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ABSTRACT

In this thesis, we present an approach to optimizing the last-mile delivery route

of a truck using coordination with unmanned aerial vehicles (UAVs). First, a traveling

salesman problem is formulated to determine the truck’s route. Then, a scheduling

problem is formulated to determine the routes for the UAVs. A genetic algorithm is

used to solve these problems, and simulated results are presented. The algorithm’s

complexity is analyzed. In preparation for future research, a small scale testbed plat-

form is discussed and used to verify research on applying machine learning for traffic

control. It demonstrates the first successful zero-shot transfer of an autonomous driv-

ing policy directly from simulator to a scaled autonomous vehicle under stochastic

disturbances.
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Chapter 1

LAST MILE DELIVERY IN THE LITERATURE

In a rapidly urbanizing world, we need to make fundamental transformations

in how we use and access transportation. We are currently witnessing an increasing

integration of our energy, transportation, and cyber networks, which, coupled with the

human interactions, is giving rise to a new level of complexity in transportation [1]. As

we move to increasingly complex transportation systems [2], new control approaches are

needed to optimize the impact on system behavior of the interaction between vehicles

at different applications.

Unmanned Aerial Vehicles (UAVs) are becoming increasingly available to be

applied in civilian life, from drone racing to filming of events. In the past few years,

applying UAVs to perform better delivery services has become a research topic, par-

tially spurred by Amazon’s “Air Amazon” delivery concept announced in 2013. Poten-

tially, a delivery truck with a team of UAVs could increase both the time and energy

efficiency of a last mile delivery service (that is, the portion of the delivery going from

the distribution center to the final destination)[3].

1.1 Last Mile Delivery

Last mile delivery is a significant research area, considered the least efficient

part of the delivery. Two major reasons for this are complicated and inefficient routes,

and missed deliveries. Both of these issues exacerbate cost and environmental concerns.

Additionally, with the rise of e-commerce, last mile delivery has become more and more

important in our lives.

There are many different approaches in the literature, such as crowd sourcing of

deliveries [4] in which the goal is to increase efficiency by decreasing missed deliveries.
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Figure 1.1: An Amazon Drone Delivering a Package

Another approach in the literature are Green Vehicle Routing Problems [5][6]. These

problems may sometimes try to increase efficiency of last mile delivery by reducing

energy usage. Other novel concepts include delivery to trunks [7] which can significantly

decrease the total distance traveled.

1.2 Last Mile Delivery with UAV Assistance

Interest in UAVs, which in this thesis is a term taken to be interchangeable

with quadrotors and drones, has increased dramatically over recent years. This is in

part due to manufacturing advances which have increased the capacity of lithium-ion

batteries, a popular choice for UAVs, as well as the dropping price of carbon fiber, a

popular choice of material for UAVs. Commercially, applications have arisen in aerial

drone photography, drone racing, inspection, 3D Mapping, and more in a diverse set of

industries including construction, real estate, agriculture as well as military and police

applications. The drone market is rapidly growing and is expecting to grow past $12

billion by 2021 [8].
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Recently, the concept of applying UAVs for deliveries has caught on, partially

spurned on by Amazon’s announcement in 2013 that they would begin making such

deliveries [9]. Beyond Amazon, other companies such as DHL have also expressed

interest in this solution [10].

Significant research efforts have focused on optimizing the UAV [11], including

some relevant efforts into the control schemes of UAVs in conjunction with changing

physical parameters due to the package delivery [12]. Additional relevant research in-

cludes landing a UAV on a moving target. This task is considered extremely difficult

but has been successfully completed before [13]. The significant amount of research

allocated to this problem suggests that it would be reasonable to considered the pos-

sibility while route planning if coordinating with a delivery truck.

On the operational research end, we can divide the research into 3 subareas: (1)

Direct from depot, (2) holistic UAV-Truck delivery, and (3) non-holistic UAV-truck

delivery. We define the direct from depot approach as any problem in which there is

no coordination between a truck and UAV. In the holistic problem, there is coordi-

nation and the both the truck and UAV routes are determined, usually consecutively

in that order. In non-holistic problems, there is coordination but the truck route is

predetermined.

In the literature, direct from depot concepts are often but not always introduced

along holistic approaches. Dorling et al. [11] introduce the Drone Delivery Problem

as a MultiTrip Vehicle Routing Problem that allows the drones to be reused and takes

into account changing weights as the drone makes deliveries. Mathew, Smith, and

Waslander [14] cover in addition to a holistic approach, a Multiple Warehouse Delivery

Problem, which while having some similarities to a holistic approach we consider it

a direct from depot approach due to the lack of coordination. In the Multiple Ware-

house Delivery problem, the UAV makes all deliveries - however there are additional

warehouse nodes it can stop at, allowing for it to pick up packages or change batteries.

The breadth of the literature covering holistic approaches is the largest of our

three categories. Early versions of this problem were introduced in 2015 [15],[14]. In
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their approach, the authors make the assumption that the UAV and the truck will only

meet up and depart at some truck delivery node – albeit Murray and Chu [15] permit

the UAV to leave and enter the depot separately from the truck, Mathew, Smith, and

Waslander [14] do not. This assumption was later relaxed in [16], permitting the UAV

and the truck to rendezvous along any edge the truck is traveling. However, there

is still the assumption that the truck is parked during this action. This limitation is

unnecessary, as landing a quadrotor on a moving target has been explored with some

promising results [13]. In this paper, we relax this constraint to explore the potential

benefits. To the best of our knowledge this problem has not been addressed in this

way in the literature to date.

Finally, there are some non-holistic approaches in the literature. In Boysen et al.

