]: Aditya Dave, Nishanth Venkatesh, and Andreas A. Malikopoulos, “On
decentralized minimax control with nested subsystems,” in Proceedings of the
2022 American Control Conference (ACC), pages 3437–3444. 2022.

In addition to the above two contributions, in the course of my Ph.D. I have also

derived and published other results for decentralized stochastic control. I have excluded

them from this dissertation because they are closely related to the ones included in

Chapter 3. These contributions have been previously published in the following articles:

• [172]: Aditya Dave and Andreas A. Malikopoulos, “Decentralized stochas-
tic control in partially nested information structures,” in IFAC-PapersOnLine,
52(20):97–102, 2019.

• [173]: Aditya Dave and Andreas A. Malikopoulos, “Structural results for decen-
tralized stochastic control with a word-of-mouth communication,” in Proceedings
of the 2020 American Control Conference (ACC), pages 2796–2801. 2020.

• [174]: Aditya Dave and Andreas A. Malikopoulos, “A dynamic program for a
team of two agents with nested information,” in Proceedings of the 2021 IEEE
Conference on Decision and Control (CDC), pages 3768–3773. 2021.

• [175]: Aditya Dave and Andreas A. Malikopoulos, “The prescription approach
for decentralized stochastic control with word-of-mouth communication,” arXiv
preprint, arXiv:1907.12125, 2021.

1.3.3 Mechanism Design for Competing Agents With Private Information

Mechanism design is the study of incentives to implement system-wide opti-

mal solutions in problems involving multiple strategic agents (or alternatively, selfish

agents) with conflicting interests, each with private information about preferences [176].

Typically, when strategic agents take actions to optimize their individual utilities, the

net result is not optimal for the group as a whole [177]. Thus, a mechanism design

approach is different from decentralized control with information asymmetry [19, 45]

because agents may not follow actions recommended by a mechanism and need to

be appropriately incentivized to do so [178]. The fact that mechanism design opti-

mizes the behavior of competing agents has led to broad applications spanning dif-

ferent fields including economics, communication networks, and resource allocation

problems [179–184].
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Chapter 4 of this dissertation applies a mechanism design approach to a specific

problem of how a democratic government can incentivize social media platforms to

filter misinformation. In the formulation, social media platforms are strategic agents

that seek to maximize user engagement at all costs and the government is a strategic

agent who seeks to maximize the trust of the users in governmental institutions. In the

model, the engagement of social media platforms decreases with an increase in mis-

information filtering [9] whereas the trust in governmental institutions increases with

more misinformation filtering [185–188]. Consequently, increasing filtering of misinfor-

mation by the social media platforms increases the utility of the government and the

government is willing to make an investment to incentivize the social media platforms

to filter misinformation. Chapter 4 proposes a mechanism to distribute this invest-

ment amongst the platforms optimally, and in return, implement an optimal level of

filtering. The specific contributions of Chapter 4 are (1) a mechanism to incentivize

social media platforms to filter misleading information, and (2) derivations of key prop-

erties of the proposed mechanism such as budget balance, voluntary participation of

all agents, and implementation of a globally optimal level of filtering given a budget.

These contributions have been previously published in the following article:

• [189]: Aditya Dave, Ioannis Vasileios Chremos, and Andreas A. Malikopoulos,
“Social media and misleading information in a democracy: A mechanism de-
sign approach,” IEEE Transactions on Automatic Control, 67(5), pp. 2633-2639,
2022.

This dissertation primarily includes the main contributions of my research. How-

ever, the publications listed below have also resulted from my research and collabora-

tions with other colleagues:

• [190]: Nishanth Venkatesh, Viet-Anh Le, Aditya Dave, and Andreas A. Ma-
likopoulos, “Connected and automated vehicles in mixed-traffic: Learning hu-
man driver behavior for effective on-ramp merging,” arxiv:2304.00397, 2023 (in
review).

• [191]: Ioannis Vasileios Chremos, Heeseung Bang, Aditya Dave, Viet-Anh Le,
and Andreas A. Malikopoulos, “Modeling travel behavior in mobility systems
with an atomic routing game and prospect theory,” arXiv:2303.17790, 2023 (in
review).
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1.4 Dissertation Outline

This chapter presented a review of the relevant literature and identified the

main contributions of this dissertation. Chapter 2 develops the theoretical framework

of approximate information states for worst-case control and learning in partially ob-

served systems. Then, Chapter 3 presents the analysis and results on the structural

form of optimal control strategies for decentralized teams of agents with one-directional

information sharing, in both stochastic and non-stochastic formulations. Subsequently,

Chapter 4 formulates the misinformation filtering game and present a mechanism using

which a democratic government can incentivize social media platforms to filter misin-

formation. Finally, Chapter 5 summarizes the main contributions of this dissertation

and provides some directions for future research.
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Chapter 2

CENTRALIZED WORST-CASE CONTROL AND LEARNING WITH
PARTIAL OBSERVATIONS

2.1 Approximate Information States for Worst-Case Control and Learning

in Uncertain Systems

2.1.1 Notation and Preliminaries

1) Uncertain Variables: We utilize the mathematical framework for uncertain

variables from [163, 192] which was introduced for non-stochastic information theory.

An uncertain variable is a non-stochastic analogue of a random variable with set-valued

uncertainty. For a sample space Ω and a set X , an uncertain variable is a mapping

X : Ω → X . For any ω ∈ Ω, it has the realization X(ω) = x ∈ X . The marginal range

of X is the set [[X]] := {X(ω) | ω ∈ Ω}. For two uncertain variables X ∈ X and Y ∈ Y ,

their joint range is [[X, Y ]] := {
(
X(ω), Y (ω)

)
| ω ∈ Ω}. For a given realization y of

Y , the conditional range of X is [[X|y]] := {X(ω) | Y (ω) = y, ω ∈ Ω} and, generally,

[[X|Y ]] := {[[X|y]] | y ∈ [[Y ]]}.

2) Hausdorff Distance: Consider that the feasible sets X ,Y are nonempty

subsets of a metric space (S, η), where η(x, y) is the distance between any x ∈ X and

y ∈ Y . Then, we define a distance between the two sets as follows.

Definition 1. The Hausdorff distance between X and Y is

H(X ,Y) := max
{
sup
x∈X

inf
y∈Y

η(x, y), sup
y∈Y

inf
x∈X

η(x, y)
}
. (2.1)

When the two sets X ,Y are bounded, the Hausdorff distance in (2.1) consti-

tutes a pseudo-metric, i.e., H(X ,Y) = 0 if and only if closure(X ) = closure(Y) [193,

Appendix]. When both X ,Y are compact, the Hausdorff distance is a metric, i.e.,
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H(X ,Y) = 0 if and only if X = Y [194, Chapter 1.12]. In both cases, the distance H

satisfies the triangle inequality.

3) L-invertible Functions: Consider a function f : X → Y . For any y ∈ Y ,

the pre-image of the function is f−1(y) =
{
x ∈ X | f(x) = y

}
. Then, we use the

Hausdorff distance to define the notion of an L-invertible function as follows.

Definition 2. A function f : X → Y is called L-invertible if there exists a constant

Lf−1 ∈R≥0 such that for all y1, y2 ∈ Y :

H
(
f−1(y1), f−1(y2)

)
≤ Lf−1 · η(y1, y2). (2.2)

For uncertain variablesX ∈ X and Y ∈ Y such that Y = f(X), the pre-image of

f given a realization y ∈ [[Y ]] equals the conditional range [[X|y]], i.e., f−1(y) = [[X|y]].

Thus, if f is L-invertible, we equivalently state that for all y1, y2 ∈ [[Y ]]:

H
(
[[X|y1]], [[X|y2]]

)
≤ LX|Y · η(y1, y2), (2.3)

where LX|Y = Lf−1 .

2.1.2 Problem Formulation

We consider an agent which seeks to control the trajectory of an uncertain

system by selecting actions over T ∈ N discrete time steps. At each time t = 0, . . . , T ,

the agent receives an observation from the system, denoted by the uncertain variable

Yt ∈ Yt, and generates a control action denoted by the uncertain variable Ut ∈ Ut.

After generating the action at each t, the agent incurs a cost denoted by the uncertain

variable Ct ∈ Ct ⊂ R≥0. To account for the case that the agent may have no knowledge

of a state-space model, we describe the system dynamics using an input-output model,

as follows. At each t = 0, . . . , T , the system receives two inputs: the control action

Ut, and an uncontrolled disturbance denoted by the uncertain variable Wt ∈ Wt. We

consider that the uncontrolled disturbances {Wt : t = 0, . . . , T} constitute a sequence

of independent uncertain variables. After receiving the inputs at each t = 0, . . . , T , the

system generates two outputs:

Yt+1 = ht+1(W0:t, U0:t), (2.4)
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Ct = dt(W0:t, U0:t), (2.5)

for some observation function ht+1 :
∏t

ℓ=0Wℓ ×
∏t

ℓ=0 Uℓ → Yt+1 and cost function

dt :
∏t

ℓ=0Wℓ ×
∏t

ℓ=0 Uℓ → Ct. The initial observation is generated as Y0 = h0(W0).

The agent has perfect recall of the history of observations and control ac-

tions. The memory of the agent at each t is denoted by the uncertain variable

Mt := (Y0:t, U0:t−1), which takes values in the set Mt :=
∏t

ℓ=0 Yℓ ×
∏t−1

ℓ=0 Uℓ. The

agent uses the memory Mt and a control law gt : Mt → Ut at each t to generate the

action Ut = gt(Mt). We denote the control strategy by g := (g0, . . . , gT ) and the set of

all feasible control strategies by G. The performance of a strategy g ∈ G is measured

by the worst-case or maximum instantaneous cost

J (g) := max
t=0,...,T

sup
w0:t∈[[W0:t]]

Ct. (2.6)

Problem 1. The optimization problem of the agent is to derive the control strategy

g ∈ G such that infg∈G J (g), given the marginal ranges {[[Ut]], [[Wt]], [[Ct]], [[Yt]] | t =

0, . . . , T} and the functions {ht, dt | t = 0, . . . , T}.

If there exists a strategy g∗ ∈ G that achieves the optimal performance in

Problem 1, i.e., g∗ = argming∈G J (g), we refer to it as an optimal control strategy for

Problem 1. Our aim is to tractably compute an optimal strategy if one exists. In our

modeling framework, we impose the following assumptions:

Assumption 1. We consider that the sets {Ut,Wt,Yt | t = 0, . . . , T} and {Ct | t =

0, . . . , T} are all bounded subsets of a metric space (S, η) and R≥0, respectively.

Assumption 1 allows for both continuous and finite valued feasible sets, while

ensuring that the marginal range of each uncertain variable in the problem formulation

is also bounded.

Assumption 2. The observation functions {ht | t = 0, . . . , T} of the system are both

Lipschitz and L-invertible, whereas the cost functions {dt | t = 0, . . . , T} are Lipschitz

continuous.
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Assumption 2 is satisfied by a large class of observation functions, including:

(1) all functions with compact domains and finite co-domains; and (2) bi-Lipschitz

functions, like linear functions, with compact domains and compact co-domains (see

Appendix A). We will require both assumptions in Section 2.1.4 when deriving the

main results.

Remark 1. In our exposition, we also consider a special case of (2.6), called the

maximum terminal cost criterion, given by

J tm(g) := sup
w0:T∈[[W0:T ]]

CT . (2.7)

In addition to the general results for Problem 1, we often present results specifically

for systems which utilize (2.7) as the performance measure. This serves two purposes:

(1) the results are often easier to interpret for a terminal cost problem; and (2) these

results can be extended to additive cost problems. We explicitly present this extension

in Subsection 2.1.3.3.

Remark 2. We derive our results for Problem 1 with known dynamics. However,

our main results in Section 2.1.4 can also be used in learning problems with unknown

dynamics. We illustrate this application with an example in Subsection 2.1.5.2.

2.1.3 Dynamic Programs and Information States

In this section, we first present a memory-based DP decomposition for Problem

1 which computes the optimal value of the performance criterion 2.6. This will serve

as a reference to analyze subsequent DPs in the paper. Then, we highlight the DP’s

computational challenges and present information states in Subsections 2.1.3.1 and

2.1.3.2 to alleviate them. In Subsection 2.1.3.3 we present examples of information

states.

To arrive at the memory-based DP, we construct a “new” perfectly observed

system whose state at each t = 0, . . . , T is the memory Mt, which evolves as Mt+1 =
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(Mt, Ut, Yt+1). Furthermore, for given realizations mt ∈ [[Mt]] and ut ∈ [[Ut]], the

maximum incurred cost at time t can be written as

sup
w0:t∈[[W0:t]]

Ct = sup
ct∈[[Ct]]g

ct = sup
mt,ut∈[[Mt,Ut]]g

sup
ct∈[[Ct|mt,ut]]g

ct, (2.8)

for all t = 0, . . . , T , where [[Ct]]
g, [[Mt, Ut]]

g and [[Ct|mt, ut]]
g are the respective

marginal ranges and the conditional range induced by strategy g. Recall that mt =

(y0:t, u0:t−1) and thus, we can expand the conditional range as

[[Ct|mt, ut]]
g =

{
ct ∈ Ct

∣∣ ∃ w0:t ∈ [[W0:t]] such that ct = dt(w0:t, u0:t),

yℓ = ht(w0:ℓ, u0:ℓ−1), ∀ℓ = 0, . . . , t
}

= [[Ct|mt, ut]], (2.9)

which shows that [[Ct|mt, ut]]
g is independent of the choice of strategy g, hence we can

drop g. Next, we define et(mt, ut) := supct∈[[Ct|mt,ut]] ct, independent of g, and state

that

sup
mt,ut∈[[Mt,Ut]]g

sup
ct∈[[Ct|mt,ut]]g

ct = sup
mt,ut∈[[Mt,Ut]]g

et(mt, ut)

= sup
w0:t∈[[W0:t]]

et(Mt, Ut), (2.10)

where, in the second equality, note that the marginal range of external disturbances

[[W0:t]] is independent of the strategy g. Since et(Mt, Ut) is a function of the new state

Mt and control action Ut, it serves as an incurred cost at each t = 0, . . . , T in our

new perfectly observed system [53]. The new instantaneous performance criterion is

E(g) := maxt=0,...,T supw0:t∈[[W0:t]] et(Mt, Ut) and from (2.10), E(g) = J (g) for any g.

Subsequently, any strategy which achieves the optimal performance in the new system

is optimal for Problem 1. If such an optimal strategy exists, we can compute it using

a standard DP for perfectly observed systems, as follows. For all t = 0, . . . , T , for each

mt ∈ [[Mt]] and ut ∈ [[Ut]] we recursively define the value functions

Qt(mt, ut) :=max
{

sup
ct∈[[Ct|mt,ut]]

ct, sup
mt+1∈[[Mt+1|mt,ut]]

Vt+1(mt+1)
}
, (2.11)
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Vt(mt) := inf
ut∈[[Ut]]

Qt(mt, ut), (2.12)

where VT+1(mT+1) := 0, identically. We define the extra value function VT+1 to ensure

that the right hand side (RHS) of (2.11) is well defined at time T . Then, we can show

using standard arguments [49,53] that the optimal value of Problem 1 is infg∈G J (g) =

supm0∈[[M0]] V0(m0). Furthermore, at any t = 0, . . . , T , if there exists an action u∗t ∈

[[Ut]] which achieves the infimum in the RHS of (2.12), then g∗t (mt) := argminut∈[[Ut]]

Qt(mt, ut) gives an optimal control law at time t. If the infimum is achieved at each t,

the control strategy g∗ = (g∗0, . . . , g
∗
T ) is optimal for this system and Problem 1.

Remark 3. The DP (2.11) - (2.12) can be specialized to the terminal cost criterion

(2.7) by defining for all t = 0, . . . , T − 1,

Qtm
t (mt, ut) := sup

mt+1∈[[Mt+1|mt,ut]]

V tm
t+1(mt+1), (2.13)

V tm
t (mt) := inf

ut∈[[Ut]]

Qtm
t (mt, ut), (2.14)

where Qtm
T (mT , uT ) := supcT∈[[CT |mT ,uT ]] cT and V tm

T (mT ) := infuT∈[[Ut]]Q
tm
T (mT , uT ).

We will use this terminal cost DP to simplify the exposition in Section 2.1.4.

Remark 4. A valid argument referring to the minimum of the RHS of (2.12) at each

t = 0, . . . , T is both a necessary and sufficient condition to ensure the existence of an

optimal control strategy in Problem 1 [49, 195]. Consider that marginal ranges of all

uncertain variables are compact rather than just bounded. From Assumption 2, the

observation and cost functions at each t are Lipschitz. Using these properties in (2.13) -

(2.14), we can show that the value functions are continuous and the conditional ranges

are compact for all t, which implies that the minimum is achieved in the RHS of (2.12).

Thus, compactness of all marginal ranges and Assumptions 1 - 2 constitute sufficient

conditions for existence of an optimal solution to Problem 1, which is consistent with

the conditions given in [196]. However, we continue using sup and inf in our expo-

sition since we use only Assumptions 1 - 2 to establish our results without assuming

compactness.
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Remark 5. In the RHS of (2.12) at each t, we are required to solve an optimization

for each mt ∈ [[Mt]]. This is computationally challenging for longer horizons as the

size of the set [[Mt]] increases with time t with addition of new data. This concern

motivates our search for an alternate DP decomposition which can derive an optimal

control strategy while potentially achieving more favourable computational properties.

We present such a DP decomposition in Subsection 2.1.3.1 by identifying an uncertain

variable, called an information state, which can be used to generate an optimal control

action at each time step instead of the memory.

2.1.3.1 Information States

In this subsection, we define information states for partially observed uncertain

systems, use them in a DP decomposition, and prove it yields the optimal value for

Problem 1.

Definition 3. An information state for Problem 1 at each t = 0, . . . , T is an uncertain

variable Πt = σt(Mt) taking values in a bounded set Pt and generated by a function

σt : Mt → Pt. Furthermore, for all t = 0, . . . , T, and for all mt ∈ [[Mt]] and ut ∈ [[Ut]],

it satisfies the following properties:

1) Sufficient to evaluate cost:

sup
ct∈[[Ct|mt,ut]]

ct = sup
ct∈[[Ct|σt(mt),ut]]

ct. (2.15)

2) Sufficient to predict itself:

[[Πt+1|mt, ut]] = [[Πt+1|σt(mt), ut]], (2.16)

where both conditional ranges in (2.16) can be evaluated independent of the choice of

strategy g.

We can use the information states from Definition 3 directly in a DP, as follows.

For all t = 0, . . . , T , for all πt ∈ [[Πt]] and ut ∈ [[Ut]], we recursively define the value

functions

Q̄t(πt, ut) :=max
{

sup
ct∈[[Ct|πt,ut]]

ct, sup
πt+1∈[[Πt+1|πt,ut]]

V̄t+1(πt+1)
}
, (2.17)
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V̄t(πt) := inf
ut∈[[Ut]]

Q̄t(πt, ut), (2.18)

where V̄T+1(πT+1) := 0 identically. If the minimum in the RHS of (2.18) exists at each

t = 0, . . . , T , then this DP yields a control law at time t as ḡ∗t (πt) := argminut∈[[Ut]]

Q̄t(πt, ut). Next, we prove that the DP (2.17) - (2.18) computes the same value as the

optimal DP (2.11) - (2.12).

Theorem 1. Let Πt = σt(Mt) be an information state at any t. Then, for all t, and

for all mt ∈ [[Mt]] and ut ∈ [[Ut]],

Qt(mt, ut)=Q̄t

(
σt(mt), ut

)
and Vt(mt)= V̄t

(
σt(mt)

)
. (2.19)

Proof. Let mt ∈ [[Mt]] and ut ∈ [[Ut]] be given realizations of Mt and Ut, respec-

tively, for all t = 0, . . . , T . We prove the result by mathematical induction starting

at the last time step. At time T + 1, (2.19) holds trivially because VT+1(mT+1) =

V̄T+1(σT+1(mT+1)) = 0. This forms the basis of our induction. Next, for any t =

0, . . . , T , we consider the induction hypothesis that Vt+1(mt+1) = V̄t+1(σt+1(mt+1)).

Given the hypothesis, we first prove that Qt(mt, ut) = Q̄t(σt(mt), ut) by comparing the

RHS of (2.11) to the RHS of (2.17) term by term. The first terms are equal by direct

application of (2.15) from Definition 3. Next, we use the induction hypothesis for the

second term in the RHS of (2.11), to state that

sup
mt+1∈[[Mt+1|mt,ut]]

Vt+1(mt+1) = sup
mt+1∈[[Mt+1|mt,ut]]

V̄t+1(σt+1(mt+1))

= sup
σt+1(mt+1)∈[[Πt+1|σt(mt),ut]]

V̄t+1(σt+1(mt+1)), (2.20)

where, in the second equality, we use the fact that [[Πt+1|mt, ut]] =
{
σt+1(mt+1) ∈

Pt+1

∣∣mt+1 ∈ [[Mt+1|mt, ut]]
}
and (2.16) from Definition 3. This establishes that the

second term in the RHS of (2.11) equals the second term in the RHS of (2.17) and

subsequently, that given the induction hypothesis for time t+ 1, we have Qt(mt, ut) =

Q̄t(σt(mt), ut). Next, we minimize both sides of the equality with respect to ut ∈ [[Ut]],

and use the definitions of the value functions in (2.12) and (2.18) to write that

Vt(mt) = inf
ut∈Ut

Qt(mt, ut) = inf
ut∈Ut

Q̄t

(
σt(mt), ut

)
= Vt

(
σt(mt)

)
, (2.21)
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which proves the induction hypothesis at time t. Thus, starting at time T + 1, the

result follows for all t using mathematical induction.

Theorem 1 implies that (2.17) - (2.18) is an optimal DP decomposition for

Problem 1, i.e., if an optimal strategy exists for this DP, it yields an optimal solution

to Problem 1 as follows. Consider a control strategy ḡ∗ = (ḡ∗0, . . . , ḡ
∗
T ) computed

using (2.17) - (2.18). We can construct a corresponding memory-based strategy g =

(g0, . . . , gT ) by defining gt(mt) := ḡ∗t (σt(mt)) for allmt ∈ [[Mt]] and t = 0, . . . , T . Then,

using Theorem 1, we conclude that g achieves the infimum value at each t and thus,

constitutes an optimal solution to Problem 1.

Remark 6. In practice, using an information state to construct the DP decomposition

is useful computationally only if, for most time steps in t = 0, . . . , T , either the value

functions in (2.17) - (2.18) have useful properties like concavity, or the set Pt is smaller

than Mt for some measure of size. Potentially useful measures of sizes for sets include

the number of elements, set diameter, and set dimension. We present some examples

of information states for different systems in Subsection 2.1.3.3.

2.1.3.2 Alternate Characterization of Information States

When exploring whether an uncertain variable is a valid candidate to be con-

sidered an information state, it may be difficult to verify the second property (2.16) in

Definition 3. In this subsection, we present two stronger conditions to replace (2.16).

Specifically, at each t = 0, . . . , T , to establish that Πt = σt(Mt) is a valid information

state, it is sufficient to satisfy the following conditions instead of (2.16):

1) State-like evolution: There exists a function f̄t : Pt × Ut × Yt+1 → Pt+1,

independent of the strategy g, such that

σt+1(Mt+1) = f̄t(σt(Mt), Ut, Yt+1). (2.22)

2) Sufficient to predict observations: For all mt ∈ Mt and ut ∈ Ut,

[[Yt+1|mt, ut]] = [[Yt+1|σt(mt), ut]], (2.23)
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where both conditional ranges in (2.23) can be evaluated independent of the choice of

strategy g.

Next, we prove that these two conditions, in addition to (2.15) from Definition

3 are sufficient to identify an information state.

Lemma 1. For all t = 0, . . . , T , if an uncertain variable Πt = σt(Mt) satisfies (2.22)

- (2.23), it also satisfies (2.16).

Proof. For all t = 0, . . . , T and mt ∈ Mt, suppose that πt = σt(mt) satisfy (2.22) -

(2.23). Then, we substitute (2.22) into the left hand side (LHS) of (2.16) to state that

[[Πt+1|mt, ut]] = [[f̄t(σt(mt), ut, Yt+1) | mt, ut]]

=
{
f̄t(σt(mt), ut, yt+1) ∈ Pt+1

∣∣ yt+1 ∈ [[Yt+1|mt, ut]]
}
, (2.24)

where, in the second equality, we write the conditional range as a set. Next, using

(2.23) on the range of observations in the conditioning of (2.24), we can state that

{
f̄t(σt(mt), ut, yt+1) ∈ Pt+1

∣∣ yt+1 ∈ [[Yt+1|mt, ut]]
}

=
{
f̄t(σt(mt), ut, yt+1) ∈ Pt+1

∣∣ yt+1 ∈ [[Yt+1|σt(mt), ut]]
}

=[[f̄t(σt(mt), ut, Yt+1) ∈ Pt+1 | σt(mt), ut]]

=[[Πt+1|σt(mt), ut]],

(2.25)

which is equal to the RHS of (2.16).

2.1.3.3 Examples of Information States

In this subsection, we present examples of information states which satisfy the

conditions in Definition 3 for systems with a given state-space model to describe their

evolution. At each t = 0, . . . , T , let Xt be a known set of feasible states and let the

system’s state be denoted by an uncertain variable Xt ∈ Xt. The agent’s observation is

given by Yt = ht(Xt, Nt), where Nt ∈ Nt is a noise in observation, and the agent incurs

a cost Ct = dt(Xt, Ut) when they implement an action Ut ∈ Ut. Starting at X0 ∈ X0,

the state evolution is given by Xt+1 = ft(Xt, Ut,Wt) for all t. Each uncertain variable
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in {X0,Wt, Nt | t = 0, . . . , T} is independent of all other uncertain variables in that set.

Next, we present information states for different cases which may offer computational

advantages over using the entire memory:

1) Systems with perfectly observed states: Consider that Yt = Xt for all t =

0, . . . , T . Then, an information state at each t is Πt = Xt, i.e., the state itself [49]. It

takes values in the set Xt and satisfies (2.15) - (2.16) for all t. Note that it is always

computationally advantageous to construct a DP decomposition using the state at each

time step instead of the entire memory of the agent.

2) Systems with partially observed states: Generally in a partially observed sys-

tem with a known state space, an information state at each t = 0, . . . , T is the condi-

tional range Πt = [[Xt|Mt]], which is a set-valued uncertain variable [53]. Explicitly, for

a given realization of the memory mt ∈ Mt at time t, the conditional range takes the

realization Pt :=
{
xt ∈ Xt

∣∣ ∃x0 ∈ X0, w0:t−1 ∈
∏t−1

ℓ=0Wℓ, n0:t ∈
∏t

ℓ=0Nℓ such that yt =

ht(xt, nt), xℓ+1 = fℓ(xℓ, uℓ, wℓ), yℓ = hℓ(xℓ, nℓ) for all ℓ = 0, . . . , t − 1
}
. We denote the

realization by Pt instead of πt to highlight that it is a set. To establish that the condi-

tional range is a valid information state, it is easier to verify the alternate conditions

(2.22) and (2.23) instead of property (2.16) in Definition 3. Generally, it is compu-

tationally advantageous to construct a DP decomposition using the conditional range

instead of the memory for systems with longer time horizons.

3) Systems with additive costs: Consider a system with partially observed states

with an additive performance criterion J ad(g) := supx0,w0:T ,n0:T

∑T
t=0 dt(Xt, Ut).We can

construct a DP and an information state for an additive cost problem by recasting it

as a terminal cost problem [49]. At t = 0, we define A0 := 0 and for all t = 1, . . . , T ,

we recursively define an uncertain variable At ∈ At as At := At−1 + dt−1(Xt−1, Ut−1).

Note that At tracks the cost incurred by the system up to time t, i.e., before the

action Ut has been implemented. Then, at each t, we consider an augmented state

for the system, St = (Xt, At) and note that it evolves as St+1 =
(
ft(Xt, Ut,Wt), At +

dt(Xt, Ut)
)
. Furthermore, this augmentation yields a terminal cost problem with the

cost AT + cT (XT , UT ). Thus, we can derive an optimal control strategy using the
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terminal cost DP and, as in case 2, an information state at each t is the conditional

range Πt = [[Xt, At|Mt]]. Generally, this information state is useful for systems with

longer time horizons.

Remark 7. The conditions in Definition 3 can help us identify information states for

systems with known dynamics and simplify the DP decomposition. However, many

applications with large state spaces may require a further improvement in computa-

tional tractability, even at the cost of optimality. Moreover, in certain applications, we

need to learn a representation of the information state using limited observations with

incomplete knowledge of the dynamics. Information states are insufficient to account

for these cases. Next, in Section 2.1.4, we introduce approximate information states

that can address the above concerns.

2.1.4 Approximate Information States

In this section, we define approximate information states by relaxing the con-

ditions given in Definition 3, and utilize them to develop an approximate DP decom-

position which computes a sub-optimal control strategy for Problem 1. In Subsection

2.1.4.1, we derive the preliminary results required to establish useful properties of ap-

proximate information states. Then, in Subsection 2.1.4.2, we prove these properties,

namely, the Lipischitz continuity of approximate value functions, and the following

error bounds: (1) an upper bound on the error when the optimal value functions are

estimated using approximate value functions, and (2) an upper bound on the loss in

performance when control actions are generated using a sub-optimal control strategy

instead of an optimal strategy.

Definition 4. An approximate information state for Problem 1 at each t = 0, . . . , T is

an uncertain variable Π̂t = σ̂t(Mt) taking values in a bounded set P̂t and generated by

an L-invertible function σ̂t : Mt → P̂t. Furthermore, for all t = 0, . . . , T , there exist

parameters ϵt, δt, λt ∈ R≥0 such that for all mt ∈ [[Mt]] and ut ∈ [[Ut]], it satisfies the

properties:
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1) Sufficient to approximate cost:∣∣∣ sup
ct∈[[Ct|mt,ut]]

ct − sup
ct∈[[Ct|σ̂t(mt),ut]]

ct

∣∣∣ ≤ ϵt. (2.26)

2) Sufficient to approximate evolution: There exist the sets Kt+1 := [[Π̂t+1 | mt,

ut]] and K̂t+1 := [[Π̂t+1 | σ̂t(mt), ut]] independent of the strategy g, and it holds that

H(Kt+1, K̂t+1) ≤ δt, (2.27)

where recall that H is the Hausdorff distance in (2.1).

3) Lipschitz-like evolution: For all π̂1
t , π̂

2
t ∈ [[Π̂t]],

H
(
[[Π̂t+1|π̂1

t , ut]], [[Π̂t+1|π̂2
t , ut]]

)
≤ λt · η(π̂1

t , π̂
2
t ), (2.28)

where η is an appropriate metric on P̂t.

Using the approximate information state in Definition 4, we can construct a DP

as follows. For all t, for all π̂t ∈ [[Π̂t]] and ut ∈ [[Ut]], we recursively define the value

functions

Q̂t(π̂t, ut) :=max
{

sup
ct∈[[Ct|π̂t,ut]]

ct, sup
π̂t+1∈[[Π̂t+1|π̂t,ut]]

V̂t+1(π̂t+1)
}
, (2.29)

V̂t(π̂t) := inf
ut∈[[Ut]]

Q̂t(π̂t, ut), (2.30)

where V̂T+1(π̂T+1) := 0 identically. If there exists a minimizing argument in the RHS

of (2.30) at each t = 0, . . . , T , then ĝ∗t (π̂t) := argminut∈Ut Q̂t(π̂t, ut) constitutes an

approximate control law at time t. Furthermore, we call ĝ∗ = (ĝ∗0, . . . , ĝ
∗
T ) an approx-

imately optimal strategy for Problem 1. In Subsection 2.1.4.2, we derive performance

guarantees on the approximate DP and control strategy.

Remark 8. As we showed in Section 2.1.3, we can specialize this DP for terminal cost

problems, with the value functions for all t = 0, . . . , T − 1 given by

Q̂tm
t (π̂t, ut) := sup

π̂t+1∈[[Π̂t+1|π̂t,ut]]
V̂ tm
t+1(π̂t+1), (2.31)
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V̂ tm
t (π̂t) := inf

ut∈Ut

Q̂tm
t (π̂t, ut), (2.32)

and Q̂tm
T (π̂T , uT ) := supcT∈[[CT |π̂T ,uT ]] cT and V̂ tm

T (π̂T ) := infuT∈UT
Q̂tm
T (π̂T , uT ) at time

T .

Remark 9. The conditions in Definition 4 can be investigated using only output

variables. Thus, an approximate information state can be learned from output data

without knowledge of dynamics, as illustrated in Subsection 2.1.5.2.

2.1.4.1 Preliminary Results

In this subsection, we derive results necessary to prove the properties of the

approximate DP in Subsection 2.1.4.2.

Lemma 2. Consider three bounded subsets X , Y and Z of a metric space (S, η).

Let X ∈ X , Y ∈ Y and Z ∈ Z be uncertain variables satisfying Y = g(X), where

g : X → Y is L-invertible, and Z = h(X), where h : X → Z is Lipschitz. Then, there

exists an LZ|Y ∈ R≥0 such that:

H([[Z|y1]], [[Z|y2]])≤LZ|Y ·η(y1, y2), ∀y1, y2 ∈ [[Y ]]. (2.33)

Proof. We prove the result by constructing a feasible constant LZ|Y ∈ R≥0 which

ensures that (2.33) is satisfied for all y1, y2 ∈ [[Y ]]. We begin by using the definition

of the Hausdorff distance in (2.1) to expand the LHS of (2.33) as

H
(
[[Z|y1]], [[Z|y2]]

)
= max

{
sup

x1∈g−1(y1)

inf
x2∈g−1(y2)

η
(
h(x1),

h(x2)
)
, sup
x2∈g−1(y2)

inf
x1∈g−1(y1)

η
(
h(x1), h(x2)

)}
, (2.34)

where, note that [[Z|y]] =
{
z ∈ Z | z = h(x),∀x ∈ g−1(y)

}
for any realization y ∈ [[Y ]].

Next, recall that h is Lipschitz continuous with a constant Lh ∈ R≥0. Substituting this

property into the RHS of (2.34), we write that

H
(
[[Z|y1]], [[Z|y2]]

)
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≤ Lh ·max
{

sup
x1∈g−1(y1)

inf
x2∈g−1(y2)

η(x1, x2), sup
x2∈g−1(y2)

inf
x1∈g−1(y1)

η(x1, x2)
}

= Lh · H
(
g−1(y1), g−1(y2)

)
= Lh · Lg−1 · η(y1, y2), (2.35)

where, in the second equality, we use the L-invertibile property of g. Then, the result

follows by selecting LZ|Y := Lh · Lg−1 .

Lemma 3. Consider a bounded set X and two functions f : X → R and g : X → R.

Then,

| sup
x∈X

f(x)− sup
x∈X

g(x)| ≤ sup
x∈X

|f(x)− g(x)|, (2.36)

| inf
x∈X

f(x)− inf
x∈X

g(x)| ≤ sup
x∈X

|f(x)− g(x)|. (2.37)

Proof. First, we prove (2.36) by considering two mutually exclusive cases which cover

all possibilities. Case 1: We consider supx∈X f(x) ≥ supx∈X g(x), which implies

| supx∈X f(x)−supx∈X g(x)| = supx∈X f(x)−supx∈X g(x). For any infinitesimally small

β > 0, we define x(β) ∈ X as an element which satisfies f(x(β)) + β ≥ supx∈X f(x).

Then, supx∈X f(x)−supx∈X g(x) ≤ f(x(β))+β−supx∈X g(x) ≤ f(x(β))+β−g(x(β)) ≤

supx∈X |f(x) − g(x)| + β for all β > 0. Therefore, supx∈X f(x) − supx∈X g(x) ≤

supx∈X |f(x)− g(x)|. Case 2: supx∈X f(x) < supx∈X g(x). The proof can be completed

using similar arguments as in Case 1. Then, (2.37) follows from similar arguments as

(2.36).

Lemma 4. For any four scalars a, b, c, d ∈ R,

|max{a, b} −max{c, d}| ≤ max{|a− c|, |b− d|}. (2.38)

Proof. We prove this result by considering four cases which are mutually exclusive but

cover all possibilities. Case 1: For a ≥ b and c ≥ d: The result holds trivially. Case 2:

For a < b and c ≥ d: The LHS can be expanded as |max{a, b} −max{c, d}| = |b− c|.

Next, if b ≥ c, we use c ≥ d to conclude that |b− c| < |b−d|, else if c > b, we use b > a

to conclude that |c−b| < |c−a|. Thus, |max{a, b}−max{c, d}| ≤ max{|a−c|, |b−d|}.

Case 3: For a < b and c < d: The result holds trivially. Case 4: For a ≥ b and c < d:

The proof follows from the same sequence of arguments as Case 2.
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Lemma 5. Consider two bounded subsets A,B of a metric space (X , η). Let f : X → R

be a bounded continuous function with a Lipschitz constant Lf ∈ R≥0 on X . Then,∣∣ sup
a∈A

f(a)− sup
b∈B

f(b)
∣∣ ≤ Lf · H(A,B). (2.39)

Proof. We prove this result by considering two cases which are mutually exclusive

but cover all the possibilities. Case 1: supa∈A f(a) ≥ supb∈B f(b), which implies

| supa∈A f(a) − supb∈B f(b)| = supa∈A f(a) − supb∈B f(b). We define the non-empty

set A1(β) := {a ∈ A | f(a) + β ≥ supb∈B f(b)} for any infinitesimal β > 0. Then,

supa∈A f(a)−supb∈B f(b) ≤ supa∈A1(β) f(a)+β−supb∈B f(b) ≤ supa∈A1(β) infb∈B(f(a)−

f(b))+β ≤ supa∈A infb∈B |f(a)− f(b)|+β ≤ Lf · supa∈A infb∈B η(a, b)+β for all β > 0.

This implies that | supa∈A f(a)−supb∈B f(b)| ≤ Lf ·supa∈A infb∈B η(a, b) ≤ Lf ·H(A,B),

where, in the second inequality, we invoke the definition of the Hausdorff distance in

(2.1) to complete the proof. Case 2: supa∈A f(a) < supb∈B f(b) and we can prove the

result using the same sequence of arguments as case 1.

As a direct consequence of Lemma 5, we can also establish the following property.

Consider two bounded subsets Y ,Z of Rn, n ∈ N. For two uncertain variables Y ∈ Y

and Z ∈ Z, let the conditional range [[Z|y]] satisfyH
(
[[Z|y1]], [[Z|y2]]

)
≤ LZ|Y ·η(y1, y2)

for all realizations y1, y2 ∈ Y of Y . Then, for a continuous function f : Z → R≥0

with a Lipschitz constant Lf , we can use (2.39) from Lemma 5 to state that for all

y1, y2 ∈ [[Y ]]: ∣∣∣ sup
z1∈[[Z|y1]]

f(z1)− sup
z2∈[[Z|y2]]

f(z2)
∣∣∣≤ LZ|Y ·Lf ·η(y1, y2). (2.40)

2.1.4.2 Properties of Approximate Information States

In this subsection, we present several properties of the approximate DP (2.29)

- (2.30). To begin, we prove in Theorem 2 that each approximate value function is

Lipschitz continuous. This property subsequently allows us to establish error bounds.

Theorem 2. In the approximate DP (2.29) - (2.30), the value functions Q̂t(π̂t, ut)

and V̂t(π̂t) are Lipschitz continuous with respect to π̂t ∈ [[Π̂t]] for all ut ∈ [[Ut]] and

t = 0, . . . , T .
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Proof. We prove the Lipschitz continuity of the value functions by constructing a valid

candidate for the Lipschitz constant LV̂t at each t = 0, . . . , T , using mathematical

induction. At time T + 1, recall that V̂T+1(π̂T+1) = 0 identically and thus, V̂T+1(π̂T+1)

is trivially Lipschitz continuous with a constant LV̂T+1
= 0. This forms the basis of

our induction. Then, at each t = 0, . . . , T , we consider the induction hypothesis that

Q̂t+1(π̂t+1, ut+1) and V̂t+1(π̂t+1) are Lipschitz continuous with respect to π̂t+1 ∈ [[Π̂t+1]]

for all ut+1 ∈ [[Ut+1]], and denote the constant by LV̂t+1
∈ R≥0.

At time t, we first prove the result for the value function Q̂t(π̂t, ut). Let π̂
1
t , π̂

2
t ∈

[[Π̂t]] be two possible realizations of Π̂t. Then, using the definition (2.29) of Q̂t(π̂t, ut)

and (2.38) from Lemma 4, we state that

|Q̂t(π̂
1
t , ut)− Q̂t(π̂

2
t , ut)| ≤ max

{∣∣∣ sup
c1t∈[[Ct|π̂1

t ,ut]]

c1t − sup
c2t∈[[Ct|π̂2

t ,ut]]

c2t

∣∣∣,
∣∣∣ sup
π̂1
t+1∈[[Π̂t+1|π̂1

t ,ut]]

V̂t+1(π̂
1
t+1)− sup

π̂2
t+1∈[[Π̂t+1|π̂2

t ,ut]]

V̂t+1(π̂
2
t+1)

∣∣∣}. (2.41)

We consider the RHS of (2.41) term by term. In the first term, we note that for all

π̂t ∈ [[Π̂t]],

sup
ct∈[[Ct|π̂t,ut]]

ct = sup
mt∈[[Mt|π̂t]]

(
sup

ct∈[[Ct|mt,ut]]

ct

)
. (2.42)

In the RHS of (2.42), recall from Assumption 2 that the uncertain variable Ct is a

Lipschitz function of (W0:t, U0:t), and (Mt, Ut) is an L-invertible function of (W0:t, U0:t).

Thus, using (2.33) from Lemma 2, there exists a constant LC|M,U such that

H([[Ct|m1
t , ut]], [[Ct|m2

t , ut]]) ≤ LM |C,U · η(m1
t ,m

2
t ), (2.43)

for all m1,m2 ∈ [[Mt]]. Furthermore, we use (2.40) to state that∣∣∣ sup
c1t∈[[Ct|m1

t ,ut]]

c1t − sup
c2t∈[[Ct|m2

t ,ut]]

c2t

∣∣∣ ≤ LM |C,U · Lct · η(m1
t ,m

2
t ). (2.44)

Then, consider a function et : Mt×Ut → R≥0 defined as et(mt, ut) := supct∈[[Ct|mt,ut]] ct.

As a direct consequence of (2.44), et is Lipschitz continuous with respect to mt with a
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constant Let := LM |C,U · Lct . Using (2.42) and the definition of et in the first term in

the RHS of (2.41),∣∣∣ sup
c1t∈[[Ct|π̂1

t ,ut]]

c1t − sup
c2t∈[[Ct|π̂2

t ,ut]]

c2t

∣∣∣
=
∣∣∣ sup
m1

t∈[[Mt|π̂1
t ]]

et(m
1
t , ut)− sup

m2
t∈[[Mt|π̂2

t ]]

et(m
2
t , ut)

∣∣∣. (2.45)

In (2.45), recall that the uncertain variable Π̂t is an L-invertible function of Mt and

thus, the conditional range [[Mt|π̂t]] satisfies (2.3). Then, we use (2.40) once more to

state that ∣∣∣ sup
c1t∈[[Ct|π̂1

t ,ut]]

c1t − sup
c2t∈[[Ct|π̂2

t ,ut]]

c2t

∣∣∣≤LMt|Π̂t
·Let ·η(π̂1

t , π̂
2
t ). (2.46)

In the second term in the RHS of (2.41), we use the induction hypothesis and (2.39)

from Lemma 5 to write that∣∣∣ sup
π̂1
t+1∈[[Π̂t+1|π̂1

t ,ut]]

V̂t+1(π̂
1
t+1)− sup

π̂2
t+1∈[[Π̂t+1|π̂2

t ,ut]]

V̂t+1(π̂
2
t+1)

∣∣∣
≤ LV̂t+1

· H
(
[[Π̂t+1|π̂1

t , ut]], [[Π̂t+1|π̂2
t , ut]]

)
≤ LV̂t+1

· λt · η(π̂1
t , π̂

2
t ), (2.47)

where, in the second inequality, we use the third property (2.28) of approximate infor-

mation states in Definition 4. Then, the proof for Q̂t(π̂t, ut) is complete by substituting

(2.46) and (2.47) into the RHS of (2.41) and defining LQ̂t
:= max

{
LMt|Π̂t

·Let , LV̂t+1
·λt
}
.

To prove the result for V̂t(π̂t), we use (2.37) from Lemma 3 to state that∣∣V̂t(π̂1
t )− V̂t(π̂

2
t )
∣∣ = ∣∣ inf

ut∈[[Ut]]

Q̂t(π̂
1
t , ut)− inf

ut∈[[Ut]]

Q̂t(π̂
2
t , ut)

∣∣
≤ sup

ut∈[[Ut]]

∣∣Q̂t(π̂
1
t , ut)− Q̂t(π̂

2
t , ut)

∣∣ ≤ LQ̂t
· η(π̂1

t , π̂
2
t ), (2.48)

which proves the induction hypothesis at time t. Thus, the result holds using mathe-

matical induction.

Next, we establish an upper bound on the approximation error when the value

functions of the optimal DP (2.11) - (2.12) are estimated using the approximate DP

(2.29) - (2.30) at each t.
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Theorem 3. Let LV̂t+1
be the Lipschitz constant of V̂t+1 for all t = 0, . . . , T . Then,

for all mt ∈ [[Mt]] and ut ∈ [[Ut]],

|Qt(mt, ut)− Q̂t(σ̂t(mt), ut)| ≤ αt, (2.49)

|Vt(mt)− V̂t(σ̂t(mt))| ≤ αt, (2.50)

where αt = max(ϵt, αt+1 + LV̂t+1
· δt) for all t = 0, . . . , T and αT+1 = 0.

