
Social Resource Allocation in a Mobility System with Connected and
Automated Vehicles: A Mechanism Design Problem

Ioannis Vasileios Chremos, Student Member, IEEE, and Andreas A. Malikopoulos, Senior Member, IEEE

Abstract— In this paper, we investigate the social resource
allocation in an emerging mobility system consisting of con-
nected and automated vehicles (CAVs) using mechanism design.
CAVs provide the most intriguing opportunity for enabling
travelers to monitor mobility system conditions efficiently and
make better decisions. However, this new reality will influence
travelers’ tendency-of-travel and might give rise to rebound
effects, e.g., increased-vehicle-miles traveled. To tackle this
phenomenon, we propose a mechanism design formulation that
provides an efficient social resource allocation of travel time
for all travelers. Our focus is on the socio-technical aspect
of the problem, i.e., by designing appropriate socio-economic
incentives, we seek to prevent potential rebound effects. In
particular, we propose an economically inspired mechanism to
influence the impact of the travelers’ decision-making on the
well-being of an emerging mobility system.

I. INTRODUCTION

Nowadays, it is nearly impossible to commute in a major
urban area without the frustration of a traffic jam or conges-
tion. Congestion leads to more accidents and altercations,
and, most importantly, congestion is one of the key con-
tributors that damages the environment (e.g., air pollution
caused by the huge numbers of idling engines). It is highly
expected that emerging mobility systems, e.g., connected
and automated vehicles (CAVs), will be able to eliminate
congestion and increase mobility efficiency in terms of
energy and travel time [1]. However, urban social life has
been greatly associated with the technological impact of the
car, which compels us to reassess the relationship between
automobility and social life [2], [3]. Thus, it is vital to study
the impact of CAVs in a socio-technical context focusing on
the social dynamics. The most novel and defining of all the
formidable characteristics of the emerging mobility system is
its socio-economic complexity. Future mobility systems will
enable human-vehicle interaction and allow enhanced and
universal accessibility. Evident from similar technological
revolutions (e.g., the impact of elevators on building design
and social class hierarchies [4]), human social perspective
and view can have a tremendous effect on how technological
innovations are utilized and implemented. Similarly, CAVs
are expected to become a socially disruptive innovation with
vast technological, commercial, and regulatory implications.
For example, in the form of rebound effects, the benefits of
convenience and safety could potentially lead people to travel
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more frequently using their car, and thus, increase the traffic
volume in the transportation network. Even though CAVs are
not commercially available yet, the motivation behind our
research is the following: “systems with intertwined social
and technological dimensions are not guaranteed to exhibit
an optimal performance.”

In previous work, we modeled the human social interaction
with CAVs as a social dilemma in a game-theoretic approach
[5]. We investigated the social-mobility dilemma, i.e., the
binary decision-making of travelers between commuting with
a CAV or using public transportation. In this paper, using
mechanism design, we model the routing of travelers in
a transportation network with CAVs as a social resource
allocation problem.

Mechanism design theory has emerged to mathemati-
cally model, analyze, and solve informationally decentral-
ized problems involving systems of multiple rational and
intelligent agents [6]. Mechanism design is concerned with
methodologies that implement system-wide optimal solutions
to a myriad of problems - problems in which the strategically
interacting agents can hide their true preferences for better
individual benefits, thus hurting the overall efficiency of the
system. It has been widely used in areas like communication
networks [7], power markets [8], and social networks [9].
A mechanism may be defined as a mathematical structure
that models institutions through which economic activity is
guided and coordinated [10]. We are using the notion of a
mechanism in this sense, though the economic activity we
aim to control is the allocation of travel time among travelers
in a mobility system. Our proposed mechanism presupposes
a central authority (e.g., central computer) that gathers all
routing requests and travel time demands from CAVs around
a city with a road infrastructure that supports connected
and automated traffic. In this context, we build and design
appropriate protocols and interfaces (e.g., tolls, subsidies) for
a central traffic management computer, which will guarantee
the realization of the desired outcome, i.e., maximizing social
welfare and eliminating congestion.

The authors in [10] formulated a resource allocation
problem within the framework of mechanism design. This
work led to a spark of research as mechanism design has been
used extensively in communication networks in the form
of decentralized resource allocation problems [7], [11], and
also in transportation [12], [13]. In such problems, the main
methodology is to apply the Vickrey-Clarke-Groves (VCG)
mechanisms, which are direct mechanisms that achieve a
socially-optimal solution as a dominant strategy. Because
the VCG mechanisms have certain limitations (e.g., they



are not budget balanced), there have been attempts to use
different approaches to solve the mechanism design problem.
For example, by adopting the Nash equilibrium (NE) as the
solution concept of the mechanism, a surrogate optimization
method can be used where the network manager asks the
agents to report a bundle of messages that approximate their
private information [11], [14].