[17] they take the case of having a fixed truck route and planning UAV deliveries around

it. While this approach may seem lacking in comparison to holistic approaches, there

are some advantages. Generally speaking, determining the truck route alone is an NP-

hard problem, so by taking it to be known a large amount of complexity is removed from

the problem. Furthermore, Boysen et al. note that “special planning requirements in

specific logistics branches may require that the truck route is indeed already fixed when

having to solve the drone subproblem...for attended home deliveries, time windows have

to be agreed where customers are at home to personally receive their shipments from

a human delivery person.” [17]. In other words, real world restraints may drive the

truck route to the extent where it is worthwhile to separate the truck route from the

UAV sub-problem, one such driving factor may be predetermined delivery times that

fix the truck route.

In several research efforts reported in literature, generally a variant of the Trav-

eling Salesman Problem (TSP) has been formulated. In [14] the problem was addressed

as a heterogeneous delivery problem, while in [15] the problem was addressed as the fly-

ing sidekick traveling salesman problem. In the TSP, there is a collection of cities, each

of which must be visited exactly once by a salesman, and a depot that the salesman

starts and ends at. The goal of the problem is to find the optimal route between these
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cities. These classes of problems are NP-Hard, and as such the solutions are calculated

offline. In the literature, it is shown that our problem is unique from the standard

TSP, as we have multiple agents. In addition, in some formulations, and this is the

case in this paper, we have delivery points (or cities) that can only be visited by a

delivery truck since the packages might be too heavy for a UAV, and some that can be

visited by either the delivery truck or the UAV [3],[15]. In addition, we formulate the

problem such that the UAV is energy and range constrained. Additionally, we expand

upon the literature by formulating the problem to allow n number of UAVs.

1.3 Contributions

In this thesis our contributions are formulating a unique problem, that permits

a great amount of coordination between a truck and UAVs. Unlike similar efforts in

the available literature, we coordinate with multiple UAVs and allow the UAVs to land

on the truck while in motion. Finally, we submit a two level genetic algorithm solution

to solve this formulation by dividing it up into a truck route and UAV route problem.
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Chapter 2

UNIVERSITY OF DELAWARE SCALED SMART CITY TESTBED

Scaled testing has numerous advantages. There are many physical problems

that can arise that simulation may ignore such as communication delay, system dy-

namic limits, and more. It is valuable to learn about and experience these limitations.

On the other hand, full scales tests can be extremely expensive, difficult from a reg-

ulatory perspective, and often must be handled with extra caution for safety reasons.

Additionally, full scale tests may be impractical due to the need of speed for successive

tests or restrictions in scheduling because of weather or other external factors. A small

scale testbed alleviates many of these problems, and can do a good job of balancing

the advantages of simulations with the reality of full scale tests.

Over the past two years, the University of Delaware Scaled Smart City (UDSSC)

testbed has been constructed and used for many publications. It has been constructed

to be able to handle decentralized and centralized control of traffic [18], and has im-

plemented the ability to handle interaction between cars and drones by using crazyflie

drones and integrating crazyswarm’s [19] API into the greater UDSSC architecture.

2.1 Construction and Implementation

The UDSSC covers a 20 foot by 20 foot area for testing at a 25 to 1 scale. Fig.

2.1 shows a birdseye view of the testbed. A mainframe computer can connect to over

30 cars via a wifi connection, giving the cars detailed instructions as to how to behave.

Cars can be manually driven, be assigned a velocity curve, follow an intelligent driver

model (IDM), or use plug-ins such as neural network trained function to determine how

to drive. The mainframe has access to complete information about the UDSSC road

network which is defined by 150 nodes, 102 edges, and 118 arcs, more clearly shown

6



Figure 2.1: The University of Delaware Scaled Smart City Lab

Figure 2.2: A typical Crazyflie Drone used in the UDSSC
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Figure 2.3: Graph of the ROS architecture with one active drone. Square blocks are
topics and ovals are nodes.
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in the appendix. With this information, algorithms such as A*, Dijkstra’s, and others

can be run to help determine paths for vehicles on the fly. Vehicle paths can also be

predetermined by a user if required. Vehicle control at intersections can be defined

by relevant functions for stop signs, traffic lights, or more advance control techniques.

The UDSSC has been used to successfully test optimal control techniques for multiple

scenarios.

A second computer connects to the Crazyflie drones via a radio connection.

Currently the system communicates to up to 5 drones but theoretically can handle a

significantly larger number [19]. A typical drone is pictured in Fig. 2.2. By using

Robotic Operating System (ROS), the two computers are connected over an Ethernet

connection and the drones can be controlled via Crazyswarm’s API on the Mainframe

computer. Drones have the ability to repeatedly take off, land, follow a trajectory in

2D space, or go to a waypoint in 3D space.

The cars, drones, and physical map location are all tracked using a Vicon camera

system consisting of 8 Vantage cameras. This system does the necessary motion track-

ing to capture the vehicle frames in 3D space. Additionally, the Vicon Camera system

can track markers physically attached to the map allowing calculations to be done in-

dependent of the calibration process. The Vicon system is connected to the mainframe

computer via an ethernet connection. Vicon Bridge, a ROS node that uses Vicon’s

API, is used to integrate the camera system. Fig. 2.4 visualizes the data connections

of the lab system. In addition to the vehicles and map, the Vicon camera system can

be expanded to track any particular object of interest. Fig. 2.3 shows a visualization

of the ROS architecture for the UDSSC, with one active drone-for each active object

there is an additional topic under Vicon. For each additional active drone there is

another topic located between the CrazyflieAPI and Crazyswarm Server nodes. The

Command Center and vicon nodes are on the Mainframe computer. The CrazyflieAPI

and Crazyswarm server nodes are located on the drone computer.