Proof. For all t = 0, . . . , T , let mt ∈ [[Mt]] and ut ∈ [[Ut]] be realizations of Mt and

Ut, respectively. We prove both results by mathematical induction, starting with time

step T + 1. At T + 1, by definition, VT+1(mT+1, uT+1) = VT+1(σ̂T+1(mT+1)) = 0. This

forms the basis of our mathematical induction. Then, at each t = 0, . . . , T , we consider

the induction hypothesis |Vt+1(mt+1) − V̂t+1(σ̂t+1(mt+1))| ≤ αt+1. At time t, we first

prove (2.49). Using (2.38) from Lemma 4 in the LHS of (2.49) to state that

|Qt(mt, ut)− Q̂t(σ̂t(mt), ut)| ≤ max

{∣∣∣ sup
ct∈[[Ct|mt,ut]]

ct − sup
ct∈[[Ct|σ̂t(mt),ut]]

ct

∣∣∣,
∣∣∣ sup
mt+1∈[[Mt+1|mt,ut]]

Vt+1(mt+1)− sup
π̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]

V̂t+1(π̂t+1)
∣∣∣}. (2.51)

We consider the RHS of (2.51) term-by-term. By direct application of (2.26) in Defi-

nition 4, the first term in the RHS satisfies∣∣∣ sup
ct∈[[Ct|mt,ut]]

ct − sup
ct∈[[Ct|σ̂t(mt),ut]]

ct

∣∣∣ ≤ ϵt. (2.52)

For the second term in the RHS of (2.51), we use the triangle inequality to write that∣∣∣ sup
mt+1∈[[Mt+1|mt,ut]]

Vt+1(mt+1)− sup
π̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]

V̂t+1(π̂t+1)
∣∣∣

≤
∣∣∣ sup
mt+1∈[[Mt+1|mt,ut]]

Vt+1(mt+1)− sup
σ̂t+1(mt+1)∈[[Π̂t+1|mt,ut]]

V̂t+1(σ̂t+1(mt+1))
∣∣∣

+
∣∣∣ sup
π̂t+1∈[[Π̂t+1|mt,ut]]

V̂t+1(π̂t+1)− sup
π̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]

V̂t+1(π̂t+1)
∣∣∣. (2.53)

For the first term in the RHS of (2.53), we first note that

sup
σ̂t+1(mt+1)∈[[Π̂t+1|mt,ut]]

V̂t+1(σ̂t+1(mt+1)) = sup
mt+1∈[[Mt+1|mt,ut]]

V̂t+1(σ̂t+1(mt+1)) (2.54)
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because [[Π̂t+1 | mt, ut]] = {σ̂t+1(mt+1) ∈ P̂t | mt+1 ∈ [[Mt+1 | mt, ut]]}. Then, we can

state that∣∣∣ sup
mt+1∈[[Mt+1|mt,ut]]

Vt+1(mt+1)− sup
σ̂t+1(mt+1)∈[[Π̂t+1|mt,ut]]

V̂t+1(σ̂t+1(mt+1))
∣∣∣

≤ sup
mt+1∈[[Mt+1|mt,ut]]

∣∣Vt+1(mt+1)− V̂t+1(σ̂t+1(mt+1))
∣∣ ≤ αt+1, (2.55)

where, in the first inequality, we use (2.36) from Lemma 3; and, in the second inequality,

we use the induction hypothesis for time t+1. Using (2.39) from Lemma 5 and (2.27)

from Definition 4, the second term in the RHS of (2.53) satisfies∣∣∣ sup
π̂t+1∈[[Π̂t+1|mt,ut]]

V̂t+1(π̂t+1)− sup
π̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]

V̂t+1(π̂t+1)
∣∣∣ ≤ LV̂t+1

· δt. (2.56)

Substituting the respective inequalities for each term in the RHS of (2.53) yields∣∣ supmt+1∈[[Mt+1|mt,ut]] Vt+1(mt+1)− supπ̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]
V̂t+1(π̂t+1)

∣∣ ≤ αt+1 + LV̂t+1
· δt.

We complete the proof for (2.49) by substituting the inequalities in the RHS of (2.52)

and (2.53) into the RHS of (2.51). Next, we prove (2.50) at time t. Using the definition

of the value functions in the LHS of (2.50), we write that

|Vt(mt)− V̂t(σ̂t(mt))| =
∣∣∣ inf
ut∈[[Ut]]

Qt(mt, ut)− inf
ut∈[[Ut]]

Q̂t(σ̂t(mt), ut)
∣∣∣

≤ sup
ut∈[[Ut]]

|Qt(mt, ut)− Q̂t(σ̂t(mt), ut)|

≤ max{ϵt, αt+1 + LV̂t+1
· δt}, (2.57)

where in the first inequality, we use (2.37) from Lemma 3; and in the second inequality,

we use (2.49). Thus, the results hold for all t = 0, . . . , T using mathematical induction.

After bounding the approximation error for value functions, we also seek to

bound the maximum performance loss in the implementation of an approximately

optimal strategy. Consider an approximate strategy ĝ∗ := (ĝ∗0, . . . , ĝ
∗
T ) computed using

(2.29) - (2.30), where ĝ∗t (π̂t) = argminut∈[[Ut]] Q̂t(π̂t, ut) for all t = 0, . . . , T . We can

construct an approximate memory-based strategy gap = (gap0 , . . . , g
ap
T ) by selecting the
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control law gapt (mt) := ĝ∗t (σ̂t(mt)) for all t = 0, . . . , T . Note that gap is equivalent to

ĝ∗ because they generate the same actions at each t and subsequently, yield the same

performance. Thus, we evaluate the performance of gap to determine the quality of

approximation. To this end, for all t = 0, . . . , T , for all mt ∈ [[Mt]] and ut ∈ [[Ut]], we

define

Θt(mt, ut) :=max
{

sup
ct∈[[Ct|mt,ut]]

ct, sup
mt+1∈[[Mt+1|mt,ut]]

Λt+1(mt+1)
}
, (2.58)

Λt(mt) :=Θt(mt, g
ap
t (mt)), (2.59)

where ΛT+1(mT+1) := 0, identically. Then, the performance of the memory-based

approximate strategy gap is Λ0(m0). In contrast, recall that the performance of an

optimal strategy g∗ is the optimal value V0(m0) computed using (2.11) - (2.12). Next,

we bound the difference in performance between gap and g∗.

Theorem 4. Let LV̂t+1
be the Lipschitz constant of V̂t+1 for all t = 0, . . . , T . Then,

for all mt ∈ [[Mt]] and ut ∈ [[Ut]],

|Qt(mt, ut)−Θt(mt, ut)| ≤ 2αt, (2.60)

|Vt(mt)− Λt(mt)| ≤ 2αt. (2.61)

where αt = max(ϵt, αt+1 + LV̂t+1
· δt) for all t = 0, . . . , T and αT+1 = 0.

Proof. We begin by recursively defining the value functions that compute the perfor-

mance of the strategy ĝ. For all t = 0, . . . , T and for each π̂t ∈ [[Π̂t]] and ut ∈ [[Ut]],

let

Θ̂t(π̂t, ut) :=max
{

sup
ct∈[[Ct|π̂t,ut]]

ct, sup
π̂t+1∈[[Π̂t+1|π̂t,ut]]

Λ̂t+1(π̂t+1)
}
, (2.62)

Λ̂t(π̂t) :=Θ̂t(π̂t, ĝt(π̂t)), (2.63)

where Λ̂T+1(π̂T+1) := 0, identically. Note that

Θ̂t(π̂t, ut) = Q̂t(π̂t, ut) and Λ̂t(π̂t) = V̂t(π̂t), (2.64)
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for all t = 0, . . . , T , since ĝt(π̂t) = argminut∈Ut Q̂t(π̂t, ut).

We first prove (2.60) for all t = 0, . . . , T . At time t, using the triangle inequality

and (2.64) in the LHS of (2.60):

|Qt(mt, ut)−Θt(mt, ut)| ≤|Qt(mt, ut)− Q̂t(σ̂t(mt), ut)|+ |Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)|

≤αt + |Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)|, (2.65)

where, in the second inequality, we use (2.49) from Theorem 3. Then, to prove (2.60),

it suffices to show that

|Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)| ≤ αt. (2.66)

Then, we use mathematical induction starting at time T + 1 to prove (2.66) in

addition to |Λ̂t(σ̂t(mt)) − Λt(mt)| ≤ αt for all t = 0, . . . , T . At time T + 1, using the

definitions it holds that Λ̂T+1(σ̂T+1(mT+1)) = ΛT+1(mT+1) = 0. This forms the basis

of our induction. Next, for all t = 0, . . . , T , we consider the induction hypothesis that

|Λ̂t+1(σ̂t+1(mt+1))− Λt+1(mt+1)| ≤ αt+1. (2.67)

Then, using the definitions of the value functions in (2.58) and (2.62) in addition to

(2.38) from Lemma 4 in the LHS of (2.66):

|Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)|

≤ max

{∣∣∣ sup
ct∈[[Ct|mt,ut]]

ct − sup
ct∈[[Ct|σ̂t(mt),ut]]

ct

∣∣∣, ∣∣∣ sup
mt+1∈[[Mt+1|mt,ut]]

Λt+1(mt+1)

− sup
π̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]

Λ̂t+1(π̂t+1)
∣∣∣}. (2.68)

We consider the RHS of (2.68) term by term. By direct application of (2.26) in

Definition 4, the first term in the RHS satisfies∣∣∣ sup
ct∈[[Ct|mt,ut]]

ct − sup
ct∈[[Ct|σ̂t(mt),ut]]

ct

∣∣∣ ≤ ϵt. (2.69)

For the second term in the RHS of (2.68), using the triangle inequality and the fact that

supπ̂t+1∈[[Π̂t+1|mt,ut]]
Λ̂t+1(π̂t+1) = supmt+1∈[[Mt+1|mt,ut]] Λ̂t+1(σ̂t+1(mt+1)), we write that
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|Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)|

≤
∣∣∣ sup
π̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]

Λ̂t+1(π̂t+1)− sup
π̂t+1∈[[Π̂t+1|mt,ut]]

Λ̂t+1(π̂t+1)
∣∣∣

+
∣∣∣ sup
mt+1∈[[Mt+1|mt,ut]]

Λt+1(mt+1)− sup
mt+1∈[[Mt+1|mt,ut]]

Λ̂t+1(σ̂t+1(mt+1))
∣∣∣

≤ LV̂t+1
· δt + αt+1, (2.70)

where, in the second inequality, the first term is upper bounded using (2.39) from

Lemma 5 and then using (2.27) from Definition 4, whereas the second term is bounded

using (2.36) from Lemma 3 and the induction hypothesis. Thus, given the induction

hypothesis, (2.66) can be proved by substitution of (2.69) and (2.70) into the RHS of

(2.68). Next, using the definitions of the value functions from (2.59) and (2.63), we

write that

|Λ̂t(σ̂t(mt))− Λt(mt)| = |Θ̂t(σ̂t(mt), ĝt(σ̂t(mt))−Θt(mt, gt(mt))|

= |Θ̂t(σ̂t(mt), ût)−Θt(mt, ût)| ≤ αt, (2.71)

where, in the second equality, we use the definition of the control law to write that

gt(mt) = ĝt(σ̂t(mt)) =: ût; and in the inequality, we use (2.66). This proves the induc-

tion hypothesis for time t given the hypothesis for time t+1. Thus, using mathematical

induction (2.66) holds for all t = 0, . . . , T . Subsequently, we complete the proof for

(2.60) for all t = 0, . . . , T by substituting (2.66) into the RHS of (2.65). Furthermore,

note that (2.61) follows directly from (2.60) using the same sequence of arguments used

to prove (2.71).

Remark 10. We can specialize the results of both Theorem 3 and Theorem 4 to termi-

nal cost problems, where the optimal DP is given by (2.13) - (2.14) and the approximate

DP is given by (2.31) - (2.32). The approximation bounds in both theorems hold for

terminal cost problems with a recursively defined constant αt := αt+1 + LV̂ tm
t+1

· δt for

all t = 0, . . . , T − 1 and αT := ϵT .
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2.1.4.3 Alternate Characterization

In this subsection, we provide stronger but simpler conditions which can identify

an approximate information state as alternatives to (2.27) and (2.28). These conditions

prescribe that an approximate information state Π̂t = σ̂t(Mt) must satisfy for all

t = 0, . . . , T :

1) State-like evolution: There exists a Lipschitz continuous function f̂t : P̂t ×

Ut × Yt+1 → Pt+1, independent of the strategy g, such that

σ̂t+1(Mt+1) = f̂t(σ̂t(Mt+1), Ut, Yt+1). (2.72)

2) Sufficient to approximate observations: For all mt ∈ [[Mt]] and ut ∈ [[Ut]],

there exist the sets Kob
t+1 := [[Yt+1 | mt, ut]] and K̂ob

t+1 := [[Yt+1 | σ̂t(mt), ut]] independent

of the strategy g, and it holds that

H(Kob
t+1, K̂ob

t+1) ≤ δobt , (2.73)

where δobt ∈ R≥0 is a known constant.

3) Lipschitz-like observation prediction: There exists a constant λobt ∈ R≥0 such

that for all π̂1
t , π̂

2
t ∈ [[Π̂t]],

H
(
[[Yt+1|π̂1

t , ut]], [[Yt+1|π̂2
t , ut]]

)
≤ λobt · η(π̂1

t , π̂
2
t ), (2.74)

where η is an appropriate metric on P̂t.

Next, we prove that in addition to (2.26) in Definition 4, the conditions (2.72) -

(2.74) are sufficient to characterize an approximate information state instead of (2.27)

and (2.28).

Lemma 6. For all t = 0, . . . , T , if an uncertain variable Π̂t = σ̂t(Mt) satisfies (2.72)

- (2.73), it also satisfies (2.27).

Proof. Let mt ∈ [[Mt]] be a given realization of Mt and let π̂t = σ̂t(mt) satisfy (2.72) -

(2.73), for all t = 0, . . . , T . Then, using (2.72), we can write the LHS in (2.27) as
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H(Kt+1, K̂t+1) = H
(
[[f̂t(σ̂t(mt), ut, Yt+1)|mt, ut]], [[f̂t(σ̂t(mt), ut, Yt+1)|σ̂t(mt), ut]]

)
= max

{
sup

yt+1∈Kob
t+1

inf
ŷt+1∈K̂ob

t+1

η
(
f̂t(σ̂t(mt), ut, yt+1), f̂t(σ̂t(mt), ut, ŷt+1)

)
,

sup
ŷt+1∈K̂ob

t+1

inf
yt+1∈Kob

t+1

η
(
f̂t(σ̂t(mt), ut, yt+1), f̂t(σ̂t(mt), ut, ŷt+1)

)}
, (2.75)

where, in the second equality, we use the definition of the Hausdorff distance from (2.1).

Note that f̂t is globally Lipschitz from the alternate characterization of the approximate

information state. This implies that η
(
f̂t(σ̂t(mt), ut, yt+1), f̂t(σ̂t(mt), ut, ŷt+1)

)
≤ Lf̂t ·

η(yt+1, ŷt+1), and thus

H(Kt+1, K̂t+1)

≤ Lf̂t max
{

sup
yt+1∈Kob

t+1

inf
ŷt+1∈K̂ob

t+1

η(yt+1, ŷt+1), sup
ŷt+1∈K̂ob

t+1

inf
yt+1∈Kob

t+1

η(yt+1, ŷt+1)
}

= Lf̂t · H(Kob
t+1, K̂ob

t+1) ≤ Lf̂t · δ
ob
t . (2.76)

Lemma 7. For all t = 0, . . . , T , if an uncertain variable Π̂t = σ̂t(Mt) satisfies (2.72)

- (2.74), it also satisfies (2.28).

Proof. Let π̂1
t , π̂

2
t ∈ [[Π̂t]] be two possible realizations of an approximate information

state Π̂t, which satisfies (2.72) - (2.74), for all t = 0, . . . , T . Then, using (2.72), we can

write the LHS in (2.28) as

H
(
[[Πt+1|π̂1

t , ut]], [[Πt+1|π̂2
t , ut]]

)
= H

(
[[f̂t(π̂

1
t , ut, Yt+1)|π̂1

t , ut]], [[f̂t(π̂
2
t , ut, Yt+1)|π̂2

t , ut]]

≤ Lf̂t ·
(
η(π̂1

t , π̂
2
t ) +H

(
[[Yt+1|π̂1

t , ut]], [[Yt+1|π̂2
t , ut]]

))
≤ Lf̂t · (1 + λobt ) · η(π̂1

t , π̂
2
t ), (2.77)

where, in the first inequality, we use the Lipschitz continuity of the function f̂t along

with the triangle inequality; and in the second inequality, we use (2.74). This completes

the proof by defining λt := Lf̂t · (1 + λobt ).
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2.1.4.4 Examples

In this subsection, we present two state-quantized [197] approximate information

states which satisfy Definition 4. Consider a system as described in Subsection 2.1.3.3

with compact feasible sets
{
Xt,Nt,Wt | t = 0, . . . , T

}
in a metric space (S, η). Recall

that Xt is the state space at any t. Then, a finite subset X̂t ⊂ Xt is a set of quantized

states with parameter γt ∈ R≥0 if maxxt∈Xt minx̂t∈X̂t
η(xt, x̂t) ≤ γt. The corresponding

quantization function µt : Xt → X̂t is defined as µt(xt) := argminx̂t∈X̂t
η(xt, x̂t). Note

that by construction, η(xt, µt(xt)) ≤ γt for all xt ∈ Xt, for all t.

1) Perfectly Observed Systems: Consider a system where Yt = Xt for all t =

0, . . . , T . Recall from Subsection 2.1.3.3 that the Πt = Xt ∈ Xt for all t. Then, a

feasible approximate information state for such a system is the quantized state Π̂t :=

µt(Xt), which satisfies Definition 4 with ϵt = 2Ldt · γt and δt = 2γt+1 + 2Lft · γt, where

γT+1 = 0, and Ldt and Lft are the Lipschitz constants for dt and ft, respectively (proof

in Appendix B). Note that because Π̂t takes values in a finite set, it trivially satisfies

(2.28) in Definition 4.

2) Partially Observed Systems: For a partially observed system, recall from Sec-

tion 2.1.3.3 that an information state is given by the conditional range Πt = [[Xt|mt]].

We construct an approximate conditional range by quantizing each element in Πt.

Thus, the approximation is generated by the mapping νt : B(Xt) → 2X̂t , where B(Xt) is

the set of all compact subsets of Xt and 2X̂t is the power set of X̂t. This transformation

yields the approximate range νt(Πt) := {µt(xt) ∈ X̂t | xt ∈ Πt}. Then, the approxi-

mate range Π̂t = νt(Πt) is an information state for partially observed systems for all

t = 0, . . . , T with ϵt = 2Ldt · γt and δt = 2γt+1 + 2Lf̄t · Lht+1 · Lft · γt, where γT+1 = 0,

and Lf̄t , Lht+1 and Lft are Lipschitz constants of f̄t, ht+1, and ft, respectively (proof

in Appendix C).

2.1.5 Numerical Examples

We present two numerical examples to illustrate our approach: (1) The Wall

Defense Problem: a worst-case control problem with partial observations, and (2) The
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Pursuit Evasion Problem: a worst-case reinforcement learning problem with partly

unknown dynamics and partial observations.

2.1.5.1 The Wall Defense Problem

In the wall defense problem, we consider an agent who defends a wall in a 5× 5

grid world from an attacker over a time horizon T . The wall is located across the

central row of the grid. We illustrate the wall defense problem for one initial condition

in Fig. 2.1(a). Here, the black colored cells constitute the wall and the grey hatched

cells are adjacent to the wall. The solid blue triangle, solid red circle and red ring

are the agent, attacker and observation, respectively, at t = 0. The pink cells are

feasible positions of the attacker given the observation. The attacker moves within the

bottom two rows of the grid and damages a wall cell when positioned in an adjacent

cell. At each t = 0, . . . , T , we denote the position of the attacker by Xat
t ∈ X at =

{(−2,−1), . . . , (2,−1), (−2,−2), . . . , (2,−2)}. In contrast, the agent moves within the

top two rows of the grid and repairs a wall cell when positioned in an adjacent cell.

At each t, we denote the position of the agent by Xag
t ∈ X ag = {(−2, 1), . . . , (2, 1),

(−2, 2), . . . , (2, 2)}. The state of the wall at each t is the accumulated damage denoted

by Dt = (D−2
t , . . . , D2

t ), where D
i
t ∈ Di

t = {0, 1, 2, 3} for all i = −2, . . . , 2 and Dt =

×2
i=−2Di

t. The attacker starts at the position Xat
0 ∈ X at, which evolves for all t as

Xat
t+1 = I(Xat

t + Wt ∈ X at) · (Xat
t + Wt) + (1 −I(Xat

t + Wt ∈ X at)) · Xat
t , where I

is the indicator function and Wt ∈ Wt is an uncontrolled disturbance with Wt =

{(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}. At each t, the agent observes their own position

and the wall’s state. The agent also partially observes the attacker’s position as Yt =

I(Xat
t + Nt ∈ X at) · (Xat

t + Nt) + (1 − I(Xat
t + Nt ∈ X at)) · Xat

t , where Nt ∈ Nt =

{(0, 0), (0, 1)} is the measurement noise. Given the history of observations, the agent

selects an action Ut ∈ Ut = Wt at each t. Starting with Xag
0 ∈ X ag, the agent moves as

Xag
t+1 = I(Xag

t + Ut ∈ X ag) · (Xag
t + Ut) + (1− I(Xag

t + Ut ∈ X ag)) ·Xag
t . Starting with

D0 = (0, 0, 0, 0, 0), the state of the wall evolves as Di
t+1 = min

{
3,max

{
0, Di

t+I(Xat
t =

(i,−1)) − I(Xag
t = (i, 1))

}}
for all t and i = −2, . . . , 2. At each t, after selecting the
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action, the agent incurs a cost for the damage to the wall, i.e., ct(Dt) =
∑2

i=−2D
i
t.

The agent’s aim is to minimize the maximum instantaneous damage to the wall, i.e.,

J (g) = maxt=0,...,T maxx0,w0:T ,n0:T
ct(Dt).

(a) The original grid (b) The quantized grid

Figure 2.1: The wall defense problem with the initial conditions xag0 = (0, 2) and
y0 = (0,−2).

Recall from Subsection 2.1.3.3 that an information state at time t is Πt =
(
Xag
t ,

Dt, [[X
at
t |Mt]]

)
. We construct an approximation of the conditional range [[Xat

t |Mt]] at

time t using the quantization approach from Subsection 2.1.4.4 and define the approx-

imate range Ât =
{
µt(xt) ∈ X̂ at|xt ∈ [[Xat

t |Mt]]
}
. The set of quantized cells X̂ at, with

γt = 1 for all t, is marked in Fig. 2.1(b) with dots. We consider the approximate infor-

mation state Π̂t =
(
Xag
t , Dt, Ât, Y0

)
for all t. The initial observation Y0 in Π̂t improves

the prediction of Ât+1. For five initial conditions, we compute the best control strategy

for T = 6 using both the information state (IS) and the approximate information state

(AIS). In Fig. 2.2, we present the computational times (Run.) for both the DPs in

seconds. Note that the approximate DP has a faster run-time in all cases. We also

implement both strategies with random disturbances in the system with T = 6. In

Fig. 2.2, we also present the actual worst-case costs across 5× 103 implementations of

both strategies and note that the AIS has a bounded deviation from the IS.
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Figure 2.2: Costs and run-times for 5× 103 simulations and T = 6.

2.1.5.2 Pursuit Evasion Problem

In the pursuit evasion problem, we consider an agent who chases a moving target

in a 9×9 grid world with static obstacles. The agent aims to get close to the target over

a time horizon T . For each t = 0, . . . , T , we denote the position of the agent byXag
t ∈ X

and that of the target by Xta
t ∈ X , where X =

{
(−4,−4), . . . , (4, 4)

}
\ O is the set of

feasible grid cells and O ⊂ X is the set of obstacles. The target starts at the position

Xta
0 ∈ X , which is updated as Xta

t+1 = I(Xta
t +Wt ∈ X ) · (Xta

t +Wt)+(1− I(Xta
t +Wt ∈

X )) ·Xta
t , whereWt ∈ Wt = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)} is the disturbance. At

each t, the agent perfectly observes their own position and nosily observes the target’s

position as Yt = I(Xta
t + Nt ∈ X ) · (Xta

t + Nt) + (1 − I(Xta
t + Nt ∈ X )) ·Xta

t , where

Nt ∈ Nt = Wt is the measurement noise. Next, starting withXag
0 ∈ X , the agent selects

an action Ut ∈ Ut = Wt to move asXag
t+1 = I(Xag

t +Ut ∈ X )·(Xag
t +Ut)+(1−I(Xag

t +Ut ∈

X )) ·Xag
t . At time T , the agent selects no action and observes the target’s position Xta

T

and incurs a cost cT (X
ta
T , X

ag
T ) = η(Xta

T , X
ag
T ) ∈ R≥0, where η is the shortest distance

between two cells, while avoiding obstacles. The distance between two adjacent cells

is 1 unit. The agent seeks to minimize the worst-case terminal cost without prior

knowledge of either the observation function or the target’s evolution dynamics. Note

that this is a reinforcement learning generalization of Problem 1. We illustrate the

grid and one initial set up in Fig. 2.3(a). Here, the black cells are obstacles. The

solid blue triangle, solid red circle and red ring are the agent, target, and observation,

respectively, at t = 0. The pink cells are feasible positions of the target given the
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observation.

(a) The original problem (b) Actual observation predic-
tion

(c) Learned observation predic-
tion

Figure 2.3: The pursuit evasion problem with the initial conditions xag0 = (0, 2) and
y0 = (3,−4).

We consider that the agent has access to 3 × 107 observation trajectories from

the target which are used to learn an approximate information state representation

offline, as characterized in Subsection 2.1.4.3. First, we use the data on observation

trajectories to construct estimates of the conditional range Kob
t+1 = [[Yt+1|Y0:t]] for all

t = 0, . . . , T −2 and Kob
T = [[Xta

T |Y0:T−1]]. Then, taking inspiration from [46], we set-up

a deep neural network with an encoder-decoder structure for each t = 0, . . . , T , as

illustrated in Fig. 2.4. At each t, the encoder ψt comprises of 3 layer neural network

with sizes (2, 14), (14, 12), (12 + 24, 24) and ReLU activation for the first two layers,

where the inputs are a 2-d vector of coordinates for observation Yt and a 24-d vector

for the previous approximate information state Π̂t−1. The encoder compresses these

inputs to a 24-d vector representing the approximate information state Π̂t. At each t,

the decoder ϕt is a 4 layer neural network of size (24, 48), (48, 56), (56, 64), (64, 74) with

ReLU activation for the first three layers and sigmoid activation for the last layer. Its

input is Π̂t and its output is a 74-d vector with each component taking values in [0, 1].

Each component of the 74-d output gives a set-inclusion value for a specific feasible cell

in the 9×9 grid, excluding obstacles. The output is thus interpreted as the conditional
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range K̂ob
t+1 = [[Yt+1 | Π̂t]] for all t = 0, . . . , T −2 and K̂ob

T = [[Xta
T | Π̂T−1]]. We consider

a set-inclusion threshold of 0.5 for inclusion in K̂ob
t+1 at each t.

Figure 2.4: The neural network architecture for approximate information states at any
t = 0, . . . , T − 1.

The learning objective of our neural network at each t is to minimize H(Kob
t+1,

K̂ob
t+1), which is consistent with the characterization of approximate information states

in Subsection 2.1.4.3. Note that at the terminal time step, this objective also minimizes

the difference in maximum costs. Since the Hausdorff distance is not differentiable, we

adapt the first surrogate function proposed in [198] as a learning objective to train

the network weights. We train the network for 40 epochs using 90% of the available

data with a learning rate of 0.0003 and test it against the other 10%. To illustrate

the training results, consider an out-of-sample initial observation y0 = (3,−4). Then,

the set Kob
1 constructed using data is shown by pink cells in 2.3(b) and the set K̂ob

1

generated by of the trained network is shown by blue cells in 2.3(c). Note that the

trained network’s output matches the conditional range constructed from data accu-

rately except for one cell (0,−4). We train a neural network for each t up to T = 4 to

learn a complete approximate information state representation for the problem. Then,

at each t, the agent uses the state (Xag
t , Π̂t) in the approximate DP (2.29) - (2.30) to

compute an approximately optimal control strategy.

We compare the performance of this approximate strategy with a baseline strat-

egy that uses the observation Yt at each t instead of Π̂t. Thus, for this baseline we train

a network to match the prediction [[Yt+1 | Yt]] to [[Yt+1 | Y0:t]] for all t = 0, . . . , T − 2

and [[Xta
T | YT−1]] to [[Xta

T | Y0:T−1]] at time T − 1. The neural network structure is
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the same as before except for a lack of Π̂t−1 in the encoder input at each t and we use

the same training parameters as before. Subsequently, the agent computes an approx-

imately optimal strategy using the approximate DP with the state (Xag
t , Yt) at each

t.

For six initial conditions, we present in Fig. 2.5 the worst case costs obtained

when implementing both the approximately optimal strategy (Maximum cost with

AIS) and the baseline strategy (Maximum cost without AIS) for T = 4. Across 104

simulations with randomly generated uncertainties, we note that using the learned ap-

proximate information state consistently improves worst-case performance when com-

pared to the baseline. Thus, learning an approximate information state representation

is a viable approach for worst-case reinforcement learning. In general, we expect our

approach to outperform the baseline more for longer time horizons.

Figure 2.5: Worst-case costs for 104 simulations and T = 4.

2.1.6 Appendix A – L-invertible Functions

In this appendix, we present two classes of functions which are L-invertible: 1)

all bi-Lipschitz functions which have a compact domain and a compact co-domain, and

2) all functions with a compact domain and a finite co-domain.

Lemma 8. Let X and Y be two compact subsets of a metric space (S, η). Then, any

bi-Lipischitz function f : X → Y is L-invertible.

Proof. We begin by considering the pre-image set for any y ∈ Y under the function

f . Note that the function f is continuous because it is bi-Lipschitz and the singleton

{y} is a compact subset of a metric space. Consequently, the pre-image f−1(y) is a
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bounded subset of X . Next, let B(X ) denote the set of all bounded subsets of X .

Given the first result, we can consider a set-valued mapping f−1 : Y → B(X ) which

returns the pre-image for each y ∈ Y . Then, for any y1, y2 ∈ Y , using the definition of

the Hausdorff distance in (2.1):

H
(
f−1(y1), f−1(y2)

)
= max

{
sup

x1∈f−1(y1)

inf
x2∈f−1(y2)

η(x1, x2),

sup
x2∈f−1(y2)

inf
x1∈f−1(y1)

η(x1, x2)
}
. (2.78)

In the RHS of (2.78), the bi-Lipschitz property of f implies that there exist constants

Lf , Lf ∈ R>0 such that Lfη(x
1, x2) ≤ |f(x1)− f(x2)| ≤ Lfη(x

1, x2), for all x1, x2 ∈ X .

Thus, for all x1 ∈ g−1(y1) and x2 ∈ g−1(y2), we write that

η(x1, x2) ≤ L−1
f · η(y1, y2). (2.79)

The proof is complete by substituting (2.79) into (2.78) and defining the constant

Lf−1 := L−1
f .

Lemma 9. Let X be a compact subset and Y be a finite subset of (S, η). Then, any

function f : X → Y is L-invertible.

Proof. Let ||Y|| > 0 denote the minimum distance between two distinct elements in

the finite, non-empty set Y . Then, for any y1, y2 ∈ Y such that y1 ̸= y2:

H
(
f−1(y1), f−1(y2)

)
η(y1, y2)

≤ sup
y1,y2∈Y

H
(
f−1(y1), f−1(y2)

)
||Y||

=: Lf−1 , (2.80)

where Lf−1 ∈ R≥0 is guaranteed to be finite because the set X is bounded and thus,

so is the numerator. Thus, the function f is L-invertible as defined in (2.78).

2.1.7 Appendix B – Approximation Bounds for Perfectly Observed Sys-

tems

In this appendix, we derive the values of ϵt and δt for all t = 0, . . . , T when an

approximate information state is constructed using state quantization for a perfectly

observed system, as described in Subsection 2.1.4.4. We first state a property of the

Hausdorff distance which we will use in our derivation.

50



Lemma 10. Let X be a metric space with compact subsets A,B, C,D ⊂ X . Then, it

holds that

H
(
A ∪ B, C ∪ D

)
≤ max

{
H
(
A, C

)
,H
(
B,D

)}
. (2.81)

Proof. The proof for this result is given in [194, Theorem 1.12.15].

Next, we state and prove the main result of this appendix.

Theorem 5. Consider a perfectly observed system, i.e., Yt = Xt, for all t = 0, . . . , T .

Let µt : Xt → X̂t such that maxxt∈Xt η(xt, µt(xt)) ≤ γt at each t. Then, Π̂t = µt(Xt) is

an approximate information state which satisfies (2.26) with ϵt = 2Ldt · γt and (2.27)

with δt = 2γt+1+2Lft ·γt for all t, where γT+1 = 0, and where Ldt, and Lft are Lipschitz

constants for dt and ft, respectively.

Proof. For all t = 0, . . . , T , let mt = (x0:t, u0:t−1) be the realization of Mt and let

the approximate information state be x̂t = µt(xt). We first derive the value of ϵt

in the RHS of (2.26). At time t, can expand the conditional ranges to write that

[[Xt|mt]] = [[Xt|xt]] = {xt} and [[Xt|x̂t]] = {xt ∈ X | η(xt, x̂t) ≤ γt}. On substituting

these into the LHS of (2.26), we state that

∣∣ sup
ct∈[[Ct|mt,ut]]

ct − sup
ct∈[[Ct|µt(xt),ut]]

ct
∣∣

=
∣∣dt(xt, ut)− sup

x̄t∈[[Xt|µt(xt)]]
dt(x̄t, ut)

∣∣
≤ sup

x̄t∈[[Xt|µt(xt)]]
|dt(xt, ut)− dt(x̄t, ut)|

≤ Ldt · sup
x̄t∈[[Xt|µt(xt)]]

η(xt, x̄t)

≤ Ldt ·
(
η(xt, µt(xt)) + sup

x̄t∈[[Xt|µt(xt)]]
η(µt(xt), x̄t)

)
,

≤ 2Ldt · γt =: ϵt,

(2.82)

where, in the third inequality, we use the triangle inequality. Next, to derive the value

of δt, we expand the LHS of (2.27) as
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H
(
[[X̂t+1|xt, ut]], [[X̂t+1|µt(xt), ut]]

)
= H

({
µt+1(ft(xt, ut, wt))|wt ∈ Wt

}
,
{
µt+1(ft(x̄t, ut, wt))|x̄t ∈ [[Xt|µt(xt)]], wt ∈ Wt

})
≤ sup

wt∈Wt

H
(
{µt+1(ft(xt, ut, wt))}, {µt+1(ft(x̄t, ut, wt))|x̄t ∈ [[Xt|µt(xt)]]}

)
, (2.83)

where, in the inequality, we use (2.81) from Lemma 10 and the fact that

{
µt+1(ft(xt, ut, wt)) ∈ P̂ | wt ∈ Wt

}
= ∪wt∈Wt

{
µt+1(ft(x̄t, ut, wt))

}
. (2.84)

Once again using (2.81) in the RHS of (2.83), we conclude that

H
(
[[X̂t+1|xt, ut]], [[X̂t+1|µt(xt), ut]]

)
≤ sup

wt∈Wt,x̄t∈[[Xt|µt(xt)]]
η
(
µt+1

(
ft(xt, ut, wt)

)
, µt+1

(
ft(x̄t, ut, wt)

))
≤ sup

wt∈Wt,x̄t∈[[Xt|µt(xt)]]

(
η
(
µt+1(ft(xt, ut, wt)), ft(xt, ut, wt)

)
+ η
(
ft(xt, ut, wt),

ft(x̄t, ut, wt)
)
+ η
(
ft(x̄t, ut, wt), µt+1(ft(x̄t, ut, wt))

))
≤ γt+1 + 2Lft · γt + γt+1 =: δt, (2.85)

where, in the second inequality, we use the triangle inequality.

2.1.8 Appendix C – Approximation Bounds for Partially Observed Sys-

tems

In this appendix, we derive the values of ϵt and δt for all t = 0, . . . , T , when an

approximate information state is constructed using state quantization for a partially

observed system, as described in Subsection 2.1.4.4.

Theorem 6. Consider a partially observed system with Yt = ht(Xt, Nt) for all t =

0, . . . , T . Let µt : Xt → X̂t such that supxt∈Xt
η(xt, µt(xt)) ≤ γt at each t. Then,

Π̂t = νt(Πt) is an approximate information state with ϵt = 2Ldt · γt and δt = 2γt+1 +

2Lf̄t · Lht+1 · Lft · γt for all t, where γT+1 = 0, and where Ldt, Lf̄t, Lht+1, and Lft are

Lipschitz constants for the respective functions in the subscripts.
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Proof. For all t = 0, . . . , T , let mt ∈ [[Mt]], Pt = [[Xt|mt]] ∈ Pt, and P̂t = νt(Pt) ∈ P̂t
be the realizations of the memory Mt, the conditional range Πt and the approximate

information state Π̂t, respectively. Note that the conditional range Pt satisfies (2.15)

and (2.16) from Definition 3. Next, to derive the value of ϵt, we write the LHS of (2.26)

using (2.15) as

∣∣ sup
ct∈[[Ct|mt,ut]]

ct − sup
ct∈[[Ct|νt(Pt),ut]]

ct
∣∣ =∣∣ sup

xt∈Pt

dt(xt, ut)− sup
x̄t∈[[Xt|νt(Pt)]])

dt(x̄t, ut)
∣∣

≤Ldt · H(Pt, [[Xt|νt(Pt)]])

≤Ldt ·
(
H(Pt, νt(Pt)) +H(νt(Pt), [[Xt|νt(Pt)]])

)
,

(2.86)

where, in the equality, we use (2.15); in the first inequality, we use (2.39) from Lemma

5; and in the second inequality we use the triangle inequality for the Hausdorff distance.

We can expand the first term in the RHS of (2.86) as

H(Pt, νt(Pt)) = H(Pt, {µt(xt) ∈ X̂t | xt ∈ Pt})

= H
(
∪xt∈Pt {xt},∪xt∈Pt{µt(xt) ∈ X̂t}

)
≤ sup

xt∈Pt

η(xt, µt(xt)) ≤ γt, (2.87)

where we use (2.81) from Lemma 10 in the first inequality. We can also expand the

second term in the RHS of (2.86) as

H(νt(Pt), [[Xt|νt(Pt)]])) = H
(
νt(Pt), {xt ∈ Xt| inf

x̄t∈νt(Pt)

η(xt, x̄t) ≤ γt}
)

= sup
xt∈[[Xt|νt(Pt)]]

inf
x̄t∈νt(Pt)

η(xt, x̄t) ≤ γt, (2.88)

where the second equality holds by expanding the Hausdorff distance and noting that

νt(Pt) ⊆ [[Xt|νt(Pt)]]. The proof is complete by substituting the results for both terms

in the RHS of (2.86).

Next, to derive the value of δt, we note that Pt = σt(mt). Then, using the

triangle inequality in the LHS of (2.27), it holds that

H
(
[[νt+1(Πt+1)|mt, ut]], [[νt+1(Πt+1)|νt(σt(mt)), ut]]

)
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≤ H
(
[[νt+1(Πt+1)|mt, ut]], [[Πt+1|mt, ut]]

)
+H

(
[[Πt+1|mt, ut]], [[Πt+1|νt(σt(mt)), ut]]

)
+H

(
[[Πt+1|νt(σt(mt)), ut]], [[νt+1(Πt+1)|νt(σt(mt)), ut]]

)
≤ 2γt+1 +H

(
[[Πt+1|mt, ut]], [[Πt+1|νt(σt(mt)), ut]]

)
, (2.89)

where, in the second inequality we use the fact that H
(
Pt+1, νt+1(Pt+1)

)
≤ γt+1, which

was proved above. We can write the second term in the RHS of (2.89) using (2.16) as

H
(
[[Πt+1|mt, ut]], [[Πt+1|νt(σt(mt)), ut]]

)
= H

(
[[Πt+1|Pt, ut]], [[Πt+1|νt(Pt), ut]]

)
.

(2.90)

Furthermore, note that [[Πt+1|νt(Pt), ut]] =
{
P̃t+1 ∈ [[Πt+1|P̃t, ut]] |P̃t ∈ [[Πt|νt(Pt)]]

}
=

∪P̃t∈[[Πt|ν(Pt)]]
[[Πt+1|P̃t, ut]]. Next, we use (2.81) from Lemma 10 to write that

H
(
[[Πt+1|Pt, ut]]),[[Πt+1|νt(Pt), ut]]

)
≤ sup

P̃t∈[[Πt|νt(Pt)]]

H
(
[[Πt+1|Pt, ut]]), [[Πt+1|P̃t, ut]]

)
≤Lf̄t · sup

P̃t∈[[Πt|νt(Pt)]]

H
(
[[Yt+1|Pt, ut]]), [[Yt+1|P̃t, ut]]

)
≤Lf̄t ·Lht+1 · sup

P̃t∈[[Πt|νt(Pt)]]

H
(
[[Xt+1|Pt, ut]]), [[Xt+1|P̃t, ut]]

)
, (2.91)

where, in the second inequality we use the same arguments as in Lemma 6 and the third

inequality can be proven by substituting Yt+1 = ht+1(Xt+1, Vt+1) into the equation. We

can further expand the third term in the RHS of (2.91) and use (2.81) to write that

sup
P̃t∈[[Πt|νt(Pt)]]

H
(
[[Xt+1|Pt, ut]]), [[Xt+1|P̃t, ut]]

)
≤ sup

P̃t∈[[Πt|νt(Pt)]],wt∈Wt

H
(
{ft(xt, ut, wt)|xt ∈ Pt}, {ft(xt, ut, wt)|xt ∈ P̃t}

)
≤ Lft · sup

P̃t∈[[Πt|νt(Pt)]]

H
(
Pt, P̃t

)
≤ Lft · sup

P̃t∈[[Πt|νt(Pt)]]

(
H(Pt, νt(Pt)

)
+H

(
νt(Pt), P̃t)

)
≤ 2Lft · γt,

(2.92)

where, in the third inequality, we use the triangle inequality and in the fourth inequality

we use the fact that for all νt(P̃t) = νt(Pt), for all P̃t ∈ [[Πt|νt(Pt)]].
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2.2 On Robust Control of Partially Observed Uncertain Systems with Ad-

ditive Costs

2.2.1 Notation and Preliminaries

We use the non-stochastic framework of uncertain variables from [163]. For a

sample space Ω and a set X , an uncertain variable is a mapping X : Ω → X written

concisely as X ∈ X . For any ω ∈ Ω, its realization is X(ω) = x ∈ X . The marginal

range of an uncertain variable X is the set [[X]] := {X(ω) | ω ∈ Ω}. The joint range

of two uncertain variables X ∈ X and Y ∈ Y is [[X,Y]] := {(X(ω),Y(ω)) | ω ∈ Ω}.

The conditional range of X given a realization y of Y is [[X|y]] := {X(ω) | Y(ω) = y,

ω ∈ Ω}, and [[X|Y]] := {[[X|y]] | y ∈ [[Y]]}. Next, consider two compact, nonempty

subsets X ,Y of a metric space (S , d), where d(·, ·) is the metric. Then, the Hausdorff

distance [194, Chapter 1.12] between the sets is

H(X ,Y ) := max{max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)}. (2.93)

2.2.2 Problem Formulation

We consider an agent who controls the evolution of a system over T ∈ N discrete

time steps. At any time t = 0, . . . , T , the system is denoted by an uncertain variable

Xt ∈ X and the agent’s action is denoted by an uncertain variable Ut ∈ U . At each t,

the system also receives an uncontrolled disturbance Wt ∈ W . Starting with an initial

state X0 ∈ X , the state evolves as Xt+1 = ft (Xt, Ut,Wt) for all t = 0, . . . , T −1. Before

selecting the control action at each t, the agent partially observes the system state as

Yt = ht(Xt, Nt) ∈ Y , where Nt ∈ N is a noise.

Remark 11. We denote generic uncertain variables by sans-serif upper case alphabets

X ∈ X and Y ∈ Y , whereas, we denote the state and observation at any t by italicized

upper-case alphabets Xt ∈ X and Yt ∈ Y , respectively.

At each t = 0, . . . , T , the agent stores the history of observations and control ac-

tions in their memory, denoted by Mt := (Y0:t, U0:t−1) ∈ Mt, where Y0:t := (Y0, . . . , Yt).

Then, the agent selects an action Ut = gt(Mt) using a control law gt : Mt → U and
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incurs a cost ct(Xt, Ut) ∈ R≥0. We denote the control strategy by g := (g0, . . . , gT ) ∈ G

and measure its performance using the worst-case criterion:

J (g) := max
x0∈X ,n0:T∈NT ,
w0:T−1∈WT−1

T∑
t=0

ct(Xt, Ut). (2.94)

In (2.94), we maximize the total cost over all feasible realizations of the uncontrolled

inputs, i.e., initial state X0, noises {Nt | t = 0, . . . , T}, and disturbances {Wt | t =

0, . . . , T − 1} because they determine all other variables in the system. Next, we state

the agent’s optimization problem.