In this paper, we focus on the social perspective of the
emerging mobility systems with CAVs. It is widely accepted
that CAVs will revolutionize urban mobility and the way
people commute. An example would be for CAVs to make
empty trips, i.e., no travelers, to avoid parking, and thus
add extra congestion in the network [15]. In addition, CAVs
could potentially affect drivers’ behavior and have an impact
on traffic performance in general [16]. The question of
the actual impact of CAVs on travel, energy, and carbon
demand has attracted considerable attention [17]. Depending
on different environmental indicators, the authors in [18]
provided a practical microeconomic environmental rebound
effect model. So far, there has been research on the effects
of a considerate penetration of shared CAVs in a major
metropolitan area [19]. However, most studies on CAVs
have focused on how to coordinate CAVs in different traffic
scenarios [20], [21].

In this paper, we investigate the travel time provisioning
in transportation networks with CAVs and strategic travelers.
The main contribution of this paper is the development of
an informationally decentralized travel time social allocation
mechanism with strategic travelers possessing the following
properties: (a) existence of at least one Nash equilibrium
(NE), (b) budget balanced at equilibrium, (c) individually
rational, (d) strongly implementable at NE, and (e) feasible
at or off of equilibrium. Another contribution of the paper
is that the design of our mechanism’s tolls for the travelers’
utilization of the network’s resources is intuitive enough to
provide a good understanding of the practical implementation
of the mechanism.

The remainder of the paper is organized as follows. In
Section II, we present the mathematical formulation of our
proposed mechanism. In Section III, we provide its formal
specification, and then, in Section IV, we formally show that
our proposed mechanism has properties (a) - (e). Finally, in
Section V, we draw some concluding remarks and discuss
potential avenues for future research.

II. MATHEMATICAL FORMULATION

We consider a transportation network represented by a
graph G = (V, E), where V = {1, . . . , V } corresponds to
the index set of vertices and E = {1, . . . , E} the index set
of directed edges. Each edge e ∈ E has a fixed capacity, i.e.,
ce ∈ R>0, e.g., a high capacity ce corresponds to a highway
while a low capacity corresponds to an urban road. There are
n ∈ N≥2 travelers represented by the set I = {1, 2, . . . , n}.
Each traveler i is associated with an origin-destination pair
(oi, di) ∈ V × V . The utilization of the roads in G is done
by the use of CAVs, where each CAV corresponds to one
traveler. We consider 100% penetration rate of CAVs.

Definition 1. A traveler i ∈ I seeks to commute from oi to
di via a given and fixed route pi(oi, di) at preferred travel
time, denoted by θi ∈ Θi = [0,+∞). In game theoretic
terms, θi is the type of traveler i. We denote the type profile
of all travelers by θ = (θ1, θ2, . . . , θn).

In addition, each edge e ∈ E in the network is character-
ized by θe which represents the minimum possible travel
time that any traveler can experience if edge e ∈ E is
an empty (uncongested) road. This allows us to take into
account rural or urban roads of different traffic capacities in
the transportation network G.

Next, each traveler i ∈ I has a cost function vi which
expresses the “commute-satisfaction” that traveler i experi-
ences from commuting in (oi, di) with travel time θi. We
expect vi and θi to be traveler i’s private information (i.e.,
unknown to the network manager).

Assumption 1. Assume that vi : R≥0 → R is continuously
differentiable, strictly concave, and strictly decreasing in θi
with vi(0) = 0.

Next, we denote by ti the monetary payment made by
traveler i to the network manager. We have ti ∈ R, i.e., a
positive ti means that traveler i pays a toll and a negative
ti means that i receives a monetary subsidy. Thus, in our
mechanism, traveler i’s total utility is given by

ui(θi, ti) = vi(θi)− ti. (1)

We consider that all travelers are rational and intelligent
decision-makers in the system. Each traveler i ∈ I has two
objectives: (i) to reach their destination, and (ii) to maximize
their own utility. A social consequence of the travelers’
behavior is that there is an individual disregard of the overall
good of the system and it is natural to expect that at least
one edge e ∈ E will exceed its maximum capacity. If the
network manager does not intervene, then congestion is to
be expected. So, using appropriate monetary payments, the
network manager can incentivize travelers to report truthfully
their type θi and allocate travel time on each edge e ∈ E in
such a way that all travelers are satisfied and congestion is
prevented. To achieve this, the network manager’s objective
is to maximize the overall “social welfare” of the network
and ensure that the network remains congestion-free. The
social welfare function is defined as the

∑
i∈I vi(θi) and

denoted by W . We choose to define the social welfare as
the sum of the utilities of all travelers because we follow the
utilitarian principles, i.e., we measure the collective benefits
gained by the travelers in the transportation network.