9



Figure 2.4: Data Connection of Laboratory Set Up

2.2 Testing of Reinforcement Learning

One of the several times the UDSSC has been used for small scale testing has

been for experiments involving applying Reinforcement Learning (RL) to control traffic

flow through a roundabout scenario to optimize traffic flow throughput. This work was

done in partnership with the University of California Berkeley.

2.2.1 Background

RL is an approach to Machine Learning in which an agent learns how to max-

imize its reward by taking actions with respect to its observed state. In combination

with simulation techniques, control of highly complex systems can be achieved. How-

ever, one drawback is that it is difficult to achieve “zero-shot” policy transfer (a transfer

of the policy function from simulation to reality without additional refinements of the

RL controller). In this work, we explored these issues and showed that with proper

training techniques, zero-shot policy transfer can be achieved.
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In RL, an agent iteratively receives sensory information describing its environ-

ment in the form of a set of states S. Based on S, the agent decides on what actions A

to take to advance to the following state s′. These actions are chosen from a stochas-

tic policy Π : S → A. The goal of RL is to learn an optimal policy Π∗ : S → A

by maximizing R = E
[∑T

t=0 γ
trt

]
, where rt is the reward received at time t. This

process learns the best actions to take from any given state to maximize the expected

cumulative reward.

There are a number of algorithms that exist for deriving an optimal RL policy

Π∗. In this study, Π∗ is learned via either Proximal Policy Optimization (PPO) [20] or

Trust Region Policy Optimization (TRPO) [21], both policy gradient algorithms.

For the training of the RL policies, we used Flow [22], an open-source framework

for interfacing RL libraries such as RLlib [23] and rllab [24] with traffic simulators

such as SUMO [25] or Aimsun. Flow enables the ability to design and implement RL

solutions for a flexible, wide variety of traffic-oriented scenarios. RL environments built

using Flow are compatible with OpenAI Gym [26] and support training with most RL

algorithms. Flow also supports large-scale, distributed computing solutions via AWS

EC2 1.

2.2.2 Training and Problem Formulation

For training of the various RL policies, a SUMO environment was created, mod-

eled after the southeast corner of the UDSSC map. Two platoons enter the roundabout,

one from the north and one from the west. The platoons take the routes through the

roundabout show in Fig. 2.6. For the simulations, two groups of a random amount

of vehicles are generated and released with a random offset into the roundabout. One

group is released from the north (the north group) and one from the west (the west

group). The groups are always led by an RL vehicle during training, in the baseline

1 For further information on Flow, we refer readers to view the Flow Github page, web-
site, or article, respectively listed here. Github: https://github.com/flow-project/
flow, website: https://flow-project.github.io/, paper: [22].
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scenario the RL vehicle is replaced by a standard IDM model. The RL vehicles are

free to take any acceleration as their action.
The RL agents can observe the following variables, which together constitute

the state of system:

• The positions of the AVs.

• The velocities of the AVs.

• The distances from the roundabout of the 6 closest vehicles to the roundabout
for both roundabout entryways.

• The velocities of the 6 closest vehicles to the roundabout for both roundabout
entryways.

• Tailway and headway (i.e. distances to the leading and following vehicles) of
vehicles from both AVs.

• Length of the number of vehicles waiting to enter the roundabout for both round-
about entryways.

• The distances and velocities of all vehicles in the roundabout.

• Lengths of the incoming inflows.

All elements of the state space are normalized. Note that depending on the training

method being used, the RL vehicles may or may not have noise in the state space. In

the small scale experiments, noise comes from sensor error and other typical sources of

noise.

Finally, there is the reward function the RL vehicles are learning to optimize.

The reward function used for all experiments minimizes delay and applies penalties for

zero velocities, near-zero velocities, jerky driving, and speeding.

rt = 2 ·
max

(
vmax

√
n−

√∑n
i=1(vi,t − vmax)2, 0

)
vmax

√
n

− p. (2.1)

In this reward function, p is defined to be the sum of 4 different penalty functions, or

p = ps+pp+pj+pv, where ps is a penalty for vehicles traveling at zero velocity, designed

to discourage standstill; pp penalizes vehicles traveling below 0.2m/s, which discourages

the algorithm from learning a RL policy which substitutes extremely low velocities to

12



Figure 2.5: Two RL-controlled AVs trained with adversarial multi-agent noise demon-
strate ramp metering behavior in this series of images, followed by an
image of the baseline where vehicles clash. First: RL vehicle slows down
in anticipation of a sufficiently short inflow from the north. Second: The
northern inflow passes through the roundabout at high velocity. Third:
The western group exits the roundabout at high velocity. Fourth: The
baseline in which all vehicles are human-driven results in queues and
clashing groups.

circumvent the zero-velocity penalty; pj discourages jerky driving by maintaining a

dynamic queue containing the last 10 actions and penalizing the variance of these

actions; and pv penalizes speeding.

Fig. 2.5 shows the vehicles in the sumo environment after some period of train-

ing. In general, the vehicles tend to learn a ramp metering behavior, in which the RL

vehicle in the western group slows down the vehicle behind it to allow the northern

group to pass in front. Seven different policies were trained. They were trained with

either no noise, noise in the action produced, noised in the state, or noise in both action

and state. Additionally, two different methods of noise creation were used. Adversar-

ial noise, in which another policy is attempting to actively learn to perturb the RL

vehicle’s state and action in a zero sum game, and a Gaussian noise model in which

values were perturbed by a Gaussian model with a standard deviation of 0.1 for the

state space and 0.05 for the action space.

2.2.3 Experimental Results and Policy Transfer

The weights of the neural network generated by the the RL were exported in

a ‘.pkl’ file. The file was accessible to a python script on the mainframe, which took

13



Figure 2.6: The Routes which were used in testing

an input of the state space measured through Vicon, identical to what was previously

described, and had an output of the accelerations of the RL vehicles.