Problem 2. We seek to efficiently compute an optimal strategy g∗ = argming∈G J (g),

given the sets {X ,U ,Y ,W ,N} and the functions {ft, ht, ct | t = 0, . . . , T}.

We impose the following assumptions on our model:

Assumption 3. Each uncontrolled input is independent (see [163, Definintion 2.1]) of

all other uncontrolled inputs.

Assumption 3 ensures that the system evolution is Markovian in a non-stochastic

sense (see [163, Definintion 2.2]). This assumption will help develop our results.

Assumption 4. Each feasible set {X ,U ,Y ,W ,N} is a finite subset of a metric space

(S, d).

Assumption 4 ensures that all extrema are well defined and that an optimal

solution to Problem 2 exists. We will use the metric d(·, ·) in Section IV to quantify

the distance between two elements in any set.

Assumption 5. All uncertain variables and the cost ct(Xt, Ut) have a finite maximum

value at each t.

Assumption 5, in addition to the finiteness of all feasible sets, ensures that the

functions {ft, ht, ct | t = 0, . . . , T} are globally Lipschitz. To this end, we will denote

the Lipschitz constant of a function ft by Lft ∈ R≥0.
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2.2.3 Dynamic Programs and Information States

In this section, we first present a standard terminal cost DP which can obtain

the optimal strategy in Problem 2. Then, in Subsection 2.2.3.2, we construct a DP

which is specialized to the additive cost criterion in (2.94), and in Subsection 2.2.3.3,

we define information states to simplify it. To begin, we transform Problem 2 into a

terminal cost problem by augmenting the state Xt at each t with the accrued cost

At :=
t−1∑
ℓ=0

cℓ(Xℓ, Uℓ), (2.95)

which takes values in a finite set At ⊂ R≥0. Starting with A0 := 0, the accrued cost

evolves as At+1 = At + ct(Xt, Ut) for all t = 0, . . . , T − 1. Thus, the augmented state

(Xt, At) evolves as a controlled Markov chain. Furthermore, note that the performance

criterion (2.94) can be written as a function of the terminal augmented state (XT , AT ),

i.e., J (g) = maxx0,n0:T ,w0:T−1

(
cT (XT , UT ) + AT

)
. This construction yields a terminal

cost optimization problem in g ∈ G, where the optimal strategy can be computed using

a memory based terminal cost DP [164], as follows. For all mt ∈ Mt and ut ∈ U , for

all t = 0, . . . , T − 1, we define the value functions

Qtm
t (mt, ut) := max

mt+1∈[[Mt+1|mt,ut]]
V tm
t+1(mt+1), (2.96)

V tm
t (mt) := min

ut∈U
Qtm
t (mt, ut), (2.97)

where, at time T , Qtm
T (mT , uT) :=maxaT ,xT∈[[AT ,XT |mT ,uT ]](cT (xT , uT )+aT ) and V

tm
T (mT )

:= minuT∈U QT (mT , uT ). The control law at each t is gtmt (mt) := argminut∈U Qt(mt, ut).

Using standard arguments, we can conclude that the resulting control strategy gtm =

(gtm0 , . . . , gtmT ) is an optimal solution to the terminal cost problem as well as Problem

2 [49]. However, note that the right hand side (RHS) of (2.97) involves solving a min-

imization problem for each possible realization mt ∈ Mt, at each t. The number of

possible realizations |Mt| increases with time as the agent receives more observations,

and consequently, the DP requires a large number of computations for a longer horizon

T . To address this, we formulate a DP specialized for additive cost problems in Sub-

section 2.2.3.2 and simplify it using information states in Subsection 2.2.3.3. We will
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show (Remark 12) that the specialized DP allows us to define more computationally

efficient information states than (2.96) - (2.97). To this end, we present a theory of

cost distributions in the next subsection which is required to construct the specialized

DP.

2.2.3.1 Cost distributions

In this subsection, we develop the mathematical framework of cost distributions

for finite uncertain variables. Cost measures and cost distributions were originally

defined for (max,+) algebra [199], and applied to robust control problems [43, 53]

independently from the framework of uncertain variables. A cost measure is the non-

stochastic analogue of a probability measure. Specifically, for a finite sample space

Ω with a sigma algebra B(Ω), a cost measure is a function q : B(Ω) → {−∞} ∪

(−∞, 0] satisfying the properties: (1) q(Ω) = 0, (2) q(∅) = −∞, and (3) q(B) =

maxω∈B q(ω) for all B ∈ B(Ω), where, by convention, the maximum over an empty set

is −∞. Furthermore, for two sets B1, B2 ∈ B(Ω) with q(B2) > −∞, the conditional

cost measure of B1 given B2 is q(B1|B2) := q(B1, B2) − q(B2), where q(B1, B2) =

maxω∈B1∩B2 q(ω). Next, we extend this definition to define cost distributions on finite

uncertain variables.

Definition 5. Let X : Ω → X and Y : Ω → Y be two finite uncertain variables. The

cost distribution for any realization x ∈ X is q(x) := maxω∈{Ω|X(ω)=x} q(ω), and that

for any x ∈ X given a realization y ∈ Y with q(y) > −∞ is q(x|y) = q(x, y) − q(y),

where q(x, y) = maxω∈{Ω|X(ω)=x,Y (ω)=y} q(ω).

Any cost distribution given by Definition 5 satisfies the following useful proper-

ties.

Lemma 11. Let (Ω,B(Ω)) have a cost distribution q : B(Ω) → {−∞} ∪ (−∞, 0]. Let

X : Ω → X and Y : Ω → Y be two finite uncertain variables and let f : X → Y such

that Y = f(X) and f−1(y) ̸= ∅ for all y ∈ Y . Then,

q(y) = max
x∈{X |f(x)=y}

q(x), ∀y ∈ Y , (2.98)
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and furthermore, for any function g : Y → R≥0,

max
x∈X

(
g(f(x)) + q(x)

)
= max

y∈Y

(
g(y) + q(y)

)
. (2.99)

Proof. Using Definition 5, q(y) = maxω∈{Ω|Y(ω)=y} q(ω), where {Ω | Y(ω) = y} =

∪x∈{X |f(x)=y}{Ω | X(ω) = x}. This implies that q(y) = maxx∈{X |f(x)=y}maxω∈{Ω|X(ω)=x}

q(ω) = maxx∈{X |f(x)=y} q(x), where, in the second equality, we used Definition 5.

This proves (2.98). Next, we use (2.98) in the RHS of (2.99) as maxy∈Y (g(y) +

q(y)) = maxy∈Y (g(y) + maxx∈{X |f(x)=y} q(x)) = maxy∈Y maxx∈{X |f(x)=y}(g(f(x)) +

q(x)) = maxx∈X (g(f(x)) + q(x)), which completes the proof for (2.99).

2.2.3.2 Specialized Dynamic Program

In this subsection, we construct a specialized DP decomposition for Problem 2

using two specific cost distributions, the first of which is an indicator function.

Definition 6. Let X ∈ X and Y ∈ Y be two finite uncertain variables. The indicator

function for any x ∈ X is given by

I(x) :=

0, if x ∈ [[X]],

−∞, if x ̸∈ [[X]],

(2.100)

and the conditional indicator function for any x ∈ X given a realization y ∈ Y with

I(y) > −∞ is

I(x|y) :=

0, if x ∈ [[X|y]],

−∞, if x ̸∈ [[X|y]].
(2.101)

The indicator function I can be shown to satisfy the conditions in Definition 5

and thus, it constitutes a valid cost distribution. In addition to Lemma 11, for two

uncertain variables X ∈ X and Y ∈ Y and any function f : X → R,

max
x∈[[X|y]]

f(x) = max
x∈X

(
f(x) + I(x|y)

)
, ∀y ∈ Y . (2.102)

We also require the accrued distribution for an uncertain variable at each t, defined

using the accrued cost At ∈ At.
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Definition 7. Let X ∈ X and Y ∈ Y be two finite uncertain variables and let At ∈ At

be the accrued cost at any t = 0, . . . , T . An accrued distribution at any t for any x ∈ X

is a function rt : X → {−∞} ∪ [−amax
t , 0], given by

rt(x) := max
at∈At

(
at + I(x, at)

)
− max

at∈At

(
at + I(at)

)
, (2.103)

and for x ∈ X given a realization y ∈ Y , I(y) > −∞, it is a function rt : X × Y →

{−∞} ∪ [−amax
t , 0], given by

rt(x|y) := max
at∈At

(
at + I(x, at | y)

)
− max

at∈At

(
at + I(at | y)

)
, (2.104)

where amax
t := maxAt.

At each t = 0, . . . , T , note that the accrued distribution rt(x|y) = −∞ if

x ̸∈ [[X|y]] whereas rt(x|y) ∈ [−amax
t , 0] if x ∈ [[X|y]]. It satisfies the properties to

be a valid cost distribution. Furthermore, we can compute the conditional range

[[Xt,Mt+1|mt, ut]] at any t given the realizations mt ∈ Mt and ut ∈ U . Subsequently,

we can use Definitions 6 - 7 to derive the accrued distribution rt(xt,mt+1|mt, ut), for

all xt ∈ X and mt+1 ∈ Mt+1. Then, we use it in the specialized DP decomposition for

Problem 2 as follows. For all mt ∈ Mt and ut ∈ U , for all t = 0, . . . , T − 1, we define

Qt(mt, ut) := max
xt∈X ,mt+1∈Mt+1

(
ct(xt, ut) + Vt+1(mt+1) + rt(xt,mt+1 | mt, ut)

)
, (2.105)

Vt(mt) :=min
ut∈U

Qt(mt, ut), (2.106)

where, at time T , QT (mT , uT ) := maxxT∈X
(
cT (xT , uT )+ rT (xT | mT )

)
and VT (mT ) :=

minuT∈U QT (mT , uT ). We define the corresponding control law at time t as g∗t (mt) :=

argminut∈U Qt(mt, ut) and the control strategy as g∗ = (g∗0, . . . , g
∗
T ). Next, we show

that solving the DP (2.105) - (2.106) computes the optimal performance and control

strategy.

Theorem 7. For all mt ∈ Mt and ut ∈ U , for all t = 0, . . . , T ,

Qtm
t (mt, ut) = Qt(mt, ut) + max

at∈[[At|mt]]
at, (2.107)
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V tm
t (mt) = Vt(mt) + max

at∈[[At|mt]]
at, (2.108)

and furthermore, g∗ is an optimal solution to Problem 2.

Proof. For all t = 0, . . . , T , let mt ∈ Mt and ut ∈ U be given realizations of Mt and

Ut, respectively. We prove the result by mathematical induction starting at the last

time step T . We use (2.102) to expand the left hand side (LHS) of (2.107) as

Qtm
T (mT , uT ) = max

aT ,xT∈[[AT ,XT |mT ,uT ]]

(
cT (xT , uT ) + aT

)
= max

aT∈AT ,xT∈X

(
cT (xT , uT ) + aT + I(aT , xT | mT , uT )

)
. (2.109)

In the RHS, we add and subtract maxaT∈AT
(aT + I(aT | mT )) to write that

Qtm
T (mT , uT ) = max

xT∈X

(
cT (xT , uT ) + max

aT∈AT

(
aT + I(aT , xT | mT )

)
− max

aT∈AT

(
aT + I(aT | mT )

)
+ max

aT∈AT

(
aT + I(aT | mT )

)
= max

xT∈X

(
cT (xT , uT ) + rT (xT | mT )

)
+ max

aT∈[[AT |mT ]]
aT , (2.110)

where, in the second equality, we use (2.104) from Definition 7. Thus, using the

definition of QT (mT , uT ), we complete the proof for (2.107) at time T . We can prove

(2.108) at time T directly by minimizing both sides of (2.107) with respect to uT ∈ U .

Furthermore, note that gT (mT ) = arg infuT∈U QT (mT , uT ) = arg infuT∈U Qtm
T (mT , uT ),

i.e., uT = g∗T (mT ) minimizes Qtm
T (mT , uT ). This forms the basis of our induction.

Next, for all t = 0, . . . , T−1, we consider the induction hypothesis V tm
t+1(mt+1) =

Vt+1(mt+1) + maxat+1∈[[At+1|mt+1]] at+1. Then, using the hypothesis

Qtm
t (mt, ut) = max

mt+1∈[[Mt+1|mt,ut]]
V tm
t+1(mt+1)

= max
mt+1∈[[Mt+1|mt,ut]]

(
Vt(mt+1) + max

at+1∈[[At+1|mt+1]]
at+1

)
= max

mt+1,at+1∈[[Mt+1,At+1|mt,ut]]

(
Vt(mt+1) + at+1

)
= max

mt+1,xt,at∈[[Mt+1,Xt,At|mt,ut]]

(
Vt(mt+1) + ct(xt, ut) + at

)
= max

mt+1∈Mt+1,xt∈Xt+1,at∈At+1

(
Vt(mt+1) + ct(xt, ut) + at + I(xt,mt+1, at | mt, ut)

)
,

(2.111)
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where, in the third equality, we use the fact that [[At+1|mt+1]] = [[At+1|mt+1,mt, ut]]

because mt+1 = (mt, ut, yt+1); in the fourth equality, we use the definition of at+1; and

in the fifth equality, we use the property of the of the indicator function. Then, as for

time T , we add and subtract maxat∈At(at+ I(at|mt)) in the RHS and use (2.104) from

Defintion 7 to conclude that

Qtm
t (mt, ut)

= max
mt+1∈Mt+1,xt∈Xt+1

(
Vt(mt+1)+ ct(xt, ut)+rt(xt,mt+1 | mt, ut)

)
−max
at∈At

(
at+ I(at | mt)

)
= Qt(mt, ut) + max

at∈[[At|mt]]
at, (2.112)

which proves (2.107) at time t. We can prove (2.108) at time t directly by minimizing

both sides of (2.107) respect to ut ∈ U , and furthermore,

g∗t (mt) = arg inf
ut∈U

Qt(mt, ut) = arg inf
ut∈U

Qtm
t (mt, ut). (2.113)

This proves the induction hypothesis at time t and thus, the result holds for all t =

0, . . . , T using mathematical induction.

Thoerem 7 establishes that the specialized DP (2.105) - (2.106) computes an

optimal solution to Problem 2. Note that at each t, the optimization in the RHS of

(2.106) must still be solved for each possible mt ∈ Mt, in a manner similar to (2.96) -

(2.97) Thus, we still require a large number of computations for longer time horizons.

In the next subsection, we define information states to address this concern.

2.2.3.3 Information States

In this subsection, we introduce information states to construct an optimal DP

decomposition for Problem 2.

Definition 8. An information state at any t = 0, . . . , T is an uncertain variable Πt =

σt(Mt) taking values in a finite set Pt, where σt : Mt → Pt. Furthermore, for all t, for

all mt ∈ Mt, ut ∈ U , xt ∈ X and πt+1 ∈ Pt+1, it satisfies:

rt(xt, πt+1 | mt, ut) = rt(xt, πt+1|σt(mt), ut), t = 0, . . . , T − 1, (2.114)
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rT (xT |mT ) = rT (xT | σt(mT )), (2.115)

where the conditional accrued distributions in (2.114) and (2.115) can be evaluated

independent of the strategy g.

In the corresponding DP, for all πt ∈ Pt and ut ∈ U , for all t = 0, . . . , T − 1, we

define the value functions

Q̄t(πt, ut) := max
xt∈X ,πt+1∈Pt+1

(
V̄t+1(πt+1) + ct(xt, ut) + rt(xt, πt+1 | πt, ut)

)
, (2.116)

V̄t(πt) :=min
ut∈U

Q̄t(πt, ut), (2.117)

where, at time T , Q̄T (πT , uT ) := maxxT∈X
(
cT (xT , uT ) + rT (xT | πT )

)
and V̄T (πT ) :=

minuT∈U Q̄T (πT , uT ). The control law at each t is ḡ∗t (πt) := argminut∈U Q̄t(πt, ut). Next,

we prove that the information state based DP (2.116) - (2.117) yields the same value

as the specialized DP (2.105) - (2.106).

Theorem 8. Let Πt = σt(Mt) be an information state at each t = 0, . . . , T . Then, for

all mt ∈ Mt and ut ∈ U , Qt(mt, ut) = Q̄t(σt(mt), ut) and Vt(mt) = V̄t(σt(mt)).

Proof. Let mt ∈ Mt and ut ∈ U be given realizations of Mt and Ut, respectively, for

all t = 0, . . . , T . We prove the result using mathematical induction starting with T ,

where

QT (mT , uT ) = max
xT∈X

(
cT (xT , uT ) + rT (xT | mT )

)
= max

xT∈X

(
cT (xT , uT ) + rT (xT | σt(mT ))

)
= Q̄T (σT (mT ), uT ) (2.118)

holds as a direct consequence of (2.115) in Definition 8. Subsequently, by taking the

minimum on both sides with respect to ut ∈ U , it holds that VT (mT ) = V̄T (σT (mT )).

With this as the basis, for each t = 0, . . . , T − 1, we consider the induction hypothesis

Vt+1(mt+1) = V̄t+1(σt+1(mt+1)).

Next, we prove that Qt(mt, ut) = Q̄t(σt(mt), ut) at time t by showing that the

RHS of (2.105) is equal to the RHS of (2.116). Using the induction hypothesis in the

RHS of (2.105),
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Qt(mt, ut) = max
xt∈X ,mt+1∈Mt+1

(
Vt+1(mt+1) + ct(xt, ut) + rt(xt,mt+1 | mt, ut)

)
= max

xt∈X ,mt+1∈Mt+1

(
V̄t+1(σt+1(mt+1)) + ct(xt, ut) + rt(xt,mt+1 | mt, ut)

)
= max

xt∈X ,πt+1∈Pt+1

(
V̄t+1(πt+1) + ct(xt, ut) + rt(xt, πt+1 | πt, ut)

)
, (2.119)

where, in the second equality, we use result 2 from Lemma 11 and (2.114). Thus, at

time t, it holds that Qt(mt, ut) = Q̄t(σt(mt), ut). Subsequently, we can prove Vt(mt) =

V̄t(σt(mt)) by minimizing both sides with ut ∈ U . This proves the induction hypothesis

at time t, and the result follows by mathematical induction.

From Theorem 8, the strategy ḡ∗ = (ḡ∗0, . . . , ḡ
∗
T ) using information states is an

optimal solution to Problem 2. In practice, using information states to compute ḡ∗ is

more tractable than using the memory to compute g∗ only when the set Pt has fewer

elements than Mt for most instances of t. This is usually true for systems with long

time horizons.

2.2.3.4 Examples of Information States

In this subsection, we present examples of information states which satisfy the

conditions in Definition 8.

1) Partially observed systems: Generally, at each t = 0, . . . , T a valid infor-

mation state which satisfies Definition 8 is the function valued uncertain variable

Πt : X → {−∞} ∪ [−amax
t , 0]. At time t, for a given mt ∈ Mt, the realization of

Πt is pt(xt) := rt(xt|mt) = maxat∈At

(
at + I(xt, at|mt)

)
− maxat∈At

(
at + I(at|mt)

)
for

all xt ∈ X . Note that this can be interpreted as a normalization [43] of the standard

information state from [35,53].

2) Perfectly observed systems: Consider a system where Yt = Xt for all t. An

information state for such a system is Πt = Xt at each t, i.e, the state itself. This

information state is simpler than the one in Case 1.

3) Systems with action dependent costs: Consider a partially observed system

where at each t the cost has the form ct(Ut) ∈ R≥0, and the terminal cost is cT (XT , UT ).
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Then, an information state is the conditional range Πt = [[Xt|Mt]] at each t (see

Appendix A). This is simpler than the one presented in Case 1.

Remark 12. From [164], we know that the terminal DP (2.96) - (2.97) can be used

to derive another information state Ξt = [[Xt, At|Mt]] for each t for Case 1. The

conditional range Ξt can take 2|At|×|X | feasible values whereas Πt from Case 1 can

take |At||X | values. As |At| grows in size with time t, the number of feasible values

of Πt increases at a slower rate than the number of feasible values of Ξt. Thus, Πt

yields a more computationally tractable DP than Ξt. This illustrates that constructing

information states using the specialized DP (2.105) - (2.106) is better than using the

terminal DP (2.96) - (2.97).

Remark 13. Using Definition 8 we can identify simpler information states for systems

with special properties, as shown in Cases 2 - 3. However, in many applications,

merely using an information state may not sufficiently improve the tractbility optimal

strategies. Thus, we extend Definition 8 to include approximate information states in

Section 2.2.4.

2.2.4 Approximate Information States

In this section, we define approximate information states and utilize them to

develop an approximate DP. We begin by defining a distance between two cost distri-

butions.

Definition 9. Let X be a finite subset of a metric space (S , d), with an uncertain

variable X ∈ X and two distributions r : X → {−∞} ∪[−a1, 0] and q : X →

{−∞} ∪ [−a2, 0], a1, a2 ∈ R≥0. Then:

1) The finite domains of r and q are the sets X r := {x ∈ X |r(x) ̸= −∞} and

X q :={x∈X |q(x) ̸=−∞}, respectively.

2) For any x ∈ X r ∪ X q, the nearest finite inputs for r and q are given by

ψr(x) := argminx̂∈X r d(x̂, x), and ψq(x) := argminx̂∈X q d(x̂, x), respectively.
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3) The distance between the distributions r and q is

R
(
r, q
)
:= max

(
H(X r,X q), max

x∈X r∪X q
|r(ψr(x))− q(ψq(x))|

)
, (2.120)

where H is the Hausdorff metric.

Remark 14. Because any cost distribution cannot identically return −∞ for all x ∈

X , the sets X r and X q are non-empty for all distributions r, q on X. Consequently,

the distance R(r, q) always returns a finite value.

Note that R is the maximum of a metric on a set-space and a metric on a

function-space. Thus, it can quantify the distance between two different accrued dis-

tributions on an uncertain variable X ∈ X . Specifically, let Y ∈ Y and Z ∈ Z take

realizations y ∈ Y and z ∈ Z, respectively, such that [[X, At|y]] ̸= ∅ and [[X, At|z]] ̸= ∅

for some time t. Then, we denote the functional forms of the conditional distributions

on X given y and given z as rt(X|y) and rt(X|z), respectively, and quantify the distance

between them as

R
(
rt(X|y), rt(X|z)

)
:= max

(
H
(
[[X|y]], [[X|z]]

)
,

max
x∈[[X|y]]∪[[X|z]]

∣∣rt(ψy(x)|y
)
− rt

(
ψz(x)|z

)∣∣), (2.121)

where, the finite domains are {x ∈ X | rt(x|y) ̸= −∞} = [[X|y]] and {x ∈ X | rt(x|z) ̸=

−∞} = [[X|z]]; and for any x ∈ [[X|y]] ∪ [[X|z]], the nearest finite inputs are ψy(x) :=

argminx̂∈[[X|y]] d(x̂, x) and ψ
z(x) := argminx̂∈[[X|z]] d(x̂, x). Next, using R to quantify the

approximation gap, we define approximate information states for Problem 2.

Definition 10. An approximate information state at any t = 0, . . . , T is an uncertain

variable Π̂t = σ̂t(Mt) taking values in a finite subset P̂t of some metric space, where

σ̂t : Mt → P̂t. Furthermore, for all t, there exists a parameter ϵt ∈ R≥0 such that for

all mt ∈ Mt and ut ∈ U , it satisfies:

R
(
rt(Xt, Π̂t+1 | mt, ut), rt(Xt, Π̂t+1 | σ̂t(mt), ut)

)
≤ ϵt, t = 0, . . . , T − 1, (2.122)

R
(
rT (XT | mT ), rT (XT | σ̂T (mT ))

)
≤ ϵT , (2.123)
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where each conditional accrued distribution in (2.122) and (2.123) can be evaluated

independent of the choice of strategy g.

In the approximate DP, for all t = 0, . . . , T − 1, for all π̂t ∈ P̂t and ut ∈ U , we

recursively define the value functions

Q̂t(π̂t, ut) := max
xt∈X ,π̂t+1∈P̂t+1

(
V̂t+1(π̂t+1) + ct(xt, ut) + rt(xt, π̂t+1 | π̂t, ut)

)
, (2.124)

V̂t(π̂t) :=min
ut∈U

Q̂t(π̂t, ut), (2.125)

where, at time T , Q̂T (π̂T , uT ) := maxxT∈X
(
cT (xT , uT )+ rT (xT |π̂T , uT )

)
and V̂T (π̂T ) :=

minuT∈U Q̂T (π̂T , uT ). The control law at each t is ĝ∗t (π̂t) := argminut∈U Q̂t(π̂t, ut) and

the approximate control strategy is ĝ∗ := (ĝ∗0, . . . , ĝ
∗
T ). Next, we bound the performance

loss from implementing the approximate control strategy ĝ∗ in Problem 2. We begin

with a preliminary result which will be required subsequently.

Lemma 12. Let X be a finite subset of a metric space (S , d) and consider two

cost distributions r : X → {−∞} ∪ [−a1, 0] and q : X → {−∞} ∪ [−a2, 0], where

a1, a2 ∈ R≥0. Then, for a Lipschitz function f : X → R:

∣∣max
x∈X

(
f(x) + r(x)

)
−max

x∈X

(
f(x) + q(x)

)∣∣
≤ Lf · H(X r,X q) + max

x∈X r∪X q
|r(ψr(x))− q(ψq(x))|

≤ (Lf + 1) · R
(
r, q
)
. (2.126)

Proof. We prove this result by considering two cases which are mutually exclusive but

cover all the possibilities.

Case 1: maxx∈X

(
f(x) + r(x)

)
≥ maxx∈X

(
f(x) + q(x)

)
, which implies that∣∣maxx∈X

(
f(x)+r(x)

)
−maxx∈X

(
f(x)+q(x)

)∣∣ = maxx∈X

(
f(x)+r(x)

)
−maxx∈X

(
f(x)+

q(x)
)
. We define a variable x∗ ∈ X r such that x∗ := argmaxx∈X

(
f(x) + r(x)

)
and a

function ψi : X → X i such that ψi(x) := argminx̃∈X i d(x, x̃) for each i = r, q. Then,

max
x∈X

(
f(x) + r(x)

)
−max

x∈X

(
f(x) + q(x)

)

67



= f(x∗) + r(x∗)−max
x∈X

(
f(x) + q(x)

)
≤ f(x∗) + r(x∗)− f

(
ψq(x∗)

)
− q
(
ψq(x∗)

)
≤ Lf · d(x∗, ψq(x∗)) +

∣∣r(x∗)− q
(
ψq(x∗)

)∣∣
≤ Lf · H(X r,X q) + max

x∈X r∪X q

∣∣r(ψr(x))− q
(
ψq(x)

)∣∣
≤ Lf · R

(
r, q
)
+R

(
r, q
)
, (2.127)

where, in the first inequality, we use the fact that q(ψq(x∗)) ̸= −∞; in the sec-

ond inequality, we use the Lipschitz continuity of f ; in the third inequality, we use

the definition of the Hausdorff metric and the fact that maxx∈X r |r(x) − q(ψq(x))| =

maxx∈X r∪X q |r(ψr(x)) − q(ψq(x))|; and in the fourth inequality, we use (2.120) from

Definition 9.

Case 2: maxx∈X

(
f(x) + r(x)

)
< maxx∈X

(
f(x) + q(x)

)
, where the result holds

using the same arguments as Case 1.

Next, we bound the maximum error when approximating the value functions in

the optimal DP (2.96) - (2.97) with the value functions in the approximate DP (2.124)

- (2.125).

Theorem 9. Let LV̂t+1
be the Lipschitz constant of V̂t+1 for all t = 0, . . . , T −1. Then,

for all mt ∈ Mt and ut ∈ U ,

|Qt(mt, ut)− Q̂t(σ̂t(mt), ut)| ≤ αt, (2.128)

|Vt(mt)− V̂t(σ̂t(mt))| ≤ αt, (2.129)

where αt = αt+1 + (2Lt + 1) · ϵt, where Lt := max{LV̂t+1
, Lct}, for all t = 0, . . . , T − 1

and αT = (LcT + 1) · ϵT .

Proof. For all t = 0, . . . , T , let mt ∈ Mt and ut ∈ U be realizations of Mt and

Ut, respectively. We prove both results by mathematical induction, starting with
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time step T . At T , we directly use (2.126) from Lemma 12 and (2.123) from Defi-

nition 10 to conclude that |QT (mT , uT ) − Q̂T (σ̂t(mT ), uT )| ≤ (LcT + 1) · ϵT . Further-

more, minimizing both terms in the LHS of (2.128) yields |VT (mT ) − V̂T (σ̂t(mT ))| ≤

maxuT∈U |QT (mT , uT )− Q̂T (σ̂t(mT ), uT )| ≤ (LcT + 1) · ϵT .

This forms the basis of our mathematical induction. Then, at each t = 0, . . . , T−

1, we consider the induction hypothesis |Vt+1(mt+1) − V̂t+1(σ̂t+1(mt+1))| ≤ αt+1 and

first prove (2.128). Using the triangle inequality,∣∣Qt(mt, ut)− Q̂t(σ̂t(mt), ut)
∣∣

≤
∣∣∣ max
xt∈X ,mt+1∈Mt+1

(Vt+1(mt+1) + ct(xt, ut) + rt(xt,mt+1 | mt, ut))

− max
xt∈X ,mt+1∈Mt+1

(V̂t+1(σ̂t+1(mt+1)) + ct(xt, ut) + rt(xt,mt+1 | mt, ut))
∣∣∣

+
∣∣∣ max
xt∈X ,π̂t+1∈P̂t+1

(V̂t+1(π̂t+1) + ct(xt, ut) + rt(xt, π̂t+1 | mt, ut))

− max
xt∈X ,π̂t+1∈P̂t+1

(V̂t+1(π̂t+1) + ct(xt, ut) + rt(xt, π̂t+1 | σ̂t(mt), ut))
∣∣∣. (2.130)

Here, for the first term in the RHS,∣∣∣ max
xt∈X ,mt+1∈Mt+1

(Vt+1(mt+1) + ct(xt, ut) + rt(xt,mt+1|mt, ut))

− max
xt∈X ,mt+1∈Mt+1

(
V̂t+1(σ̂t+1(mt+1)) + ct(xt, ut) + rt(xt,mt+1|mt, ut))

∣∣∣
≤ max

xt∈X ,mt+1∈Mt+1

∣∣Vt+1(mt+1)− V̂t+1(σ̂t+1(mt+1))
∣∣ ≤ αt+1, (2.131)

where in the second inequality, we use the induction hypothesis. Furthermore, in the

second term in the RHS, we directly use (2.126) from 12 and (2.122) from Definition

10 to conclude that∣∣∣ max
xt∈X ,π̂t+1∈P̂t+1

(V̂t+1(π̂t+1) + ct(xt, ut) + rt(xt, π̂t+1|mt, ut))

− max
xt∈X ,π̂t+1∈P̂t+1

(V̂t+1(π̂t+1) + ct(xt, ut) + rt(xt, π̂t+1|σ̂t(mt), ut))
∣∣∣

≤
(
2Lt + 1

)
· ϵt, (2.132)

where, Lt =max{LV̂t+1
,Lct} and 2Lt is the Lipschitz constant for the function V̂t+1(π̂t+1)

+ct(xt, ut) with respect to the variables (π̂t+1, xt) for all ut ∈ U , where η
(
(π̂1

t+1, x
1
t ),
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(π̂1
t+1, x

1
t )
)
:= max{η(π̂1

t+1, π̂
2
t+1), η(x

1
t , x

2
t )}. Combining results for each term in the

RHS completes the proof for (2.128) at time t. Next, we prove (2.129). Using the

definition of the value functions in the LHS of (2.129),

|Vt(mt)− V̂t(σ̂t(mt))| = |min
ut∈U

Qt(mt, ut)−min
ut∈U

Q̂t(σ̂t(mt), ut)|

≤ max
ut∈U

|Qt(mt, ut)− Q̂t(σ̂t(mt), ut)| ≤ αt, (2.133)

where in the second inequality, we use (2.128). This proves the induction hypothesis

at time t. Thus, the results hold for all t = 0, . . . , T using mathematical induction.

Next, we bound the maximum difference in the performance of an approximate

control strategy ĝ∗ := (ĝ∗0, . . . , ĝ
∗
T ) and optimal strategy g∗. Recall that ĝ∗t (π̂t) =

argminut∈U Q̂t(π̂t, ut) for all t = 0, . . . , T . Then, the equivalent strategy g = (g0, . . . ,

gT ), which utilizes the memory but yield the same actions and performance as ĝ∗, is

constructed as gt(mt) := ĝ∗t (σ̂t(mt)) for all t. To compute the performance of g (and

consequently, of ĝ∗), we define for all t = 0, . . . , T − 1, for all mt ∈ Mt and ut ∈ U ,

Θt(mt, ut) := max
xt∈X ,mt+1∈Mt+1

(
Λt+1(mt+1) + ct(xt, ut) + rt(xt,mt+1 | mt, ut)

)
, (2.134)

Λt(mt) :=Θt(mt, gt(mt)), (2.135)

where, at time T , ΘT (mT , uT ) := maxxT∈X (cT (xT , uT )+rT (xT |mT , uT )) and VT (mT ) =

ΘT (mT , gT (mT )). Recursively evaluating the value functions (2.134) - (2.135) computes

the performance of g as Λ0(m0), where m0 = y0. Note that the performance of g∗ is

simply the optimal value. Next, we bound the difference in the performances of g and

g∗.

Theorem 10. Let LV̂t+1
be the Lipschitz constant of V̂t+1 for all t = 0, . . . , T − 1.

Then, for all mt ∈ Mt and ut ∈ U ,

|Qt(mt, ut)−Θt(mt, ut)| ≤ 2αt, (2.136)

|Vt(mt)− Λt(mt)| ≤ 2αt. (2.137)
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where αt = αt+1 + (2Lt+1) · ϵt with Lt := max{LV̂t+1
, Lct} for all t = 0, . . . , T − 1 and

αT = (LcT + 1) · ϵT .

Proof. We begin by recursively defining the value functions which compute the perfor-

mance of the strategy ĝ. For all t = 0, . . . , T − 1 and for each π̂t ∈ P̂t and ut ∈ U ,

let

Θ̂t(π̂t, ut) := max
xt∈X ,π̂t+1∈P̂t+1

(
Λ̂t+1(π̂t+1) + ct(xt, ut) + rt(xt, π̂t+1|π̂t, ut)

)
(2.138)

Λ̂t(π̂t) := Θ̂t(π̂t, ĝt(π̂t)), (2.139)

where, at time T , Θ̂T (π̂T , uT ) := maxxT∈X (cT (xT , uT )+ rT (xT |mT , uT )) and Λ̂T (π̂T ) :=

Θ̂T (π̂t, ĝT (π̂T )). Note that Θ̂t(π̂t, ut) = Q̂t(π̂t, ut) and Λ̂t(π̂t) = V̂t(π̂t), for all t =

0, . . . , T , since ĝt(π̂t) = argminut∈U Q̂t(π̂t, ut). Next, we use the triangle inequality in

the LHS of (2.136) at any t to write

|Qt(mt, ut)−Θt(mt, ut)| ≤ |Qt(mt, ut)−Q̂t(σ̂t(mt), ut)|+ |Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)|

≤ αt + |Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)|, (2.140)

where, in the second inequality, we use (2.128) from Theorem 9. Then, to prove (2.136),

it suffices to show that |Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)| ≤ αt. We can show this in addition

to |Λ̂t(σ̂t(mt)) − Λt(mt)| ≤ αt for all t = 0, . . . , T using mathematical induction and

following the same arguments as in Theorem 9.

2.2.4.1 Examples of Approximate Information States

In this subsection, we present two examples of approximate information states

constructed by state quantization. For the set of states X , a subset X̂ ⊂ X is a

set of quantized states with parameter γ ∈ R≥0 if maxxt∈X minx̂t∈X̂ d(xt, x̂t) ≤ γ and

µ(xt) = argminx̂t∈X̂ d(xt, x̂t) is the quantization function. We apply this approach to

two cases.

1) Perfectly observed systems: Consider a system where Yt = Xt for all t =

0, . . . , T . Recall from Subsection 2.1.3.3 that the information state is simply Πt = Xt
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and it takes values in X for all t. Then, an approximate information state for such a

system can be defined as the quantized state Π̂t := µ(Xt). The corresponding constants

in Definition 10 are ϵt = 4γ + 2Lft · γ for all t = 0, . . . , T − 1 and ϵT = 2γ, where Lft

is the Lipschitz constant for ft. The derivation for ϵt can be found in Appendix B.

2) Systems with action dependent costs: For such systems, recall from Section

2.1.3.3 that an information state is given by the conditional range Πt = [[Xt|Mt]]. We

approximate the conditional range by quantizing each element in Πt using a mapping

ν : 2X → 2X̂ such that ν(Πt) := {µ(xt) ∈ X̂ |xt ∈ Πt}. Then, we can consider that

Π̂t = ν(Πt) is an approximate information state. We illustrate its performance in the

next section using a numerical example.

2.2.5 Numerical Example

For our numerical example, we consider an agent pursuing a target across a

9 × 9 grid with obstacles. At each t = 0, . . . , T , the agent’s position is Xag
t and

the target’s position is Xta
t , each of which takes values in the set of grid cells X ={

(−4,−4), (−4,−3), . . . , (3, 4), (4, 4)
}
\O, whereO ⊂ X is a known set of obstacle cells.

Let W = N = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)} and D := {(−1, 1), (1, 1), (1,−1),

(−1,−1)}. Starting at Xta
0 ∈ X , the target’s position evolves as Xta

t+1 = δ(Xta
t +Wt ∈

X ) · (Xta
t +Wt) + (1 − δ(Xta

t +Wt ∈ X )) · Xta
t , where Wt ∈ W and δ(·) returns 1 if

the condition in the argument holds and 0 otherwise. At each t, the agent observes

their own position perfectly and the target’s position as Yt = δ(Xta
t +Nt ∈ X ) · (Xta

t +

Nt) + (1 − δ(Xta
t + Nt ∈ X )) ·Xta

t , where Nt ∈ N . Then, the agent selects an action

Ut ∈ U = W∪D and moves as Xag
t+1 = δ(Xag

t +Ut ∈ X ) · (Xag
t +Ut)+(1−δ(Xag

t +Ut ∈

X )) ·Xag
t . The agent incurs an interim cost ct(Ut) := 0.5 · δ(Ut ∈ D) only if it moves

diagonally, and a terminal cost d(Xta
T , X

ag
T ) corresponding to the final distance from

the target. We illustrate this in Fig. 2.6(a), where: (1) the black cells are obstacles,

(2) the black triangle is the initial position of the agent and the hatched region around

it indicates the available actions, and (3) the black circle is the initial observation of
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(a) The original grid (b) The quantized grid

Figure 2.6: The gridworld pursuit problem with the initial conditions xag0 = (1, 1) and
y0 = (−1,−3).

the agent and the hatched region around it indicates the possible initial positions of

the target.

This setup constitutes a system with action dependent costs as described in

Subsection 2.2.3.4. For such a system, an information state at time t is Πt = (Xag
t ,Λt),

where Λt = [[Xta
t |Mt]]. We construct an approximation of Λt at each t using the

quantization approach from Subsection 2.2.4.1. First, we define a static set of quantized

states X̂ , with γ = 1 and quantization function µ(xt) : X → X̂ , using the initial

observation of the agent, as illustrated using dots in Fig. 2.1(b). Note that we use

a finer quantization around the point of initial observation and sparser quantization

elsewhere. Then, the approximate range at time t is Λ̂t = {µ(xt) ∈ X̂ | xt ∈ Λt} and

the approximate information state is Π̂t =
(
Xag
t , Λ̂t, Y0

)
. We include Y0 in Π̂t because

it facilitates the update of Λ̂t to Λ̂t+1. For six initial conditions, we computed the

best control strategy using both the optimal DP and approximate DP for T = 6. In

Fig. 2.7, we have tabulated the worst-case values (V0 and V̂0) and run-times in seconds

(Run.) for both DPs. We also evaluated the difference between actual costs incurred

by the approximate strategy and the optimal strategy, respectively, by implementing

both of them in 5000 simulations with randomly generated disturbances. We have

marked these differences in Fig. 2.7 and indicated the frequency of each cost difference
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by the size of the disc marking it. While the approximate strategy is faster to compute

than the optimal strategy for all cases, we note that it admits bounded deviations in

actual costs.

Figure 2.7: Results of numerical simulations for T = 6.

2.2.6 Appendix A - Derivation of Information State for Systems with Ac-

tion Dependent Costs

In this appendix, we derive the information states for partially observed systems

with control dependent costs as described in Subsection 2.2.3.4. We recall that for a

general partially observed system, the information state at each t = 0, . . . , T is given by

the function Πt : Xt → {−∞}∪ [−amax
t , 0]. Given a realization mt ∈ Mt of the memory

Mt at any time t, it takes as its realization the functional form pt(Xt) = rt(Xt|mt).

Next, we prove an important result to establish the information state.

Lemma 13. Let the incurred cost at each t = 0, . . . , T − 1 be ct(Ut) ∈ R≥0. Then, for

any mt ∈ Mt and xt ∈ Xt, it holds that rt(xt | mt) = I(xt | mt).

Proof. Let mt ∈ Mt and xt ∈ Xt be realizations of the uncertain variables Mt and Xt,

respectively, at each t = 0, . . . , T . Let mt = (y0:t, u0:t−1) at time t. Then, we note that

there exists a known function c̄t :
∏t−1

ℓ=0 Uℓ → At such that at = c̄t(u0:t−1). We use this

property to write that

rt(xt|mt)=max
at∈At

(
at+ I(xt, at|mt)

)
−max
at∈At

(
at + I(at|mt)

)
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=c̄t(u0:t−1) + I(xt|y0:t, u0:t−1

)
− c̄t(u0:t−1)

=I(xt|y0:t, u0:t−1

)
= I(xt|mt), (2.141)

where, in the second equality, we use the fact that maxat∈At

(
at + I(xt, at|mt)

)
=

maxat∈[[At|mt]]

(
at + I(xt|at,mt)

)
and [[At|mt]] = {c̄t(u0:t−1)}.

As a direct consequence of Lemma 13, for a given realization of the memory

mt ∈ Xt at time t, the realization of the information state for a perfectly observed

system is the function form of the indicator function I(Xt|mt), where for all xt ∈ X ,

I(xt|mt) =

0, if xt ∈ [[Xt|mt],

−∞, if xt ̸∈ [[Xt|mt].

(2.142)

From (2.142), note that the functional form I(Xt|mt) = I(Xt|[[Xt|mt]]), and thus, at

each time t = 0, . . . , T , given the realized memory mt ∈ Mt, it is sufficient to simply

track the conditional range [[Xt|mt]] to derive the information state rt(Xt|mt) for all

xt ∈ X . This implies that [[Xt|mt]] satisfies all the properties of an information state.

2.2.7 Appendix B - Derivation of Approximate Information State for Per-

fectly Observed Systems

In this appendix, we derive the values of ϵt for all t = 0, . . . , T while using

state quantization for a perfectly observed system, as described in Subsection 2.2.4.1.

Recall that the set of quantized states is X̂ ⊆ X with a parameter γ and quantization

function µ(xt) = argminx̂t∈X̂t
d(xt, x̂t) such that d(xt, µ(xt)) ≤ γ for all xt ∈ Xt. Note

that for any uncertain variable Z ∈ Z, the conditional range given µ(xt) at any t is

[[Z|µ(xt)]] = ∪x̃t∈[[Xt|µ(xt)]][[Z|x̃t]]. Next, we prove the main result of this appendix.

Theorem 11. For all t = 0, . . . , T , let µ : Xt → X̂t such that maxxt∈Xt d(xt, µ(xt)) ≤

γ and let Lft be the Lipschitz constant for ft. Then, for all t, Π̂t = µ(Xt) is an

approximate information state which satisfies (2.122) with ϵt = 4γ+2Lft ·γ and (2.123)

with ϵT = 2γ.
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Proof. For all t = 0, . . . , T , let mt = (x0:t, u0:t−1) be the realization of Mt and let

the approximate information state be x̂t = µ(xt). We first derive the value of ϵT

in the RHS of (2.123). Note that at time T , [[XT |mT ]] = [[XT |xT ]] = {xT} and

[[XT |x̂T ]] = {xT ∈ X | d(xT , x̂T ) ≤ γ}. Furthermore, rT (XT |mT ) = rT (XT |xT ) because

xT is an information state. Then, we can expand the LHS in (2.123) using 2.121 as

R
(
rT (XT |xT ), rT (XT , µ(xT ))

)
= max

{
H
(
[[XT |xT ]], [[XT |µ(xT )]], max

x̃T∈[[XT |µ(xT )]]
|rT (ψxT (x̃T )|xT )− rT (x̃T |µ(xT ))|

}
.