Next, note that the travelers’ strategic behavior indicates
a natural competition over the utilization of the edges.

Definition 2. Given e ∈ E , we define the following sets: (i)
the set Se of all travelers that edge e is part of their route
that connects oi and di, and (ii) the set Ri of traveler i’s
edges that consist of their route pi(oi, di).

Before we continue, we introduce the notion of reverse
value of time, say parameter αi ∈ R≥1, that can vary among



each traveler i ∈ I. The social parameter αi ∈ (α, α), where
α ≥ 1, can be interpreted as follows. If αi → α, traveler i
is willing to tolerate a slightly higher travel time, while if
αi → α, traveler i is not willing to tolerate a higher travel
time. We assume that each traveler i ∈ I can be classified
based on socio-economic demographic data (e.g., mobility
choices and travel tendencies, civil status and income) [22].

Problem 1. The centralized social-welfare maximization
problem is presented below:

max
θei

∑
i∈I

∑
e∈Ri

vi(θ
e
i ),

subject to: θei ≥ θ
e, ∀e ∈ E , ∀i ∈ I, (2)∑

i∈Se

αi · θei ≤ ce, ∀e ∈ E , (3)

where θei is the travel time of traveler i on edge e with
θi =

∑
e∈Ri

θei , and vi(θi) =
∑
e∈Ri

vi(θ
e
i ); inequalities

(2) ensure that each traveler i’s travel time θei on all edges
e ∈ E is non-negative but not zero at any case; and inequality
(3) expresses the network’s capacity on each edge e ∈ E .

By Assumption 1, it is imperative to impose a network
threshold on the feasible values of each traveler i’s travel
time. We can achieve this in (2) by only accepting travelers’
travel times that are above θe. Also, we interpret θi = 0 to
be the case of traveler i not seeking to commute instead of
wishing to commute in zero time.

Problem 1 would be a standard convex optimization prob-
lem if the strategic travelers were expected to report their
private information truthfully. As this is unreasonable to
expect from strategic decision-makers, the network manager
in order to solve Problem 1 is tasked to elicit the necessary
information using monetary incentives.

A. The Mechanism Design Problem

In our formulation, we use the NE as our solution concept.
However, a NE requires complete information. But, we can
interpret a NE as the fixed point of an iterative process
in an incomplete information setting [23], [24]. This is in
accordance with J. Nash’s interpretation of a NE, i.e., the
complete information NE can be a possible equilibrium of
an iterative learning process.

In this section, we present the fundamentals of an indirect
and decentralized resource allocation mechanism following
the framework presented in [10]. First, we need to specify
a set of messages that all travelers have access and are
able to use in order to communicate information. Based on
this information, travelers make decisions which affect the
reaction of the network manager. Once the communication
between the network manager and the travelers is complete,
we say that the mechanism induces a game; strategic travelers
then compete for the network’s resources. In this line of
reasoning, we define formally below what we mean by
indirect mechanism and induced game.

An indirect mechanism can be described as a tuple
of two components, namely 〈M, g〉. We write M =
(M1,M2, . . . ,Mn), where Mi defines the set of possible

messages of traveler i. Thus, the travelers’ complete mes-
sage space is M = M1 × · · · × Mn. The component
g is the outcome function defined by g : M → O
which maps each message profile to the output space O =
{(θ1, . . . , θn), (t1, . . . , tn) | θi ∈ R≥0, ti ∈ R}, i.e., the set
of all possible travel time allocations to the travelers and the
monetary payments (e.g., toll, subsidies) made or received
by the travelers. The outcome function g determines the
outcome, namely g(µ) for any given message profile µ =
(m1, . . . ,mn) ∈ M. The payment function ti : M → R
determines the monetary payment made or received by a
traveler i ∈ I.

Definition 3. A mechanism 〈M, g〉 together with the utility
functions (ui)i∈I induce a game 〈M, g, (ui)i∈I〉, where each
utility ui is evaluated at g(µ) for each traveler i ∈ I.

Definition 4. Consider a game 〈M, g, (ui)i∈I〉. The so-
lution concept of NE is a message profile µ∗ such that
ui(g(m∗i ,m

∗
−i)) ≥ ui(g(mi,m

∗
−i)), for all mi ∈Mi and for

each i ∈ I, where m−i = (m1, . . . ,mi−1,mi+1, . . . ,mn).

Definition 5. Let the utility of no participation of a traveler
i ∈ I to be given by ui(0, 0) = vi(0) = 0. Then, we say
that a mechanism is individually rational if ui(g(µ∗)) ≥ 0,
for all i ∈ I, and all NE µ∗ ∈M.