Testing was performed using the UDSSC. Vehicle platoons of random sizes were

generated and entered the system a random distance away from the roundabout from

both the North and Western entrances. Fig. 2.7 shows the two routes used. Addi-

tionally, the boxes labeled “N” and “W” shows the range of possible start locations

for the first vehicle of the northern group and western groups respectively. After each

experiment, a “flush” was performed in which the remaining vehicles passed through

the system to allow the creation of extra baseline data (if the flush met conditions of

minimum number of vehicles) and repeatable clean experiments. The random distances

led to a ±1.67s entrance time into the roundabout by the different groups of vehicles.

Table 2.1 shows the results of the experiments, with different training environ-

ments. For the baseline test, the lead vehicle of each platoon behaved like any non-RL

vehicle. We succeeded in achieving improvements with the Action-State noise training

14



Table 2.1: Experimental results for RL Control of Roundabout Baseline (top), ad-
versarial noise (middle) and Gaussian noise (bottom) cases. Arrows show
change relative to baseline.

Noise Type Mean Time (s) Mean Speed (m/s) No. Trials
Baseline 25.7 − 0.29 − 71
Action-State 25.0 ↓ 0.25 ↓ 33
Action 29.3 ↑ 0.30 ↑ 16
State 28.8 ↑ 0.31 ↑ 8
Action-State 30.3 ↑ 0.21 ↓ 7
State 31.9 ↑ 0.30 ↓ 7
Action 39.3 ↑ 0.27 ↓ 8
Noiseless 34.7 ↑ 0.29 − 10

Figure 2.7: The Western and Northern Routes with Varied starts

15



case with adversarial noise. This result is promising as it represents successful control

of a physical system by an RL policy trained solely in simulation. In all experiments,

the ramp metering behavior was clearly learned, however in the Gaussian noise case

the behavior was deployed too extremely causing reductions in efficiency.
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Chapter 3

MATHEMATICAL FORMULATION OF LAST MILE DELIVERY
WITH DRONE ASSISTANCE

Before diving into the problem, we review some graph theory. We use G(N ,A)

to describe a graph with a set of arcs (or edges) A connecting a set N of N nodes

(or vertices), i.e., N = {1, ..., N}, N ∈ N . Each node is indexed by i ∈ N . For

our problem, we take our graph to be fully connected, and any relevant geographic

information, e.g. location of nodes, equations of paths, to be known. This road network

of the truck-UAVs system is represented by the graph G(N ,A).

3.1 Modeling the Problem

We reserve i = 1 to be the depot node that the truck and UAVs must start and

end together. In the example illustrated in Fig. 3.1, the depot node 1 is displayed in

dark blue color. We define four disjoint sets D,H,S, and R, in which each individual

node belongs to. The set D ⊂ N is a set of delivery nodes that can be serviced by the

UAVs, although the truck may still service them. In the example illustrated in Fig.

3.1, the set D has two nodes displayed in orange color. The set H ⊂ N is the set of

delivery nodes that must be reached by the truck only. In the example illustrated in

Fig. 3.1, the set H has two nodes displayed in green color. The set S ⊂ N is the set

that includes the topology nodes (e.g., street intersections). In the example illustrated

in Fig. 3.1, the set S has six nodes displayed in blue color. Finally, the set R ⊂ N

is the set of possible rendezvous and deploy nodes for the UAVs. Initially, this set is

empty but an algorithm can identify and locate these nodes.

Fig. 3.1 shows the transformation from the original graph (left) to the graph

(right) where the setR of rendezvous and deploy nodes is included. A second algorithm
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Figure 3.1: Left is the original graph G. Right is the graph modified into G ′ by adding
rendezvous nodes

can detect possible sortie. A sortie is defined as a 3-node route i− j − k that a UAV

can take, where i, k ∈ R and j ∈ D. The set of all sorties that can visit a node i is

denoted by Fi, while an individual sortie is denoted si.

Finally, we find the shortest path between each member of the set H∪D∪R∪1,

and use this to create our graph G ′′(N ′′,A′′) as shown in Fig. 2. As the dynamic element

in our problem is the change in mass, the relative lengths between nodes do not change

and we can safely make this formulation. This will allows us to constrain our solver to

visit each node no more than once, but not prevent us from revisiting street nodes.

In our problem formulation, r denotes our decisions variable, which is an array

of nodes that describes the route of the truck. We also denote with xij the edge that is

selected. For instance, if x12 = 1, then the truck travels from node 1 to node 2. This,

of course, occurs when node 1 is followed by node 2 in r. We define ri to be the ith

member of r and r−1 to be the last member. Thus, we have

xij =

1 if rk = j and rk−1 = i for some rk ∈ r

0 otherwise.

(3.1)
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We are interested in both time and energy of the entire truck-UAVs system, and

thus we formulate a multi-objective optimization problem as follows

min
(
αE(r) + (1− α)T (r)

)
,

0 ≤ α ≤ 1,
(3.2)

s.t.

∑
i 6=j

xij = 1 ∀j ∈ H, (3.3)

r1 = 1, (3.4)

r−1 = 1, (3.5)

∑
i

xij ≤ 1 ∀j, (3.6)

∑
i∈Fj

δ(si) > 0 ∀j ∈ D /∈ r, (3.7)

where,

δ(si) =

1 if rendezvous nodes of si ∈ r,

0 otherwise.

(3.8)

N∑
i=1

ed,total,ij · xkij +
N∑
i=1

ed,total,ji · xkij ≤ ekbatt

∀j ∈ D and ∀k | 2 ≤ k ≤ n+ 1.