(2.143)

We will analyse the RHS of (2.143) term by term. For the first term, we use the

definition of the Hausdroff metric to state that

H
(
[[XT |xT ]], [[XT |µ(xT )]]

)
= max

x̃T∈[[XT |µ(xT )]]
d(xT , x̃T )

≤ max
x̃T∈[[XT |µ(xT )]]

(d(xT , µ(xT )) + d(µ(xT ), x̃T )) ≤ 2γ, (2.144)

where, in the first inequality we use the triangle inequality; and in the second inequality,

we use the definition of the quantization function µ. For the second term in the RHS

of (2.143), we use Definition 7 to write that

max
x̃T∈[[XT |µ(xT )]]

|rT (ψxT (x̃T )|xT )− rT (x̃T |µ(xT ))|

≤ max
x̃T∈[[XT |µ(xT )]]

∣∣∣ max
aT∈AT

(aT + I(ψxT (x̃T ), aT |xT ))−max
aT∈AT

(aT + I(x̃T , aT |µ(xT )))

− max
aT∈[[AT |xT ]]

aT + max
aT∈[[AT |µ(xT )]]

aT

∣∣∣. (2.145)

In the RHS of (2.145), note that I is a conditional cost distribution on the uncer-

tain variables in the argument. Thus, we can use the property of conditional cost

distributions from Definition 5 to state that

max
aT∈AT

(aT + I(ψxT (x̃T ), aT |xT ))− max
aT∈AT

(aT + I(x̃T , aT |µ(xT )))

= max
aT∈AT

(
aT+I(ψxT (x̃T )|aT , xT )+I(aT |xT )

)
− max
aT∈AT

(
aT+I(x̃T |aT , µ(xT ))+I(aT |µ(xT ))

)
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= max
aT∈[[AT |xT ]]

(
aT + I(ψxT (x̃T )|aT , xT )

)
− max

aT∈[[AT |µ(xT )]]

(
aT + I(x̃T |aT , µ(xT ))

)
,

= max
aT∈[[AT |xT ]]

aT + I(ψxT (x̃T )|xT )− max
aT∈[[AT |µ(xT )]]

aT − I(x̃T |µ(xT )), (2.146)

where, in the second equality, we use (2.102); and in the third equality, because

ψxT (x̃T ) = minx̄T∈[[XT |xT ]] d(xT , x̄T ) = xT , it holds that

I(ψxT (x̃T )|aT , xT ) = I(ψxT (x̃T )|xT ) = 0, (2.147)

and because aT ∈ [[AT |x̄T ]] for all x̄T ∈ [[XT |µ(xT )]] when aT ∈ [[AT |µ(xT )]] =

∪x̄T∈[[XT |µ(xT )]][[AT |x̄T ]], it holds that

[[XT | aT , µ(xT )]] =
{
x̄T ∈ X | d(x̄T , µ(xT )) ≤ γ, aT ∈ [[AT |x̄T ]]

}
= {x̄T ∈ X | d(x̄T , µ(xT )) ≤ γ} = [[XT | µ(xT )]]. (2.148)

On substituting (2.146) into (2.145), it holds that

max
x̃T∈[[XT |µ(xT )]]

|rT (ψxT (x̃T ) | xT )− rT (x̃T | µ(xT ))|

= max
x̃T∈[[XT |µ(xT )]]

|I(ψxT (x̃T ) | xT )− I(x̃T | µ(xT ))| = 0. (2.149)

Then, substituting both (2.144) and (2.149) into (2.143), we can conclude that ϵT =

max{2γ, 0} = 2γ.

Next, to derive the value of ϵt for any t = 0, . . . , T − 1, we expand the LHS of

(2.122) using Definition 7 as

R
(
rt(Xt, X̂t+1|xt, ut), rt(Xt, X̂t+1|µ(xt), ut)

)
= max

{
H
(
[[Xt, X̂t+1|xt, ut]], [[Xt, X̂t+1|µ(xt), ut]]

)
,

max
(x̃t,x̃t+1)∈[[Xt,X̂t+1|µ(xt),ut]]

∣∣rt(ψxt(x̃t, x̃t+1)|xt, ut)− rt(x̃t, x̃t+1|µ(xt), ut)
∣∣}. (2.150)

Once again, we analyze the RHS of (2.150) term by term. For the first term, we use

the definition of the Hausdorff metric and rearrange some terms to write that

H
(
[[Xt, X̂t+1|xt, ut]], [[Xt, X̂t+1|µ(xt), ut]]

)
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≤ max

{
min

x̃t∈[[Xt|µ(xt)]]

(
d(xt, x̃t) + max

x̃1t+1∈[[X̂t+1|xt,ut]]
min

x̃2t+1∈[[X̂t+1|x̃t,ut]]
d(x̃1t+1, x̃

2
t+1)

)
,

max
x̃t∈[[Xt|µ(xt)]]

(
d(xt, x̃t) + max

x̃2t+1∈[[X̂t+1|x̃t,ut]]
min

x̃1t+1∈[[X̂t+1|xt,ut]]
d(x̃1t+1, x̃

2
t+1)

)}
.

(2.151)

In the first term in the RHS of (2.151), note that

max
x̃1t+1∈[[X̂t+1|xt,ut]]

min
x̃2t+1∈[[X̂t+1|x̃t,ut]]

d(x̃1t+1, x̃
2
t+1) ≤ max

wt∈Wt

d(µ(ft(xt, ut, wt)), µ(ft(x̃t, ut, wt)))

≤ max
wt∈Wt

(
d
(
µ(ft(xt, ut, wt)), ft(xt, ut, wt)

)
+ d
(
ft(xt, ut, wt), ft(x̃t, ut, wt)

)
+ d
(
ft(x̃t, ut, wt), µ(ft(x̃t, ut, wt))

))
≤ γ + 2Lft · γ + γ, (2.152)

where, in the first inequality, we simply use the definition of x̃1t+1 and x̃2t+1; in the

second inequality, we use the triangle inequality; and in the third inequality, we use

the Lagrange continuity of f and the definition of the quanitzation function µ. This

exact result also holds for the second term in the RHS of (2.151). Thus, we can sub-

stitute (2.152) in (2.151) to conclude that H
(
[[Xt, X̂t+1|xt, ut]], [[Xt, X̂t+1|µ(xt), ut]]

)
≤

maxx̃t∈[[Xt|µ(xt)]] d(xt, x̃t) + 2γ + 2Lft · γ ≤ 4γ + 2Lft · γ.

For the second term in the RHS of (2.150), we use Definition 7 to write that

max
(x̃t,x̂t+1)∈[[Xt,X̂t+1|µ(xt),ut]]

∣∣rt(ψxt,ut(x̃t, x̂t+1)|xt, ut)− rt(x̃t, x̂t+1|µ(xt), ut)
∣∣

= max
(x̃t,x̂t+1)∈[[Xt,X̂t+1|µ(xt),ut]]

∣∣∣max
at∈At

(at + I(ψxt,ut(x̃t, x̂t+1), at|xt, ut))− max
at∈[[At|xt,ut]]

at

− max
at∈At

(at + I(x̃t, x̂t+1, at|µ(xt), ut)) + max
at∈[[At|µ(xt),ut]]

at

∣∣∣. (2.153)

In the RHS of (2.153), the first two terms can be expanded using Definition 5 in a

manner similar to (2.146), to write that

max
at∈At

(
at + I(ψxt,ut(x̃t, x̂t+1), at|xt, ut)

)
− max

at∈At

(
at + I(x̃t, x̂t+1, at|µ(xt), ut)

)
= max

at∈[[At|xt,ut]]

(
at+ I(ψxt,ut(x̃t, x̂t+1)|at, xt, ut)

)
− max
at∈[[At|µ(xt),ut]]

(
at+ I(x̃t, x̂t+1|at, µ(xt), ut)

)
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= max
at∈[[At|xt,ut]]

at + I(ψxt,ut(x̃t, x̂t+1)|xt, ut)− max
at∈[[At|µ(xt),ut]]

at − I(x̃t, x̂t+1|µ(xt), ut).

(2.154)

where in the second inequality, because ψxt,ut(x̃t) = xt and ψ
xt,ut(x̂t+1) = µ(ft(xt, ut,

w̄t)), where w̃t = argminw̄t∈W d(x̂t+1, ft(xt, ut, w̃t)), it holds that [[Xt, X̂t+1|at, xt, ut]] =

[[Xt, X̂t+1|xt, ut]], and similarly, it holds that [[Xt, X̂t+1|at, µ(xt), ut]] = [[Xt, X̂t+1|µ(xt),

ut]]. On substituting (2.154) into (2.153), it holds that

max
(x̃t,x̃t+1)∈[[Xt,X̂t+1|µ(xt),ut]]

∣∣rt(ψxt(x̃t, x̂t+1)|xt, ut)− rt(x̃t, x̂t+1|µ(xt), ut)
∣∣

= max
(x̃t,x̂t+1)∈[[Xt,X̂t+1|µ(xt),ut]]

∣∣I(ψxt(x̃t, x̂t+1)|xt, ut)− I(x̃t, x̂t+1|at, µ(xt), ut)
∣∣ = 0,

(2.155)

and subsequently, substituting into (2.150) yields that ϵt = max{4γ + 2Lft · γ, 0} =

4γ + 2Lft · γ.

2.3 Worst-Case Control and Learning Using Partial Observations Over an

Infinite Time Horizon

2.3.1 Notation and Preliminaries

In our exposition, we use the mathematical framework of uncertain variables

[163] and cost distributions [53,165]:

1) Cost Measures: Consider a sample space Ω with a sigma algebra B(Ω).

A cost measure is the non-stochastic analogue of a probability measure. Specifically,

it is a function q : B(Ω) → {−∞} ∪ (−∞, 0] satisfying the properties: (1) q(Ω) = 0,

(2) q(∅) = −∞, and (3) q(B) = supω∈B q(ω) for all B ∈ B(Ω), where supω∈∅ q(ω) :=

−∞. Furthermore, for two sets B1, B2 ∈ B(Ω) with q(B2) > −∞, the conditional

cost measure of B1 given B2 is q(B1 |B2) := q(B1, B2) − q(B2), where q(B1, B2) =

supω∈B1∩B2 q(ω).

2) Uncertain Variables: For a set X , an uncertain variable is a mapping X :

Ω → X and is compactly denoted by X ∈ X . This is the non-stochastic equivalent of

a random variable. For any ω ∈ Ω, its realization is X(ω) = x ∈ X . Its marginal range
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is the set of feasible realizations [[X]] := {X(ω) |ω ∈ Ω} ⊆ X . The cost distribution

is q(x) := supω∈{Ω|X(ω)=x} q(ω) for all x ∈ [[X]]. The joint range of two uncertain

variables X ∈ X and Y ∈ Y is the set of feasible simultaneous realizations [[X,Y]] :={(
X(ω),Y(ω)

)
|ω ∈ Ω

}
⊆ X × Y . The two uncertain variables are independent if

[[X,Y]] = [[X]] × [[Y]]. The conditional range of X given a realization y of Y is the set

[[X|y]] :=
{
X(ω) | Y(ω) = y, ω ∈ Ω

}
. The cost distribution of any x ∈ [[X]] given

a realization y ∈ [[Y]] with q(y) > −∞ is q(x | y) = q(x, y) − q(y), where q(x, y) =

supω∈{Ω|X(ω)=x,Y (ω)=y} q(ω).

3) Hausdorff Distance: Consider two bounded, non-empty subsets X ,Y of

a metric space (S , η), where η : X ×Y → R≥0 is the metric. The Hausdorff distance

between X and Y is the pseudo-metric [194, Chapter 1.12]:

H(X ,Y ) :=max
{
sup
x∈X

inf
y∈Y

η(x, y), sup
y∈Y

inf
x∈X

η(x, y)
}
. (2.156)

Furthermore, if f : S → R is a Lipschitz continuous function with a constant Lf ∈

R≥0, then [166, Lemma 5]:∣∣∣ sup
x∈X

f(x)− sup
y∈Y

f(y)
∣∣∣ ≤ Lf · H(X ,Y ). (2.157)

2.3.2 Problem Formulation

We consider the control of an uncertain system which evolves in discrete time

steps. At each time t ∈ N = {0, 1, 2, . . . } an agent collects an observation on the system

as the uncertain variable Yt ∈ Y and generates a control action denoted by the uncertain

variable Ut ∈ U . After generating the action at each t, the agent incurs a cost denoted

by the uncertain variable Ct ∈ C ⊂ R≥0. The set C is bounded by min{C} = cmin and

max{C} = cmax. We formulate our problem for a general case where the agent may not

have knowledge of a state-space model for the system. Thus, we use an input-output

model to describe the evolution of the system, as follows. At each t ∈ N, the system

receives two inputs: the action Ut, and an uncontrolled disturbance Wt ∈ W . The

disturbances {Wt | t ∈ N} constitute a sequence of independent uncertain variables.

After receiving the inputs at each time t ∈ N, the system generates two outputs: (1)
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the observation Yt+1 = ht+1(W0:t, U0:t), where ht+1 : W t × U t → Y is the observation

function; and (2) the cost Ct = dt(W0:t, U0:t), where dt : W t × U t → C is the cost

function. The initial observation is generated as Y0 = h0(W0).

The agent perfectly recalls all observations and control actions and at each

t ∈ N, the agent’s memory is the uncertain variable Mt := (Y0:t, U0:t−1) taking values

in Mt := Y t× U t−1. The agent uses a control law gt : Mt → U to generate the action

Ut = gt(Mt) as a function of the memory. The control strategy is the collection of

control laws g := (g0, g1, . . . ) with a feasible set G. The performance of a strategy

g ∈ G is given by the worst-case discounted cost,

J (g) := lim
T→∞

sup
c0:T∈[[C0:T ]]g

T∑
t=0

γt·ct, (2.158)

where γ ∈ (0, 1) is a discount parameter, the marginal range [[C0:T ]]
g is the set of all

feasible costs consistent with the strategy g and with the set of feasible disturbances

W . The limit in (2.158) is well defined because Ct ≤ cmax for all t. Next, we define the

control problem with known dynamics.

Problem 3. The optimization problem is to derive the infimum value infg∈G J (g),

given the feasible sets {U ,W ,Y , C} and the functions {ht, dt | t ∈ N}.

If the minimum value is achieved in Problem 3, the minimizing argument g∗ =

argming∈G J (g) is called an optimal control strategy. Our aim is to tractably compute

the optimal value and an optimal strategy, if one exists. We impose the following

assumption in our analysis.

Assumption 6. We consider that the sets {U ,W ,Y} are each bounded subsets of a

metric space (S , η) and C is a bounded subset of R≥0.

Assumption 6 ensures that all uncertain variables take values in bounded sets

and that we can use the Hausdorff pseudo-metric (2.156) as a distance measure between

them.
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Remark 15. We first derive results for Problem 3 with known dynamics. However,

our main results in Section 2.3.6 are also suitable for reinforcement learning problems

with unknown dynamics. We illustrate this with an example in Section 2.3.9.

2.3.3 Dynamic Program and Information States

In this section, we first present value functions to evaluate the performance of

any strategy g ∈ G. Next, we present a memory-based DP decomposition of Problem

3 that approximately computes the value functions with arbitrary precision. However,

because the memory grows in size with time, this DP suffers from exponentially in-

creasing computation with an increase in precision. To alleviate this computational

challenge, we present the notion of information states in Subsection 2.3.4. To con-

struct value functions, we first define the accrued cost at each t ∈ N as the sum of past

incurred costs

At :=
t−1∑
ℓ=0

γℓ·Cℓ, (2.159)

which satisfies At+1 = At+ γt·Ct with A0 := 0. This is well defined in the limit t→ ∞

because limt→∞At ≤ limt→∞
∑t−1

ℓ=0 γ
ℓ·cmax = cmax

1−γ =: amax. Thus, At ∈ [0, amax] for all

t ∈ N. Similarly, the cost-to-go at any t ∈ N is the sum of future all costs still to be

incurred

C∞
t :=

∞∑
ℓ=t

γℓ−t·Cℓ. (2.160)

Note that C∞
t ∈ [0, amax] for all t and that C∞

t = Ct + γ·C∞
t+1. Then, for all t ∈ N, we

can define a value function for any g ∈ G as

V gt (mt) := sup
at,c∞t ∈[[At,C∞

t |mt]]g

(
at + γt·c∞t

)
, (2.161)

where [[At, C
∞
t |mt]]

g is the conditional range induced by the choice of strategy g. From

the definition of the value functions, at t = 0 it holds that supy0∈Y V
g
0 (y0) = J (g),

where m0 = y0. Thus, the value function V g0 (y0) evaluates the performance of any
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strategy g for an initial observation y0. Similarly, the optimal value function at each

t ∈ N is

Vt(mt) := inf
g∈G

V gt (mt), (2.162)

and the optimal value is infg∈G J (g) = supy0∈Y V0(y0).

Given the value functions in (2.161) and (2.162), we can evaluate the perfor-

mance of a strategy and compare it with the optimal performance. However, there is

no natural DP decomposition to compute these value functions in an infinite-horizon

system with no terminal time. Thus, we construct a memory-based DP that assumes

a finite horizon T ∈ N and use it to recursively compute approximations of the value

functions. For any g ∈ G, we define finite-horizon evaluation functions for all mt ∈ Mt

and each t = 0, . . . , T − 1 as

Jgt (mt;T ) := sup
mt+1∈[[Mt+1|mt]]g

Jgt+1(mt+1;T ), (2.163)

where JgT (mT ;T ) := supaT ,cT∈[[AT ,CT |mT ]]g(aT + γT ·cT ). Similarly, we define approxi-

mately optimal finite-horizon functions for all mt ∈ Mt and each t = 0, . . . , T − 1

as

Jt(mt;T ) := inf
ut∈U

sup
mt+1∈[[Mt+1|mt,ut]]

Jt+1(mt+1;T ), (2.164)

where, JT (mT ;T ) := infuT∈U supaT ,cT∈[[AT ,CT |mT ,uT ]] (aT + γT ·cT ). Note that the finite-

horizon functions Jgt (mt;T ) and Jt(mt;T ) at any t = 0, . . . , T are parameterized by

the choice of horizon T ∈ N. Next, we bound the approximation error between the

value functions and their finite-horizon counterparts.

Lemma 14. For any finite horizon T ∈ N and for all mt ∈ Mt and each t = 0, . . . , T ,

a)
γT+1·cmin

1− γ
+ Jgt (mt;T ) ≤ V gt (mt) ≤ Jgt (mt;T ) +

γT+1·cmax

1− γ
, (2.165)

b)
γT+1·cmin

1− γ
+ Jt(mt;T ) ≤ Vt(mt) ≤ Jt(mt;T ) +

γT+1·cmax

1− γ
. (2.166)
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Proof. a) We prove each inequality in (2.165) using backward induction. For the upper

bound at time T , we use the dynamics of the accrued cost and cost-to-go to write that

V gT (mT ) = sup
aT ,cT ,c

∞
T+1∈[[AT ,CT ,C

∞
T+1|mT ]]g

(aT + γT ·cT + γT+1·c∞T+1)

≤ sup
aT ,cT∈[[AT ,CT |mT ]]g

(
aT + γT ·cT

)
+ γT+1·amax

≤ Jgt (mt;T ) +
γT+1·cmax

1− γ
. (2.167)

The lower bound at time T follows from cmin

1−γ ≤ c∞T+1 using the same sequence of argu-

ments as before. This forms the basis of our induction. Next, consider the hypothesis

that (2.165) holds at time t+ 1. For the upper bound at time t, by definition

V gt (mt) = sup
at,ct,c∞t+1∈[[At,Ct,C∞

t+1|mt]]g

(
at + γt·ct + γt+1·c∞t+1

)
= sup

at+1,c∞t+1∈[[At+1,C∞
t+1|mt]]g

(at+1 + γt+1·c∞t+1)

= sup
mt+1∈[[Mt+1|mt]]g

sup
at+1,c∞t+1∈[[At+1,C∞

t+1|mt+1]]g
(at+1 + γt+1·c∞t+1)

= sup
mt+1∈[[Mt+1|mt]]g

V gt+1(mt+1) ≤ sup
mt+1∈[[Mt+1|mt]]g

Jgt+1(mt+1;T ) +
γT+1·cmax

1− γ

= Jgt (mt;T ) +
γT+1·cmax

1− γ
, (2.168)

where, in the fourth equality, we use (2.161) for V gt+1(mt+1); and in the inequality, we

use the hypothesis. The lower bound follows from the same sequence of arguments.

Thus, (2.165) holds using induction.

b) We can prove the lower bound in (2.166) by taking the infimum on both

sides of the lower bound in (2.165). To prove the upper bound in (2.166), we first note

that Jt(mt;T ) = infg∈G J
g
t (mt;T ) for all t = 0, . . . , T using standard DP arguments for

terminal-cost problems [53]. Then, at time T , by definition

VT (mT ) = inf
g∈G

V gT (mT )

≤ inf
g∈G

JgT (mT ;T ) +
γT+1·cmax

1− γ
= JT (mT ;T ) +

γT+1·cmax

1− γ
. (2.169)
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Using this as the basis, the result follows for all t = 0, . . . , T using the same induction

arguments as in (2.165).

Lemma 14 establishes that the approximation error between finite-horizon func-

tions and corresponding value functions decreases as the horizon T ∈ N increases. A

direct consequence of (2.166) is that limT→∞ J0(y0;T ) = V0(y0) for all y0 ∈ Y . Note,

however, that the domain of JT (mT ;T ) is MT = YT ×UT−1 which grows with T , and

in the limit T → ∞, the set MT is infinite-dimensional. Thus, it is computationally

intractable to achieve close approximations of the optimal value using (2.164). We

address this issue in the next subsection using information states, which take values in

time-invariant spaces.

2.3.4 Information States

In this subsection, we present the notion of information states which take val-

ues in time-invariant spaces. Then, we use them to construct a time-invariant DP

decomposition which converges to the optimal value of Problem 3. To begin, recall

from Section 2.3.1 that a cost distribution is the non-stochastic equivalent of a proba-

bility distribution for uncertain variables. We use two specific cost distributions in our

exposition, defined as follows.

Definition 11. Let X ∈ X and Y ∈ Y be two uncertain variables. The indicator

function for I : X → {∞, 0} for x ∈ X is given by

I(x) :=

0, if x ∈ [[X]],

−∞, if x ̸∈ [[X]],

(2.170)

and the conditional indicator function I : X × Y → {∞, 0} for any x ∈ X given a

realization y ∈ [[Y]] is given by

I(x | y) :=

0, if x ∈ [[X | y]],

−∞, if x ̸∈ [[X | y]].
(2.171)
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The indicator function verifies whether the input takes values within the condi-

tional range of an uncertain variable and it satisfies the properties of a cost distribution

from Subsection 2.3.1. Next, we use it to define the accrued distribution.

Definition 12. Let X ∈ X and Y ∈ Y be two uncertain variables and let At ∈ A be

the accrued cost at any t ∈ N. An accrued distribution for any x ∈ X at any t ∈ N is

a function rt : X → {−∞} ∪ [−amax, 0], given by

rt(x) := sup
at∈A

(
at + I(x, at)

)
− sup

at∈A

(
at + I(at)

)
, (2.172)

and the conditional accrued distribution for x ∈ X given a realization y ∈ [[Y]] is a

function rt : X × Y → {−∞} ∪ [−amax, 0], given by

rt(x | y) := sup
at∈A

(
at + I(x, at | y)

)
− sup
at∈A

(
at + I(at | y)

)
. (2.173)

The accrued distribution returns −∞ when the input is not within the range

of an uncertain variable and it returns an output from [−amax, 0] otherwise. It also

satisfies all properties of a cost distribution as defined in Subsection 2.3.1. Note that, at

each t ∈ N, given the realizations mt ∈ Mt, ut ∈ U and the dynamics, we can compute

the indicator I(ct,mt+1 |mt, ut), and the accrued distribution rt(ct,mt+1 |mt, ut) for all

ct ∈ C and mt+1 ∈ Mt+1. We use these accrued distributions to define information

states.

Definition 13. An information state at any t ∈ N is an uncertain variable St =

σt(Mt) taking values in a bounded, time-invariant subset S of a metric space (S , η).

Furthermore, there exists a time-invariant cost distribution ρ : C × S × S × U →

{−∞} ∪ [−amax, 0] such that, for all t ∈ N, for all mt ∈ Mt, ut ∈ U , ct ∈ C and

st+1 ∈ S, it satisfies

rt(ct, st+1 |mt, ut) = ρ(ct, st+1 |σt(mt), ut), (2.174)

where each conditional cost distribution in (2.174) can be evaluated independent of the

choice of strategy g.
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Next, we use the information state to construct a time-invariant operator T that

yields a fixed-point equation to recursively compute the optimal value in Problem 3. We

first define the deterministic cumulative discount at any t ∈ N as zt := γt ∈ (0, 1], where

z0 = 1 and zt+1 = γ·zt. Then, for any uniformly bounded function Λ : S × (0, 1] → R

we define T : [S × (0, 1] → R] → [S × (0, 1] → R], such that

[T Λ](s, z) := inf
u∈U

sup
c∈C, s′∈S

(
c+ γ·Λ(s′, γ·z) + ρ(c, s′ | s, u)

z

)
, (2.175)

for all s ∈ S and z ∈ (0, 1]. Note that we use time-invariant notation for all variables

in (2.175) because the sets and functions in the RHS are time-invariant.

Remark 16. The RHS of (2.175) is finite in the limit z → 0 because c has a finite

upper bound, the function Λ is uniformly bounded, and supc∈C,s′∈S ρ(c, s
′ | s, u) = 0 for

all s ∈ S and u ∈ U from the definition of cost distributions.

Due to discounting, T is a contraction mapping (see proof in Appendix A)

and therefore, using the Banach fixed point theorem, the equation Λ = T Λ admits a

unique solution Λ∞ = T Λ∞. Starting at Λ0(s, z) := 0, the fixed-point iteration around

T generates a sequence of functions

Λn+1(s, z) = [T Λn](s, z) = [T nΛ0](s, z), (2.176)

for all n = 1, 2, . . . , such that

lim
n→∞

T nV 0 = Λ∞. (2.177)

The fixed-point iteration in (2.176) forms a time-invariant DP. Next, we establish that

Λn(σt(mt), zt), for any n ∈ N, can be used to estimate the value function Vt(mt) of

Problem 3 at any t ∈ N, with estimation error that decreases in n.

Theorem 12. Consider the function Λn, for any n ∈ N, generated using (2.176).

Then, for all t ∈ N, it holds that

γn+t·cmin

1− γ
+ γt·Λn(σt(mt), γ

t) + sup
at∈[[At|mt]]

at ≤ Vt(mt)

≤ sup
at∈[[At|mt]]

at + γt·Λn(σt(mt), γ
t) +

γn+t·cmax

1− γ
. (2.178)
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Proof. We show (2.178) using (2.166) from Lemma 14. For this purpose, we first show

that for any finite horizon T ∈ N, the following property holds for each t = 0, . . . , T :

Jt(mt;T ) = γt·ΛT−t+1
(
σt(mt), γ

t
)
+ sup
at∈[[At|mt]]

at, (2.179)

where ΛT−t+1 is the (T−t+1)-th iterated function in (2.176). We prove (2.179) by induc-

tion. At time T , recall from (2.164) that JT (mT ;T ) = infuT∈U supaT ,cT∈[[AT ,CT |mT ,uT ]](aT

+γT ·cT ). Using the indicator function in the RHS,

sup
aT ,cT∈[[AT ,CT |mT ,uT ]]

(aT + γT ·cT ) = sup
aT∈A,cT∈C

(aT + γT ·cT + I(aT , cT |mT , uT ))

= sup
aT∈A,cT∈C

(
aT + γT ·cT + I(aT , cT |mT , uT )− sup

aT∈A
(aT + I(aT |mT , uT ))

)
+ sup
aT∈[[AT |mT ]]

aT

= γT · sup
cT∈C

(
cT + γ−T ·rT (cT |mT , uT )

)
+ sup

aT∈[[AT |mT ]]

aT , (2.180)

where, in the second equality, we add and subtract the term supaT∈A(aT + I(aT |mT ,

uT )); and, in the last equality, we use the definition of the accrued cost. Consequently,

we can write that

JT (mT ;T ) = inf
uT∈U

sup
cT∈C,sT+1∈S

γT ·
(
cT + γ·Λ0(sT+1, γ

T+1) + γ−T ·rT (cT , sT+1 |mT , uT )
)

+ sup
aT∈[[AT |mT ]]

aT = γT ·Λ1(σT (mT ), γ
T ) + sup

aT∈[[AT |mT ]]

aT , (2.181)

where, in the first equality, recall that Λ0(sT+1, γ
T+1) := 0 identically; and in the

second equality, we use rT (cT , sT+1|mT , uT ) = ρ(cT , sT+1|mT , uT ) and the definition of

Λ1(σT (mT ), γ
T ) in (2.176). This forms the basis of our induction. Next, consider the

hypothesis that (2.179) holds for time t + 1. Using the definition of the finite-horizon

function at time t and the induction hypothesis,

Jt(mt;T ) = inf
ut∈U

sup
mt+1∈[[Mt+1|mt,ut]]

Jt+1(mt+1;T )

= inf
ut∈U

sup
mt+1∈[[Mt+1|mt,ut]]

sup
at+1∈[[At+1|mt+1]]

(
γt+1·ΛT−t(σt+1(mt+1), γ

t+1) + at+1)

= inf
ut∈U

sup
mt+1,at+1∈[[Mt+1,At+1|mt,ut]]

(γt+1·ΛT−t(σt+1(mt+1), γ
t+1) + γt·ct + at)
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= γt·V T−t+1(σt(mt), γ
t) + sup

at∈[[At|mt]]

at, (2.182)

where, in the third equality, we use at+1 = at + γt·ct and rearrange the terms, and

the fourth equality follows from the same sequence of arguments as time step T . This

proves (2.179) by induction. Then, (2.178) follows directly for all t ∈ N and all n ∈ N

by substituting (2.179) into (2.166) and selecting the horizon T = t+ n− 1.

Theorem 12 allows us to characterize the error between the optimal value V0(y0)

and Λn(σ0(y0), 1) for any y0 ∈ Y by selecting t = 0 in (2.178), it follows that

γn·cmin

1− γ
+ Λn(σ0(y0), 1) ≤ V0(y0) ≤ Λn(σ0(y0), 1) +

γn·cmax

1− γ
, (2.183)

where, recall that a0 = 0 and z0 = 1. These bounds imply that as the number of

iterations n→ ∞, the fixed point Λ∞ satisfies

Λ∞(σ0(y0), 1) = V0(y0). (2.184)

Thus, the DP in (2.176) recursively computes the optimal value of Problem 3. Next,

consider that the infimum is achieved in the RHS of (2.175) for each function Λn,

n ∈ N. Then, we define a time-invariant control strategy π∗ := (π∗, π∗, . . . ) where the

control law at each t ∈ N is the minimizing argument for Λ∞, i.e.,

π∗(s, z) := argmin
u∈U

sup
c∈C,s′∈S

(
c+ γ·Λ∞(s′, γ·z) + ρ(c, s′ | s, u)

z

)
, (2.185)

for all s ∈ S and z ∈ (0, 1]. A corresponding memory-based strategy is g∗ = (g∗0, g
∗
1, . . . )

with g∗t (mt) := π∗(σt(mt), γ
t) for all mt ∈ Mt and all t. Then, g∗ achieves the optimal

value, i.e., V g
∗

0 (y0) = V0(y0) (see proof in Appendix B). Thus, the information-state

gives an optimal solution to Problem 3.

Remark 17. Typically, the infinite-horizon worst-case problem is nonstationary due

to the presence of discounted costs, a concern found also in the analysis of discounted

risk-sensitive problems [200, 201]. To overcome this challenge, we take inspiration

from recent developments in certainty-equivalent risk-sensitive problems from [16,202].
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Thus, when formulating out DP (2.175), we augment the information state s ∈ S

with a deterministic term z ∈ (0, 1] and as a result, the control law π∗ in (2.185) is a

time-invariant function of the variables (s, z) ∈ S × (0, 1]. During implementation, the

control action at each t ∈ N is generated as ut = π∗(st, γ
t), where st the realization

of the information state and zt = γt tracks the accumulated discount at time t. In

contrast, the equivalent control laws using only the information state p∗t (st) := π∗(st, γ
t)

and only the memory g∗t (mt) = p∗t (σt(mt)) are each not time-invariant because of

the presence γt in their respective RHSs. Thus, explicitly tracking the accumulated

discount zt = γt is sufficient to obtain a time-invariant control strategy when the

information state takes values in a time-invariant space, a result consistent with [16,

202].

2.3.5 Examples of Information States

In this subsection, we consider a system with a known state-space model to

present specific information states which satisfy Definition 13. Consider a system with

a state Xt ∈ X which starts at X0 and evolves as Xt+1 = ft(Xt, Ut,Wt), the observation

is Yt = ht(Xt,Wt) and the incurred cost is Ct = dt(Xt, Ut) at each t, where Nt ∈ N

is an uncontrolled disturbance. The uncontrolled variables {X0, Nt,Wt | t ∈ N} take

realizations independently. Next, we give examples of information states for different

cases:

1) Perfectly observed systems: For all t ∈ N, let Yt = Xt, an information state

is St =Xt ∈X .

2) Perfectly observed systems with deep dynamics: For all t ∈ N, let Yt = Xt

and Xt+1 = f(Xt:t−k, Ut,Wt), an information state is St = (Xt−k, . . . , Xt) ∈ X k+1.

3) Partially observed systems: Consider a generic partially observed system.

An information state at each t ∈ N is the function-valued variable St : X → {−∞} ∪

[−amax, 0]. At each t, for a given mt ∈ Mt, its realization is a function st(xt) :=

rt(xt|mt), where rt(·) is an accrued distribution. This is a normalization of the results

in [35,53].

90



4) Systems with action dependent costs: For all t ∈ N, let the cost of a partially

observed system be dt(Ut) ∈ R≥0. Then, an information state is the conditional range

St = [[Xt |Mt]] ∈ B(X ), where B(X ) is the set of all subsets of X .

Remark 18. Definition 13 helps us identify information states when system dynamics

are known. However, such a representation often needs to be learned purely from

observation and cost data, without knowledge of dynamics. Thus, in the next section,

we specialize the notion of information states to systems with observable costs and

define approximate information states that can be learned from output data.

2.3.6 Systems with Observable Costs

In this section, we analyze Problem 3 in the case where the agent observes

the incurred cost at each instance of time. Thus, at each t ∈ N, the agent receives a

realization of (Yt, Ct) and the memory is Mt = (Y0:t, C0:t−1, U0:t−1). We first prove that

for such a system, the accrued distribution in Definition 13 at each t ∈ N reduces to

simply an indicator.

Lemma 15. Consider Problem 3 with observable costs. At each t ∈ N, for any given

realizations ct ∈ C, mt+1 ∈ Mt+1, mt ∈ Mt, and ut ∈ U , it holds that

rt(ct,mt+1 |mt, ut) = I(ct,mt+1 |mt, ut). (2.186)

Proof. Let the given realization of the memory at time t be mt = (ỹ0:t, c̃0:t−1, ũ0:t−1).

Then, we expand the accrued distribution at any t as

rt(ct,mt+1 |mt, ut) = sup
at∈A

(
at + I(at, ct,mt+1 |mt, ut)

)
− sup

at∈A

(
at + I(at |mt)

)
= sup

at∈A

(
at + I(at |mt, ut, ct,mt+1) + I(ct,mt+1 |mt, ut)

)
−

t−1∑
ℓ=0

γℓ·c̃ℓ

=
t−1∑
ℓ=0

γℓ·c̃ℓ + I(ct,mt+1 |mt, ut)−
t−1∑
ℓ=0

γℓ·c̃ℓ = I(ct,mt+1 |mt, ut), (2.187)

where, in the second equality, the realization of At is determined as ãt =
∑t−1

ℓ=0 γ
ℓ·c̃ℓ

given mt; and in the third equality, I(at |mt, ut, ct,mt+1) = 0 only if at = ãt.
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Motivated by the result of Lemma 15, we present a simpler notion of information

states.

Definition 14. An information state for Problem 3 with observable costs at any t ∈ N

is an uncertain variable S̄t = σ̄t(Mt) taking values in a bounded, time-invariant set S̄.

For all t ∈ N, for all mt ∈ Mt and ut ∈ Ut, it satisfies that

[[Ct, S̄t+1 |mt, ut]] = [[Ct, S̄t+1 | σ̄t(mt), ut]], (2.188)

where each conditional range in (2.188) can be evaluated independent of the choice of

strategy g.

Next, we use the information state from Definition 14 to construct a time-

invariant operator T̄ : [S̄ → R] → [S̄ → R], such that, for any uniformly bounded

function Λ̄ : S̄ → R,

[T̄ Λ̄](s̄) := inf
u∈U

sup
c,s̄′∈[[C,S̄′|s̄,u]]

(
c+ γ·Λ̄(s̄′)

)
. (2.189)

Note that (2.189) is simpler than (2.175) and T̄ is also a contraction mapping. Thus,

Λ̄ = T̄ Λ̄ admits a unique solution Λ̄∞ = T̄ Λ̄∞. Starting with Λ̄0(s̄) := 0, the fixed-

point iteration around T̄ generates a sequence of functions

Λ̄n+1(s̄) = [T̄ Λ̄n](s̄) = [T̄ nΛ̄0](s̄), (2.190)

for all n = 1, 2, . . . , such that limn→∞ T̄ nΛ̄0 = Λ̄∞. Next, we establish error bounds

for using Λ̄n(σ̄t(mt)), n ∈ N, to estimate Vt(mt) for all t in Problem 3 with observable

costs.

Theorem 13. Consider the function Λ̄n generated using (2.190) for any n ∈ N. Then,

for all t ∈ N, it holds that

γn+t·cmin

1− γ
+ γt·Λ̄n(σ̄t(mt)) + sup

at∈[[At|mt]]

at ≤ Vt(mt)

≤ sup
at∈[[At|mt]]

at + γt·Λ̄n(σ̄t(mt)) +
γn+t·cmax

1− γ
. (2.191)
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Proof. We show (2.191) by combining arguments in Theorem 12 with (2.186) from

Lemma 15. Thus, we first show that for any horizon T ∈ N, the following holds for

each t = 0, . . . , T :

Jt(mt;T ) = γt·Λ̄T−t+1
(
σ̄t(mt)

)
+ sup

at∈[[At|mt]]

at. (2.192)

We can prove (2.192) by induction. At time T , using the definition of the finite-horizon

function

JT (mT ;T )

= inf
uT∈U

sup
aT ,cT∈[[AT ,CT |mT ,uT ]]

(aT + γT ·cT )

= inf
uT∈U

sup
cT∈[[CT |mT ,uT ]]

cT + sup
aT∈[[AT |mT ]]

aT

= inf
uT∈U

sup
cT ,σ̄T+1(mT+1)∈[[CT ,ST+1|mT ,uT ]]

(cT + γT ·Λ̄0(σ̄T+1(mT+1))) + sup
aT∈[[AT |mT ]]

aT

= Λ̄1(σT (mT )) + sup
aT∈[[AT |mT ]]

aT , (2.193)

where, in the second equality, note that AT is completely determined given MT as in

Lemma 15; and in the third equality, we note that Λ̄0(σ̄T+1(mT+1)) = 0. This forms

the basis of our induction. Next, consider as a hypothesis that (2.192) holds at time

t+ 1. Using the definition of the finite-horizon function at time t,

Jt(mt;T )

= inf
ut∈U

sup
mt+1∈[[Mt+1|mt,ut]]

sup
ct,at∈[[Ct,At|mt+1]]

(
γt+1·Λ̄T−t(σ̄t+1(mt+1)) + γt·ct + at

)
= inf

ut∈U
sup

ct,at,mt+1∈[[Ct,At,Mt+1|mt,ut]]

(
γt+1·Λ̄T−t(σ̄t+1(mt+1)) + γt·ct + at

)
= inf

ut∈U
sup

ct,σ̄t+1(mt+1)∈[[Ct,S̄t+1|mt,ut]]

(
γt+1·Λ̄T−t(σ̄t+1(mt+1)) + γt·ct

)
+ sup

at∈[[At|mt]]

at

= inf
ut∈U

sup
ct,σ̄t+1(mt+1)∈[[Ct,S̄t+1|σ̄t(mt),ut]]

(
γt+1·Λ̄T−t(σ̄t+1(mt+1)) + γt·ct

)
+ sup

at∈[[At|mt]]

at

= γt · Λ̄T−t+1(σ̄t(mt)) + sup
at∈[[At|mt]]

at (2.194)
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, where, in the third equality, we use the same arguments as in Lemma 15; in the

fourth equality, we use (2.188) from Definition 14; and in the last equality, we use the

definition of Λ̄T−t+1 from (2.190). This proves (2.192) using induction. Then, (2.191)

follows directly for all t ∈ N and all n ∈ N by substituting (2.192) into (2.166) and

selecting a horizon T = t+ n− 1.

In (2.191), we select t = 0 and let n→ ∞ to establish that Λ̄∞(σ̄0(y0)) = V0(y0).

Thus, when Problem 3 has observable costs, the fixed point Λ̄∞ computes the optimal

value function V0 as a direct consequence of Theorem 13. Next, consider that the

infimum is achieved in the RHS of [T̄ Λ̄n](s̄) for all s̄ ∈ S̄ and n ∈ N. We define a

strategy π∗ = (π∗, π∗, . . . ), where π̄∗ : S̄ → U is the minimizing argument in RHS of

(2.189) for Λ = Λ̄∞. Then, from the same arguments as in Subsection 2.3.4, it holds

that the memory-based strategy ḡ∗ = (ḡ∗0, ḡ
∗
1, . . . ), where ḡ

∗
t := π̄∗(σt(mt)), gives an

optimal solution to Problem 3 with observable costs.

Remark 19. If a partially observed system with observable costs has the state-space

model from Subsection 2.3.5, an information state at each t is S̄t = [[Xt|Mt]] ∈ B(X ).

This is simpler than the accrued cost function in Subsection 2.3.5.

Remark 20. When attempting to learn an information state that satisfies Definition

14 using only output data, we may not be able to satisfy (2.188) exactly. Thus, in

Subsection 2.3.7, we relax this definition for approximate information states.

2.3.7 Approximate Information States

In this subsection, we define approximate information states that approximately

satisfy (2.188), and construct a time-invariant approximate DP of Problem 3 using

them. Then, we bound the resulting error estimating the optimal value and the per-

formance loss of the resulting approximate strategy.
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Definition 15. An approximate information state for Problem 3 with observable costs

at any t ∈ N is an uncertain variable Ŝt = σ̂t(Mt) taking values in a bounded, time-

invariant set Ŝ. Furthermore, there exists a parameter ϵ ∈ R≥0 such that for all

mt ∈ Mt and ut ∈ U and t ∈ N, it satisfies

H
(
[[Ct, Ŝt+1|mt, ut]], [[Ct, Ŝt+1|σ̂t(mt), ut]]

)
≤ ϵ, (2.195)

where each conditional range in (2.195) can be evaluated independent of the choice of

strategy g.

To compute an approximate value and an approximate control strategy, we

proceed with approximate information states just as we did with information states.

First, we construct a time-invariant operator T̂ : [Ŝ → R] → [Ŝ → R], such that for

any uniformly bounded function Λ̂ : Ŝ → R,

[T̂ Λ̂](ŝ) := inf
u∈U

sup
c,ŝ′∈[[C,Ŝ′|ŝ,u]]

(
c+ γ·Λ̂(ŝ′)

)
. (2.196)

Note that T̂ is a contraction mapping and thus, the equation Λ̂ = T̂ Λ̂ admits a unique

solution Λ̂∞ = T̂ Λ̂∞. Then, starting with Λ̂0(ŝ) := 0 the fixed-point iteration around

T̂ recursively generates the functions

Λ̂n+1(ŝ) = [T̂ Λ̂n](ŝ) = [T̂ nΛ̂0](ŝ), (2.197)

for all n = 1, 2, . . . , such that limn→∞ T̂ nΛ̂0 = Λ̂∞. This forms our approximate DP

decomposition. Next, consider that the infimum is achieved in the RHS of [T̂ Λ̂n](ŝ)

for all ŝ ∈ Ŝ and all n ∈ N. We an approximate strategy π̂∗ = (π̂∗, π̂∗, . . . ), where

π̂∗ : Ŝ → U is the minimizing argument in the RHS of (2.196) for Λ̂ = Λ̂∞. Then, a

corresponding memory-based strategy is ĝ∗ := (ĝ∗0, ĝ
∗
1, . . . ) with ĝ∗t := π∗(σt(mt)) for

all t ∈ N. Next, we bound both the approximation error between the optimal value

V0(y0) and Λ̂∞(σ̂0(y0)), and the performance loss when implementing ĝ∗ to generate

the control actions.
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Theorem 14. Let the functions Λ̂n be Lipschitz continuous with a constant LΛ̂ ∈R≥0

for all n∈N. Then, we have that

a) |V0(y0)− Λ̂∞(σ̂0(y0))| ≤ L̂·ϵ·(1− γ)−1, (2.198)

b) |V0(y0)− V ĝ
∗

0 (y0)| ≤ 2·L̂·ϵ·(1− γ)−1, (2.199)

where L̂ = max{γ·LΛ̂, 1}.

Proof. We show (2.198) using (2.166) from Lemma 14. Thus, we first show that for

any T ∈N, it holds for all t = 0, . . . , T :

|Jt(mt;T )−γt·Λ̂T−t+1
(
σ̂t(mt)

)
− sup
at∈[[At|mt]]

at| ≤ βt(T ), (2.200)

where βt(T ) = βt+1(T ) + γt·L̂·ϵ and βT (T ) = γT ·L̂·ϵ. We prove (2.200) by induction.

At time T , recall that JT (mT ;T ) = infuT∈U supcT∈[[CT |mT ,uT ]] γ
T ·cT + supaT∈[[AT |mT ]] aT

using the arguments in Lemma 15. This implies that

∣∣∣JT (mT ;T )− γT ·Λ̂1
(
σ̂T (mT )

)
− sup

aT∈[[AT |mT ]]

aT

∣∣∣
=
∣∣∣ inf
uT∈U

sup
cT∈[[CT |mT ,uT ]]

γT ·cT − γT ·Λ̂1
(
σ̂T (mT )

)∣∣∣
=γT ·

∣∣∣ inf
uT∈U

sup
cT ,ŝT+1∈[[CT ,ŜT+1|mT ,uT ]]

(cT + γ·Λ̂0(ŝT+1))

− inf
uT∈U

sup
cT ,ŝT+1∈[[CT ,ŜT+1|σ̂T (mT ),uT ]]

(cT + γ·Λ̂0(ŝT+1))
∣∣∣

≤ γT ·L̂· sup
uT∈U

H
(
[[CT , ŜT+1|mT , uT ]], [[CT , ŜT+1|σ̂T (mT ), uT ]]

)
≤ γT ·L̂·ϵ, (2.201)

where, in the second equality, we note that Λ0(ŝT+1) = 0 identically; in the first

inequality, we note that L̂ = max{γ·LΛ̂, 1} is the Lipschitz constant of (cT+γ·Λ̂0(ŝT+1))

with respect to (cT , ŝT+1) and use (2.157); and in the second inequality, we use (2.195).

This forms the basis of our induction. Next, we consider the hypothesis that (2.198)

holds at time t + 1. Using the hypothesis and rearranging terms, Jt+1(mt+1;T ) ≤

βt+1(T ) + γt+1·Λ̂T−t (σ̂t+1(mt+1)) + supat+1∈[[At+1|mt+1]] at+1. Then, at time t,
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∣∣∣Jt(mt;T )− γt·Λ̂T−t+1
(
σ̂t(mt)

)
− sup

at∈[[At|mt]]

at

∣∣∣
≤ βt+1(T ) +

∣∣∣ inf
ut∈U

sup
mt+1∈[[Mt+1|mt,ut]]

(
γt+1·Λ̂T−t(σ̂t+1(mt+1))

+ sup
at,ct∈[[At,Ct|mt+1]]

(at + γt·ct)
)
− γt·Λ̂T−t+1(σ̂t(mt))− sup

at∈[[At|mt]]

at

∣∣∣
≤ βt+1(T ) + γt· sup

ut∈U

∣∣∣ sup
ct,σ̂t+1(mt)∈[[Ct,Ŝt+1|mt,ut]]

(
ct + γ·Λ̂T−t(σ̂t+1(mt+1))

)
− sup

ct,ŝt+1∈[[Ct,Ŝt+1|σ̂t(mt),ut]]

(ct + γ·Λ̂T−t(ŝt+1))
∣∣∣
≤ βt+1(T ) + γt·L̂·ϵ, (2.202)

where, in the second inequality, we use arguments in Lemma 15 for [[At, Ct|mt+1]] =

[[At|mt+1]]× [[Ct|mt+1]]; and, in the third inequality we use (2.157) and (2.195). This

proves (2.200) for all t using induction.

Next, for the iterated function Λ̂n, we select a horizon T = n− 1 and set t = 0

in (2.200), to write that |J0(y0;T )− Λ̂n(σ̂0(y0))| ≤ β0(T ), where β0(T ) =
∑n−1

ℓ=0 γ
ℓ·L̂·ϵ.

As n→ ∞ with T = n− 1, note that limT→∞ J0(y0;T ) = V0(y0), limn→∞ Λ̂n(σ̂0(y0)) =

Λ̂∞(σ̂0(y0)), and limT→∞ β0(T ) = L̂·ϵ
1−γ . The proof for (2.199) follows from a similar

series of arguments.

2.3.8 Alternate Characterization

When exploring whether an uncertain variable is a valid candidate to be con-

sidered for an approximate information state, it may be difficult to verify (2.195).

Thus, we present two stronger conditions that are easier to verify. To establish that

Ŝt = σ̂t(Mt), t ∈ N, satisfies (2.195), the following two conditions should hold (see

proof in Appendix C:

1) State-like evolution: There exists a Lipschitz continuous function ψ : Ŝ ×U ×

Y → S independent of the strategy g. , such that

σ̂t+1(Mt+1) = ψ(σ̂t(Mt), Ut, Yt+1). (2.203)
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2) Sufficient to approximate outputs: For all mt ∈ Mt and ut ∈ U , there exists

a constant δ ∈ R≥0 such that

H([[Ct, Yt+1|mt, ut]]], [[Ct, Yt+1|σ̂t(mt), ut]]) ≤ δ, (2.204)

where each conditional range in (2.204) can be evaluated independent of the choice of

strategy g.

2.3.9 Numerical Example

We consider an agent pursuing a target across a 5 × 5 grid with obstacles. At

each t ∈ N, the agent’s position Xag
t and the target’s position Xta

t each take values

in the set of grid cells X =
{
(0, 0), (0, 1), . . . , (4, 4)

}
\ O, where O ⊂ X is the set of

obstacles. Let W = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}, N = {(0,−1), (0, 0), (0, 1)},

and U = W ×{ξ}, where ξ denotes a “stop” action. Starting at Xta
0 ∈ X , the target’s

position evolves as Xta
t+1 = δ(Xta

t +Wt ∈ X )·(Xta
t +Wt) + (1− δ(Xta

t +Wt ∈ X ))·Xta
t ,

whereWt ∈ W and δ is returns 1 or 0 after checking the argument. At each t, the agent

observes their own position perfectly and the target’s position as Yt = δ(Xta
t + Nt ∈

X )·(Xta
t +Nt)+ (1− δ(Xta

t +Nt ∈ X ))·Xta
t , where Nt ∈ N . Then, the agent selects an

action Ut ∈ U which is either to move or to stop. If the agent moves, i.e., Ut ̸= ξ, then

Xag
t+1 = δ(Xag

t + Ut ∈ X )·(Xag
t + Ut) + (1− δ(Xag

t + Ut ∈ X ))·Xag
t . The agent incurs a

cost Ct = 2. If the agent stops, i.e., Ut = ξ, they incur a terminal cost 10·η(Xta
T , X

ag
T )

for the L1 distance from the target. We illustrate this pursuit problem in Fig. 2.8(a),

where the black cells are obstacles, the red triangle is the agent, the blue circle is the

observation, and the blue disk is the target.

We consider the pursuit problem when the agent is aware of their own dynam-

ics, but unaware of the observation model and target’s dynamics. Thus, we train an

approximate information state (AIS) model to learn a representation of the target’s

dynamics using observations, actions, and incurred costs to enforce (2.203) and (2.204).

The AIS is generated by a neural networks in an encoder-decoder architecture, as shown

in Fig. 2.8(b). At each t ∈ N, the encoder ψ receives as an input the observation Yt
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(a) The grid (b) Encoder-decoder architecture

Figure 2.8: The pursuit problem with xag0 = (0, 1), xta0 = (4, 3) and y0 = (4, 2) is in (a).
The neural network architecture for the AIS is in (b).

and previous AIS Ŝt−1 and generates Ŝt. It consists of a linear layer of size (2, 4) with

ReLU activation, followed by a gated recurrent unit (GRU) with a hidden state size

of 4. The hidden state of the GRU constitutes the AIS Ŝt updated recurrently as

Ŝt = ψ(Ŝt−1, Yt), thus enforcing (2.203). Note that our AIS is independent from the

agent’s position and action because the target moves independent from the agent. The

decoder is comprised of two separate units, each of which is selected according to the

action Ut. If Ut = ξ, we use the network ϕc which takes as an input the agent’s position

Xag
t and the AIS Ŝt and generates a set of possible terminal costs K̂c := [[Ct|Xag

t , Ŝt]].

This network comprises of two linear layers with dimensions (6, 16) and (16, 9), where

the first layer has ReLU activation and the second has sigmoid activation. If Ut ̸= ξ, we

use the network ϕy which takes the AIS Ŝt as an input and generates the conditional

range K̂y := [[Yt+1|Ŝt]]. This network comprises of two linear layers with dimensions

(6, 16) and (16, 23), where the first layer has ReLU activation and the second has

sigmoid activation.

We train the entire model simultaneously using the outputs of the decoder. At

each t ∈ N, the training loss is given by the Hausdorff distance between the one-hot

encoded incoming data point, either Ct or Yt+1, and the current predicted set. Since

the Hausdorff distance is not differentiable, we adapt the distance-transform-based

surrogate loss proposed in [198]. Note that we cannot observe the true underlying
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set and thus train the predictions against sampled data points to eventually learn the

feasible sets. We train the network for 3× 106 instances with a learning rate of 0.0003.

In each instance, we randomly initialize the agent and target’s positions from the pink

and blue hatched cells in Fig. 2.8(a) and randomize all subsequent noises, disturbances

and actions.

Next, we utilize the trained encoder’s output AIS and the agent’s position as a

state input to a deep Q-learning network (DQN) with two layers of (6, 3) and (3, 6) and

a LeakyReLU activation each. We train this AIS-DQN using an exploratory policy for

3×106 instances with a learning rate of 0.0005 using a maximally risk-averse approach

from [28] with high risk-aversion 0.9, to learn to minimize the worst-case discounted cost

with γ = 0.97. We compare the worst-case performance of the greedy strategy of the

trained AIS-DQN with the worst-case performance of a trained stochastic-DQN, which

uses the observation and position as the state and has the same hyperparameters with

no risk-aversion. In Fig. 2.9, we present the improvement in worst-case cost achieved

by AIS-DQN over stochastic-DQN in 104 simulations each for different initial positions.

Note that AIS-DQN outperforms stochastic-DQN for most cases.

Appendix A - Proof that the Dynamic Programming Operator is a Con-

traction Mapping

In this appendix, we prove that the operator T defined in (2.175) is a contraction

mapping.

Lemma 16. Consider the operator T defined in (2.175). There exists a constant

α ∈ [0, 1) such that for two functions Λ : S × (0, 1] → R and Λ̃ : S × (0, 1] → R:

||T Λ− T Λ̃||∞ ≤ α·||Λ− Λ̃||∞. (2.205)

Proof. Using the definition of T , we expand the left hand side (LHS) of (2.205) as

||T Λ− T Λ̃||∞
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Figure 2.9: The improvement in worst-case performance using AIS-DQL over
stochastic-DQL.

= sup
s∈S,z∈(0,1]

∣∣∣ inf
u∈U

sup
s′∈S,c∈C

(
c+ γ·Λ(s′, γ·z) + ρ(c, s′ | s, u)

z

)
− inf

u∈U
sup

s′∈S,c∈C

(
c+ γ·Λ̃(s′, γ·z) + ρ(c, s′ | s, u)

z

)∣∣∣
≤ γ· sup

s′∈S,γ·z∈(0,γ]
|Λ(s′, γ·z)− Λ̃(s′, γ·z)|

≤ γ· sup
s∈S,z∈(0,1]

|Λ(s, z)− Λ̃(s, z)|

= γ·||Λ− Λ̃||∞, (2.206)

where, in the first inequality, we upper bound the difference between supremum values

of two functions by the supremum difference between the two functions; and in the

second inequality, we use (0, γ] ⊂ (0, 1] in the argument of the supremum. This proves

that the operator T is a contraction mapping by setting α = γ.
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Appendix B - Proof that Information States Yield an Optimal Control

Strategy

In this appendix, we prove that the information-state based control strategy

π∗ = (π∗, π∗, . . . ) and corresponding memory-based control strategy g∗ = (g∗0, g
∗
1, . . . )

defined in Subsection 2.3.4 are optimal solutions to Problem 3. Recall from Subsection

2.3.4 that the information-based control law is π∗(s, z) = argminu∈U supc∈C,s′∈S(c +

γ·Λ∞(s′, γ·z) + ρ(c,s′|s,u)
z

) for all s ∈ S and z ∈ (0, 1]. Furthermore, recall that the

memory-based control law is g∗t (mt) = π∗(σt(mt), γ
t) for all mt ∈ Mt and t ∈ N. To

begin, for any time-invariant control law π : S × (0, 1] → U , we define a law-dependent

operator T (π) : [S × (0, 1] → R] → [S × (0, 1] → R], such that for any uniformly

bounded function Λ : S × (0, 1] → R, we have:

[T (π)Λ](s, z) := sup
c∈C,s′∈S

(
c+ γ·Λ(s′, γ·z) + ρ(c, s′|s, π(s, z))

z

)
. (2.207)

Note that the control action in the RHS of (2.207) is selected using as u = π(s, z).

Furthermore, by definition of π∗ it holds that for all s ∈ S and z ∈ (0, 1]:

[T (π∗)Λ∞](s, z) = [T Λ∞](s, z) = Λ∞(s, z). (2.208)

Then, we can construct a corresponding memory-based control law at each t ∈ N as

gt(mt) := π(σt(mt), γ
t) and a memory-based control strategy g = (g0, g1, . . . ). Next, we

establish that we can use [T (π)nΛ0](σt(mt), γ
t) for any n ∈ N to estimate the strategy-

dependent value V gt (mt) at each t ∈ N.

Lemma 17. For all t ∈ N and all n ∈ N, it holds that:

γn+t·cmin

1− γ
+ γt·[T (π)nΛ0](σt(mt), γ

t) + sup
at∈[[At|mt]]

at

≤ V gt (mt)

≤ sup
at∈[[At|mt]]

at + γt·[T (π)nΛ0](σt(mt), γ
t) +

γn+t·cmax

1− γ
. (2.209)

Proof. The proof follows using the same sequence of arguments as the proof for Theo-

rem 12, but by using (2.165) from Lemma 14 along with ut = gt(mt) := π(σt(mt), γ
t).
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We can set t = 0 in (2.209) and note that

γn·cmin

1− γ
+ [T (π)nΛ0](σ0(y0), 1) ≤ V gt (mt) ≤ [T (π)nΛ0](σt(mt), 1) +

γn·cmax

1− γ
, (2.210)

where recall that A0 = 0 always. Thus, as a direct consequence of Lemma 17, it holds

that [limn→∞ T (π)n]Λ0(σ0(y0), 1) = V g0 (y0). Next, we prove that limn→∞ T (π∗)n = Λ∞.

Lemma 18. For all s ∈ S and z ∈ (0, 1], it holds that

[ lim
n→∞

T (π∗)n](s, z) = Λ∞(s, z). (2.211)

Proof. We begin by showing that the LHS of (2.211) forms an upper bound on the

RHS. By definition, note that [T (π)Λ](s, z) ≥ [T Λ](s, z) for any control law π and for

all s ∈ S, z ∈ (0, 1]. Taking the limit on both sides with π = π∗, this implies for all

s ∈ S, z ∈ (0, 1] that

[ lim
n→∞

T (π∗)nΛ0](s, z) ≥ [ lim
n→∞

T nΛ0](s, z) = Λ∞(s, z). (2.212)

Next, we prove that the LHS of (2.211) also forms a lower bound on the RHS. From

(2.208), it holds that Λ∞ = T (π∗)Λ∞ = limn→∞ T (π∗)nΛ∞. Then, using Λ∞ ≥ Λ0 = 0,

we write for all s ∈ S and z ∈ (0, 1] that

Λ∞(s, z) = lim
n→∞

T (π∗)nΛ∞ ≥ [ lim
n→∞

T (π∗)nΛ0](s, z). (2.213)

Using (2.212) and (2.213) simultaneously establishes (2.211).

Then, as a direct consequence of both Lemmas 17 and 18, we can conclude that

V g
∗

t (y0) = [ lim
n→∞

T (π)n]Λ0(σ0(y0), 1) = Λ∞(σ0(y0), 1) = V0(y0), (2.214)

where in the last equality, we use (2.184). This proves that the control strategies g∗

and π∗ are optimal solutions to Problem 3.
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Appendix C - Proof that the Alternate Characterization Defines an Ap-

proximate Information State

In this appendix, we prove that the alternate characterization presented in Sub-

section 2.3.8 using the properties (2.203) and (2.204) is sufficient to establish (2.195)

in Definition 15.

Lemma 19. For all t ∈ N, if an uncertain variable Ŝt = σ̂t(Mt) satisfies (2.203) -

(2.204), it also satisfies (2.195).

Proof. Let mt ∈ Mt be a given realization of Mt and let ŝt = σ̂t(st) satisfy (2.203) -

(2.204), for all t. Let Kob
t := [[Ct, Yt+1|mt, ut]] and K̂ob

t := [[Ct, Yt+1|σ̂t(mt), ut]]. Then,

using (2.203), we can write the LHS in (2.195) as

H
(
[[Ct, ψ(σ̂t(mt), ut, Yt+1)|mt, ut]], [[Ct, ψ(σ̂t(mt), ut, Yt+1)|σ̂t(mt), ut]]

)
= max

{
sup

(ct,yt+1)∈Kob
t

inf
(ĉt,ŷt+1)∈K̂ob

t

(
η(ct, ĉt) + η

(
ψ(σ̂t(mt), ut, yt+1), ψ(σ̂t(mt), ut, ŷt+1)

))
,

sup
(ĉt,ŷt+1)∈K̂ob

t

inf
(ct,yt+1)∈Kob

t

(
η(ct, ĉt) + η

(
ψ(σ̂t(mt), ut, yt+1), ψ(σ̂t(mt), ut, ŷt+1)

))}
, (2.215)

where, in the second equality, we use the definition of the Hausdorff distance from

(2.156). Note that ψ is globally Lipschitz from the alternate characterization of the

approximate information state. This implies that

η
(
ψ(σ̂t(mt), ut, yt+1), ψ(σ̂t(mt), ut, ŷt+1)

)
≤ Lψ·η(yt+1, ŷt+1), (2.216)

and thus

H
(
[[Ct, ψ(σ̂t(mt), ut, Yt+1)|mt, ut]], [[Ct, ψ(σ̂t(mt), ut, Yt+1)|σ̂t(mt), ut]]

)
≤ Lψ·max

{
sup

(ct,yt+1)∈Kob
t

inf
(ĉt,ŷt+1)∈K̂ob

t

(
η(ct, ĉt) + η(yt+1, ŷt+1

)
,

sup
(ĉt,ŷt+1)∈K̂ob

t

inf
(ct,yt+1)∈Kob

t

(
η(ct, ĉt) + η(yt+1, ŷt+1

)}
= Lψ·H(Kob

t , K̂ob
t ) ≤ Lψ·δ. (2.217)

Thus, (2.195) is satisfied by selecting ϵ = Lψ·δ.
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Chapter 3

DECENTRALIZED CONTROL FOR TEAMS WITH INFORMATION
ASYMMETRY

3.1 Decentralized Control of Two Agents with Nested Accessible Informa-

tion

3.1.1 Notation and Preliminaries

In our exposition, random variables are denoted with upper case letters and

their realization by the corresponding lower case letters. For integers a < b, Xa:b

is shorthand for the vector (Xa, Xa+1, · · · , Xb) and Xa:b is shorthand for the vector

(Xa, Xa+1, · · · , Xb). When a > b, the dimension of Xa:b is 0. The combined notation

with c < d and a < b, Xc:d
a:b is short for the vector (Xj

i : i = a, a + 1, · · · , b, j =

c, c+ 1, · · · , d).

3.1.2 Problem Formulation

We consider a team of two agents who take actions over T ∈ N discrete time

steps. For each t = 0, . . . , T , the state of the team is denoted by the random variable

Xt which takes values in a finite set Xt. The action of an agent k = 1, 2 at time t is Uk
t ,

which takes values in a finite set Uk
t . We denote the tuple (U1

t , U
2
t ) by U

1:2
t . Starting

at the initial state X0, the system evolves as

Xt+1 = ft
(
Xt, U

1:2
t ,Wt

)
, t = 0, . . . , T − 1, (3.1)

where Wt is an uncontrolled disturbance which takes values in a finite set Wt. At each

t = 0, . . . , T , each agent k = 1, 2 makes an observation

Y k
t := hkt (Xt, V

k
t ), (3.2)
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which takes values in a finite set Yk
t . Here, V k

t is a measurement noise which takes

values in a finite set Vkt . The external disturbances {Wt : t = 0, . . . , T}, measurement

noises {V 1
t , V

2
t : t = 0, . . . , T}, and initial state X0 are collectively called the primitive

random variables of the team and their probability distributions are known a priori.

We assume that each primitive random variable is independent of all other primitive

random variables to ensure that the system’s evolution is Markovian [12].

Definition 16. For all t = 0, . . . , T , the memory of an agent k = 1, 2 is a set of random

variables Mk
t ⊆ {Y 1:2

0:t , U
1:2
0:t−1}, which takes values in a finite collection of sets Mk

t and

satisfies perfect recall, i.e, Mk
t−1 ⊆Mk

t , with M
k
−1 := ∅.

We partition the memory M2
t of agent 2 into two components, the common

information A2
t and private information L2

t , which are described next:

1) The common information is a subset of the memory of agent 2 which is also

available to agent 1. For all t = 0, . . . , T, we define the common information as a set

of random variables A2
t ⊆ M2

t which takes values in a finite collection of sets A2
t and

satisfies the properties: (1) accessibility to agent 1, i.e., A2
t ⊆ M1

t , and (2) perfect

recall, i.e., A2
t−1 ⊆ A2

t , with A
2
−1 := ∅.

2) The private information of agent 2 is a subset of their memory which is

unavailable to agent 1. For all t = 0, . . . , T , we define the private information as the

set of random variables L2
t := M2

t \ A2
t which takes values in a finite collection of sets

L2
t . We impose the condition L2

t ∩M1
t = ∅ to specify that agent 1 can not access the

private information of agent 2 at each t.

The second property of the common information of agent 2 motivates us to

define the new information added to A2
t , for all t = 0, . . . , T , as the set of random

variables Z2
t := A2

t \A2
t−1 which takes values in a finite collection of sets Z2

t . Note that

Z2
0 := A2

0. Analogously, for all t = 0, . . . , T , we define the new information added to the

memory of agent 1 as the set of random variables Z1
t :=M1

t \M1
t−1 which takes values in

a finite collection of sets Z1
t , where Z

1
0 :=M1

0 . In our information structure, we enforce

that for all t, the new information of agent 2 must satisfy Z2
t ⊆ L2

t ∪{Y 1:2
t , U1:2

t−1}. This
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ensures that Z2
t ̸⊂M1

t−1 and Z
2
t ⊆ Z1

t , i.e., Z
2
t is not accessible to agent 1 prior to time

t and becomes accessible to agent 1 at time t.

Remark 21. The common information A2
t of agent 2 has a restriction in teams with

nested accessible information imposed by the property Z2
t ̸⊂ M1

t−1. The presence of

this restriction allows us to specialize our results to systems where the information

available to agent 1 but unavailable to agent 2, i.e., M1
t \ A2

t , may grow in size with

time.

Remark 22. As an example of an information structure which satisfies Z2
t ̸⊂ M1

t−1,

consider one-directional communication from 2 to 1 with a delay of d ∈ N time steps.

In such a system, M1
t = {Y 1

0:t, U
1
0:t−1, Y

2
0:t−d, U

2
0:t−d} and M2

t = {Y 2
0:t, U

2
0:t−1}. Then,

A2
t = {Y 2

0:t−d, U
2
0:t−d}, L2

t = {Y 2
t−d+1:t, U

2
t−d+1:t−1}, and the set M1

t \ A2
t = {Y 1

0:t, U
1
0:t−1}

grows in size with time.

For all t = 0, . . . , T , each agent k = 1, 2 uses a control law gkt : Mk
t → Uk

t to

select their action

Uk
t = gkt (M

k
t ), (3.3)

where M2
t = {L2

t , A
2
t}. We define the control strategy of agent k as gk := (gkt : t =

0, . . . , T ) and the control strategy of the team as g := (g1, g2). The set of all feasible

control strategies is G. After each agent k = 1, 2 selects their action Uk
t at time t,

the team incurs a cost ct(Xt, U
1:2
t ) ∈ R≥0. The performance criterion over the finite

horizon T is

J (g) = Eg
[

T∑
t=0

ct
(
Xt, U

1:2
t

)]
, (3.4)

where the expectation is with respect to the joint probability distribution on all random

variables. Next, we state the optimization problem for the team.

Problem 4. The optimization problem for the team is infg∈G J (g), given the distribu-

tions of the primitive random variables {X0,W0:t, V
1:2
0:t }, and the dynamics {ct, ft, h1:2t :

t = 0, . . . , T}.

107



Problem 4 is guaranteed to have a solution because all variables take values in

finite sets. Our goal is to derive a structural form for an optimal strategy g∗ ∈ G in

Problem 4 which can be computed using a DP decomposition.

3.1.3 Analysis Using Prescriptions

3.1.3.1 Analysis for Agent 1

In this subsection, we derive a structural form for an optimal control strategy of

agent 1. We first note that given a strategy g2, agent 1 cannot generate the action U2
t

for each t because they cannot access the complete memory M2
t = {L2

t , A
2
t}. However,

they can access the component A2
t . This motivates us to consider a two stage process

for the generation of the action of agent 2: (1) agent 1 generates a prescription for

agent 2 using only A2
t , and (2) agent 2 computes U2

t using this prescription and their

private information L2
t .

Definition 17. For all t = 0, . . . , T , a prescription for agent 2 is a mapping Γ2
t : L2

t →

U2
t which takes values in a finite set F2

t .

At each t, the prescription for agent 2 is generated using a prescription law

ψ2
t : A2

t → F2
t , which yields Γ2

t = ψ2
t (A

2
t ). We call ψ2 := (ψ2

t : t = 0, . . . , T ) the

prescription strategy for agent 2. Given a prescription Γ2
t , the action of agent 2 is

computed as U2
t = Γ2

t

(
L2
t

)
. Next, we use the person-by-person approach to set up a

“new” centralized problem for agent 1. We proceed by arbitrarily fixing the prescription

strategy ψ2 for agent 2. Since the prescription Γ2
t is generated using only the common

information A2
t ⊆ M1

t , agent 1 can derive the prescription using the fixed strategy as

Γ2
t = ψ2

t (A
2
t ). Then, we define a new state for agent 1 as S1

t := {Xt, L
2
t , A

2
t} for all t,

which takes values in a finite collection of sets S1
t . Given a prescription strategy ψ2,

we can construct a state evolution function f̄ 1
t (·), such that S1

t+1 = f̄ 1
t (S

1
t , U

1
t ,Wt, V

1:2
t+1)

and an observation rule h̄1t (·) which yields Z1
t+1 = h̄1t (S

1
t , U

1
t ,Wt, V

1:2
t+1) for all t =

0, . . . , T − 1. The existence of these functions can be verified using the dynamics

and information structure of the system to write the LHS in terms of the variables
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in the RHS. Similarly, we can construct a cost function c̄1t (·) which yields the cost

c̄1t (S
1
t , U

1
t ) := ct(Xt, U

1
t , ψ

2
t (A

2
t )(L

2
t )) for all t. Then, for a given prescription strategy

ψ2, the new centralized problem for agent 1 has state S1
t , control action U

1
t , observation

Z1
t , and cost c̄1t (S

1
t , U

1
t ) at time t. Furthermore, the performance criterion is J 1(g1) :=

Eg1 [
∑T

t=0 c̄
1
t (S

1
t , U

1
t )].

Problem 5. The problem for agent 1 is infg1 J 1(g1), given a prescription strategy ψ2,

the probability distributions of the primitive random variables {X0,W0:t, V
1:2
0:t }, and

the dynamics {c̄1t , f̄ 1
t , h̄

1
t : t = 0, . . . , T}.

Lemma 20. For a given control strategy g2, consider a prescription strategy ψ2 such

that

ψ2
t (A

2
t )(·) := g2t (·, A2

t ), t = 0, . . . , T. (3.5)

Then, J (g1, g2) = J 1(g1) for the fixed prescription strategy ψ2. Moreover, for any

given prescription strategy ψ2, consider a control strategy g2 constructed as

g2t (·, A2
t ) := ψ2

t (A
2
t )(·), t = 0, . . . , T. (3.6)

Then, J 1(g1) after fixing ψ2 is equal to J (g1, g2).

Proof. For the first part, given a control strategy g and prescription strategy ψ2, note

that U2
t = g2t (L

2
t , A

2
t ) = ψ2

t (A
2
t )(L

2
t ), i.e., the control law and prescription law result in

the same control action U2
t for a given memory M2

t = {L2
t , A

2
t}, for all t = 0, . . . , T .

Thus, after fixing ψ2, we can write the expected cost at each t as Eg[ct(Xt, U
1:2
t )] =

Eg1 [ct(Xt, U
1
t , ψ

2
t (A

2
t )(L

2
t ))] = Eg1 [c̄1t (S1

t , U
1
t )], where the second equality holds using

the construction of c̄1t (·). The proof is complete by summing the cost over all time

steps. For the second part, the proof follows from similar arguments as in the first

part.

Remark 23. We consider that a control strategy g2 and a prescription strategy ψ2 are

always selected to satisfy (3.5) and (3.6) simultaneously. Thus, fixing ψ2 in Problem
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5 also fixes g2, and vice versa. Next, consider a control strategy (g∗1, g∗2) which is

an optimal solution to Problem 5. We construct a prescription strategy for agent 2

as ψ∗2
t (A2

t )(·) := g∗2t (·, A2
t ), for all t = 0, . . . , T , and use the first part of Lemma 20 to

conclude that g∗1 must an optimal solution for Problem 5 after fixing ψ∗2. Thus, every

optimal solution to Problem 4 yields a corresponding solution to Problem 5.

Problem 5 is a centralized stochastic control problem for agent 1, with a perfectly

observed component A2
t of the state S1

t and a partially observed component {Xt, L
2
t},

which must be estimated using the memory M1
t . For such an estimation problem, it is

known [12, page 79] that agent 1 can use the probability distribution

Π1
t := Pg

(
Xt, L

2
t | M1

t ,Γ
2
0:t−1

)
, t = 0, . . . , T, (3.7)

which takes values in the set of feasible distributions P1
t := ∆(Xt × L2

t ), where Γ2
0:t−1

are known given ψ2 and M1
t . Next, we show that the information state Π1

t evolves

independent of the choice of strategies g1 and ψ2.

Lemma 21. For all t = 0, . . . , T−1, there exists a function f̃ 1
t (·) independent of control

strategy g1 and prescription strategy ψ2, such that Π1
t+1 = f̃ 1

t (Π
1
t , U

1
t ,Γ

2
t , Z

1
t+1), and

subsequently, for any Borel subset P 1 ⊆ P1
t+1, P(Π1

t+1 ∈ P 1|M1
t , U

1
0:t,Γ

2
0:t) = P(Π1

t+1 ∈

P 1|Π1
t , U

1
t ,Γ

2
t ).

Proof. The proof follows the same arguments as the ones of Lemma 23 in Section

3.1.3.2.

Lemma 22. For any given prescription strategy ψ2 of agent 2, there exists a function

c̃1t (·) for all t = 0, . . . , T , such that

Eg[ct(Xt, U
1:2
t ) | M1

t , U
1
t ,Γ

2
t ] = c̃1t (Π

1
t , A

2
t , U

1
t ). (3.8)

Proof. The proof follows the same arguments as the ones of Lemma 24 in Section

3.1.3.2.
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The distribution Π1
t is called an information state of agent 1 at time t. As a

consequence of Lemmas 21 and 22, the information state yields the following result for

Problem 5.

Theorem 15. For any given prescription strategy ψ2 of agent 2 in Problem 5, without

loss of optimality, we can restrict attention to control strategies g∗1 with the structural

form

U1
t = g∗1t (A2

t ,Π
1
t ), t = 0, . . . , T. (3.9)

Proof. This proof follows standard arguments for centralized stochastic control prob-

lems in [12, page 79], and thus, it is omitted.

Theorem 15 establishes a structural form for an optimal control strategy g∗1

in Problem 5, which holds for all ψ2, and subsequently, for all g2. From Remark

23, we note that any optimal control strategy (g∗1, g∗2) for Problem 4 must yield a

corresponding prescription strategy ψ∗2 such that after fixing ψ∗2, the control strategy

g∗1 is the optimal solution to Problem 5. Thus, there exists an optimal control strategy

(g∗1, g∗2) for Problem 4 where g∗1 takes the structural form in (3.9).

Remark 24. Consider that |Xt ×L2
t | = m ∈ N. Then, the information state Π1

t takes

values in the continuous space P1
t =

{(
pt(1), . . . , pt(m)

)
∈ [0, 1]m :

∑m
i=1 pt(i) = 1

}
.

However, for all t = 0, . . . , T , the information state can only take countably many

realizations because all random variables take values in finite sets. For example, at

t = 0, for each x0 ∈ X0 and l
2
0 ∈ L2

0, the probability Pg(x0, l20 | z10) can take only finitely

many values, i.e., one value for each z10 ∈ Z1
0 . Similarly, at any finite t, the memory

M1
t can take finitely many realizations and thus, there are finitely many realizations

for Π1
t . As the horizon T → ∞, the information state may take at most countably

infinite realizations.

3.1.3.2 Analysis for Agent 2

In this subsection, we restrict agent 1 to control strategies g1 which satisfy (3.9),

and derive a structural form for the optimal prescription strategy of agent 2. Given
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g1, agent 2 cannot generate the action U1
t at each t because they cannot access Π1

t .

Thus, we consider a two stage process to generate the action of agent 1: (1) agent 2

generates a prescription for agent 1 using only A2
t , and (2) agent 1 computes U1

t using

this prescription along with Π1
t .

Definition 18. For all t = 0, . . . , T , a prescription for agent 1 is a function Γ1
t : P1

t →

U1
t which takes values in a finite set F1

t .

At each t, the prescription for agent 1 is generated using a prescription law ψ1
t :

A2
t → F1

t , which yields Γ1
t = ψ1

t (A
2
t ). We call ψ1 :=

(
ψ1
t : t = 0, . . . , T

)
the prescription

strategy of agent 1 and ψ := (ψ1,ψ2) the prescription strategy of the system. For

a given prescription Γ1
t , agent 1 computes their action as U1

t = Γ1
t (Π

1
t ). Next, we

set up a new centralized problem from the perspective of agent 2 with a state S2
t :=

{Xt, L
2
t ,Π

1
t} for all t, which takes values in the finite collection of sets S2

t . Moreover, we

can construct a state evolution function f̄ 2
t (·) such that S2

t+1 = f̄ 2
t (S

2
t ,Γ

1:2
t ,Wt, V

1:2
t+1)

and an observation rule h̄2t (·) which yields Z2
t+1 = h̄2t (S

2
t ,Γ

1:2
t ,Wt, V

1:2
t+1) for all t =

0, . . . , T − 1. Similarly, we can construct a cost function c̄2t (·) such that c̄2t (S
2
t ,Γ

1:2
t ) :=

ct(Xt,Γ
1
t (Π

1
t ),Γ

2
t (L

2
t )) for all t. Thus, the new centralized problem for agent 2 has the

state S2
t , observation Z

2
t and action (Γ1

t ,Γ
2
t ) at each t. The corresponding performance

criterion is J 2(ψ) = Eψ[
∑T

t=0 c̄
2
t (S

2
t ,Γ

1:2
t )].

Problem 6. The optimization problem for agent 2 is infψ J 2(ψ), given the probabil-

ity distributions of the primitive random variables {X0,W0:t, V
1:2
0:t }, and the dynamics

{c̄2t , f̄ 2
t , h̄

2
t : t = 0, . . . , T}.

Remark 25. Using the same sequence of arguments as Lemma 20, for each con-

trol strategy g, we can construct an equivalent prescription strategy ψ such that

J (g) = J (ψ) and vice versa. Thus, we always ensure that ψ is consistent with

g, which implies that for all t, Π1
t = Pg(Xt | M1

t ,Γ
2
0:t−1) = Pψ(Xt | M1

t ,Γ
2
0:t−1) =

Pψ(Xt | M1
t ,Γ

1
0:t−1,Γ

2
0:t−1), where we can add Γ1

0:t−1 to the conditioning because they

are functions of A2
t ⊆M1

t and ψ1. Because of this property, we can equivalently write

the dependence of a probability distribution on either g or ψ.
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Problem 6 is a partially observed centralized stochastic control problem and

thus, agent 2 must estimate the state S2
t at each time t. For this purpose, agent 2 can

use the distribution

Π2
t := Pψ(Xt, L

2
t ,Π

1
t | A2

t ,Γ
1:2
0:t−1), t = 0, . . . , T, (3.10)

which takes values in the set of feasible distributions P2
t := ∆(Xt×L2

t×P1
t ). Recall that

at each t, the information state of agent 1, Π1
t , can take at most countably infinitely

many realizations in the space P1
t . Thus, the information state Π2

t can be represented

using a tuple of probability mass functions
(
pt(xt, ℓ

2
t , · |a2t , γ1:20:t−1) : xt ∈ Xt, ℓ

2
t ∈ L2

t

)
,

where pt(xt, ℓ
2
t , · |a2t , γ1:20:t−1) : P1

t → [0, 1] for each xt ∈ Xt and ℓ
2
t ∈ L2

t . Next, we show

that the evolution of Π2
t is Markovian and independent of the prescription strategy ψ.

Lemma 23. For all t = 0, . . . , T − 1, there exists a function f̃ 2
t (·) independent of the

prescription strategy ψ, such that Π2
t+1 = f̃ 2

t (Π
2
t ,Γ

1
t ,Γ

2
t , Z

2
t+1), and subsequently, for

any Borel subset P 2 ⊆ P2
t+1, P(Π2

t+1 ∈ P 2 | A2
t ,Γ

1:2
0:t ) = P(Π2

t+1 ∈ P 2 | Π2
t ,Γ

1:2
t ).

Proof. Let xt, γ
1
t , γ

2
t , a

2
t , and π

1
t be realizations of Xt, Γ

1
t , Γ

2
t , A

2
t , and the distribution

Π1
t , respectively, for all t. Then, using Bayes’ rule

Pψ(Xt+1 = xt+1, L
2
t+1 = ℓ2t+1,Π

1
t+1 = π1

t+1 | a2t+1, γ
1:2
0:t )

=
Pψ
(
Xt+1 = xt+1, L

2
t+1 = ℓ2t+1,Π

2
t+1 = π1

t+1, Z
2
t+1 = z2t+1 | a2t , γ1:20:t

)
Pψ
(
Z2
t+1 = z2t+1 | a2t , γ1:20:t

) , (3.11)

where a2t+1 = a2t ∪ z2t+1. Using the dynamics {f̄ 2
t , h̄

2
t , c̄

2
t}, we write that (xt+1, ℓ

2
t+1)

= η2t (s
2
t , γ

1:2
t , wt, v

1:2
t+1), π

1
t+1 = ξ2t (s

2
t , γ

1:2
t , wt, v

1:2
t+1), z

2
t+1 = h̄2t (s

2
t , γ

1:2
t , wt, v

1:2
t+1), for some

appropriate functions η2t (·) and ξ2t (·), where s2t = {xt, ℓ2t , π1
t }. Substituting these rela-

tionships into the numerator in the RHS of (3.11) yields that

Pψ
(
Xt+1 = xt+1, L

2
t+1 = ℓ2t+1,Π

1
t+1 = π1

t+1, Z
2
t+1 = z2t+1 | a2t , γ1:20:t

)
=

∑
s2t ,wt,v1:2t+1

I[η2t (s2t , γ1:2t , wt) = (xt+1, ℓ
2
t+1)] · P(Wt = wt, V

1:2
t+1 = v1:2t+1)

· I[ξ2t (s2t , γ1:2t , wt, v
1:2
t+1) = π1

t+1] · Pψ
(
S2
t = s2t | a2t , γ1:20:t−1

)

113



· I[h̄2t+1(s
2
t , γ

1:2
t , wt, v

1:2
t+1) = z2t+1], (3.12)

where I(·) is the indicator function, and where we can drop the prescriptions γ1:2t from

the conditioning in the last term because they are completely determined given ψ

and a2t . Note that in (3.12), Pψ
(
S2
t = s2t | a2t , γ1:20:t−1

)
= π2

t (s
2
t ). Next, we expand the

denominator in (3.11) as

Pψ
(
Z2
t+1 = z2t+1 | a2t , γ1:20:t

)
=

∑
s2t ,wt,v1:2t+1

P(Wt = wt, V
1:2
t+1 = v1:2t+1) · I[h̄2t (s2t , γ1:2t , wt, v

1:2
t+1) = z2t+1] · π2

t (s
2
t ). (3.13)

Then, the first result holds by constructing an appropriate function f̃ 2
t (·) using (3.11)

- (3.13). To prove the second result, for any Borel subset P 2 ⊆ P2
t+1, we write that

P(Π2
t+1 ∈ P 2 | a2t , γ1:20:t , π

2
0:t)

=
∑
z2t+1

I[f̃ 2
t (π

2
t , γ

1:2
t , z2t+1) ∈ P 2] · P(Z2

t+1 = z2t+1 | a2t , γ1:20:t , π
2
0:t). (3.14)

The second term in (3.14) can be expanded as

P(Z2
t+1 = z2t+1 | a2t , γ1:20:t , π

2
0:t)

=
∑

s2t ,wt,v1:2t+1

I[h̄2t (s2t , γ1:2t , wt, v
1:2
t+1) = z2t+1] · P(Wt = wt, V

1:2
t+1 = v1:2t+1) · π2

t (s
2
t ). (3.15)

The proof is complete by substituting this equation into (3.14).

Lemma 24. There exists a function c̃2t (·) for all t, such that

Eg[ct(Xt, U
1:2
t ) | A2

t ,Γ
1:2
t ] = c̃2t (Π

2
t ,Γ

1:2
t ). (3.16)

Proof. Let a3t , γ
1:2
t , and π2

t be realizations of the random variables A3
t , Γ

1:2
t , and the

conditional distribution Π2
t , respectively, for all t = 0, . . . , T . To prove the result, we

expand the expectation as

Eg[ct(Xt, U
1:2
t ) | a2t , γ1:2t ] = Eψ[c̄2t (S2

t ,Γ
1:2
t ) | a2t , γ1:2t ]
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=
∑
s2t

c̄2t (s
2
t , γ

1:2
t ) · Pψ(S2

t = s2t | a2t , γ1:2t )

=
∑
s2t

c̄2t (s
2
t , γ

1:2
t ) · π2

t (s
2
t ) =: c̃2t (π

2
t , γ

1:2
t ), (3.17)

where we can drop the prescriptions γ1:2t from the conditioning because they known

given ψ and a2t .

We call Π2
t the information state of agent 2 at time t. As a consequence of

Lemmas 21 and 22, the information state yields the following result for Problem 6.

Theorem 16. In Problem 6, without loss of optimality, we can restrict our attention

to prescription strategies ψ∗ with the structural form

Γkt = ψ∗k
t

(
Π2
t

)
, k = 1, 2, t = 0, . . . , T. (3.18)

Proof. This proof follows similar arguments for centralized stochastic control problems

in [12, page 79], and thus, it is omitted.

Consider a prescription strategy ψ∗ = (ψ∗1,ψ∗2) which is an optimal solution

to Problem 6, and a control strategy g∗ = (g∗1, g∗2) given by g∗1t (Π1:2
t ) := ψ∗1

t (Π2
t )(Π

1
t )

and g∗2t (L2
t ,Π

2
t ) := ψ∗2

t (Π2
t )(L

2
t ) for each k = 1, 2 and t = 0, . . . , T . Using the same

arguments as in Lemma 20, we conclude that J (g∗) = J 2(ψ∗) and subsequently, that

g∗ is the optimal solution to Problem 4. Thus, without loss of optimality, we can

restrict attention to control strategies g∗ with the structural form U1
t = g∗1t (Π1

t ,Π
2
t )

and U2
t = g∗2t (L2

t ,Π
2
t ) for all t = 0, . . . , T .

Remark 26. Consider a system where, the feasible sets of system variables are time

invariant, i.e., Xt = X , Wt = W , Vkt = Vk, Yk
t = Yk for each k = 1, 2 and t = 0, . . . , T ,

and the information structure satisfies L2
t = L2, Z1

t = Z1, Z2
t = Z2 for all t. Note

that the set M1
t still grows in size with time. However, the spaces P1 = ∆(X × L2)

and P2 = ∆(X × L2 × P1) are time invariant and subequently, our optimal control

strategies have time-invariant domains for both agents. This is a useful property to

derive and implement optimal control strategies for long time horizons.
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3.1.3.3 Dynamic Programming Decomposition

In this subsection, we construct the value functions and corresponding control

laws to form a DP decomposition which can derive the optimal prescription strategies.

Let γkt and πkt be the realizations of the prescription Γkt and information state Πk
t ,

respectively, for each k = 1, 2 and t = 0, . . . , T . Then, we recursively define the value

functions

Jt(π
2
t ) := inf

γ1:2t ∈F1
t ×F2

t

c̃2t
(
π2
t , γ

1:2
t

)
+ Eψ

[
Jt+1

(
f̃ 2
t (π

2
t , γ

1:2
t , Z2

t+1)
)

| π2
t , γ

1:2
t

]
, (3.19)

for all t = 0, . . . , T and define JT+1(π
2
T+1) := 0 identically. For each agent k = 1, 2, the

prescription law at time t is γ∗kt = ψ∗k
t (π2

t ), i.e., the arg inf in the RHS of (3.19). The

prescription strategy ψ∗ derived using this DP decomposition can be shown to be the

optimal solution to Problem 5 using standard arguments [45, 168]. Recall that given

an optimal strategy ψ∗ derived using this DP decomposition, we can also derive the

optimal control strategy g∗ for Problem 4.

Remark 27. At each t = 0, . . . , T , our DP decomposition requires solving an opti-

mization problem for each realization π2
t of the information state Π2

t , which is a tuple

of probability mass functions. Optimizing over probability mass functions is a compu-

tationally challenging problem. Next, we present two different approaches to alleviate

the computational implications. In Section 3.1.4, we show how we can simplify our

results when the system dynamics and information structure have additional favorable

properties. In Section 3.1.5, we present an approximation for the information states

which can reduce the number of computations required to derive an approximately

optimal strategy.