(3.9)

In our problem formulation above, α is a weighting parameter, E(r) is the

energy costs and T (r) is the total time to complete deliveries. A breakdown of the

costs E(r) and T (r) is presented in Section II. The delivery constraint (3.3) ensures

truck deliveries are made, while the constraints (3.4) and (3.5) ensure the truck starts

and ends at the depot node. The constraint (3.6) implies that we can only visit a node
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once; however, recall this constraint applies on the transformed graph, so it is possible

to revisit the same street nodes, if needed, due to the connectivity of the original graph.

Finally, the constraint (3.7) states that for each delivery being made by the UAVs and

not the truck, there is at least one possible sortie. This permits possible solutions for

the scheduling portion of the problem. It does so by making use of a function δ(s)

which probes if a sortie’s end points are within the route.

Assumption 1 : The UAV can fly in a direct route path to its destination node.

Assumption 2 : There is no wind velocity and changes of elevations are negligible.

Assumption 3 : The effect the package being delivered has on the quadrotor’s

frontal area and coefficient of drag is negligible.

Assumption 4 : The UAVs travel from the truck, to a delivery point, and back

to the truck. The UAVs land on top of, and take off from the top of the truck.

Additionally, it is assumed that immediately after landing on the truck the UAVs have

their batteries swapped and packages loaded by an automated system.

Assumption 5 : Outside of initial and final acceleration and braking, the truck

moves at the maximum permitted and constant speed along each edge.

3.1.1 Edge Energy Costs of the Truck in Transit

The truck’s energy cost can be broken into the energy associated with the ac-

celeration and cruising at a velocity [27, 28, 29, 30]. The mass of the truck will change

as deliveries are made, monotonically decreasing throughout, for the TSP portion of

our problem as we will ignore the mass fluctuation from the UAV riding the truck.

The cost the truck endures from the UAV riding the truck will be taken into account

during the scheduling portion of the problem.

eu,ij =

∫
accel

âij(c0 + c1v + c2v
2)dt, (3.10)

where

âij = −(1)/(2Mi) · CdρaAv
2 − µg + uh, (3.11)
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Subject to:

ubrake ≤ uh ≤ uacc,

ubrake < 0 < uacc,

0 ≤ v ≤ Vij,

(3.12)

where eu,ij is the energy the truck consumes for a given input acceleration u, which

for simplicity we will take to be the maximum or minimum value. â is the equivalent

acceleration, ubrake and uacc are vehicle parameters, A is the frontal area of the truck,

Mij is the mass of the truck across edge ij, Cd is the coefficient of drag, ρa is the

density of air, µ is a friction coefficient, and uh is the acceleration input. This model

has the energy usage cut off when decelerating from a high velocity. We need also to

include the energy associated with cruising the truck,

ecruise,ij =

∫
cruising

b0 + b1Vij + b2V
2
ij + b3V

3
ijdt (3.13)

where b0, b1, b2, and b3 are vehicle parameters. Therefore, the total energy the truck

expends going from node i to node j is

et,total,ij = eu,ij + ecruise,ij. (3.14)

This leads to our formulation of the energy costs for the problem.

E(r) = w1

∑
i∈N,j∈N,i6=j

et,total,ij(x
1
ij)

+ w2

m∑
k=m−c+1

∑
i∈N,j∈N,i 6=j

ekd,total,ij(x
k
ij)

(3.15)

where w1 and w2 are weights comparing the relative value of the energy spent of the

UAV and the energy spent of the truck. For instance, this could correspond to the cost

of gasoline for the truck and electricity for the UAV. Our energy model for the UAV

gives power consumption in watt·seconds, but we convert to kWh before proceeding.

The energy of the truck is measured in milliliters of fuel. Thus, a reasonable value for
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w1 could be around 0.000747 (based of of 2.87 dollars/gallon of fuel) and a reasonable

value for w2 would be around 0.12 (12 cents/kwh). Note that while w2 > w1, the

truck energy term is expected to be significantly larger than the UAV energy term for

a normal range of physical values.

3.1.2 Time Costs

The time costs to transverse an edge can be computed based on the velocity,

accelerations, and the distance. In doing so, we apply Assumption 5 that outside of

initial acceleration and final deceleration, the truck moves at a constant velocity equal

to the maximum velocity permitted along that edge.

tt,ij = (dij − v2ij/(2uacc) + v2ij/(2ubrake))/vij

+ vij/uacc − vij/ubrake if i ∈ H, j ∈ H
(3.16)

tt,ij = (dij + v2ij/(2ubrake))/vij

− vij/ubrake if i /∈ H, j ∈ H
(3.17)

tt,ij = (dij − v2ij/(2uacc)))/vij

+ vij/uacc if i /∈ H, j ∈ H
(3.18)

tt,ij = dij/vij if i /∈ H, j /∈ H (3.19)

Hence,

T (r) =
∑
j∈N

∑
i∈N,i6=j

tt,ij(xij). (3.20)

Note that the time for the UAV to cross any edge is not in our final equation.

This is because the truck and UAV are constrained to rendezvous and must start and

end together.
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3.1.3 Edge Energy Costs of the UAV in Flight

From Assumption 1, we can generate a path for the UAV k between nodes. We

can compute the energy cost of traveling from a node i to a node j, denoted ekd,total,ij,

as a sum of the energy cost associated with ascending to that height, denoted eka,ij,

descending from that height, denoted ekd,ij, flying the distance between the two nodes,

denoted ekt,ij, and the costs associated with performing the rendezvous maneuver (if

applicable). We use the energy model described in [31] in which the authors reported

results within 10% of tested quadrotors. We stress that our future analysis is not de-

pendent on this model, but requires an energy model that is dependent on the changing

mass of the quadrotor. Furthermore, we note that there are some particular quadrotor

concepts reported in the literature [32] that this model might not be appropriate for

as they adopt unusual rotor configurations that are not compatible with assumptions

made in the energy model. Finally, we simplify this model further with Assumption 2.