3.1.4 Simplification for Decoupled Dynamics

In this subsection, we show how our results can be simplified when both agents

have decoupled state and observation dynamics. We denote the state of each agent

k = 1, 2 at time t by Xk
t ∈ X k

t . Starting at Xk
0 , each state evolves as

Xk
t+1 = fkt (X

k
t , U

k
t ,W

k
t ), t = 0, . . . , T − 1, (3.20)
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for k = 1, 2, where W k
t ∈ Wk

t is a disturbance acting only on Xk
t . The observation of

agent k at time t is Y k
t = hkt (X

k
t , V

k
t ). We assume that all primitive random variables

{Xk
0 ,W

k
t , V

k
t : k = 1, 2, t = 0, . . . , T} are independent of each other and that the cost

to the system at each t = 0, . . . , T is ct(X
1:2
t , U1:2

t ) ∈ R≥0. Without loss of optimality,

we restrict attention to control strategies where g1 takes the form U1
t = g1t (Π

1
t ,Π

2
t )

and where g2 takes the form U2
t = g2t (L

2
t ,Π

2
t ), for all t = 0, . . . , T . Here, recall that

Π1
t = Pg

(
X1:2
t , L2

t |M1
t ,Γ

2
0:t−1

)
and Π2

t = Pg
(
X1:2
t , L2

t ,Π
1
t |A2

t ,Γ
1:2
0:t−1

)
. Next, we show that

the information state Π1
t can be simplified using the decoupled dynamics.

Lemma 25. For each k = 1, 2 and t = 0, . . . , T , let xkt , m
k
t , l

2
t , and a

2
t be realizations

of the random variables Xk
t , M

k
t , L

2
t , and A

2
t , respectively. Then,

Pg(X1:2
t = x1:2t , L2

t = l2t | m1
t ) = Pg(X1

t = x1t | m1
t ) · Pg(X2

t = x2t , L
2
t = l2t | a2t ). (3.21)

Proof. Given the realizations xkt , y
k
t , u

k
t , γ

k
t and l2t of Xk

t , Y
k
t , U

k
t , Γ

k
t , and L

2
t , respec-

tively, for each k = 1, 2 and t = 0, . . . , T , we prove (3.21) by mathematical induction.

At t = 0, depending on the information sharing pattern of the system, there are two

possible realizations of the memory of agent 1, either m1
0 = {y10} or m1

0 = {y10, y20}. For

the first realization of the memory of agent 1, the private information of agent 2 is

l20 = {y20}, and thus, we can expand the LHS of (3.21) as

Pg(X1:2
0 = x1:20 , Y 2

0 = y20 | m1
0) = Pg(X1:2

0 = x1:20 , Y 2
0 = y20 | y10)

= Pg(X2
0 = x10 | y10) · Pg(X2

0 = x20, Y
2
0 = y20), (3.22)

where recall that the observation yk0 depends only on xk0 for each k, and the primitive

random variables are independent of each other. For the second realization of the

memory of agent 1, note that l2t = ∅ because l2t ∩ m1
t = ∅, and thus, we can expand

the LHS as Pg(X1:2
0 = x1:20 |m1

0) = Pg(X1
0 = x10|y10) · Pg(X2

0 = x20|y20). For both cases at

t = 0, we have shown the LHS is equal to the RHS in (3.21). This forms the basis of

our induction. Next, we consider the induction hypothesis that (3.21) holds at each

0, . . . , t, and expand the LHS at t+ 1 as
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Pg(X1:2
t+1 = x1:2t+1, L

2
t+1 = l2t+1 | m1

t+1)

=
Pg(X1:2

t+1 = x1:2t+1, L
2
t+1 = l2t+1, z

1
t+1 | m1

t )

Pg(Z1
t+1 = z1t+1 | m1

t )

=
Pg(X1:2

t+1 = x1:2t+1, L
2
t+1 = l2t+1, Z

1
t+1 = z1t+1 | m1

t )∑
x1:2t+1,l

2
t+1

Pg(Xt+1 = x1:2t+1, L
2
t+1 = l2t+1, Z

1
t+1 = z1t+1 | m1

t )
. (3.23)

Note that in the partially common information structure, l2t+1∪ z1t+1 = l2t ∪{y1:2t+1, u
1:2
t }.

Thus, we can write that

Pg(X1:2
t+1 = x1:2t+1, L

2
t+1 = l2t+1, Zt+1 = z1t+1 | m1

t )

= Pg(X1:2
t+1 = x1:2t+1, Yt+1 = y1:2t+1, U

1:2
t = u1:2t , L2

t = l2t | m1
t )

= Pg(Y 1
t+1 = y1t+1|x1t+1) · Pg(Y 2

t+1 = y2t+1|x2t+1) · I[g1t (m1
t ) = u1t ]

· I[γ2t (l2t ) = u2t ] · Pg(X1:2
t+1 = x1:2t+1, L

2
t = l2t | m1

t ), (3.24)

where I(·) is the indicator function, and where γ2t and u1t are completely determined

given m1
t and g. Furthermore, we expand the last term as Pg(X1:2

t+1 = x1:2t+1, L
2
t =

l2t |m1
t , u

1
t , γ

2
t ) =

∑
x1:2t ,w1:2

t
I[f 1

t (x
1
t , u

1
t , w

1
t ) = x1t+1] · I[f 2

t (x
2
t , γ

2
t (l

2
t ), w

2
t ) = x2t+1] ·P(W 1:2

t =

w1:2
t ) ·Pg(X1:2

t = x1:2t , L2
t = l2t |m1

t ), where we can use the induction hypothesis to obtain

Pg(X1:2
t = x1:2t , L2

t = l2t |m1
t ) = Pg(x1t |m1

t ) · Pg(X1:2
t = x1:2t , L2

t = l2t |a2t ). Substituting

these results into (3.23), and rearranging the terms yields

Pg(X1:2
t+1 = x1:2t+1, L

2
t+1 = l2t+1|m1

t+1)

=
Pg(Xt+1 = x1t+1, Y

1
t+1 = y1t+1, U

1
t = u1t |m1

t )

Pg(Y 1
t+1 = y1t+1, U

1
t = u1t |m1

t )
· Pg(X2

t+1 = x2t+1, L
2
t+1 = l2t+1|a2t , z2t+1)

= Pg(X1
t+1 = x1t+1|m1

t , y
1
t+1, u

1
t ) · Pg(X2

t+1 = x2t+1, Y
2
t+1 = y2t+1|a2t+1). (3.25)

To complete the proof by mathematical induction, we need to show that the first term

in the RHS of the previous equation is equal to the first term in the RHS of (3.21).

We achieve this by expanding

Pg(Xt+1 = x1t+1|m1
t , y

1:2
t+1, u

1:2
t , l2t )
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=
Pg(X1

t+1 = x1t+1, Y
1
t+1 = y1t+1|m1

t , l
2
t , y

2
t+1)∑

x1t+1
Pg(X1

t+1 = x1t+1, Y
1
t+1 = y1t+1|m1

t , l
2
t , y

2
t+1)

=

∑
x1t
Pg(Yt+1 = y1t+1|x1t+1) · Pg(X1

t+1 = x1t+1|x1t , u1t ) · Pg(X1
t = x1t |m1

t )∑
x1t:t+1

Pg(Y 1
t+1 = y1t+1|x1t+1) · Pg(X1

t+1 = x1t+1|x1t , u1t ) · Pg(X1
t = x1t |m1

t )
,

(3.26)

where, in the last equality, we use Bayes’ rule and the induction hypothesis. Recall that

z1t+1 ⊆ l2t ∪{y1:2t+1, u
1:2
t }. This implies that Pg(X1

t+1 = x1t+1|m1
t , y

1:2
t+1, u

1:2
t , l2t ) = Pg(X1

t+1 =

x1t+1|m1
t , z

1
t+1) = Pg(X1

t+1 = x1t+1|m1
t , y

1
t+1, u

1
t ), which complete the proof.

Motivated by Lemma 25, we define the distributions Θ1
t := Pg(X1

t |M1
t ) and

Θ2
t := Pg(X2

t , L
2
t |A2

t ) and note that the information state Π1
t at each t = 0, . . . , T

can be written as a function of (Θ1
t ,Θ

2
t ). Thus, at time t, agent 1 can track the

distributions (Θ1
t ,Θ

2
t ) instead of Π1

t to compute their optimal control action U1
t . Next,

we show that the evolution of Θk
t , for each k = 1, 2, is Markovian, strategy independent

and decoupled from the dynamics of the other agent.

Lemma 26. At each time t, there exists a function ẽkt (·), independent of the strategy

g, for all k = 1, 2 such that

Θk
t+1 = ẽkt (Θ

k
t , U

k
t , Y

k
t+1). (3.27)

Proof. The proof follows the same arguments as the ones in Lemma 23 and thus, due

to space limitations, it is omitted.

Note that the distribution Θ2
t is also available to agent 2 at each t = 0, . . . , T ,

because it depends only on the common information A2
t . Subsequently, using the same

sequence of arguments as the ones in Theorem 16, we conclude that, without loss of

optimality, agent 2 can restrict attention to prescription strategies with the structural

form Γkt = ψkt
(
Pg(X1:2

t , L2
t ,Θ

1
t |A2

t ),Θ
2
t

)
, for each k = 1, 2 and t = 0, . . . , T . Next, we

show that the term Pg(X1:2
t , L2

t ,Θ
1
t |A2

t ) in the argument of the prescription law for each

k can also be simplified using the decoupled dynamics of the system.
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Lemma 27. For each k = 1, 2 and t = 0, . . . , T , let xkt , l
2
t , a

2
t , and θ

k
t be realizations

of the random variables Xk
t , L

2
t , A

2
t , and the probability distribution Θk

t , respectively.

Then,

Pg(X1:2
t = x1:2t , L2

t = l2t ,Θ
1
t = θ1t |a2t )

= Pg(X1
t = x1t ,Θ

1
t = θ1t |a2t ) · Pg(X2

t = x2t , L
2
t = l2t |a2t ). (3.28)

Proof. The proof follows by mathematical induction using the same arguments as the

ones in Lemma 25, and thus, due to space limitations, it is omitted.

Starting with the structural form of optimal prescription strategies in Theorem

16, we can use Lemmas 25 and 27, to conclude that in systems with decoupled dynam-

ics, without loss of optimality, we can restrict attention to control strategies g∗ with

the structural form

U1
t = g∗1t

[
Θ1
t ,Θ

2
t ,Pg(X1

t ,Θ
1
t | A2

t )
]
, (3.29)

U2
t = g∗2t

[
L2
t ,Θ

2
t ,Pg(X1

t ,Θ
1
t | A2

t )
]
, t = 0, . . . , T. (3.30)

Remark 28. The control strategy g1 yielded a control law for each t = 0, . . . , T for

agent 1 with the form U1
t = g1t (Π

1
t ,Π

2
t ), which has the domain ∆(X 1

t × X 2
t × L2

t ) ×

∆(X 1
t ×X 2

t × L2
t ×∆(X 1

t ×X 2
t × L2

t )). In contrast, the domain of the control law g∗1t

in (3.29) is ∆(X 1
t ) × ∆(X 2

t × L2
t ) × ∆(X 1

t × ∆(X 1
t )), which is a space with a smaller

dimension than the one before. Similarly, the control laws of agent 2 have a domain

with a smaller dimension in (3.30) than the control laws derived using Theorem 16.

Thus, we have obtained a simpler form for an optimal control strategy in systems with

decoupled dynamics.

We can further simplify the structural form of the optimal control strategies

when agent 1 can perfectly observe the state X1
t , i.e, Y 1

t = Xt and subsequently,

X1
t ⊆ M1

t at each t = 0, . . . , T . Then, for a given realization m1
t of the memory M1

t ,

the probability distribution Θ1
t at each t is simply given by Θ1

t = I[X1
t = x1t ] for the

realization x1t ∈ m1
t of X

1
t , where I is the indicator function. Using this result in (3.29)
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and (3.30), we conclude that, without loss of optimality, we can restrict attention to

control strategies g∗ with the form

U1
t = g1t

[
X1
t ,Θ

2
t ,Pg(X1

t | A2
t )
]
, (3.31)

U2
t = g2t

[
L2
t ,Θ

2
t ,Pg(X1

t | A2
t )
]
, t = 0, . . . , T. (3.32)

Remark 29. When agent 1 can perfectly observe their own state, at each t, the

domains of the optimal control laws g∗1t and g∗2t are X 1
t × ∆(X 2

t × L2
t ) × ∆(X 1

t ) and

L2
t × ∆(X 2

t × L2
t ) × ∆(X 1

t ), respectively. These domains are small enough that the

optimal control laws at each t are functions of distributions over finite sets instead

of probability mass functions. Thus, the resulting DP can be solved using standard

techniques for centralized problems.

3.1.5 Implementation

In this subsection, we present an approach to approximate the information state

Π1
t for all t = 0, . . . , T which ensures that the approximation can only take finitely

many values. To simplify the notation, we restrict our attention to systems where

|Xt × L2
t | = m, m ∈ N for all t = 0, . . . , T . Furthermore, we consider that the maxi-

mum cost at each t is bounded above by ||c||∞ < ∞. Recall that the space of feasible

values for Π1
t is the simplex P1 =

{(
p(1), . . . , p(m)

)
∈ [0, 1]m :

∑m
i=1 p(i) = 1

}
. We use

the procedure in [203] to generate a set of equally distributed points in P1. Specifi-

cally, we select a number n ∈ N and define a set Qn :=
{(
q(1), . . . , q(m)

)
∈ P1 : n·q(i)

∈ N≥0, i = 1, . . . ,m
}
. The set Qn forms a lattice containing |Qn| =

(
m+n−1
m−1

)
points

in the simplex P1. For example, let Xt = {0, 1} and L2
t = ∅, which implies that

m = 2. Then, by selecting n= 2 we construct the set Q2 =
{
(0, 1), (1/2, 1/2), (1, 0)

}
.

Similarly, if m = 3 and we select n = 2, we construct the set Q2 =
{
(1, 0, 0),

(1/2, 1/2, 0), (0, 1, 0), (0, 1/2, 1/2), (0, 0, 1), (1/2, 0, 1/2)
}
. Next, we define the total vari-

ation distance between any point in P1 and Qn, and then, we use this metric to define

an approximate information state.
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Definition 19. The total variation distance between any π1
t = (p(1), . . . , p(m)) ∈ P1

and any qt = (q(1), . . . , q(m)) ∈ Qn is |π1
t − q|TV =

∑m
i=1 |p(i)− q(i)|.

Definition 20. The approximate information state for agent 1 at each t = 0, . . . , T is

a random variable Π̂1
t which takes values in the finite set Qn, and which is given by

Π̂1
t = σ(Π1

t ) := arg min
q∈Qn

|Π1
t − q|TV . (3.33)

Given any distribution π1
t ∈ P1, the corresponding realization of the approx-

imate information state π̂1
t = σ(π1

t ) can be efficiently computed using the algorithm

in [203]. Next, we present an upper bound in the total variation distance between any

information state and its approximation.

Lemma 28. For all t = 0, . . . , T , for any realization π1
t of the information state Π1

t ,

it holds that

|π1
t − σ(π1

t )|TV ≤ 2a · (1 + a)

m · n
, (3.34)

where a = ⌊m/2⌋ ∈ N and ⌊·⌋ is the floor function.

Proof. The proof follows from [203, Proposition 2].

Given any upper bound ϵ ∈ R>0, we can use Lemma 28 to construct a set Qn

which satisfies |π1
t − σ(π1

t )| ≤ ϵ for all π1
t ∈ P1, by selecting n ≥ 2a(1+a)

m·ϵ . Furthermore,

the resulting approximate information state Π̂1
t can be updated in a Markovian and

strategy independent manner as Π̂1
t+1 = σ[f̃ 1

t (Π̂
1
t , U

1
t ,Γ

2
t , Z

1
t+1)], for all t = 0, . . . , T −1.

Our aim is to solve the centralized Problem 5 for agent 1 using the approximate

information state Π̂1
t , which takes only finitely many values for all t = 0, . . . , T , instead

of the information state Π1
t , which can take countably infinitely many values. For a

fixed prescription strategy ψ2, recall from Lemma 22 that the expected cost at time t

can be written as c̃1t (Π
1
t , A

2
t , U

1
t ). Then, in Problem 5, we can optimize the performance

criterion J 1(g1) using a centralized DP as follows. Let u1t , a
2
t , and π

1
t be the realizations

of U1
t , A

2
t and Π1

t , respectively. Then, we define the value functions for all t = 0, . . . , T

as

J1
t (π

1
t , a

2
t ) := inf

u1t∈U1
t

c̃1t (π
1
t , a

2
t , u

1
t ) + E[J1

t+1(Π
1
t+1, A

2
t+1) | π1

t , a
2
t , u

1
t ], (3.35)
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and J1
T+1(πT+1, aT+1) := 0 identically. The person-by-person optimal control law at

time t is u∗1t = g∗1t (π1
t , a

2
t ), i.e., the arg inf in the RHS of (3.35), and the performance

of the system is J 1(g∗1) = E[J1
0 (Π

1
0, A

2
0)].

However, we seek the best control strategy ĝ∗1 for Problem 5 which takes the

structural form u1t = ĝ1t (π̂
1
t , a

2
t ) for all t = 0, . . . , T . Thus, we define the modified value

functions for all t = 0, . . . , T as

Ĵ1
t (π̂

1
t , a

2
t ) := inf

u1t∈U1

c̃1t (π̂
1
t , a

2
t , u

1
t ) + E[Ĵ1

t+1(Π̂
1
t+1, A

2
t+1) | π̂1

t , a
2
t , u

1
t ], (3.36)

and Ĵ1
t+1(π̂

1
t , a

2
t ) := 0 identically, where π̂1

t = σ(π1
t ). For a fixed ψ

2, the best control law

using the approximate information state at each t is u∗1t = ĝ∗1t (π̂1
t , a

2
t ), i.e., the arg inf

in the RHS of (3.36), and the performance of the system is J 1(ĝ∗1) = E[Ĵ1
0 (Π̂

1
0, A

2
0)].

The loss in person-by-person performance which arises from using the approximate

information state is measured by the difference |J 1(g∗1)−J 1(ĝ∗1)|. Next, we present

a result for this performance loss.

Lemma 29. For any given prescription strategy ψ2,

lim
n→∞

|J 1(g∗1)− J 1(ĝ∗1)| = 0. (3.37)

Proof. The proof follows directly from [204, Theorem 3].

Lemma 29 establishes the asymptotic convergence of the optimal performance by

using the approximate information state towards the exact person-by-person optimal

performance. Furthermore, it implies that for any desired upper bound on loss α0 ∈

R≥0, there exists a number n ∈ N and set Qn, such that |J 1(g∗1) − J 1(ĝ∗1)| < α0.

An explicit relationship between the upper bound α0 and the upper bound on total

variation distance, ϵ can be obtained using Theorem 9 and Proposition 46 of [100].

This is given by recursively defining

αt = 2(ϵ · ||c||∞ + 3ϵ · ||Ĵ1
t+1||∞ + 3ϵ · Ĵ1

L + αt+1), (3.38)

where ||Ĵ1
t+1||∞ := supπ̂1

t ,a
2
t
Ĵ1
t+1(π̂

1
t+1, a

2
t+1) and Ĵ1

L is a finite upper bound on the

Lipschitz constant of Ĵ1
t for all t = 0, . . . , T . Note that an upper bound on the value of
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Ĵt exists for all t = 0, . . . , T because cost is upper bounded. Furthermore, the Lipschitz

continuity of Ĵ1
t arises naturally from the fact that it is piece-wise linear and concave

with respect to π̂1
t for all t = 0, . . . , T [205].

The maximum loss in person-by-person performance from using an approximate

information state in Qn is ||α0||∞ := supψ2 α0. Furthermore, we define an approximate

information state for agent 2 as Π̂2
t := Pψ(X1

t , L
2
t , Π̂

1
t |M2

t ,Γ
1:2
0:t−1). In a manner similar

to Lemma 23, we can show that at each t = 0, . . . , T − 1, there exists a function f̂ 2
t

such that Π̂2
t+1 = f̂ 2

t (Π̂
2
t ,Γ

1:2
t , Z2

t+1). Thus, using the same sequence of arguments as

Theorem 16, we conclude that if we restrict our attention to control strategies with

the structural form U1
t = ĝ1t (Π̂

1
t , Π̂

2
t ), and U2

t = ĝ2t (L
2
t , Π̂

2
t ) for all t = 0, . . . , T , the

maximum loss in optimal performance in Problem 4, |J (g∗) − J (ĝ∗1, ĝ∗1)|, is also

||α0||∞.

Remark 30. In this approximation technique, the set of feasible values of Π̂1
t , Qn, is

finite and does not grow in size with time. Thus, Π̂2
t is a simple probability distribution

with a finite support, which, in turn, simplifies the implementation of our DP. However,

it is still challenging to compute globally optimal prescription strategies for moderate

and large values of the parameter n ∈ N because the number of possible prescriptions

of agent 1, |U1
t ||Qn|, grows exponentially with n. Instead, this approach may be utilized

when only person-by-person optimal strategies are required.

3.2 Decentralized Worst-Case Control with Nested Subsystems

3.2.1 Notation and Preliminaries

We utilize the mathematical framework for uncertain variables from [163, 192]

which was introduced for non-stochastic information theory. An uncertain variable

is a non-stochastic analogue of a random variable with set-valued uncertainty. For a

sample space Ω and a set X , an uncertain variable is a mapping X : Ω → X . For

any ω ∈ Ω, it has the realization X(ω) = x ∈ X . The marginal range of X is the

set [[X]] := {X(ω) | ω ∈ Ω}. For two uncertain variables X ∈ X and Y ∈ Y , their

joint range is [[X, Y ]] := {
(
X(ω), Y (ω)

)
| ω ∈ Ω}. For a given realization y of Y ,
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the conditional range of X is [[X|y]] := {X(ω) | Y (ω) = y, ω ∈ Ω} and, generally,

[[X|Y ]] := {[[X|y]] | y ∈ [[Y ]]}.

3.2.2 Problem Formulation

We consider a decentralized system with a set of subsystems N = {1, . . . , N},

N ∈ N. Each subsystem n ∈ N contains Kn ∈ N agents in a set Kn = {1, . . . , Kn},

and each agent acts across T ∈ N discrete time steps. For each t = 0, . . . , T , the

state of the system is denoted by an uncertain variable Xt which takes values in a

finite set Xt and the control action of each agent k ∈ Kn, n ∈ N , is denoted by an

uncertain variable Uk,n
t which takes values in a finite set Uk,n

t . Recall that uncertain

variables are non-stochastic analogues of random variables with known feasible sets but

unknown distributions [163]. We denote all actions in a subsystem n ∈ N collectively

by Un
t := (Uk,n

t : k ∈ Kn) and all actions in the system by U1:N
t := (U1

t , . . . , U
N
t ).

Starting at X0, the state of the system evolves as

Xt+1 = ft
(
Xt, U

1:N
t ,Wt

)
, t = 0, . . . , T − 1, (3.39)

where Wt is the disturbance of the system at time t which takes values in a finite set

Wt. At each t = 0, . . . , T , each agent k ∈ Kn, n ∈ N , has an observation Y k,n
t :=

hk,nt (Xt, V
k,n
t ), which takes values in a finite set Yk,n

t . Here, V k,n
t is an observation

noise which takes values in a finite set Vk,nt . We denote all noises in subsystem n ∈ N

collectively by V n
t := (V k,n

t : k ∈ Kn) with a feasible set Vnt :=
∏

k∈Kn Vk,nt . The

disturbances {Wt : t = 0, . . . , T}, measurement noises
{
V k,n
t : k ∈ Kn, n ∈ N , t =

0, . . . , T
}
, and initial state X0 are collectively called the primitive variables. Each

primitive variable is independent from all other primitive variables. This ensures that

the system is Markovian in a non-stochastic sense [49, 163]. Next, we describe the

information structure of the system.

Definition 21. The memory of agent k ∈ Kn, n ∈ N , at each t, is a set Mk,n
t ⊆

{Y i,m
0:t−1, U

i,m
0:t−1 : i ∈ Km,m ≥ n}, which takes values in a finite collection of sets Mk,n

t

and satisfies perfect recall, i.e., Mk,n
t ⊆Mk,n

t+1 for all t = 0, . . . , T − 1.
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Remark 31. To be consistent with the exposition in the literature [50,142], we consider

that for all k ∈ Kn, n ∈ N , and t = 0, . . . , T , the memory Mk,n
t is updated before the

observation Y k,n
t is realized.

In an information structure with nested subsystems, we partition the memory

Mk,n
t of each agent k ∈ Kn, n ∈ N , into two components, Cn

t and Lk,nt , with the

following properties:

1) The common information of all agents in a subsystem n ∈ N at each t =

0, . . . , T is the information available to all agents in Kn. We define it as the set

Cn
t :=

⋂
k∈Kn M

k,n
t which takes values in a finite collection of sets Cnt , and satisfies the

following properties: (1) nestedness, i.e., Cm
t ⊆ Cn

t for all m ∈ N with m > n and

t = 0, . . . , T , and (2) perfect recall, i.e., Cn
t ⊆ Cn

t+1 for all t. The property of nestedness

implies that the common information of a subsystem is also available to all preceding

subsystems.

2) The private information of an agent k ∈ Kn, n ∈ N , at each t = 0, . . . , T is

the information available only to agent k. We define it as the set Lk,nt :=Mk,n
t \Cn

t which

takes values in a finite collection of sets Lk,nt . For any pair of subsystems n,m ∈ N with

m > n, we impose the condition that Lk,mt ∩ Cn
t = ∅ for all k ∈ Km, i.e., no element

in the private information of an agent can be available to all agents of a preceding

subsystem.

For each n ∈ N , we also define the new information added to Cn
t at each

t = 0, . . . , T as a set Zn
t := Cn

t \ Cn
t−1, which takes values in a finite collection of

sets Zn
t , where C

n
−1 := ∅. The new information is also nested, i.e., Zm

t ⊆ Zn
t , for all

m,n ∈ N , m > n, and t. Thus, the new information available to any subsystem is a

subset of the new information available to any preceding subsystem at each t. As an

illustration, consider a system with three agents divided into two subsystems in Fig.

3.1. Subsystem 1 contains two agents and subsystem 2 contains one agent. The red

dashed arrows indicate the communication between the agents at time t. The one-

directional, dashed arrow indicates sharing of common information from subsystem 2

to all agents in subsystem 1 at time t, which ensures that C2
t ⊆ C1

t .
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Figure 3.1: A system with three agents in two nested subsystems at time t

After updating their memory and realizing their observations at each t = 0, . . . ,

T , each agent k ∈ Kn, n ∈ N , selects an action

Uk,n
t = gk,nt (Y k,n

t ,Mk,n
t ) = gk,nt (Y k,n

t , Lk,nt , Cn
t ), (3.40)

whereMk,n
t = {Lk,nt , Cn

t }, and g
k,n
t : Yk,n

t ×Mk,n
t → Uk,n

t is the control law of agent k in

subsystem n at time t. The control strategy of subsystem n ∈ N is gn := (gk,n0:T : k ∈ Kn)

and the control strategy of the system is g :=
(
g1, . . . , gN

)
. The set of all feasible

strategy profiles is G. All agents collectively incur a shared terminal cost dT (XT ) ∈ R≥0

at the time horizon T . The system performance is measured by the worst-case terminal

cost

J (g) := max
X0,W0:T ,V

1:N
0:T

dT (XT ). (3.41)

Problem 7. The optimization problem is ming∈G J (g), given the feasible sets {X0,Wt,

Vnt | n ∈ N , t = 0, . . . , T}, the cost function dT , and the system dynamics {ft, hk,nt | k ∈

Kn, n ∈ N , t = 0, . . . , T}.

Our aim is to develop a DP which can derive an optimal strategy profile g∗ ∈ G

for Problem 7. Note that an optimal strategy is guaranteed to exist because all variables

take values in finite sets.
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Remark 32. Variations of many existing information structures are special cases of

our model. For example, a system with partial history sharing [45, 50], emerges from

our model when all agents belong to a single subsystem, i.e., we set N = 1. Similarly,

a system with one-directional delayed communication among a chain of K ∈ N agents

is the special case where we have one agent per subsystem, i.e., N = K and |Kn| = 1

for all n ∈ N . Simpler cases of instantaneous one-directional communication among

just two agents were considered in [154,174] for stochastic control.

3.2.3 Equivalent System with Nested Information

In this section, we construct an equivalent system with a simpler information

structure, where each subsystem acts as the decision maker. For example, consider

two distinct agents k, i ∈ Kn in a subsystem n ∈ N . In general, given a strategy

g, agent k cannot generate the action U i,n
t of agent i since they cannot access the

private information Li,nt . However, all agents in subsystem n ∈ N can access the

common information Cn
t . This motivates us to consider a two-stage mechanism for

action generation: (1) each subsystem n generates a partial action for each agent in

Kn using only the common information Cn
t , and then (2) each agent k ∈ Kn uses the

partial action along with their private information Lk,nt to generate their action Uk
t .

Definition 22. A partial action for agent k ∈ Kn, n ∈ N , at each t = 0, . . . , T is a

mapping Ûk,n
t : Yk,n

t × Lk,nt → Uk,n
t where Ûk,n

t is a finite set.

At each t = 0, . . . , T , a subsystem n ∈ N generates a partial action for an agent

k ∈ Kn using a partial control law ĝk,nt : Cnt → Ûk,n
t , which yields Ûk,n

t = ĝk,nt (Cn
t ). We

define the partial control law for subsystem n at time t as ĝnt := (gk,nt : k ∈ Kn) and the

partial control strategy for the system as ĝ := (ĝ10:T , . . . , ĝ
N
0:T ). To simplify the notation,

we also define Ûn
t :=

(
Ûk,n
t : k ∈ Kn

)
and compactly write Ûn

t = ĝnt (C
n
t ) for each

t = 0, . . . , T . The partial action Ûn
t is generated using only the common information

in subsystem n and thus is available to all agents in Kn. Furthermore, given a partial

action Ûn
t , each agent k ∈ Kn must generate their action as Uk,n

t = Ûk,n
t (Y k,n

t , Lk,nt ).
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Next, we construct a new state which is controlled only using the partial actions of all

subsystems. For each n ∈ N , let Lnt := {Y k,n
t , Lk,nt : k ∈ Kn}. Then, the new state is

X̂t :=
{
Xt, L

1
t , . . . , L

N
t

}
, t = 0, . . . , T, (3.42)

and it takes values in a finite collection of sets X̂t.

Lemma 30. For each t = 0, . . . , T − 1, we can construct a state evolution function

f̂t(·) and an observation rule ĥnt (·), n ∈ N , such that X̂t+1 = f̂t(X̂t, Û
1:N
t ,Wt, V

1:N
t+1 )

and Zn
t+1 = ĥnt (X̂t, Û

1:N
t ), respectively. In addition, we can construct a terminal cost

function d̂T (·) which yields a shared cost d̂T (X̂T ) = dT (XT ).

Proof. We first show how f̂t(·) can be constructed at each t = 0, . . . , T by establishing

that each component in X̂t+1 =
{
Xt+1, L

1
t+1, . . . , L

N
t+1

}
can be written in terms of the

variables in the RHS. Note that Xt+1 = ft(Xt, U
1:N
t ,Wt), where U

k,n
t = Ûk,n

t (Y k,n
t , Lk,nt )

for all k ∈ Kn, n ∈ N . For each n ∈ N , Lnt+1 ⊆ {Lmt , Y
k,m
t+1 , U

k,m
t | k ∈ Km, m ≥ n}

and for each k ∈ Kn, Y k,n
t+1 = hk,nt+1(Xt+1, V

k,n
t+1). Using these equations, each term in

X̂t+1 can be written using the variables in the RHS. The proof is complete by defining

an appropriate function f̂t(·). The other functions can also be constructed in a similar

manner.

Lemma 30 yields a “new” decentralized system with a shared state X̂t, action

Ûn
t , and observation Zn

t for each subsystem n ∈ N and t = 0, . . . , T . The cost is

d̂T (X̂T ) and the performance criterion is Ĵ (ĝ) := maxX0,W0:T ,V
1:N
0:T

d̂T (X̂T ). This new

decentralized system has a nested information structure [174] since at each t, a partial

action Ûn
t is generated using only Cn

t = Zn
0:t, while Z

m
t ⊆ Zn

t for all n,m ∈ N with

m > n. Next, we define a new optimization problem and show that it is equivalent to

Problem 7.

Problem 8. The new problem is minĝ∈Ĝ Ĵ (ĝ), given the sets {X0,Wt,Vnt |n ∈ N , t =

0, . . . , T}, the cost function d̂T , and the dynamics {f̂t, ĥnt |k ∈ Kn, n ∈ N , t = 0, . . . , T}.
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Lemma 31. For any given control strategy g, consider a partial control strategy ĝ

ĝk,nt (Cn
t )(·, ·) := gk,nt (·, ·, Cn

t ), t = 0, . . . , T, (3.43)

for all k ∈ Kn, n ∈ N . Then, J (g) = Ĵ (ĝ). Moreover, for any given partial control

strategy ĝ, we can construct a control strategy g such that

gk,nt (·, ·, Cn
t ) := ĝk,nt (Cn

t )(·, ·), t = 0, . . . , T, (3.44)

for all k ∈ Kn, n ∈ N . Then, Ĵ (ĝ) = J (g).

Proof. For the first part, given a control strategy g and the partial control strategy

ĝ, the action at each t for any agent k ∈ Kn, n ∈ N , is Uk,n
t = gk,nt (Y k,n

t , Lk,nt , Cn
t ) =

ĝk,nt (Cn
t )(Y

k,n
t , Lk,nt ). Thus, the control law and partial control law result in the same

action Uk,n
t for any given {Y k,n

t , Lk,nt , Cn
t }. Subsequently, for any given realizations of

all primitive variables {X0,W0:T , V
1:3
0:T }, the two strategies yield the same terminal state

XT and cost dT (XT ). The proof of the second part follows using arguments similar to

the first part.

Lemma 31 implies that given an optimal partial strategy ĝ∗ for Problem 8, a

control strategy g∗ constructed by (3.44) is an optimal solution to Problem 7, with

performance J (g∗). Similarly, an optimal strategy for Problem 7 yields an optimal

solution to Problem 8. Thus, the two problems are equivalent.

Remark 33. It is easier to analyze the equivalent system with a nested information

structure than the original system. In the next section, we use this new information

structure to derive results for optimal partial strategies, and then use Lemma 31 to

characterize the optimal control strategies.

3.2.4 Main Results

In this section, we derive a structural form for optimal partial strategies in

Problem 8. To simplify the exposition, we carry out the detailed derivation for a

system with only 3 subsystems. This illustrates all the key arguments required to
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prove the results for different cases. Later, in subsection IV-D, we present the results

for N subsystems.

3.2.4.1 Analysis for Subsystem 1

In this subsection, we analyze the optimal partial strategy of subsystem 1 in a

system with 3 subsystems, i.e., N = {1, 2, 3}. We use the person-by-person approach

and thus, arbitrarily fix the partial control strategies ĝ2 and ĝ3, such that Ûn
t = ĝnt (C

n
t ),

for all n = 2, 3 and t = 0, . . . , T , and set up a centralized problem for subsystem 1.

Recall that Cn
t ⊆ C1

t , and thus, any agent in subsystem 1 can derive the partial action

Ûn
t for all n = 2, 3 and t = 0, . . . , T . Next, we construct a centralized problem for

subsystem 1 with a new state S1
t :=

{
X̂t, C

2
t

}
for each t = 0, . . . , T , which takes values

in a finite collection of sets S1
t .

Lemma 32. For any given partial strategies ĝ2 and ĝ3, we can construct a state evolu-

tion function f̄ 1
t (·) and an observation rule h̄1t (·), such that S1

t+1 = f̄ 1
t (S

1
t , Û

1
t ,Wt, V

1:3
t+1),

and Z1
t+1 = h̄1t (S

1
t , Û

1
t ), respectively, for all t = 0, . . . , T − 1. In addition, we can con-

struct a terminal cost function d̄1T (·), which yields a shared cost d̄1T (S
1
T ) = d̂T (X̂T ).

Proof. We first show how f̄ 1
t (·) can be constructed at each t = 0, . . . , T by estab-

lishing that each component in S1
t+1 =

{
X̂t+1, C

2
t+1

}
can be written in terms of the

variables in the RHS. Note that X̂t+1 = f̂t(X̂t, Û
1
t , ĝ

2
t (C

2
t ), ĝ

3
t (C

3
t ), Wt, V

1:3
t+1), where

ĝ2t (·) and ĝ3t (·) are given and C3
t ⊆ C2

t . Furthermore, C2
t+1 = C2

t ∪ Z2
t+1, where

Z2
t+1 = ĥ2t (X̂t, Û

1
t , ĝ

2
t (C

2
t ), ĝ

3
t (C

3
t )). Thus, given ĝ2 and ĝ3, each term in S1

t+1 can

be written as a function of the variables in the argument of the RHS. The proof is

complete by defining an appropriate function f̄ 1
t (·). The other functions can be con-

structed similarly by rewriting the LHS as a function of the variables in the argument

in the RHS.

Given the partial control strategies ĝ2 and ĝ3, Lemma 32 yields a new centralized

system with state S1
t , action Û

1
t , and observation Z1

t for all t = 0, . . . , T . The terminal
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cost incurred by the system is d̄1T (S
1
T ) and the worst-case performance criterion is

J 1(ĝ1) := maxX0,W0:T ,V
1:3
0:T
d̄1T (S

1
T ).

Problem 9. The problem for subsystem 1 is minĝ1 J 1(ĝ1), given the control partial

strategies ĝ2 and ĝ3, the feasible sets {X0,Wt,Vnt : n = 1, 2, 3, t = 0, . . . , T}, the cost

function d̄1T , and the dynamics {f̄ 1
t , h̄

1
t : t = 0, . . . , T}.

Remark 34. Using Lemma 32, we construct a cost d̄1T (S
1
T ) for the centralized problem

such that d̄1T (S
1
T ) = d̂T (X̂T ) for all realizations of the primitive variables {X0,W0:T ,

V 1:3
0:T }. Thus, the performance J 1(ĝ1) for any given ĝ2 and ĝ3 is equal to J (ĝ1, ĝ2, ĝ3).

Note that Problem 9 is a partially observed centralized problem with subsystem

1 as the sole decision maker. Specifically, at each t = 0, . . . , T , the component C2
t of the

state S1
t is completely observed by subsystem 1, whereas, the component X̂t must be

estimated using the common information C1
t and history of partial actions Û1:3

0:t−1. For

partially observed centralized problems, e.g., Problem 9, a DP was provided in [49] and

its complexity was reduced using a sufficiently informative function. We simply call

this an information state to be consistent with its stochastic counterpart. In minimax

problems, an information state at time t is a set of feasible values for the partially

observed state which are compatible with the information available to a subsystem at

time t. Since subsystem 1 completely observes C2
t , we need to define an information

state only for the component X̂t. For all t = 0, . . . , T , given the realizations c1t and

û1:30:t−1 of C1
t and Û1:3

0:t−1, respectively, the realized information state of subsystem 1 is

the set

P 1
t :=

{
x̂t ∈ X̂t | ∃

(
x0 ∈ X0, w0:t−1 ∈

t−1∏
ℓ=0

Wℓ, v
n
0:t ∈

t∏
ℓ=0

Vnℓ , n = 1, 2, 3
)

such that s1ℓ+1 = f̄ 1
ℓ

(
s1ℓ , û

1
ℓ , wℓ, v

1:3
ℓ+1

)
, z1ℓ+1 = h̄1ℓ

(
s1ℓ , û

1
ℓ

)
, ℓ = 0, . . . , t− 1

}
. (3.45)

The information state each t is a function of uncertain variables and thus, in general,

we denote it with the set-valued uncertain variable Π1
t which takes values in a finite

collection of feasible sets P1
t ⊆ 2X̂t , where 2X̂t denotes the power set of X̂t. Next, we
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show that the information state Π1
t does not depend on the choice of partial strategy

ĝ.

Lemma 33. At each t = 0, . . . , T − 1, there exists a function f̃ 1
t (·) independent of ĝ,

such that

Π1
t+1 = f̃ 1

t (Π
1
t , Û

1:3
t , Z1

t+1). (3.46)

Proof. The proof follows the same arguments as the ones of Lemma 34 in Section

IV-B.

Lemma 33 establishes the Markovian and strategy independent evolution of Π1
t

at each t. Thus, we state the following result for Problem 9 using the centralized DP

in [49].

Theorem 17. For any given partial strategies ĝ2 and ĝ3 of subsystems 2 and 3, re-

spectively, in Problem 9, without loss of optimality, we can restrict attention to partial

strategies ĝ∗1 with the structural form

Û1
t = ĝ∗1t

(
Π1
t , C

2
t

)
, t = 0, . . . , T. (3.47)

Proof. This result follows from standard arguments for centralized minimax control

problems in [49].

Theorem 17 establishes a structural form for an optimal partial strategy ĝ∗1 of

subsystem 1 in Problem 3, which holds for all ĝ2 and ĝ3. From Remark 34, we note

that any globally optimal partial strategy (ĝ∗1, ĝ∗2, ĝ∗3) for Problem 8, must necessarily

be a person-by-person optimal solution of Problem 9, i.e., after fixing ĝ∗2 and ĝ∗3 for

subsystems 2 and 3, respectively, the strategy ĝ∗1 is optimal for Problem 9. Thus, there

exists a globally optimal partial strategy (ĝ∗1, ĝ∗2, ĝ∗3) where ĝ∗1 takes the structural

form in (3.47).
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3.2.4.2 Analysis for Subsystem 2

In this subsection, we restrict attention to partial control strategies ĝ1 of agent 1

which satisfy (3.47), and derive a structural form for the partial strategy of subsystem

2. Note that given ĝ1, agents in subsystem 2 cannot generate Û1
t at any t because they

cannot access Π1
t . Thus, before using the person-by-person approach for subsystem 2,

we consider that Û1
t is generated in two stages for all t = 0, . . . , T : (1) subsystem 2

generates a prescription for subsystem 1 using only C2
t , and then (2) subsystem 1 uses

the prescription and its information state Π1
t to generate its partial action Û1

t .

Definition 23. A prescription by subsystem 2 for subsystem 1 at any t = 0, . . . , T is

a mapping Γ
[2,1]
t : P1

t → U1
t which takes values in a finite set F [2,1]

t .

At each t = 0, . . . , T , subsystem 2 generates a prescription for subsystem 1

using a prescription law ψ
[2,1]
t : C2

t → F [2,1]
t , which yields Γ

[2,1]
t = ψ

[2,1]
t (C2

t ). We define

the prescription strategy for subsystem 2 as ψ2 := (ψ
[2,1]
t : t = 0, . . . , T ). Since the

prescription Γ
[2,1]
t is generated only using C2

t ⊆ C1
t , it is available to both subsystems 1

and 2. Then, subsystem 1 must generate its partial action as Û1
t = Γ

[2,1]
t

(
Π1
t

)
. Note that

in this formulation, the prescription Γ
[2,1]
t is generated by subsystem 2 and subsystem 1

simply utilizes the given prescription to obtain Û1
t . Thus, we can consider that at each

t = 0, . . . , T , subsystem 2 selects a complete action Θ2
t := (Γ

[2,1]
t , U2

t ). This motivates

us to simultaneously derive a structural form for the optimal prescription and partial

strategies of subsystem 2. To this end, we use the person-by-person approach by fixing

the partial control strategy ĝ3 of subsystem 3 and noting that subsystem 2 can derive

Û3
t for all t because C3

t ⊆ C2
t . Next, we construct a centralized problem for subsystem

2 with a state S2
t := {X̂t,Π

1
t , C

3
t } at each t, which takes values in a finite collection of

sets S2
t . Using the same arguments as Lemma 32, we can construct a state evolution

function f̄ 2
t (·) such that S2

t+1 = f̄ 2
t (S

2
t ,Θ

2
t ,Wt, V

1:3
t+1), and an observation rule h̄2t (·) which

yields Z2
t+1 = h̄2t (S

2
t ,Θ

2
t ) to obtain a centralized problem with state S2

t , observation Z
2
t

and complete action Θ2
t = (Γ

[2,1]
t , U2

t ) for all t. Furthermore, we can construct a cost
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function d̄2T (·) which yields the terminal cost d̄2T (S
2
T ) = d̂T (X̂T ) and a corresponding

performance criterion J 2(ψ2, ĝ2) := maxX0,W0:T ,V
1:3
0:T
d̄2T (S

2
T ).

Problem 10. The problem for subsystem 2 is infψ2,ĝ2 J 2(ψ2, ĝ2), given a partial con-

trol strategy ĝ3, the feasible sets {X0,Wt,Vnt : n = 1, 2, 3, t = 0, . . . , T}, the cost

function d̄2T , and the dynamics {f̄ 2
t , h̄

2
t : t = 0, . . . , T}.

Remark 35. Consider a fixed partial control strategy ĝ3 for agent 3. Using the

same sequence of arguments as Lemma 31, for each prescription strategy ψ2, we can

construct a partial control strategy ĝ1 such that the performance criterion J (ĝ1, ĝ2, ĝ3)

for Problem 8 is equal to J 2(ψ2, ĝ2). Similarly, for each partial control strategy ĝ1 we

can construct a prescription strategy ψ2 which yields the same performance. Thus, it

is equivalent to select either a partial control strategy ĝ1 or a prescription strategy ψ2.

Problem 10 is a partially observed centralized problem with subsystem 2 as the

sole decision maker. Specifically, at each t = 0, . . . , T , the component C3
t in state S2

t

is perfectly observed by subsystem 2, whereas X̂t and Π1
t must be estimated using an

information state like (3.45). Given the realizations c2t , γ
[2,1]
0:t−1, and û

2:3
0:t−1 of C2

t , Γ
[2,1]
0:t−1,

and Û2:3
0:t−1, respectively, the realized information state of subsystem 2 is

P 2
t :=

{
x̂t ∈ X̂t, P

1
t ∈ P1

t | ∃
(
x0 ∈ X0, w0:t−1 ∈

t−1∏
ℓ=0

Wℓ, v
n
0:t ∈

t∏
ℓ=0

Vnℓ ,

n = 1, 2, 3
)
s.t. s2ℓ+1 = f̄ 2

ℓ

(
s2ℓ , θ

2
ℓ , wℓ, v

1:3
ℓ+1

)
, z2ℓ+1 = h̄2ℓ

(
s2ℓ , θ

2
ℓ

)
, ℓ = 0, . . . , t− 1

}
, (3.48)

Thus, the information state of subsystem 2 is a set-valued uncertain variable Π2
t which

takes values in a finite collection of feasible sets P2
t ⊆ 2X̂t × 2P

1
t . Next, we show that

the information state Π2
t is independent of the choice of ĝ.

Lemma 34. At each t = 0, . . . , T − 1, there exists a function f̃ 2
t (·) independent from

ĝ, such that

Π2
t+1 = f̃ 2

t (Π
2
t ,Γ

[2,1]
t , Û2:3

t , Z2
t+1). (3.49)

Proof. Let P 2
t ∈ P2

t be a given set-valued realization of the information state Π2
t at

time t. Then, for the realizations γ
[2,1]
t , û2:3t and z2t+1 of Γ

[2,1]
t , Û2:3

t and Z2
t+1, subsystem

135



2 can eliminate some possible elements in P 2
t at the start of time t + 1. Specifically,

we define an interim set

Q2
t :=

{
(x̂t, P

1
t ) ∈ P 2

t | z2t+1 = ĥ2t (x̂
2
t , û

1:3
t ), û1t = γ

[2,1]
t (π1

t )
}
, (3.50)

which is completely determined given the set P 2
t and the realizations {γ[2,1]t , û2:3t , z2t+1}.

Next, we derive the realization P 2
t+1 of the information state Π2

t+1 using set Q2
t as

P 2
t+1 =

{
x̂t+1 ∈ X̂t+1, P

1
t+1 ∈ P1

t+1 | x̂t+1 = f̂t
(
x̂t, û

1:3
t , wt, v

1:3
t+1

)
,

P 1
t+1 = f̃ 1

t (P
1
t , û

1:3
t , z1t+1), z

1
t+1 = ĥ1t (x̂t, û

1:3
t ), û1t = γ

[2,1]
t (P 1

t )

for all (x̂t, P
1
t ) ∈ Q2

t , wt ∈ Wt, v
n
t+1 ∈ Vnt+1, n = 1, 2, 3

}
. (3.51)

Thus, we can define an appropriate function f̃ 2
t (·) using (3.51) such that that P 2

t+1 =

f̃ 2
t (P

2
t , γ

[2,1]
t , û2:3t , z2t+1).

Lemma 34 establishes that the evolution of Π2
t is Markovian. Thus, we can state

the following result for Problem 10 using the standard centralized DP in [49].

Theorem 18. For a given partial strategy ĝ3 of subsystem 3 in Problem 10, without

loss of optimality, we can restrict attention to prescription strategies ψ∗2 and partial

strategies ĝ∗2 with the structural form

Γ
[2,1]
t = ψ

∗[2,1]
t

(
Π2
t , C

3
t

)
, (3.52)

Û2
t = ĝ∗2t

(
Π2
t , C

3
t

)
, t = 0, . . . , T. (3.53)

Proof. This result follows from standard arguments for centralized minimax control

problems [49].

Using an optimal prescription strategy which satisfies (3.52), we construct an

optimal partial strategy ĝ∗1 for Problem 8 such as ĝ∗1t (·,Π2
t , C

3
t ) := ψ

∗[2,1]
t (Π2

t , C
3
t )(·)

and recall from Remark 35 that they yield the same performance. Thus, we can derive

an optimal partial strategy ĝ∗1 in the form

Û1
t = ĝ∗1t (Π1:2

t , C3
t ), t = 0, . . . , T. (3.54)
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3.2.4.3 Analysis for Subsystem 3

In this subsection, we restrict attention to partial strategies ĝ1 and ĝ2 of the

form in (3.54) and (3.53), respectively, and derive a structural form for the partial

strategy of subsystem 3. Given ĝ1 and ĝ2, subsystem 3 cannot generate the control

actions Û1:2
t for any t = 0, . . . , T , because it cannot access the information states Π1

t

and Π2
t . Instead, subsystem 3 generates a prescription for both subsystems 1 and 2 in

a manner similar to Section III-B. Specifically, for each t, a prescription of subsystem

3 for subsystem 1 is a mapping Γ
[3,1]
t : P1

t × P2
t → Û1

t which takes values in a finite

set F [3,1]
t and that for subsystem 2 is a mapping Γ

[3,2]
t : P2

t → Û2
t which takes values

in a finite set F [3,2]
t . At each t = 0, . . . , T , subsystem 3 generates a prescription for

each n = 1, 2 using a prescription law ψ
[3,n]
t : C3

t → F [3,n]
t , which yields Γ

[3,n]
t =

ψ
[3,n]
t (C3

t ). We define the prescription strategy of subsystem 3 as ψ3 := (ψ
[3,n]
t : n =

1, 2, t = 0, . . . , T ). In this formulation, after receiving the prescriptions of subsystem 3,

subsystem 1 generates its partial action as Û1
t = Γ

[3,1]
t (Π1:2

t ) and subsystem 2 generates

its partial action as Û2
t = Γ

[3,2]
t (Π2

t ). Thus, subsystem 3 is the sole decision maker

with a complete action Θ3
t := (Γ

[3,1]
t ,Γ

[3,2]
t , Û3

t ). Next, we construct a new state for

subsystem 3 as S3
t := {X̂t,Π

1
t ,Π

2
t} for all t, which takes values in a finite collection of

sets S3
t . Using the same arguments as Lemma 32, we can construct a state evolution

function f̄ 3
t (·) such that S3

t+1 = f̄ 3
t (S

3
t ,Θ

3
t ,Wt, V

1:3
t+1), and an observation rule h̄3t (·) which

yields Z3
t+1 = h̄3t (S

3
t ,Θ

3
t ) to obtain a centralized problem with state S3

t , observation

Z3
t and complete action Θ3

t for all t. Furthermore, we can construct a cost function

d̄3T (·) which yields a terminal cost d̄3T (S
3
T ) := d̂T (X̂T ) and a performance criterion

J 3(ψ3, ĝ3) := maxX0,W0:T ,V
1:3
0:T
d̄3T (S

3
T ).

Problem 11. The problem for subsystem 3 is infψ3,ĝ3 J 3(ψ3, ĝ3), given the feasible

sets
{
X0,Wt,Vnt : n = 1, 2, 3, t = 0, . . . , T

}
, the cost function d̄3T and the dynamics{

f̄ 3
t , h̄

3
t : t = 0, . . . , T

}
.

Using the same arguments as in Lemma 31 and Remark 35, we conclude that we

can generate partial actions Ûn
t , for n = 1, 2 and t = 0, . . . , T , equivalently using either
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a prescription strategy ψ3 or an appropriate partial control strategy ĝn. In Problem

11, at each t, subsystem 3 must estimate the entire state S3
t . Thus, for the realizations

c3t and θ
3
0:t−1 of C

3
t and Θ3

0:t−1, respectively, the realized information state for subsystem

3 is

P 3
t :=

{
x̂t ∈ X̂t, P

1
t ∈ P1

t , P
2
t ∈ P2

t | ∃
(
x0 ∈ X0, w0:t−1 ∈

t−1∏
ℓ=0

Wℓ, v
n
0:t ∈

t∏
ℓ=0

Vnℓ ,

n = 1, 2, 3
)
s.t. s3ℓ+1 = f̄ 3

ℓ

(
s3ℓ , θ

3
ℓ , wℓ, v

1:3
ℓ+1

)
, z3ℓ+1 = h̄3ℓ

(
s3ℓ , θ

3
ℓ ,
)
, ℓ = 0, . . . , t− 1

}
. (3.55)

We define the information state of subsystem 3 as a set-valued uncertain variable which

takes values in a finite collection of feasible sets P3
t ⊆ 2X̂t × 2P

1
t × 2P

2
t . Next, we show

that Π2
t is independent of ĝ.

Lemma 35. At each t = 0, . . . , T − 1, there exists a function f̃ 3
t (·) independent from

ĝ, such that

Π3
t+1 = f̃ 3

t (Π
3
t ,Γ

[3,1]
t ,Γ

[3,2]
t , Û3

t , Z
3
t+1). (3.56)

Proof. The proof is the same as the proof of Lemma 34. Due to space constraints, it

is omitted.

Lemma 3.56 establishes that the evolution of the Π3
t is Markovian. Thus, we

can use the standard centralized DP decomposition from [49] to state the following

result.

Theorem 19. In Problem 11, without loss of optimality, we can restrict attention to

prescription strategies ψ∗3 and partial strategies ĝ∗3 with the structural form

Γ
[3,n]
t = ψ

∗[3,n]
t

(
Π3
t

)
, n = 1, 2, (3.57)

Û3
t = ĝ∗3t

(
Π3
t

)
, t = 0, . . . , T. (3.58)

Proof. This proof follows similar arguments for centralized minimax control problems

[49]. Due to space constraints, it is omitted.
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As a result of Theorem 19, we conclude that we can derive an optimal partial

strategy ĝ∗ for Problem 8 with the form

Ûn
t = ĝ∗nt (Πn:3

t ), n = 1, 2, 3, t = 0, . . . , T. (3.59)

3.2.4.4 Result for N Subsystems

The results equivalent to Theorems 17 - 19 for N ∈ N subsystems can be proven

using arguments similar to those for 3 subsystems and mathematical induction. The

steps for the mathematical induction are detailed in Appendix A. Here, due to space

constraints, we simply state the main result for Problem 8 and Problem 7.

Theorem 20. In Problem 8, without loss of optimality, we can restrict attention to

partial strategies ĝ∗ with the form

Ûn
t = ĝ∗nt (Πn:N

t ), t = 0, . . . , T. (3.60)

Furthermore, in Problem 7, there exists an optimal control strategy g∗k,n for each k ∈

Kn and n ∈ N , with the structural form

Uk,n
t = g∗k,nt (Y k,n

t , Lk,nt ,Πn:N
t ), t = 0, . . . , T. (3.61)

Proof. The proof follows from the arguments detailed in Appendix A.

Remark 36. The structural form of optimal control strategies in (3.61) cannot be

obtained by a direct application of the common information approach [50]. Note that

the domains of our optimal strategies do not grow in size with time when the feasible

sets Xt and Lk,nt do not grow in size with time for all k ∈ Kn and n ∈ N . This

improves the computational tractability of our approach for larger values of horizon T .

In contrast, the common information approach considers C1
t as a part of the private

information of all agents in K1 and C1
t grows in size with time. Thus, the domains of

optimal strategies increase in size with time for N ≥ 2.
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3.2.4.5 Dynamic Programming Decomposition

In this subsection, we construct a DP decomposition for the optimal prescription

and partial strategy of subsystem N . Let θNt = (γ
[N,1]
t , . . . , γ

[N,N−1]
t , ûNt ) be the realiza-

tion of ΘN
t for all t = 0, . . . , T . Then, for each possible information state PN

T ∈ PN
T ,

we define a value function at time T as VT (P
N
T ) := maxsNT ∈PN

T
d̄NT (s

N
T ). Furthermore,

for each possible information state PN
t ∈ PN

t , for all t = 0, . . . , T − 1, we iteratively

define the value functions

Vt(P
N
t ) := min

θNt

max
zNt+1∈Z̃N

t+1(P
N
t ,θNt )

Vt+1[f̃
N
t (PN

t , θ
N
t , z

N
t+1)], (3.62)

where the set of feasible values of zNt+1 is given by

Z̃N
t+1(P

N
t , θ

N
t ) :=

{
zNt+1 ∈ ZN

t+1 | zNt+1 = h̄Nt (st, θ
N
t , wt, v

1:N
t+1)

for all sNt ∈ PN
t , wt ∈ Wt, v

n
t+1 ∈ Vnt+1, n ∈ N

}
. (3.63)

The prescription law at time t for each n < N is γ
∗[N,n]
t = ψ

∗[N,n]
t (PN

t ) and the partial

control law for subsystem N is û∗Nt = ĝ∗Nt (PN
t ), i.e., they are the arg inf in the RHS of

(3.62). The corresponding prescription strategy ψ∗N and partial strategy ĝ∗N can be

shown to be optimal for J N(ψN , ĝN) using standard arguments [49,50].

Remark 37. After solving the DP, we can construct optimal control strategies for

Problem 7 in a manner similar to Lemma 31.

Remark 38. When applying our results to an arbitrary decentralized system, there

may be multiple feasible ways to allocate the agents to subsystems. For example,

consider a three agent system with one-directional communication from agent 3 to

agent 2 and from agent 2 to agent 1. We can either allocate all agents to one subsystem

or allocate each agent to a unique subsystem. Both of these are valid options because

they both ensure that the common information of each subsystem is nested within

the common information of all preceding subsystems. However, Theorem 20 leads to

a different DP for different allocations. Thus, a system designer must decide on an

allocation before deriving the optimal control strategies. In general, our DP performs
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better when more agents have private information which does not grow in size with

time. Thus, in the three agent system with one-directional communication, allocating

each agent to a unique subsystem is better than allocating all agents to one subsystem.

3.2.4.6 Extension to Additive Cost

Consider a variation of our problem where the system incurs a cost dt(Xt, U
1:N
t )

at each t = 0, . . . , T and the performance is measured by the worst-case total cost

Ξ(g) := max
X0,W0:T ,V

1:N
0:T

T−1∑
t=0

dt(Xt, U
1:N
t ) + dT (XT ). (3.64)

We can transform the additive cost in (3.64) into a terminal cost using a technique from

[49,50]. At each t = 0, . . . , T , we define an uncertain variable At :=
∑t−1

ℓ=0 dℓ(Xℓ, U
1:N
ℓ )

∈ At which tracks the cost incurred by the system up to time t. Note that A0 = 0.

Then, at each t, we consider an augmented state for the system, {Xt, At} and note

that the augmented state at time t+1, {Xt+1, At+1}, evolves as a function of {Xt, At},

the control actions U1:N
t and the disturbance Wt. Then the total cost is simply given

by the terminal cost AT +dT (XT ) and thus, we can apply our results to this equivalent

terminal cost problem. This extension to total cost problems does present a challenge

because the information state at time t takes values in a subset of the power set 2Xt×At ,

which may grow in size with time as At generally grows in size with time. We plan to

address this in the future by exploring alternative augmented states.

3.2.5 Numerical Example

In this subsection, we validate our results with a simple example. We consider

two agents who seek to surround a target. The agents and target can each move along

a linear grid with Λ ∈ N points. Starting at X0
0 , the position of the target is updated

at each t = 0, . . . , T as

X0
t+1 =


X0
t +W 0

t , if 1 ≤ X0
t +W 0

t ≤ Λ,

Λ, if X0
t +W 0

t ≥ Λ,

1, if X0
t +W 0

t ≤ 1,

(3.65)
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with a disturbance W 0
t ∈ {−1, 0, 1}. Each agent occupies a separate subsystem, and

thus, we refer to an agent simply by its subsystem n = 1, 2. At each t, each agent n

selects an action Un
t ∈ {−1, 0, 1}, and updates its position as

Xn
t+1 =


Xn
t + Un

t , if 1 ≤ Xn
t + Un

t ≤ Λ,

Λ, if Xn
t + Un

t ≥ Λ,

1, if Xn
t + Un

t ≤ 1.

(3.66)

The positions of both agents are observed perfectly by both the agents. Additionally,

agent 2 perfectly observes the position of the target, but can only communicate this

to agent 1 with a delay of 1 time step. Agent 1 also receives a noisy observation of the

target’s position Y 1
t = max{1,min{X0

t + V 1
t ,Λ}}, with a noise V 1

t ∈ {−1, 0}. Agent

1 has faulty equipment and cannot transmit their observations to agent 2. Thus, for

all t = 0, . . . , T , the information structure is given by C1
t = {X0

0:t−1, Y
1
0:t−1, U

1:2
0:t−1, X

1:2
0:t }

and L1
t = {Y 1

t } for agent 1, and C2
t = {X0

0:t−1, U
2
0:t−1, X

1:2
0:t } and L2

t = {X2
t } for agent 2.

At the onset, both agents receive a common observation Y0 implying that the target’s

starting position is in the set {Y0 − 1, Y0, Y0 + 1}. The terminal cost is

dT (X
0:3
T ) =


∑2

n=1 |X0
T −Xn

T |, if Is = 1,

D +
∑2

n=1 |X0
T −Xn

T |, if Is = 0,

(3.67)

where Is ∈ {0, 1} indicates if the agents have successfully surrounded the target,∑2
n=1 |X0

T − Xn
T | penalizes the distance of the agents from the target, and D > 0

is a penalty for failing to surround the target. We summarize in Table 3.1 the opti-

mal worst-case performance achieved for different realizations of the initial conditions

{x10, x20, y0}, with and without using information states in the DP. We note that their

values are the same, which validates our results.

3.2.6 Appendix A - N Subsystems

In this subsection, we describe the steps to prove our results using mathematical

induction for N ∈ N subsystems. The analysis for subsystem 1 is the same in the pres-

ence of N subsystems as in Section 3.2.4.1. As in (3.45), we can define the information
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Table 3.1: Optimal cost for Λ = 8, T = 3, and D = 10.

{x10, x20, y0} With Information States Without Information States

{8, 8, 2} 18 18

{3, 6, 7} 4 4

{3, 3, 4} 14 14

{3, 5, 8} 4 4

state for subsystem 1 at any t as the set-valued uncertain variable Π1
t which contains

feasible values of X̂t ∈ X̂ 1
t given {C1

t , Û
1:N
0:t−1}, and takes values in P1

t ⊆ 2X̂t . Using

the same arguments as Theorem 17, in Problem 8, without loss of optimality, we can

restrict attention to partial strategies ĝ∗1 with the form

Û1
t = ĝ∗1t (Π1

t , C
2
t ), t = 0, . . . , T. (3.68)

This forms the basis of our mathematical induction. Given (3.68), we can iteratively

prove the results for each subsystem n ∈ {2, . . . , N}. For any n ∈ N , we consider the

induction hypotheses for all m ∈ N where m < n:

Hypothesis 1) The information state is well defined for all t as an appropriate set-

valued uncertain variable Πm
t which takes values in a space Pm

t ⊆ 2X̂t×2P
1
t ×· · ·×2P

m−1
t .

Hypothesis 2) Without loss of optimality in Problem 8, we can restrict attention

to partial strategies ĝ∗ with the form Ûm
t = ĝ∗mt (Πm:n−1

t , Cn
t ) for all m < n and t =

0, . . . , T .

Remark 39. In hypothesis 2, we consider that a structural form using information

states has already been derived for each subsystem m < n. Note that the form in

(3.68) for ĝ∗1 is consistent with this for n = 2. We later show that the structural form

of strategies derived for each subsystem n ∈ N is also consistent with hypothesis 2.

Given the two hypotheses, the proof by mathematical induction follows from

the following steps:

Step 1) For all t = 0, . . . , T , we define a prescription by subsystem n for all m <

n as a mapping Γ
[n,m]
t : Pm

t × · · ·×Pn−1
t → Ûm

t which takes values in a finite set F [n,m]
t .
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Each prescription Γ
[n,m]
t is generated using a prescription law ψ

[n,m]
t : Cnt → F [n,m]

t

which yields Γ
[n,m]
t = ψ

[n,m]
t (Cn

t ). We define the prescription strategy of subsystem n

as ψn := (ψ
[n,m]
t : m < n, t = 0, . . . , T ). Furthermore, we define the complete action of

subsystem n as Θn
t := (Γ

[n,1]
t , . . . ,Γ

[n,n−1]
t , Ûn

t ) for all t = 0, . . . , T .

Step 2) We fix the partial control strategies ĝn+1, . . . , ĝN of all subsystems n+

1, . . . , N , and use the person-by-person approach to derive a structural form for ĝ∗n.

We construct a state for subsystem n as Snt := {X̂t,Π
1
t , . . . ,Π

n−1
t , Cn+1

t }, which takes

values in a finite collection of sets Snt . Note that CN+1
t := ∅. As in Lemma 32, we can

also construct a state evolution function f̄nt (·) such that Snt+1 = f̄nt (S
n
t ,Θ

n
t ,Wt, V

1:N
t+1 ),

and an observation rule h̄nt (·) which yields Zn
t+1 = h̄nt (S

n
t ,Θ

n
t ) to obtain a centralized

problem with state Snt , observation Z
n
t and complete action Θn

t for all t. Furthermore,

we can construct a cost function d̄nT (·) which yields a terminal cost d̄nT (S
n
T ) := d̂T (X̂T )

and a performance criterion J n(ψn, ĝn) = maxX0,W0:T ,V
1:N
0:T

d̄nT (S
n
T ).

Step 3) Using the same arguments as Lemma 31, we can prove that for each pre-

scription strategy ψn, we can construct partial strategies (ĝ1, . . . , ĝn−1) that lead to the

same partial actions (Û1
t , . . . , Û

n−1
t ) for all t, and vice versa. Furthermore, this construc-

tion ensures that after fixing strategies ĝn+1, . . . , ĝN , it holds that J n(ψn, ĝn) = J (ĝ).

Step 4) In the constructed centralized problem of minψn,ĝn J n(ψn, ĝn), the un-

observed components in Snt need to be estimated at each t = 0, . . . , T using an infor-

mation state. For realizations cnt and θn0:t of C
n
t and Θn

0:t, respectively, the realization

of the information state is

P n
t :=

{
x̂t ∈ X̂t, P

1
t ∈ P1

t , . . . , P
n−1
t ∈ Pn−1

t | ∃
(
x0 ∈ X0, w0:t−1 ∈

t−1∏
ℓ=0

Wℓ, v
n
0:t ∈

t∏
ℓ=0

Vnℓ ,

n ∈ N
)
s.t. snℓ+1 = f̄nℓ

(
snℓ , θ

n
ℓ , wℓ, v

1:N
ℓ+1

)
, znℓ+1 = h̄nℓ

(
snℓ , θ

n
ℓ

)
, ℓ = 0, . . . , t− 1

}
. (3.69)

Thus, the information state for subsystem n at time t is a set-valued uncertain vari-

able Πn
t which takes values in a finite set Pn

t ⊆ 2X̂t × 2P
1
t × · · · × 2P

n−1
t . Using

the same sequence of arguments as Lemma 34 we can show that at each time t,

there exists a function f̃nt (·) independent of the partial control strategy ĝ, such that
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Πn
t+1 = f̃nt (Π

n
t ,Θ

n
t , Û

n+1:N
t , Zn

t+1). Furthermore, using the same arguments as Theorems

18 and 19, we conclude that without loss of optimality, we can restrict attention to

prescription strategies ψ∗n and partial strategies ĝ∗n with the structural form

Γ
[n,m]
t = ψ

∗[n,m]
t (Πn

t , C
n+1
t ), m < n, t = 0, . . . , T, (3.70)

Ûn
t = g∗nt (Πn

t , C
n+1
t ), t = 0, . . . , T. (3.71)

The results (3.70) and (3.71) are consistent with the induction hypotheses and com-

plete the proof by mathematical induction. Then, the first result in Theorem 20

follows from (3.70) and (3.71) by constructing a partial control law ĝ∗nt (Πn:N
t ) :=

ψ
∗[N,n]
t (ΠN

t )(Π
n:N−1
t ), for all n ∈ N and t = 0, . . . , T . The second result follows by

constructing an appropriate control strategy g∗ from ĝ∗ using Lemma 31.
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Chapter 4

MECHANISM DESIGN FOR COMPETING AGENTS WITH PRIVATE
INFORMATION

4.1 Social Media and Misleading Information in a Democracy: A Mecha-

nism Design Approach

4.1.1 Introduction

For the last few years, political commentators have been indicating that we live

in a post-truth era [206], wherein the deluge of information available on the internet has

made it extremely difficult to identify facts. As a result, individuals have developed

a tendency to form their opinions based on the believability of presented information

rather than its truthfulness [207]. This phenomenon is exacerbated by the business

practices of social media platforms, which often seek to maximize the engagement of

their users at all costs. In fact, the algorithms developed by platforms for this purpose

often promote conspiracy theories among their users [208].

The sensitivity of users of social media platforms to conspiratorial ideas makes

them an ideal terrain to conduct political misinformation campaigns [209, 210]. Such

campaigns are especially effective tools to disrupt democratic institutions, because

the functioning of stable democracies relies on common knowledge about the political

actors and the processes they can use to gain public support [211]. The trust held by

the citizens of a democracy on common knowledge includes: (1) trust that all political

actors act in good faith when contesting for power, (2) trust that elections lead to a free

and fair transfer of power between the political actors, and (3) trust that democratic

institutions ensure that elected officials wield their power in the best interest of the

citizens. In contrast, citizens of democracies often have a contested knowledge regarding

who should hold power and how they should use it [211]. The introduction of alternative
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facts can reduce the trust on common knowledge about democracy, especially if they

become accepted beliefs among the citizens and increase polarization of opinions [212].

Such disruptions on the trust on common knowledge can be found in the 2016 U.S.

elections [213] and Brexit Campaign in 2016 [214], where the spread of misinformation

through social media platforms resulted in a large number of citizens mistrusting the

results of voting.

To tackle this growing phenomenon of misinformation, this chapter considers a

finite group of social media platforms, whose users represent the citizens in a democ-

racy, and a democratic government. Every post in the platforms is associated with

a parameter that captures its informativeness, which can take values between two

extremes: (1) completely factual and (2) complete misinformation. Posts that ex-

hibit misinformation can lead to a decrease in trust on common knowledge among the

users [185–188]. In addition, social media platforms are considered to have the tech-

nologies to filter, or label, posts that intend to sacrifice trust on common knowledge,

but are reluctant to apply them because of potential losses in revenue. Thus, the gov-

ernment seeks to incentivize the social media platforms to use these technologies and

filter any misinformation included in the posts.

A misinformation filtering game describes the interactions between the social

media platforms and the government. In this game, each platform acts as strategic

agent seeking to maximize their advertisement revenue from the engagement of their

users [213, 215]. User engagement is a metric that can be used to quantify the in-

teraction of users with a platform, and subsequently, how much time they spend on

the platform. Recent efforts reported in the literature on misinformation in social

media platforms have indicated that increasing filtering of misinformation leads to de-

creasing of user engagement [9]. There are many possible reasons for this phenomenon.

First, filtering reduces the total number of posts propagating across the social network.

Second, the users whose opinions are filtered may perceive this action as dictatorial

censorship [216], and as a result, they may chose to express their opinions in other

platforms. Finally, misinformation tends to elicit stronger reactions, e.g., surprise,
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joy, sadness, as compared to factual posts [217], which may increase user engagement.

Thus, each platform is reluctant to filter misinformation.

In the misinformation filtering game, the government is also a strategic agent,

whose utility increases as the trust of the users of social media platforms on common

knowledge increases. Consequently, increasing filtering of misinformation by the social

media platforms increases the utility of the government. Thus the government is willing

to make an investment to incentivize the social media platforms to filter misinformation.

In the proposed approach, mechanism design is utilized to distribute this investment

among the platforms optimally, and in return, implement an optimal level of filtering.

4.1.2 Problem Formulation

We consider a democratic society with a nonempty set of social media platforms

I = {1, . . . , I}, I ∈ N, and a government. We refer to the social media platforms

and the government collectively as the agents, and denote the set of all agents by

J = I∪{0}, where the index 0 corresponds to the government. The agents strategically

take actions in a misinformation filtering game, as described next.

Let the informativeness of a post on platform i ∈ I be xi ∈ [0, 1], where xi = 0

indicates that the post contains complete misinformation, and xi = 1 indicates that

the post is completely factual. Our hypothesis states that the emergence of posts with

many falsehoods, i.e., xi → 0, decreases the trust of the users on common knowledge

about democracy [186, 211]. Recall that the common knowledge refers to knowledge

of the political actors and the processes to gain public support. Each platform i ∈ I

has the technological means to detect and filter misinformation. In the misinformation

filtering game, the action ai ∈ A = [0, 1] of platform i represents the level of filtering

imposed by i. Action ai minimizes the spread of a post with informativeness xi < ai,

while a post with xi ≥ ai is unaffected. In practice, misinformation filters can be

implemented by either placing warnings on each post with xi < ai, or limiting the

reach of such posts. Thus, the action ai is a lower threshold on informativeness that is

accepted by platform i. To this end, we call ai the filter of platform i.
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Each platform i ∈ I generates revenue by monetizing the engagement of their

users with advertisements [215]. With an increase in filtering, there is a decrease in

user engagement [9]. Users may perceive filters as censorship [216], and as a result,

they may choose to express their opinions on other platforms. Consider, for example,

platform l ∈ I with a filter al > ai. Some users of l, whose posts have been marked

up by the filter, may migrate to platform i and increase the engagement of i. This

motivates us to define a set of competing platforms.

Definition 24. For each platform i ∈ I, the set Ci ⊂ I, with i ∈ Ci, is the set

of competing platforms whose choice of filters has an impact on the engagement of

platform i ∈ I.

To simplify our exposition, we consider that for i, k ∈ I, if i ∈ Ck, then k ∈

Ci. However, our mechanism can easily be extended to allow asymmetric competition

among platforms.

Definition 25. The valuation function of a social media platform i ∈ I is vi
(
ak : k ∈

Ci
)
: A|Ci| → R≥0. It is a decreasing function with respect to ai and strictly increasing

with respect to al for all l ∈ C−i, where C−i = Ci \ {i}.

The valuation function vi
(
ak : k ∈ Ci

)
gives the revenue of platform i from

user engagement after filtering by all platforms. A higher value of ai will decrease the

revenue of platform i. A higher value of al for another competing platform l ∈ C−i
will increase the revenue of platform i. Recall from the discussion in the previous

section that filtering of misinformation in a platform increases the trust of their users

on common knowledge about democracy. Thus, for each i ∈ I, we define the average

trust function on common knowledge.

Definition 26. The average trust function on common knowledge of the users of

platform i ∈ I is hi(ai) : A → [0, 1], and it is a strictly increasing function with respect

to ai.
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The average trust function hi(ai) captures the impact of filter ai on the trust on

common knowledge across the users of platform i. A low value of hi(ai) implies that ai

leads to low trust on common knowledge for the users of platform i, and vice versa. In

practice, platform i can measure the opinions of their users through surveys [218], and

thus eventually estimate the impact of filter ai using the average trust function hi(ai).

Recall that, in our framework, the government is the strategic agent 0 ∈ J

who seeks to maximize the trust on common knowledge of the users of all social media

platforms. Therefore, the government selects an action a0 ∈ A = [0, 1] that designates

a lower bound which must be satisfied by the aggregate average trust of all platforms

in I. To this end, we refer to the action a0 as the government’s lower bound on trust

on common knowledge.

Let Ni ∈ N be the total number of users of the social media platform i ∈ I.

The fraction of the number of users of i with respect to the total number of users

of all platforms is ni =
Ni∑
l∈I Nl

. The fraction ni represents the contribution of users

in platform i on the average trust on common knowledge. Since
∑

i∈I ni = 1, the

aggregate average trust is
∑

i∈I ni · hi(ai). In our framework, the government’s role

is to select the lower-bound a0 for the aggregate average trust. After the government

decides on a0, each platform i ∈ I that participates in the game must select a filter ai

that satisfies:

a0 −
∑
i∈I

ni · hi(ai) ≤ 0. (4.1)

Next, we define the government’s valuation function.

Definition 27. The valuation function of the government is v0(a0) : [0, 1] → R≥0, and

it is an increasing function with respect to the lower bound a0.

The government’s valuation function v0(a0) assigns a monetary value to the

lower bound a0. Recall that the government seeks to increase the trust on common

knowledge among the users of all platforms. Thus, the government’s valuation increases

as the lower bound on aggregate average trust increases. The government also has a

fixed, finite budget b0 ∈ R≥0, which denotes the maximum possible investment.
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The private and public information structure corresponding to each agent is

as follows: (i) Public information: The set of competing platforms Ci, set of feasible

actions A, and fraction of users ni of each platform i ∈ I are known to all agents in

set J . (ii) Valuation functions: The valuation function vi(·) of each platform i ∈ I is

known only to platform i. Similarly, the valuation function v0(·) and the budget b0 of

the government are known only to the government. (iii) Average trust functions: The

average trust function hi(·) of platform i ∈ I is known only to platform i.

We impose the following assumptions in our game:

Assumption 7. For each platform i ∈ I, |Ci| ≥ 3.

This assumption simplifies the exposition of our mechanism. Assumption 7

implies that each user frequents multiple social media platforms. For the case with

|Ci| ≥ 2 and extended results see Appendix A.

Assumption 8. The valuation function vi
(
ak : k ∈ Ci

)
: A|Ci| → R≥0 of each social

media platform i ∈ I is a concave and differentiable function with respect to ak.

The concavity of vi
(
ak : k ∈ Ci

)
captures the diminishing marginal change in

engagement due to additional filtering. The higher the value of ai, the more users

of platform i will perceive the filter as censorship. Thus, for platform i, increasing a

low-value filter may lead to a smaller loss in engagement as compared to increasing a

high-value filter.

Assumption 9. The average trust function hi(ai) : A → [0, 1] of each social media

platform i ∈ I is a concave and differentiable function with respect to ai.

The concavity of hi(ai) implies that, for large values of ai, a small incremen-

tal change in ai would not have a significant impact on the average trust of users.

Practically, this implies low values of ai will have a major impact on the average trust.

Assumption 10. The valuation function of the government v0(a0) : [0, 1] → R≥0 is a

concave and differentiable function with respect to the lower-bound a0.
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Practically, for high values of a0, the government might not be interested in

investing additional resources to increase a0 even more, as the impact on average trust

would not be significant. Nevertheless, we also analyze our system by relaxing As-

sumptions 8 - 10 in Subsection 4.1.4.1.

Assumption 11. The output of the function hi(ai) can be monitored by any com-

peting platform l ∈ C−i, and a violation of the condition (4.1) can be detected by the

government.

Assumption 11 helps us enforce the mechanism, presented in Section 4.1.3, in

a static environment. In the mechanism, each platform i ∈ I commits to a minimum

value of their average trust function, to be achieved by choosing an appropriate ai.

Consider that a platform i selects a value ai that fails to satisfy this commitment. The

government can detect a violation of (4.1) by gauging public opinion on the internet.

However, the government does not know the function hi(·), and thus, would penalize

each platform in I equally for the violation of (4.1). To avoid a penalty for the failure

of platform i, a competing platform l ∈ C−i can report the violation. Thus, it is

reasonable to consider that each platform i ∈ I monitors the output hl(al) of each

competing platform l ∈ C−i to maximize their own utility. In future research, we could

potentially relax Assumption 11 using a dynamic mechanism [183].

Assumption 12. The government ensures that any social media platform i ∈ I that

does not participate in the mechanism receives no benefits from the filters of partici-

pating platforms.

In static mechanisms, the ability to exclude a agent from receiving benefits of

some common resource is a necessary condition for voluntary participation of agents

without any monetary investment [219]. This condition is often assumed implicitly in

the literature [181]. In our mechanism, the government can make an investment up

to the budget b0. Thus, we assume partial excludability in Assumption 12, where a

non-participating platform i still receives the maximum valuation for selecting filter
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ai = 0, but cannot receive benefits from the filters of any participating platforms. In

practice, the government can publicize that platform i is non-cooperative in a collective

endeavor to filter misinformation. The resulting loss in credibility among the users of

participating platforms will minimize their migration to platform i. In future research,

we can relax this assumption using a dynamic mechanism [220].

4.1.2.1 Problem Statement

To resolve the conflict of interest between the government and the platforms, the

government hires a social planner to design a mechanism and impose the misinforma-

tion filtering game. The mechanism must: (i) incentivize all platforms to voluntarily

participate in the game, and (ii) induce a selection of filters that maximizes the social

welfare. The social welfare is the sum of utilities of all agents, defined next. To meet

these objectives, the social planner asks each agent i ∈ J to send a message mi from

a set Mi. Using the message profile m = (m0, . . . ,m|I|), the social planner assigns

a tax τi(m) ∈ R for each platform i ∈ I, and an investment τ0(m) ∈ R≥0 for the

government. The message and tax of each agent are defined in Subsection 4.1.3.2. By

convention, a tax τi(m) > 0 is a payment made by agent i ∈ J , and a tax τi(m) < 0

is a subsidy given to agent i. While the taxes of the platforms can be either payments

or subsidies, the government may never collect a subsidy from any platform. Note

that the social planner must not receive any profit, nor incur any losses, for designing

and implementing the mechanism, i.e., the mechanism should be budget balanced with∑
i∈J τi(m) = 0.

Definition 28. The utility of platform i ∈ I is ui
(
m, ak : k ∈ Ci

)
:= vi

(
ak : k ∈

Ci
)
− τi(m), while government’s utility is u0(m, a0) := v0(a0)− τ0(m).

Then, the social welfare to be maximized by the social planner is u0(m, a0) +∑
i∈I ui(m, ak : k ∈ Ci).

Problem 12. The social planner’s optimization problem is

max
a

(
v0(a0)− τ0(m) +

∑
i∈I

(
vi
(
ak : k ∈ Ci

)
− τi(m)

))
,
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subject to: 0 ≤ ai ≤ 1, ∀i ∈ J , (4.2)

a0 −
∑
i∈I

ni · hi(ai) ≤ 0, (4.3)

0 ≤ τ0(m) ≤ b0, (4.4)∑
i∈J

τi(m) = 0, (4.5)

where a = (a0, . . . , a|I|) and τ(m) = (τ0(m), . . . , τ|I|(m)).

In Problem 12, (4.3) ensures that the aggregate average trust of all users satisfies

the government’s lower bound a0, (4.4) restricts the government’s investment τ0(m)

to be within the available budget, and (4.5) ensures budget balance. The objective

function of Problem 12 is differentiable and concave, and the set of feasible solutions is

non-empty, convex, and compact. Thus, Problem 12 has a unique solution. However,

this solution cannot be computed directly by the social planner because she has no

knowledge of the functional form of either the valuation function vi(·) of any agent

i ∈ J , or the average trust function hi(·) of any platform i ∈ I. If the social planner

simply asks the agents to report their private information, the agents may not be

truthful. Thus, the social planner seeks to design the taxes τi(m) for each agent i ∈ J

that will incentivize the agents to be truthful while also maximizing the social welfare.

Remark 40. The government has no compelling reason to misreport their budget b0

to the social planner. Thus, we consider that the social planner has knowledge of b0.

Remark 41. By maximizing the social welfare, the utility of each agent is maximized

in Problem 12. Hence, agents have an incentive to participate in the mechanism.

Note that the government can not design the mechanism because they would optimize

only their own utility u0(m, a0). Thus, the social planner is essential to design and

implement our mechanism.

4.1.3 Mechanism Design Approach

In this section, we present a two-step mechanism to incentivize the filtering of

misinformation among social media platforms. The aim of step one is to ensure the
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voluntary participation of all platforms. The aims of step two are to (i) gain truthful

information from the platforms, (ii) derive the optimal investment, and (iii) maximize

the social welfare.

4.1.3.1 Step One - The Participation Step

In step one of the mechanism, each social media platform i ∈ I must decide

whether to participate in the mechanism. This decision is taken with complete knowl-

edge of the rules of step two, described in the next subsection. Let platform i ∈ I choose

to not participate. Platform i neither pays taxes nor receives subsidies, i.e., τi(m) = 0,

and they are free to select the filter ai = 0 that maximizes vi(ak : k ∈ Ci). Meanwhile,

another competing platform l ∈ C−i may decide to participate in the mechanism and

subsequently, implement a non-zero filter al. From Assumption 12, the government en-

sures that platform i receives no utility from the competing filter al. Thus, the utility

of platform i is vi(ak = 0 : k ∈ Ci). We will use this utility in Theorem 24 of Section

IV to establish the voluntary participation of all platforms in our mechanism.

4.1.3.2 Step Two - The Bargaining Step

In step two, the social planner asks each agent i ∈ J to broadcast a message

mi ∈ Mi. For all i ∈ I, let Di = Ci∪{0}, and D−i = Di \{i}. The message of platform

i is

mi := (h̃i, p̃i, ãi), (4.6)

where h̃i ∈ R≥0 is the minimum average trust that platform i proposes to achieve

through filtering; p̃i := (p̃il : l ∈ D−i), p̃i ∈ R|D−i|
≥0 , is the collection of prices that

platform i is willing to pay or receive per unit changes in the filters of other competing

platforms (except i) and the government’s lower bound; and ãi = (ãik : k ∈ Di),

ãi ∈ R|Di|, is the profile of filters proposed by platform i for all competing platforms

(including i) and government’s lower bound.
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Remark 42. Note that each platform proposes a filter for themselves, denoted by ãii,

in their message mi. However, platform i does not propose a price for ãii. Thus, every

platform can influence their filter, but not the associated price.

The message of the government is m0 := (p̃0, ã
0
0), where p̃0 ∈ R≥0 is the price

that the government is willing to pay or receive per unit change in the average trust, and

ã00 ∈ R is the lower bound proposed by the government. Note that our social planner

respects the privacy of each platform i ∈ I since the valuation function vi
(
ak : k ∈ Ci

)
or average trust function hi(ai) are not requested. Similarly, the government is not

forced to reveal the functional form of v0(a0). Each agent i ∈ J is free to send any

feasible value of the message mi. Given the messages m := (m0, . . . ,m|I|), the social

planner allocates the following parameters to the agents:

1) The social planner allocates a filter to each platform i ∈ I and a lower bound

to the government such that the constraints of Problem 1 are satisfied. The filter

allocated by the social planner to platform i is

αi(m) :=
∑
k∈Ci

ãki
|Ci|

, (4.7)

i.e., the average of the filters proposed by all competing platforms including i. The

lower bound allocated by the social planner to the government is

α0(m) =
∑
k∈J

ãk0
|J |

, (4.8)

i.e., the average of the lower bounds proposed by all platforms and the government.

2) The social planner allocates to each platform i ∈ I a minimum average trust :

ηi(m) := min

{
ni · h̃i∑
k∈I nk · h̃k

· α0(m), 1

}
, (4.9)

where ηi(m) ∈ [0, 1], and where the social planner will not accept a message mi that

might lead to
∑

k∈I nk · h̃k = 0. The allocated minimum average trust, ηi(m), is a lower

bound on average trust that must be achieved by platform i. Let the filter implemented

by platform i be ai. Then, platform i must ensure that ni ·hi(ai) ≥ ηi(m). Recall from
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the information structure that a violation of this condition cannot be detected by the

social planner since she does not have explicit knowledge of the function hi(·). However,

by Assumption 11, the output of hi(ai) can be monitored by any other competing

platform l ∈ C−i. Platform l will then report any violation of ni · hi(ai) ≥ ηi(m)

to ensure that platform i implements the largest filter ai, and maximizes the utility

ul(m, ak : k ∈ Cl). This prevents platforms from violating the constraint imposed by

ηi(m).

3) The social planner allocates a to each platform i ∈ I price πil ∈ R≥0 cor-

responding to the allocated filter αl(m) of every other competing platform l ∈ C−i,

where

πil :=
∑

k∈C−l:k ̸=i

p̃kl
|Cl| − 2

. (4.10)

This is the average of prices proposed for the allocated filter αl(m) by all competing

platforms in C−l except i. Thus, the allocated price πil is independent of the prices

proposed by both platforms i and l. Similarly, the social planner allocates the price

π0 ∈ R≥0 to the government, where

π0 =
∑
i∈I

pi0
|I|

. (4.11)

We write the prices allocated to the agents without the argument m to simplify the

notation.

4) The social planner allocates the following tax to each social media platform

i ∈ I,

τi(m) := −p̃0 · ηi(m)−
∑
l∈C−i

πli · αi(m) +
∑
l∈C−i

πil · αl(m)

+
∑
l∈D−i

p̃il · (ãil − ã−il )2, (4.12)

where, for all l ∈ C−i,

ã−il =
∑

k∈Cl:k ̸=i

ãkl
|Cl| − 1

(4.13)

157



represents the average of the proposed filters for l by all competing platforms except

i ∈ I, and

ã−i0 =
∑
k∈J−i

ãk0
|J | − 1

(4.14)

represents the average of lower bounds proposed by all agents except i. The tax τi(m)

of platform i in (4.12) can be interpreted as follows: (i) the first term is a subsidy given

by the government to platform i for the increase in average trust among the users of

i; (ii) the second term is a collection of subsidies given by each competing platform

l ∈ C−i to platform i for the increase in valuation vl
(
ak : k ∈ Cl

)
due to the allocated

filter αi; (iii) the third term is a payment by platform i for the increase in valuation

vi
(
ak : k ∈ Ci

)
due to the allocated filter αl of each competing platform l ∈ C−i; and (iv)

the fourth term is a collection of penalties to platform i if either the filter proposed in

message mi for any competing platform l ∈ C−i is inconsistent with the filters proposed

by other platforms, or if the proposed lower bound is inconsistent with that proposed

by other agents. The fourth term also penalizes platform i for higher values of p̃il, and

thus, incentivizes proposing lower prices for other agents.

The social planner also allocates an investment to the government as τ0(m) :=

π0 · α0(m) + (p̃0 − π0)
2, where the first term is the total investment for the allocated

lower bound α0(m), and the second term is a penalty for any deviation between the

proposed price p̃0 and the allocated price π0.