The energy cost of ascending with this model is

eka,ij = (z − zi)/V k
a [dk2(mk

ijg)3/2 + kk1m
k
ijg·

· [V k
a /2 +

√
(V k

a /2)2 +mk
ijg/(k

k
2)2]],

(3.21)

where kk1 and kk2 are physical parameters of the UAV k that can be found experimen-

tally, zi is the height of the node i, g is acceleration due to gravity, mk
ij is the mass of

the UAV during the ascent (note: this value changes with the mass of the package being

carried), and V k
a is the velocity during ascent. The descent is formulated identically in

3.22, however V k
d is the descent velocity and is negative

ekd,ij = (zj − z)/V k
d [dk2(mk

ijg)3/2 + kk1m
k
ijg·

· [V k
d /2 +

√
(V k

d /2)2 +mk
ijg/(k

k
2)2]].

(3.22)

Finally, we look at the energy costs associated with the UAV traveling between

two nodes. We consider the power loss from drag, the power to hover, and the profile
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power.

ekt,ij =

∫
transverse

(P k
hover,ij + P k

par,ij + P k
p,ij)dt

P k
hover,ij = dk1(T k

ij)
3/2

P k
par,ij = dk4V

k
ij3

P k
p,ij = dk2(T k

ij)
3/2 + dk3(V k

ij cos(α))2(T k
ij)

1/2

T k
ij =

√
(mk

ijg − dk5((V k
ij cos(α))2)2 + (dk4V

k2
ij )2,

(3.23)

where dk1, dk3, dk4, and dk5 are physical parameters of the UAV l. α is the angle of attack.

Changes in frontal area and drag coefficients with the change in the package being

carried are negligible if Assumption 3 holds.

Taking these factors into consideration, the total energy cost for the UAV to

transverse an edge ij while flying can be written as:

ekd,total,ij = ekt,ij + eka,ij + ekd,ij if i ∈ D ∨ j ∈ D. (3.24)

This is a function of the UAV’s physical parameters, the time to transverse the

edge, and the package weight. We will also have to address the case of the UAV riding

along the truck. The energy model discussed for the UAV is only for UAV in flight,

in other words one of the ends nodes is a delivery node. For when the UAV is on the

truck, we model it as an additional cost of energy with the same parameters of the

truck but with the same mass of the UAV.

3.1.4 Updating Mass

As deliveries are made, the mass of the truck and the UAV change. The mass

of the truck goes down monotonically as deliveries are made-recall that even while the

UAV is docked on the truck we handle the energy spent to move it separately from the

truck. The mass of the UAV fluctuates with each delivery.

We denote M∗
0 the starting mass of the truck-UAV-packages system and M f

0 the

final mass of the system at the depot node. For every other node i, we denote Mi to
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be the mass at that node, after any deliveries, departures, and rendezvouses are made.

Finally, we define mi to be the mass of the delivery at node i. If no delivery is to be

made at node i, mi = 0.

We can define the mass at each node as

Mj =
∑
i∈N

xijMi −mj. (3.25)

We separately consider the mass of the UAV k across edge ij to be

mk
ij =

MUAV,k +mj if j ∈ R

MUAV,k otherwise.

(3.26)

3.2 Rendezvous and UAV Departure Points

The first step we will take to solve this problem, is to add plausible rendezvous

and departure points to the original graph. From our battery constraint (3.32) we can

deduce that any acceptable rendezvous and departure point j ∈ R to be paired with a

delivery node i ∈ D for UAV k has a battery constraint

ekbatt > ekd,total,ij. (3.27)

Taking (3.21)-(3.23) and (3.27), the maximum distance the UAV can cover under

this constraint can be solved for. Due to Assumptions 1 and 2, this is the same distance

in any direction, as there will be no obstacles to avoid and no wind. We call this Rmax.

Finally, for each delivery node Di we just need to find every edge within this radius.

For each edge, we create a node along that edge, the precise location of the node is not

defined, just that it is along that edge, and add an edge between that pair of nodes

and the accessible delivery nodes. The algorithm is
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1 for each edge ij

2 Create a Node that belong to set R;

3 for each d in D

4 for each UAV k

5 if ij is within Rk
max of d

6 Add edge between nodes along

edge ij and delivery point;

7 end

8 end

9 if node on edge ij have no edges

that belong to a node ∈ D

10 delete node;

11 end

12 end

Fig. 3.2 visualizes this problem, in which we would add 3 nodes as there are

three edges. Two of the edges are reachable from the delivery node, and an edge is

drawn between the rendezvous nodes and the delivery node. The next step after what

is shown in the figure would be to delete the final node as it has no rendezvous edges

connected to it. After finding the rendezvous nodes, we can then find each set of sorties,

by applying the following algorithm
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Figure 3.2: In the pictured example, plausible rendezvous nodes have been added in
red. Note that the lowest edge is outside of the radius Rmax and does
not an edge connecting the delivery point and the rendezvous nodes.

1 for each j in D

2 Create empty set Fj;

3 for each edge connected to the delivery j

and node i ∈ R

4 for Each edge connected to the delivery j

and node k ∈ R

5 if eij + ejk <= batterymax

6 Add sortie i− j − k to set Fj;

7 end

8 end

9 end

.

For each delivery node, we simply check each possible pair of edges between

that node and a rendezvous node (note that in this case a “pair” can contain the same

edge twice). If the sum of the energy costs of those two edge is less than the battery

requirement of the UAV, it is added to set of sorties.

3.3 A Note on the Traveling Salesman Problem

At this point, our model is complete for what we will generally refer to as “The

Traveling Salesman Problem” or TSP portion of our problem. In this twist on a classic
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problem, the trucks route is generated and optimized, with energy considerations,

constrained to visit each truck delivery and enough rendezvous and drone delivery

nodes. While more detail is provided in the next section, a genetic algorithm has

been employed to find this route. TSP problems are nonlinear, and NP-hard. Thus,

unique algorithms designed to find very good solutions are used. While we refer to

this solution as optimal, it is not guaranteed to be; it is optimal from the algorithm’s

standpoint. Genetic Algorithms are stochastic, and are not even guaranteed to find

the same solution given the same input.

3.4 Scheduling Problem

After our algorithm has defined a route for the truck, a scheduling problem must

be done for the UAVs. The optimal solution is one that minimizes the penalty function

J =
n∑

k=1

Jk, (3.28)

where,

Jk(T k
1 , . . . , T

k
n ) =

n∑
i

Ck(Ti), (3.29)

where Ck(Ti) is the cost of UAV k doing job i at time T . It is derived from the

geometry of the problem, the physical parameters of the truck and UAVs, and the

energy models previously discussed. After an optimal solution has been found for the

Scheduling problem, we will have to check each previously found unique TSP solution

that satisfies the condition

TSP < TSPO + SCHEDO (3.30)

as it is possibly a better solution, with TSPO and SCHEDO being the previously

found optimal solutions for the TSP and scheduling problems. We start by discretizing

the problem, and for each sortie to perform the action on UAV k a we calculate the

total cost and end time T k
f for a given start time T k

s . If the cost is greater than the

battery constraint (3.32), then that time is excluded. We also ignore sorties that are
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Figure 3.3: Flow chart of a typical Genetic Algorithm (GA)

not plausible due to having an end node not in our truck solution r. We apply the

constraints

T k
i,f < T k

i+1. (3.31)

In other words, a UAV cannot start a job until it has finished the previous one. In

addition, we have the previously mentioned battery constraint

N∑
i=1

ed,total,ij · xkij +
N∑
i=1

ed,total,ji · xkij ≤ ekbatt

∀j ∈ D and ∀k | 2 ≤ k ≤ n+ 1.

(3.32)

We then seek a solution that minimizes (3.29) subject to (3.31) for a given set of N

jobs on UAV k (j1, j2, . . . , jN).

Two popular algorithms for solving similar problems are Simulated Annealing

(SA) and Genetic Algorithms (GA). SA in particular has been used to solve problems

relating to a truck-UAV tandem making deliveries [14]. In this thesis, we will take the

opportunity to explore a genetic algorithm.

First, we will give a brief background on genetic algorithms, but encourage

interested readers to investigate further outside of this thesis. Genetic Algorithms,
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as the name implies, are inspired by biology. The first step is to create a randomly

generated population, and then evaluate each individual member of the population.

Some of the individuals are used as parents to create children, which are then evaluated,

and the cycle continues until some stopping criteria is met (no change in best evaluation

over time time, all constraints met, some sought value met, etc.). Fig. 3.3 has a flow

diagram that shows this process. Additionally, it should be noted that GA has a history

of being applied to solve TSP problems [33][34].

For our two problem approach, we first run a genetic algorithm for solving the

truck problem, saving each solution that meets constraints. We then take the best

solution, and run it through the genetic algorithm to solve for the scheduling problem

of the UAVs. This increases the total cost, which we then compare to our previous

answers. We take the lowest of our previous answers, and if it is less than our newly

found complete solution, we test again, otherwise our algorithm is done, as written in

the following algorithm

1 Run GA for TSP. Return each generation’s best;

2 New Best=Run GA for scheduling with best

value from TSP;

3 while New Best 6= best value of solutions from TSP

4 Run GA for scheduling with best value from TSP

5 if New value < New Best

6 New Best = New value;

7 end

8 end

9 return New Best;

Note, in this process we have essentially branched and bounded our search,

allowing it to be run more efficiently. This end of this process is shown visually in Fig.

6. The orange horizontal line is the current best value, while the blue line shows the

results of the genetic algorithm over generations. Each generation below the orange
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Figure 3.4: A visualization of a near complete result of the genetic algorithm. The
horizontal line is the best value, and the orange line is the values the
genetic algorithm achieved for the TSP. Any values below the line must
be checked for the scheduling problem

line should be checked for the scheduling problem, if it hasn’t been checked already.

3.5 Algorithm Analysis

To analyze our algorithm, we take the worst case scenario approach. We will use

the variables A for number of arcs in the graph, N for the number of street nodes, D

for the number of drone accessible delivery nodes, H for the number of truck delivery

nodes, n for the number of drones, p for population in the genetic algorithm and m for

the number of generations the genetic algorithm is capped to run at.

First, we consider our rendezvous node creation portion of our algorithm. This

is simply a function of the number of arcs, A, and number of drone delivery nodes, D.

Each arc is compared with each delivery nodes, or simply put

D ∗ A = DA (3.33)

in the worst case scenario, every delivery nodes is accessible from every arc. While this

is great because it means our drones have incredible range, it means a large amount

of rendezvous points, A, are inserted into the graph, doubling the number of arcs. It
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should be noted this is a truly worst case scenario, as it becomes a lackluster applica-

tion of this model. This would mean that every delivery point is accessible from the

warehouse for the drones, and coordination with the truck is most likely not necessary.

Instead, drone delivery direct from the warehouse should be investigated.