Remark 43. For some filter ai > 0 of any platform i in (4.12), the social planner takes

a payment from each competing platform l ∈ C−i and allocates an equal subsidy to

i. This subsidy incentivizes platform i to implement the filter ai, and helps to fairly

distribute the government’s investment.

Remark 44. In the bargaining step, we have used all platforms in I when defining

the allocations, for e.g., π0. However, this does not cause any issues due to non-

participating platforms because, as we prove in Theorem 24, all platforms eventually

participate in the mechanism in the participation step.
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Step two of the mechanism is characterized by the tuple ⟨M, g(·)⟩, where M =

M0 × · · · × M|I| is the message space, and g(m) : M → O maps it to a set of

outcomes O :=
{(
α0(m), . . . , α|I|(m)

)
,
(
τ0(m), . . . , τ|I|(m)

)
: αi(m) ∈ A, τi(m) ∈

R, i ∈ J
}
. The mechanism ⟨M, g(·)⟩ together with the utility functions (ui : i ∈ J )

induces a game in which the social planner allocates the filters (α1(m), . . . , αi(m))

to the platforms and the lower bound α0(m) to the government. Each platform i ∈

I that participates in the mechanism must implement the filter ai = αi(m), and

the government must select the lower bound a0 = α0(m). Platform i can influence

their allocated filter αi(m) with their message mi. Thus, the strategy of platform i is

given by the message mi ∈ Mi, with the constraint αi(m) ∈ Si(m), where Si(m) =

{ai ∈ A : ni ·hi(ai) ≥ ηi(m)}. The set of feasible allocations Si(m) for i ∈ I is

a function of the messages of all agents. The government’s strategy is the message

m0 ∈ M0. For such a game, we select the solution concept of the GNE [221]. Let

m−i = (m0, . . . ,mi−1,mi+1, . . . ,m|I|). A message profile m∗ is a GNE of the induced

game, if

ui
(
(m∗

i ,m
∗
−i), αk(m

∗
i ,m

∗
−i) : k ∈ Ci

)
≥ ui

(
(mi,m

∗
−i), αk(mi,m

∗
−i) : k ∈ Ci

)
, (4.15)

for all mi ∈ Mi and αi ∈ Si(m), for all i ∈ I; and the message m∗
0 of the government

satisfies u0
(
(m∗

0, m
∗
−0), α0(m

∗
0,m

∗
−0)
)
≥ u0

(
(m0,m

∗
−0), α0(m0, m

∗
−0)
)
, for all m0 ∈ M0.

In the rest of the paper, we denote the utility of agent i ∈ J by ui(mi,m−i).

Remark 45. In general, the GNE solution concept is defined for a game with complete

information. However, we adopt this solution in our induced game despite the fact

that the valuation function vi
(
ak : k ∈ Ci

)
and the average trust function hi(ai) are

the private information of platform i. We resolve this discrepancy by considering that

the induced game is played repeatedly over multiple iterations, and thus, the agents

can iteratively converge to a GNE [179,181,183,184].

Remark 46. We have summarized our notation in Table 4.1.
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Table 4.1: A summary of the key variables

Symbol Explanation

mi The message broadcast by agent i ∈ J
ai The filter of platform i ∈ I
ãik The filter proposed by platform i ∈ I for platform k ∈ Ci
αi(m) The filter allocated to platform i ∈ I
a0 The government’s lower bound on trust

ã0 The lower bound proposed by the government

ãi0 The lower bound proposed by i ∈ I for the government

α0(m) The lower bound allocated to the government

vi(·) The valuation function of agent i ∈ J
hi(·) The average trust function of platform i ∈ I
h̃i The proposed minimum average trust of platform i ∈ I
ηi(m) The allocated minimum average trust for platform i ∈ I
p̃il The price proposed by platform i ∈ I for agent l ∈ D−i

πil The price allocated to platform i ∈ I for agent l ∈ D−i

p̃0 The price proposed by the government

π0 The price allocated to the government

τi(m) The tax allocated to agent i ∈ J

4.1.4 Properties of the Mechanism

In this section, we establish the properties of our mechanism. Recall that each

social media platform i ∈ I is a strategic agent who seeks to maximize ui(mi,m−i)

through the choice ofmi ∈ Mi. Thus, we can define the following optimization problem

for platform i ∈ I in the induced game.

Problem 13. Platform i’s optimization problem is

max
mi∈Mi

vi
(
αk(m) : k ∈ Ci

)
− τi(m), (4.16)

subject to: 0 ≤ αi(m) ≤ 1, (4.17)

ηi(m)− ni · hi
(
αi(m)

)
≤ 0, (4.18)

where (4.16) is the utility ui(mi,m−i) of platform i, (4.17) ensures the feasibility of the

allocated filter αi(m), and (4.18) ensures that the allocated minimum average trust is

achieved.
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Note that the social planner can ensure that (4.17) and (4.18) are hard con-

straints by imposing a tax τi(m) → ∞ when they are violated. Also recall that the gov-

ernment strategically selects message m0 ∈ M0 to maximize their utility u0(m0,m−0).

Problem 14. The government’s optimization problem is

max
m0∈M0

v0
(
α0(m)

)
− τ0(m), (4.19)

subject to: 0 ≤ α0(m) ≤ 1, (4.20)

π0 · α0(m)− b0 ≤ 0, (4.21)

where the objective in (4.19) is the utility u0(m0,m−0), (4.20) ensures that the gov-

ernment’s lower bound a0 is feasible, and (4.21) is the budgetary constraint on total

investment.

Remark 47. Consider optimal solutions m∗
i ∈ Mi of Problem 13 for each platform

i ∈ I, and m∗
0 ∈ M0 of Problem 14 for the government. Then, the profile m∗ =(

m∗
0, . . . ,m

∗
|I|
)
satisfies (4.15), and thus, is a GNE of the induced game.

Next, we establish some basic properties of the mechanism in Lemmas 36 and 37

at any GNE. We prove later in Theorem 23 that a GNE for the induced game always

exists. In Lemma 36, we show that the government’s proposed price at any GNE is

equal to the average price proposed by all platforms.

Lemma 36. Let the message profile m∗ ∈ M be a GNE of the induced game. Then,

p̃∗0 = π∗
0 for the government.

Proof. We note that (4.19) is concave with respect to p̃0. At GNE, we have that

∂u0
∂p̃0

∣∣
p̃∗0

= 2 · (p̃∗0 − π∗
0) = 0, thus p̃∗0 = π∗

−0.

Similarly, in Lemma 37, we show that, at any GNE, the filters proposed by all

social media platforms in Ci for platform i are equal, and the lower bound proposed by

all platforms is the same, unless the corresponding price proposal is 0.
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Lemma 37. Let the message profile m∗ ∈ M be a GNE of the induced game. Then,

for p̃ik ̸= 0, we have ãi∗k = ã−i∗k for each social media platform i ∈ I, for each k ∈ D−i.

Proof. The proof follows from the same sequence of arguments as Lemma 36.

Next, we show that our proposed mechanism is budget balanced at any GNE,

i.e., the social planner redistributes all the payments it collects from the agents as

subsidies to them.

Theorem 21 (Budget Balance). Consider any GNE m∗ ∈ M of the induced game.

The proposed mechanism is budget balanced at GNE, i.e.,
∑

i∈J τi(m
∗) = 0.

Proof. From Lemmas 36 and 37, the tax τ ∗i = τi(m
∗) for social media platform i at

GNE is τ ∗i = −p̃∗0 · ηi(m∗) −
∑

l∈C−i
πli · αi(m∗) +

∑
l∈C−i

πil · αl(m∗). The tax τ ∗0 for

the government at GNE is τ ∗0 = p̃∗0 · α0(m
∗), where p̃∗0 is the price per unit change on

average trust at GNE. Since
∑

i∈I ηi(m) = α0(m) for all m ∈ M, then at GNE we

have
∑

i∈J τ
∗
i =

∑
i∈I [−

∑
l∈C−i

πli · αi(m∗) +
∑

l∈C−i
πil · αl(m∗)] = 0.

In Lemma 38, we establish that every GNE of the induced game leads to an

allocation of a filter profile and a lower bound such that all constraints of Problem 12

are satisfied.

Lemma 38 (Feasibility). Every GNE message profile m∗ ∈ M leads to a filter profile(
α1(m

∗), . . . , α|I|(m
∗)
)
and lower bound α0(m

∗), which is a feasible solution of Problem

12.

Proof. Every GNE message profile m∗ satisfies (4.17) - (4.18) and (4.20) - (4.21).

From Theorem 21,
∑

i∈J τi(m
∗) = 0. For each i ∈ I, ηi(m) ≤ ni · hi(αi(m)), and∑

i∈I ηi(m) = α0(m). Hence,
∑

i∈I hi(αi(m)) ≥ α0(m).

Next, we establish that each platform i ∈ I can unilaterally deviate in the

message mi ∈ Mi, to achieve any desired allocation of filter profile. This property

ensures that platform i can always attain any filter âi ∈ A for themselves.
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Lemma 39. Given the message profile m−i ∈ M−i, the social media platform i ∈ I

can unilaterally deviate in their message mi ∈ Mi to attain any filter âk ∈ A as the

allocated filter αk(m) ∈ Sk(m), for all k ∈ Ci.

Proof. Letm−i be the message profile of all agents in J−i. Then, platform i can propose

a filter ãik = âk−
∑

l∈Ck:l ̸=i
ãlk

|Ck|−1
, to ensure that αk(m) = âk for each k ∈ Ci. Moreover,

platform i can propose a lower bound ãi0 = −
∑

l∈J−i
ãl0 for the government, to ensure

that α0(m) = 0, and subsequently, αk(m) = âk ∈ Sk(m) for all k ∈ Ci.

Next, we show that, at any GNE, the allocated filters for all platforms and the

allocated lower bound for the government result in the optimal solution of Problem 12.

Theorem 22 (Strong Implementation). Consider any GNE m∗ ∈ M of the induced

game. The allocated filter profile (α1(m
∗), . . . , α|I|(m

∗)) and lower bound α0(m
∗) at

equilibrium are equal to the optimal solution a∗o of Problem 12.

Proof. Let α(m∗) = (α1(m
∗), . . . , α|I|(m

∗)). Then, the GNE message profile m∗ satis-

fies, for platform i ∈ I, the following Kush-Kahn-Tucker (KKT) conditions for opti-

mality: (i) ∂vi
∂αi

∣∣
α(m∗)

+
∑

l∈C−i
πli − λii + µii + νii · ∂hi∂αi

∣∣
α(m∗)

= 0, (ii) ∂vi
∂αl

∣∣
α(m∗)

− πil = 0,

for all l ∈ C−i, (iii) p̃∗0 − νii = 0, (iv) λii · (αi(m∗) − 1) = 0, (v) µii · αi(m∗) = 0, (vi)

νii · (ηi(m∗) − hi(αi(m
∗))) = 0, (vii) λii, µ

i
i, ν

i
i ≥ 0, where (i) - (iii) are the derivatives

of the Lagrangian of Problem 13 for platform i with respect to α(m) and ηi(m), and

(iv) - (vii) are constraints on the Lagrange multipliers (λii, µ
i
i, ν

i
i). Using (ii) and (iii),∑

k∈Ci
∂vk
∂αi

∣∣
α(m∗)

− λii + µii + νii · ∂hi∂αi

∣∣
α(m∗)

= 0, for all i ∈ I. Similarly, we can write

the KKT conditions for Problem 14 with the Lagrange multipliers (λ00, µ
0
0, ω

0
0). The

optimal solution a∗o =
(
a∗o0 , a

∗o
1 , . . . , a

∗o
|I|
)
satisfies the KKT conditions of Problem 12

with the Lagrange multipliers (λi, µi, ω, ν : i ∈ J ). We set π0 = p̃∗0, λi = λii, µi = µii,

ν = p̃∗0, ω = ω0
0, a

∗o
i = αi(m

∗), which implies that the efficient allocation of filters for

all platforms and lower bound for the government is implemented by all GNEs.
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Next, we show that our mechanism guarantees the existence of at least one GNE

for the induced game. This ensures that the results in this section are always valid for

the mechanism.

Theorem 23 (GNE existence). Let a∗o =
(
a∗o0 , a

∗o
1 , . . . , a

∗o
|I|
)
be the optimal solution

of Problem 12. There is a GNE message profile m∗ ∈ M of the induced game that

guarantees that the filter profile
(
α1(m

∗), . . . , α|I|(m
∗)
)
and lower bound α0(m

∗) at

GNE satisfy αi(m
∗) = a∗oi , for all i ∈ J .

Proof. Consider that the optimal solution a∗o which satisfies the KKT conditions for

Problem 12 with the corresponding Lagrange multipliers (λi, µi, ν, ω : i ∈ J ). Taking

similar steps to the proof of Theorem 22, we can show that for p̃0 = π0 = ν, the

Lagrange multipliers of Problems 13 and 14 are λii = λi, µ
i
i = µi, ν

i
i = ν, ω0

0 = ω, i ∈

J , and the allocated prices are πil = ∂vi
∂αl

∣∣
a∗o

, for all l ∈ C−i. This implies that the

allocated filters at GNE are αi(m
∗) = a∗oi for each platform i ∈ I, and the allocated

lower bound is α0(m
∗) = a∗o0 .

Next, we consider the participation step from Subsection 4.1.3.1. The govern-

ment always participates in the mechanism for the opportunity to incentivize misinfor-

mation filtering among the platforms. In the following result (Theorem 24), we invoke

Assumption 12 and the properties of our mechanism to show that in step one, every

social media platform voluntarily participates in the mechanism. Thus, with rational

agents, the mechanism can be implemented without dictatorship.

Theorem 24 (Individually Rational). Each platform i ∈ I prefers the outcome of

every GNE of the induced game to the outcome of not participating in the mechanism.

Proof. Let m∗ be a GNE message profile. By Lemma 39, there exists a message

mi ∈ Mi for platform i such that α0(mi,m
∗
−i) = 0. Platform i can unilaterally

deviate in their message mi to ensure that for every k ∈ Ci, the allocated filter is

αk(mi,m
∗
−i) = 0. From Section 4.1.3.1, the utility of a non-participating platform

i ∈ I is vi(0, . . . , 0). Consider the message mi = (h̃i, p̃i, ãi) with p̃il = 0, for all
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l ∈ D−i, ã
i
k = −

∑
l∈C−i

ãlk, for all k ∈ C−i, and ãi0 = −
∑

l∈J−i
ãi0. Then, the allocation

αk(mi,m
∗
−i) = 0 is feasible for every platform k ∈ Ci. The tax for platform i is τi = 0

and utility is ui(mi,m
∗
−i) = vi(0, . . . , 0)−0. Using (4.15), ui(m

∗) ≥ ui(mi,m
∗
−i). Hence,

ui(m
∗) ≥ vi(0, . . . , 0). Thus, in the participation step, the weakly dominant action of

every platform i ∈ I is to participate in the mechanism.

4.1.4.1 Extension to Quasi-Concave Valuations

In this subsection, we replace Assumptions 8 - 10 with the following more general

assumptions: (i) The valuation functions vi
(
ak : k ∈ Ci

)
and v0(a0) of each platform

i ∈ I and the government, respectively, are quasi-concave and differentiable. (ii) The

average trust function hi(ai) for all i ∈ I is differentiable. Thus, we cannot use the

KKT conditions to prove the existence of an induced GNE and strong implementation.

However, if a GNE exists, the proposed mechanism is still budget balanced, individually

rational, and Lemmas 36 - 39 hold. In Theorem 25, we show that there still exists a

GNE and it induces a Pareto efficient equilibrium in the game. Pareto efficiency is

the condition where we cannot improve the utility of any agent without decreasing the

utility of another agent [181]. This is weaker than Theorem 22.

Theorem 25. Let the valuation function vi(ak : k ∈ Ci) be quasi-concave and differ-

entiable for all i ∈ J in the game ⟨M, g(·), (ui)i∈I⟩. Then, (i) there exists a GNE for

the induced game, and (ii) every induced GNE is Pareto efficient.

Proof. (i) Existence: By Lemma 2, M′
i := {mi ∈ Mi : p̃

i
l · (ãil−a−il ) = 0, ∀l ∈ D−i} at

GNE. For all mi ∈ M′
i, ui(m) = vi(αk(m) : k ∈ Ci) + p̃0 · ηi(m) +

∑
l∈C−i

πli · αi(m)−∑
l∈C−i

πil · αl(m), where p̃0, π
l
i, π

i
l are independent of mi for all l ∈ C−i, and ui(m)

= ui(ηi, αk : αk ∈ Di). By Lemma 4, platform i can unilaterally deviate in message

mi ∈ Mi to receive any allocation αk(m) ∈ A, for all k ∈ Di. Thus, platform i’s

action is to select βi = (ηi, αk : k ∈ Di) from the set Bi = {[0, 1]×A|Di| : ni · hi(αi)−

ηi ≥ 0}, which is convex, compact, and independent of the message profile m−i, while

α0 ∈ A, where A is compact, convex, and independent of m−0, and vi(ak : k ∈ Ci),
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i ∈ I, is quasi-concave and differentiable. The utility ui(β), β = (β0, . . . , β|I|), is

quasi-concave and differentiable with respect to βi ∈ Bi for all i ∈ I. Similarly,

the government’s utility u0(α0) is quasi-concave and differentiable with respect to α0.

It follows from Glicksberg’s theorem that there exists a GNE for the induced game.

(ii) Pareto efficiency: It is sufficient to show that the NE can be characterized by

a Walrasian equilibrium, thus Pareto efficient. Consider any NE action profile β∗ =

(α∗
0, β

∗
1 , . . . , β

∗
|I|) ∈ A×B1×· · ·×B|I|. By the NE definition, for every platform i ∈ I it

holds that ui(β
∗) ≥ ui(βi, β

∗
−i), for all βi ∈ Bi. Then, we have β∗

i = argmaxβi∈Bi
{vi(αk :

k ∈ Ci) + p̃∗0 · ηi +
∑

l∈I−i
π∗l
i · αi −

∑
l∈I−i

π∗i
l · αl}. Similarly, for the government,

α∗
0 = argmaxα0∈A{v0(α0) − π∗

0 · α0}. Therefore, the NE profile β∗ is a Walrasian

equilibrium.

Remark 48. With quasi-concave valuations, the induced GNE may not lead to allo-

cations that are optimal for Problem 1. However, Theorem 25 shows that there still

exists a GNE and that it is a Pareto efficient allocation, and thus, our mechanism

incentivizes filtering with suboptimal social welfare.

4.1.4.2 Example

In this subsection, we present an example of how our proposed mechanism may

be executed. Consider three major social media platforms: Facebook, Twitter, and

Reddit. These platforms allow users from different political backgrounds to obtain the

latest news. Typically, users engage with these platforms by scrolling, liking, or sharing

posts featuring news and personal opinions. The time spent by all users on a platform

defines the total engagement in the platform [213].

Since user engagement is a primary driver of advertisement revenue, Facebook,

Twitter, and Reddit regularly optimize their post recommendation algorithms to max-

imize user engagement without accounting for the impact on user opinions [208]. Thus,

many users form echo chambers, where they repeatedly interact only with biased posts.

The biases of many users expose them to misinformation. This might cause uncer-

tainty regarding the integrity of democratic institutions [186], or the results of the
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elections [211]. In practice, each platform can filter misinformation by flagging inaccu-

rate posts. However, filtering is expensive because of (i) the large cost to identify inac-

curate posts [222], and (ii) the potential decrease in engagement of censored users [9].

Thus, the government allocates a budget for the problem and appoints an independent

agency to design monetary incentives for the platforms. This agency seeks a mecha-

nism that: (i) induces voluntary participation among all platforms and (ii) maximizes

the social welfare. Such a mechanism incentivizes platforms to implement filters. A

sufficiently high lower bound ensures that some platforms implement non-zero filters.

Using the mechanism in Section 4.1.3, the agency must achieve (i) and (ii) without

knowledge of how the engagement and average trust on common knowledge evolve.

In step one (the participation step), the agency asks each platform whether

they wish to participate in the mechanism since the government is not dictatorial.

However, the agency assures the three platforms that they need not reveal private

information, and that they can avoid filtering misinformation even after participating

in the mechanism (Lemma 39). The government announces that platforms that choose

not to participate will be labeled as uncooperative. Then, the weakly dominant action

of every platform in step one is to participate in the mechanism (Theorem 24), ensuring

property (i).

In step two (the bargaining step) of the mechanism, the agency asks each plat-

form for a message proposing filtering levels for competing agents and corresponding

prices, a lower bound for the government, and a minimum level for the average trust

of their own users. Similarly, the government also proposes a lower bound and a price

associated with the lower bound. The agency then publicly reveals all proposals and

uses the rules of the mechanism to assign a potential subsidy/payment and potential

filtering level to each platform. Similarly, the agency assigns a potential amount of in-

vestment and minimum average to the government. Note that the subsidy given to any

platform is proportional to their assigned minimum average trust and filtering level.

These assignments become binding only if all stakeholders, Facebook, Twitter, Reddit,
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and the government, accept them. If any stakeholder is dissatisfied, then all stakehold-

ers change their proposals and resubmit. This process is repeated until all stakeholders

reach a consensus, known as a GNE. The mechanism ensures that a consensus exists

(Theorem 23) and that it maximizes the social welfare among all stakeholders (The-

orem 22), thus establishing property (ii). Furthermore, the mechanism also ensures

that each stakeholder is consistent in their messages with respect to the messages of

other stakeholders (Lemmas 36 - 37) and that the agency makes neither profit nor

loss (Theorem 21). Therefore, as long as the government is committed to addressing

the problem of misinformation, the mechanism ensures the platforms will eventually

agree to implement filters. The allocations become binding on all stakeholders, and

the agency collects the government’s investment. This investment is distributed to

Facebook, Twitter, and Reddit as a subsidy, only after they implement the assigned

filters.

4.1.5 Conclusions and Future Work

In this paper, we designed a mechanism to induce a GNE solution in the mis-

information filtering game, where (i) each platform agrees to participate voluntarily,

and (ii) the collective utility of the government and the platforms is maximized. Our

proposed mechanism also satisfies budget balance. We also analyzed our mechanism

under relaxed assumptions. Our ongoing work focuses on improving estimates of the

valuation and average trust functions of the platforms using data and explicitly consid-

ering modeling uncertainty. These refinements of the modeling framework will allow

us to make our mechanism more practically useful. Future research should include

extending the mechanism to a dynamic setting where the platforms react in real-time

to the proposed taxes/subsidies.

4.1.6 Appendix A - Extension to 2 Agents

In this appendix, we present an extension of by relaxing Assumption 7 to a more

general assumption that no platform has a monopoly on its users. The mechanism
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presented in this assumes that for any platform i ∈ I with the set of competing

platforms Ci, it holds that |Ci| ≥ 2.

We consider the same step one (the participation step) for the mechanism as

before. Then in step two (the bargaining step), the message of platform i is defined as

mi := (h̃i, p̃i, ãi), (4.22)

where h̃i ∈ R≥0 is the minimum average trust that platform i proposes to achieve

through filtering; p̃i, is the collection of prices that platform i is willing to pay or

receive per unit changes in the filters of other competing platforms (except i) and the

government’s lower bound, given by

p̃i :=

(p̃l
i : l ∈ Di), if |Ci| = 2,

(p̃l
i : l ∈ D−i), if |Ci| ≥ 3,

(4.23)

where p̃l
i ∈ R≥0 for all i, l ∈ J ; and ãi := (ãik : k ∈ Di), with ãi ∈ R|Di| is the profile of

filters for all competing platforms (including i) and government’s lower bound proposed

by platform i.

The message of the government is m0 := (p̃0, ã
0
0), where p̃0 ∈ R≥0 is the price

that the government is willing to pay or receive per unit change of the average trust,

and ã00 ∈ R is the lower bound proposed by the government.

Based on the message profile m := (m0,m1, . . . ,m|I|) that the social planner

receives, she allocates the following parameters to the agents:

1) The social planner allocates a filter to each platform i ∈ I and a lower bound

to the government such that the constraints of Problem 1 are satisfied. The filter

allocated by the social planner to platform i is αi(m) :=
∑

k∈Ci
ãki
|Ci| . The lower bound

allocated by the social planner to the government is α0(m) :=
∑

k∈J
ãk0
|J | .

2) The social planner allocates a minimum average trust ηi(m) ∈ [0, 1] to each

platform i ∈ I, given by

ηi(m) := min

{
ni · h̃i∑
k∈I nk · h̃k

· α0(m), 1

}
, (4.24)
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where the social planner will not accept a messagemi from a platform i that might lead

to a situation where
∑

k∈I nk · h̃k = 0. The allocated minimum average trust, ηi(m),

is a lower bound on average trust that must be achieved by platform i. Let the filter

implemented by platform i be ai. Then, platform i must ensure that ni ·hi(ai) ≥ ηi(m).

Recall from Section III-B that, as a result of Assumption 11, the social planner can

prevent the platforms from violating the constraint imposed by ηi(m).

3) The social planner also allocates a payment price

πl
i :=


p̃ll, if |Cl| = 2,∑

k∈C−l:k ̸=i
p̃l
k

|Cl| − 2
, if |Cl| ≥ 3,

(4.25)

where πil ∈ R≥0, to be paid by platform i ∈ I for a unit change in allocated filter αl(m)

of every other competing platform l ∈ C−i. Furthermore, the social planner allocates a

subsidy price

σil :=


p̃li, if |Cl| = 2,∑

k∈C−l:k ̸=i
p̃l
k

|Cl| − 2
, if |Cl| ≥ 3,

(4.26)

where σil ∈ R≥0, to be received by platform i ∈ I from every other competing platform

l ∈ C−i, for a unit change in allocated filter αi(m). For the government, the social

planner simply allocates a price π0 :=
∑

i∈I
p̃i0
|I| to be paid for a unit change in lower

bound α0(m).

Remark 49. Note that when |C|i = 2, platform i ∈ I proposes a price corresponding

to their own proposed action ãi(m). In contrast, when |Ci| ≥ 3, platform i does not

proposes a price corresponding to their own filter. However, we have designed the

payment price in (4.25) and subsidy price (4.26) so that platform i cannot affect either

of these prices with their message mi. Thus, each still platform behaves as a price

taker when |Ci| = 2.

4) The social planner allocates the following tax to each social media platform

i ∈ I,
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τ i := −p̃0 · ηi(m)−
∑
l∈C−i

σil · αi(m) +
∑
l∈C−i

πil · αl(m) +
∑

l∈C−i∪{0}

p̃l
i · (ãil − ã−il )2

+
∑
l∈C−i

(
I(|Ci| = 2) · (p̃ii − p̃li)

2 + I(|Cl| = 2) · (p̃il − p̃ll)
2
)
, (4.27)

where I(·) is the indicator function, ã−il =
∑

k∈C−l

ãkl
|Cl|−1

, for each l ∈ C−i, is the average

of the proposed filters for l by all competing platforms except i ∈ I, and and ã−i0 =∑
k∈J−i

ãk0
|J |−1

is the average of lower bounds proposed by all agents except i. The tax

τ i(m) of platform i in (4.27) can be interpreted as follows: (i) the first term in (4.27)

represents a subsidy given by the government to platform i for the increase in average

trust among the users of platform i; (ii) the second term in (4.27) is a collection of

subsidies given by each competing platform l ∈ C−i to platform i for the increase in

valuation vl
(
αk(m) : k ∈ Cl

)
due to the allocated filter αi(m); (iii) the third term in

(4.27) is a payment by platform i for the increase in valuation vi
(
αk(m) : k ∈ Ci

)
due

to the allocated filter αl(m) of each competing platform l ∈ C−i; (iv) the fourth term in

(4.27) is a collections of penalties to platform i if either the filter proposed in message

mi for any competing platform l ∈ C−i is inconsistent the filters proposed by other

platforms, or if the lower bound proposed in mi is inconsistent with the lower bound

proposed by other agents; and (v) the fifth term is a collection of penalties to social

media i for inconsistency in the proposed price, only applicable if |Ci| = 2, or if |Cl| = 2

for some l ∈ C−i.

The social planner also proposes the following payment function to the govern-

ment:

τ 0 := π0 · α0(m) + (p̃0 − π0)
2, (4.28)

where the first term is the total investment made by the government for the allocated

lower bound α0(m), and the second term is a penalty when the price proposed by the

government deviates from the price allocated to the government.

Remark 50. Note that the presence of the indicator function I(·) in (4.27) does not

lead to discontinuities in the utility ui(mi,m−i) with respect to the message profile m.
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Remark 51. The extended mechanism induces a game where the strategy of platform

i ∈ I is mi ∈ Mi, such that αi(m) ∈ Si(m). The equilibrium for the induced game is

given by the GNE, defined in (4.15).

Then, we note that the results of Lemmas 36 - 37 hold for the extended mech-

anism. In addition, we prove in Lemma 40 that the equilibrium price received by any

platform i ∈ I for an allocated filter αl(m), l ∈ C−i, is the same as the price paid by

the competing platform l.

Lemma 40. Let message profile m∗ ∈ M be a GNE of the induced game. Then, for

each platform i ∈ I and each competing platform l ∈ C−i, it holds that σ∗i
l = πi

∗l.

Proof. Consider two social media platforms i ∈ I and l ∈ C−i. The result holds from

the definition of σil and πi
l when both |Ci| ≥ 3 and |Cl| ≥ 3.

Let |Ci| = 2, with Ci = {i, l}, and let m∗
−i be the message profile at GNE of all

agents except i. In order to maximize their utility ui(mi,m
∗
−i), platform i must select

a price p̃∗ii that minimizes the tax τ i in (4.27). Thus, ∂ui
∂p̃ii

∣∣
p̃∗ii

= 2 · (p̃∗ii − p̃∗li ) = 0, which

yields p̃∗ii = p̃∗li . Then, the result holds using the definitions of σil and πi
l in (4.26)

and (4.25), respectively. Through a similar analysis, we can prove the result when

|Cl| = 2.

An additional implication of Lemma 40 is that the fifth term in (4.27) is 0 at

any GNE. Thus, it can be verified that the results of Lemmas 38 - 39 and Theorems

21 - 25 hold for the extended mechanism.
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Chapter 5

CONCLUSIONS

5.1 Summary of the Contributions

In this dissertation, we analyzed various decision-making problems relevant to

both control and learning in cyber-physical systems. Chapter 1 completed a review of

the literature pertaining to centralized worst-case learning and control, as well as to the

decentralized control of teams. We also explored open questions in the literature related

to both these areas of research and highlighted specific cyber-physical applications that

pertain to these open questions. Finally, Chapter 1 introduced the theory of mechanism

design to coordinate the actions of competing agents which formed the basis of an

application to incentivize misinformation filtering in social media platforms.

Chapter 2 developed a principled approach to worst-case control and learning

in partially observed systems using non-stochastic approximate information states. In

the context of worst-case control problems, this chapter provides a unifying theory to

rigorously derive performance bounds for strategies computed using various approx-

imation schemes. In the context of worst-case reinforcement learning problems, the

proposed approach introduces an approximate information state model that can be

learned from output data without prior knowledge of system dynamics. Thus, this

theoretical framework can facilitate data-driven worst-case control and reinforcement

learning, which makes it particularly well suited for safety-critical applications in cyber-

physical systems such as connected and automated vehicles, power grids, cyber-security

and healthcare. Specifically, the major technical contributions of this chapter can be

summarized as follows:
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1) The introduction of a general notion of information states which yields an optimal

DP decomposition for worst-case control problems.

2) The introduction of the notion of approximate information states that can either

be constructed from output variables or learned from output data.

3) The formulation of an approximate DP and the derivation of explicit performance

bounds for the resulting approximate control strategy.

4) An extension of the notions of information states and approximate information

states to infinite horizon problems with the derivation of performance bounds.

5) The exposition of examples of information states and approximate information

states along with theoretical approximation bounds for control problems.

6) The illustration of the performance of this approach in various worst-case control

and reinforcement learning problems using numerical examples.

Chapter 3 derived structural forms for optimal control strategies in decentral-

ized teams with one-directional information sharing amongst agents in both stochastic

and non-stochastic settings. A salient feature of the structural forms is that they yield

control strategies with time-invariant domains and thus, they facilitate the use of DP

for their computation across long time horizons. In the stochastic setting, the infor-

mation structure of “nested accessible information” was introduced for a team of two

agents. This information structure unifies many previously studied information struc-

tures with one-directional communication and consequently, it gives a general property

of the information sharing pattern within a team that can simplify the search for op-

timal strategies. In the non-stochastic setting, the ideas behind the nested accessible

information structure were extended to teams of multiple agents with “nested subsys-

tems.” The results obtained for decentralized teams with nested subsystems generalize

the standard common information approach for non-stochastic problems. Collectively,

the theoretical developments of this chapter advance the state-of-the-art on decision-

making in complex cyber-physical systems consisting of multiple decision-makers with
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one-directional communication, such as vehicle platoons, large organizations and robot

swarms. In summary, the major technical contributions of this chapter are as follows:

1) The establishment of a structural form of optimal control strategies in decentral-

ized problems with one-directional communication which restricts their domains

to spaces which do not grow in size with time.

2) A DP decomposition utilizing these results in both stochastic and non-stochastic

formulations.

3) The extension of these results to special cases with decoupled dynamics for the

stochastic formulation and their validation with numerical simulations in the non-

stochastic formulation.

Chapter 4 introduced a model for the interactions between different social media

platforms that care about maximizing user engagement and a democratic government

that cares about the user’s trust in democratic institutions. The proposed model

captured the relationship between user engagement on social media platforms, mis-

information filtering, and trust of users in democratic institutions by drawing upon

theoretical and empirical conclusions in political science and sociology. Then, this

chapter presented a mechanism to create incentives from a fixed monetary budget of

the government, and to distribute these incentives amongst social media platforms in

a manner that maximizes the filtering of misinformation. Finally, various desirable

properties of the proposed mechanism were proved, including voluntary participation

of social media platforms, no reliance on additional governmental spending, and the

induction of a socially optimal equilibrium that balances the utilities of all platforms

and the government. In summary, the major contributions of this chapter to can be

summarized as follows:

1) The introduction of a mechanism to incentivize social media platforms to filter

misleading information.
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2) Derivations of key properties of the proposed mechanism and a case study to show

how these properties help the implementation of such a mechanism.

In conclusion, this dissertation presents contributions towards multiple problems

of decision-making in cyber-physical systems with partial information. The theoretical

results presented in each of the three chapters have promising implications for both

worst-case reinforcement learning and control in a range of applications including con-

nected and automated vehicles, medicine and healthcare, and robotic swarms. For

worst-case control with partial observations, approximate information state framework

facilitates the computation of approximate solutions with known error bounds. This

has the potential to make robust control computationally viable for a larger spectrum

of safety-critical applications [33, 34], as well as applications vulnerable to adversarial

attacks [31, 32]. This framework also facilitates the use of robust reinforcement learn-

ing approaches [92–94] in partially observed systems. Such robust strategies perform

better than stochastic optimal strategies when they face unanticipated disturbances

during real-life implementation [223–225], thus making them appropriate for use in

cyber-physical systems. Furthermore, the data-driven nature of this framework also

provides a principled approach to learn a model for human decision-making purely from

observations during human-robot interactions. For example, [190] learned a stochas-

tic approximate information state model for the behavior of human-driven vehicles

and subsequently, used this model to safely control the merging of connected and

automated vehicles in mixed traffic. Additionally, the results of the dissertation’s de-

centralized control section can extend these advancements to problems consisting of

multiple agents, such as connected and automated vehicles acting cooperatively to min-

imize energy consumption, maximize traveler safety, and improve traffic flow. Overall,

this dissertation’s contributions have the potential to drive significant progress towards

safer and more computationally efficient decision-making in cyber-physical systems.
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5.2 Directions for Future Research

While the ideas explored in this dissertation advance the state-of-the-art for

both centralized and decentralized decision-making in cyber-physical systems, they

also raise a number of compelling questions. We explore some of these questions in

this section.

A well known drawback of the worst-case decision making approach considered

in the first part of this dissertation is that in its effort to be robust against every possi-

ble disturbance, it often yields control actions whose performance is overly conservative

for the application at-hand [226]. This drawback can be addressed by considering the

risk-sensitive [28,35,65] and robust stochastic [26,27] formulations in both control and

reinforcement learning problems. Both of these formulations allow for a better regu-

lated trade off between the best-case performance of a stochastically optimal strategy

and the worst-case performance of a non-stochastic strategy. It is my belief that the

mathematical frameworks presented in the first two chapters of this dissertation can

both be extended to both of these formulations. Such an extension would have two

contributions, namely a generalization of the proposed frameworks towards a wider

range of applications and an illumination on the connections between different models

of uncertainty in decision-making [227].

The approach for decision-making in teams presented in the second part of this

dissertation also yields many avenues of future research. One exciting direction is to

consider the extension of these ideas to teams consisting of both humans and robotic

agents. Human-robot teams are characterized by one-directional communication from

the robot towards the human but are likely to feature imperfect communication from

the human to the robot [228]. Thus, the information structure of these teams is likely

to be consistent with those analyzed in this dissertation, and thus, it is my belief that

these ideas can be used to improve the challenging problem of coordinating the actions

of the agents to achieve a shared goal. This constitutes an important open problem be-

cause human-robot teams are expected to feature in a number of applications including

connected and automated vehicles in mixed traffic [229, 230], hospitals [231, 232] and
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manufacturing [233,234].

Finally, consider the mechanism presented in the third part of this dissertation,

which incentivizes misinformation filtering in social media platforms. This mechanism

relies upon a static formulation for all the interactions between the competing agents.

To make this framework more practically useful, I believe that the model and the

mechanism both need to be generalized to dynamic settings, where the effect of mis-

information filtering on engagement and trust in democratic institutions is allowed to

evolve with time.
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[148] A. Nayyar, T. Başar, D. Teneketzis, and V. V. Veeravalli, “Optimal Strategies
for Communication and Remote Estimation With an Energy Harvesting Sensor,”
IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2246–2260, 2013.

[149] A. Nayyar, A. Mahajan, and D. Teneketzis, “Optimal control strategies in de-
layed sharing information structures,” IEEE Transactions on Automatic Control,
vol. 56, no. 7, pp. 1606–1620, 2011.

[150] J. Arabneydi and A. Mahajan, “Team optimal control of coupled subsystems
with mean-field sharing,” in 53rd IEEE Conference on Decision and Control,
Dec 2014, pp. 1669–1674.

[151] T. Yoshikawa, “Decomposition of dynamic team decision problems,” IEEE Trans-
actions on Automatic Control, vol. 23, no. 4, pp. 627–632, 1978.

[152] M. Aicardi, F. Davoli, and R. Minciardi, “Decentralized optimal control of
markov chains with a common past information set,” IEEE Transactions on
Automatic Control, vol. 32, no. 11, pp. 1028–1031, 1987.

190



[153] G. Casalino, F. Davoli, R. Minciardi, P. Puliafito, and R. Zoppoli, “Partially
nested information structures with a common past,” IEEE transactions on au-
tomatic control, vol. 29, no. 9, pp. 846–850, 1984.

[154] Y. Xie, J. Dibangoye, and O. Buffet, “Optimally solving two-agent decentralized
pomdps under one-sided information sharing,” in International Conference on
Machine Learning. PMLR, 2020, pp. 10 473–10 482.

[155] A. Nayyar and D. Teneketzis, “On the structure of real-time encoding and de-
coding functions in a multiterminal communication system,” IEEE transactions
on information theory, vol. 57, no. 9, pp. 6196–6214, 2011.

[156] S. M. Asghari, Y. Ouyang, and A. Nayyar, “Optimal local and remote con-
trollers with unreliable uplink channels,” IEEE Transactions on Automatic Con-
trol, vol. 64, no. 5, pp. 1816–1831, 2018.

[157] Y. Ouyang, S. M. Asghari, and A. Nayyar, “Optimal local and remote controllers
with unreliable communication,” in 2016 IEEE 55th Conference on Decision and
Control (CDC). IEEE, 2016, pp. 6024–6029.

[158] H. Tavafoghi, Y. Ouyang, and D. Teneketzis, “A unified approach to dynamic
decision problems with asymmetric information: Nonstrategic agents,” IEEE
Transactions on Automatic Control, vol. 67, no. 3, pp. 1105–1119, 2021.

[159] M. Rotkowitz and S. Lall, “A characterization of convex problems in decentralized
control,” IEEE transactions on Automatic Control, vol. 50, no. 12, pp. 1984–1996,
2005.

[160] P. Shah and P. A. Parrilo, “H2-optimal decentralized control over posets: A state-
space solution for state-feedback,” IEEE Transactions on Automatic Control,
vol. 58, no. 12, pp. 3084–3096, 2013.

[161] E. Gallestey, M. James, and W. McEneaney, “Max-plus methods in partially
observed h/sub/spl infin//control,” in Proceedings of the 38th IEEE Conference
on Decision and Control (Cat. No. 99CH36304), vol. 3. IEEE, 1999, pp. 3011–
3016.

[162] N. Saldi, T. Linder, and S. Yüksel, “Asymptotic optimality and rates of conver-
gence of quantized stationary policies in stochastic control,” IEEE Transactions
on Automatic Control, vol. 60, no. 2, pp. 553–558, 2014.

[163] G. N. Nair, “A nonstochastic information theory for communication and state
estimation,” IEEE Transactions on automatic control, vol. 58, no. 6, pp. 1497–
1510, 2013.

191



[164] A. Dave, N. Venkatesh, and A. A. Malikopoulos, “Approximate information
states for worst-case control of uncertain systems,” in Proceedings of the 61th
IEEE Conference on Decision and Control (CDC), 2022, pp. 4945–4950.

[165] ——, “On robust control of partially observed uncertain systems with additive
costs,” in Proceedings of the 2023 American Control Conference (ACC), 2023 (to
appear).

[166] ——, “Approximate Information States for Worst-Case Control and Learning in
Uncertain Systems,” arXiv:2301.05089 (in review), 2023.

[167] A. Dave, I. Faros, N. Venkatesh, and A. A. Malikopoulos, “Worst-Case Con-
trol and Learning Using Partial Observations Over an Infinite Time Horizon,”
arXiv:2303.16321 (in review), 2023.

[168] A. Nayyar and D. Teneketzis, “Common knowledge and sequential team prob-
lems,” IEEE Transactions on Automatic Control, vol. 64, no. 12, pp. 5108–5115,
2019.

[169] S. Sudhakara, D. Kartik, R. Jain, and A. Nayyar, “Optimal communica-
tion and control strategies in a multi-agent mdp problem,” arXiv preprint
arXiv:2104.10923, 2021.

[170] A. Dave, N. Venkatesh, and A. A. Malikopoulos, “On decentralized control of two
agents with nested accessible information,” in 2022 American Control Conference
(ACC). IEEE, 2022, pp. 3423–3430.

[171] ——, “On decentralized minimax control with nested subsystems,” in 2022
American Control Conference (ACC). IEEE, 2022, pp. 3437–3444.

[172] A. Dave and A. A. Malikopoulos, “Decentralized stochastic control in partially
nested information structures,” IFAC-PapersOnLine, vol. 52, no. 20, pp. 97–102,
2019.

[173] ——, “Structural results for decentralized stochastic control with a word-of-
mouth communication,” in 2020 American Control Conference (ACC). IEEE,
2020, pp. 2796–2801.

[174] ——, “A dynamic program for a team of two agents with nested information,”
in 2021 IEEE Conference on Decision and Control (CDC). IEEE, 2021, pp.
3768–3773.

[175] ——, “The prescription approach for decentralized stochastic control with word-
of-mouth communication,” arXiv preprint, arXiv:1907.12125, 2021.

[176] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic theory. Oxford
University Press, 1995.

192



[177] P. N. Brown and J. R. Marden, “Optimal mechanisms for robust coordination in
congestion games,” IEEE Transactions on Automatic Control, vol. 63, no. 8, pp.
2437–2448, 2017.

[178] I. V. Chremos and A. A. Malikopoulos, “The design and analysis of a mobility
game,” arXiv preprint arXiv:2202.07691, 2022.

[179] S. Sharma and D. Teneketzis, “Local public good provisioning in networks: A
Nash implementation mechanism,” IEEE Journal on Selected Areas in Commu-
nications, vol. 30, no. 11, pp. 2105–2116, 2012.

[180] A. Sinha and A. Anastasopoulos, “Generalized proportional allocation mecha-
nism design for multi-rate multicast service on the internet,” 51st Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pp. 146–153,
2013.

[181] A. Kakhbod and D. Teneketzis, “An efficient game form for unicast service provi-
sioning,” IEEE Transactions on Automatic Control, vol. 57, no. 2, pp. 392–404,
2011.

[182] R. Jain and J. Walrand, “An efficient nash-implementation mechanism for net-
work resource allocation,” Automatica, vol. 46(8), pp. 1276–1283, 2010.

[183] M. Zhang and J. Huang, “Efficient network sharing with asymmetric constraint
information,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 8,
pp. 1898–1910, 2019.

[184] I. V. Chremos and A. A. Malikopoulos, “A socially-efficient emerging mobility
market,” arXiv preprint arXiv:2011.14399, 2020.

[185] A. Bessi, M. Coletto, G. A. Davidescu, A. Scala, G. Caldarelli, and W. Quattro-
ciocchi, “Science vs conspiracy: Collective narratives in the age of misinforma-
tion,” PloS one, vol. 10, no. 2, p. e0118093, 2015.

[186] E. Brown, “Propaganda, misinformation, and the epistemic value of democracy,”
Critical Review, vol. 30(3–4), pp. 194–218, 2018.

[187] J. A. Tucker, Y. Theocharis, M. E. Roberts, and P. Barberá, “From liberation
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