After this step, our total number of nodes is N+D+H+A and we will attempt

to simplify the graph. If we have a graph with T total nodes, the run time for finding

an optimal route between any two given nodes is O(T 2). We are interested in each pair

of delivery and rendezvous nodes. The combinatoric equation that describes this can

be written in this case as

P = (D +H + A)!/(D +H + A− 2)! (3.34)

which simplifies to

P = (D +H + A)(D +H + A− 1) (3.35)

from here, the time to find our simplified graph is

P (N +D +H + A)2 (3.36)

or rewritten for convenience as

(D +H + A)(D +H + A− 1)/(N +D +H + A)2 (3.37)

At this point, it should be noted the theoretical assumption made in this step, that is

it is assumed that the number of street nodes greatly exceeds the number of deliveries.

The point of this step is to simplify the graph. Thus we take N >> (D+H). However,

A is limited for any graph by N2, thus we can write the complexity at this point as

O(A4). (3.38)

This results emphasizes the previous insight into how problematic for the complexity

of the problem a large ranges for the drones can be, despite being a clearly positive

quality in physical application. If a significantly smaller amount of rendezvous nodes is

added, the complexity becomes O(N2). Next, we move on the TSP genetic algorithm
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we have in place. The complexity is a function of the number of generations, the size

of the population, and the size of individual members. For each generation the route

must be cycled through to evaluate fitness (constraints met), and utility. Using R for

the number of rendezvous node, we can write the complexity of the TSP as

O(m(3p(D +H +R))). (3.39)

Recall in our worst case scenario R = A. This result occurs when the drones have

a significantly large range. Due to our graph simplification in the previous step, the

complexity for the genetic algorithm increases linearly with any variable. Note that

without the previous simplification, evaluating fitness would have become non-linear.

Next, we take the drone scheduling portion of our problem. While checking if

feasibility conditions are met can take some more intense calculation, the complexity

of these calculations are constant, the number of which only increases linearly with the

number of deliveries to be scheduled. In this case, we take the max - D deliveries. The

complexity of this stage can be written as

O(m(3p(D))) (3.40)

with the total complexity up to this point being

O(m(3p(D +H + A)) +m(3p(D)) + A4) (3.41)

if the range of the drone is sufficiently large, otherwise it is

O(m(3p(D +H +R)) +m(3p(D)) +N2). (3.42)

Finally, we must take into account our backtrack procedure. In the worst case scenario,

we must check the scheduling problem for every generation. Thus our final complexity

is

O(m(3p(D +H +R)) +m2(3p(D)) + A4) (3.43)

or with low drone range

O(m(3p(D +H +R)) +m2(3p(D)) +N2) (3.44)

.
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Figure 3.5: An instance in which failing to backtrack will give sub-optimal routes.
Distances exaggerated for visibility.

3.5.1 Sub-optimal Heuristics

To improve algorithm speed, we propose a few heuristics that can reduce run

time with minimal, although possibly present, effects on optimality.

Previously, to help ensure an optimal solution, we recommended checking all

TSP solutions that fell under the condition

TSP < TSPO + SCHEDO (3.45)

where TSPO was the previously found optimal TSP solution and SCHEDO was the

previously found scheduling solution. In practice, the TSP portion of the solution

should generally dominate the final costs, and often if the solution TSPi > TSPj then

TSPi + SCHEDi > TSPj + SCHEDj is often the case, even if TSPi < TSPj +

SCHEDj.

To prove that a less optimal solution may be found, we take the following

example as shown in Fig. 3.5. In this example, the lower route is found to be optimal

by the TSP portion of the problem. However, it is only slightly better than the upper

route for the TSP. The upper route is however, significantly better for the scheduling

portion of the problem. Without backtracking to check both routes, there can be some

loss of optimality. This heuristic greatly increases the efficiency of the algorithm in the

worst case scenario. Recall that in the worst case scenario, we must run the scheduling

problem for every generation that the genetic algorithm found a solution for the TSP,

which in the worst case scenario is m generations. This led to the step in (3.43) in
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which the complexity was multiplied by a factor of m. However, as discussed, as the

cost is dominated by the truck, we still get reasonably good results by ignoring this

backtracking procedure. Thus this heuristic drops our algorithm complexity to the

result after (3.42).
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Chapter 4

EXPERIMENTAL RESULTS

Simulations were run to estimate the improvement that could be achieved with

drone coordination compared to a baseline scenario of a standard truck delivery route.

4.1 Simulation

Simulations were run in Matlab using the constants shown in Table 4.1. α

was set to 0.9, greatly skewing the result towards time optimization. Delivery points

were randomly generated, with a rule of no more than one per edge to guarantee a

distribution of delivery points throughout the road network.

Table 4.1: Coefficients of Truck and UAV Energy Parameters

Truck Value UAV Value

b0 0.1569 k1 0.8443

b1 2.45× 10−2 k2 0.3051(kg/m)1/2

b2 −7.415× 10−4 d1 2.8037(m/kg)1/2

b3 5.975× 10−5 d4 0.0296 kg/m

c0 7.224× 10−2 d5 0.0279 Ns/m

c1 9.681× 10−2 - -

c2 1.075× 10−3 - -

Fig. 4.1 shows the example of a network graph with delivery points and ren-

dezvous points added into the graph. For each generated problem, a result for a baseline

TSP -i.e. no drone assistance- and a result for 2 drones assisting the truck were found.
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Table 4.2: Average Values of Cost Function

Assisted Unassisted Improvement % Improvement

372.94 473.02 100.07 20.77%

Table 4.2 shows the average improvement - leading to a roughly 20% improvement. In

no result did the drone assisted case ever perform worse than the truck by itself.
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Figure 4.1: Network Graph after Delivery Points are Generated and the Rendezvous
and Departure Point Algorithm has been run. Red points are possible
rendezvous points, orange are drone-capable delivery points, and green
are delivery points that require the truck.
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Appendix

UDSSC MAP

Figure A.1: Map of the UDSSC with Arcs and Edges labeled
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