III. PROPOSED MECHANISM

In this section, we show how the network manager can
design monetary incentives which achieve the desirable goal,
i.e., align everyone’s decisions by incentivizing them to send
social-welfare supporting messages. But first, we need to
establish the informational structure of our mechanism. The
network manager has complete knowledge of the network’s
topology and resources and travelers know only their own
utility which they report privately to the network manager.
Before we continue, let us define explicitly a traveler’s
message. For each i ∈ I, message mi ∈ Mi is given by
mi = (θ̃i, τi), where θ̃i = (θ̃ei : e ∈ Ri) is the reported
preferred travel time of traveler i, and τi = (τei : e ∈ Ri) is
the price traveler i is willing to pay for θ̃i along their route.

Definition 6. The average price of all travelers that compete
to utilize edge e ∈ E other than traveler i is given by τe−i =∑
j∈Se:j 6=i

τe
j

|Se|−1 .

Next, for each traveler i and for each edge e ∈ E of
their route, we endow a fair share for each edge e ∈ E ,
i.e., ce/|Se|. This can help us design the monetary payments
that each traveler is asked to pay. Using Definition 6, we
propose the following payments, for a particular edge e ∈ E ,

tei (µ) = τe−i ·
(
αi · θ̃ei −

ce
|Se|

)
+ (τei − νe)2

+ τe−i · (τei − τe−i) ·

(
ce −

∑
i∈Se

αi · θ̃ei

)2

. (4)

The first term in (4) is the monetary payments (e.g., toll,
subsidies) made or received by traveler i corresponding to



their travel time allocation θ̃ei on edge e ∈ E . Intuitively,
this means that traveler i will pay a toll that is determined
by the other travelers’ recommendations and only for the
excess of the fair share of travelers over a particular edge.
Using this formulation, there is no incentive for traveler i
to lie in an attempt to reduce their payment to the network.
The second term in (4) corresponds to a penalty that traveler
i will pay if she reports a different price τei from νe, where
νe represents the Lagrange multiplier corresponding to the
capacity constraint defined formally next. The third term in
(4), collectively incentivizes all travelers to bid the same
price per unit of travel time and to utilize the full capacity
of each edge e ∈ E .

Thus, given any message profile µ, the total monetary
payment ti(µ) for traveler i is

ti(µ) =
∑
e∈Ri

tei (µ) + φi(θ̃i), (5)

where φi is a monetary incentive that encourages traveler i
to report a reasonable travel time demand respecting road
rules and the network’s efficiency goals. In detail, we have

φi(θ̃i) =


γ, ∃e ∈ Ri, s.t. θ̃ei > θe and |Se| = 1,

0, ∃e ∈ Ri, s.t. θ̃ei > θe and |Se| ≥ 2,

δ, ∃e ∈ Ri, s.t. θ̃ei = θe and |Se| ≥ 2,

0, ∃e ∈ Ri, s.t. θ̃ei = θe and |Se| = 1,

(6)

where γ, δ ∈ R>0 represent the imposition of very high
penalties. It is necessary to impose such penalties since for
the first case in (6), traveler i violates the goal of efficiency
in the network and for the third case in (6), traveler i violates
the goal of road safety. In the severe case of θ̃ei < θe, we
have φi(θ̃i) = +∞.

IV. PROPERTIES OF THE MECHANISM

In this section, we present the properties of our proposed
mechanism.

Lemma 1. Problem 1 has a unique optimal solution.

Proof. The objective function of Problem 1 is a sum of sev-
eral strictly concave functions. Hence, it is strictly concave.
Thus, the necessary KKT conditions are also sufficient for
optimality. Since the feasible region is non-empty, convex,
and compact, we conclude that Problem 1 has always a
unique optimal solution.

Lemma 2. A solution to Problem 1 is unique and optimal if,
and only if, it satisfies the feasibility conditions of Problem
1 and there exist Lagrange multipliers λ = (λei : e ∈ E)i∈I
and ν = (νe)e∈E that satisfy the following conditions:

∂vi(θ
e
i
∗)

∂θei
+ λei

∗ −
∑
e∈Ri

αi · ν∗e = 0, (7)

λei
∗ · (θei ∗ − θ

e) = 0, ∀e ∈ E , ∀i ∈ I, (8)

ν∗e ·

(∑
i∈Se

αi · θei ∗ − ce

)
= 0, ∀e ∈ E , (9)

λei
∗, ν∗e ≥ 0, ∀e ∈ E , ∀i ∈ I. (10)

Proof. First, let us derive the Lagrangian of Problem 1:

L(θ, λ, ν) =
∑
i∈I

∑
e∈Ri

vi(θ
e
i ) +

∑
i∈I

∑
e∈E

λei · (θei − θ
e)

−
∑
e∈E

νe ·

(∑
i∈Se

αi · θei − ce

)
. (11)

From (11), it is easy to derive the KKT conditions, i.e.,

∂vi(θ
e
i
∗)

∂θei
+ λei

∗ −
∑
e∈Ri

αi · ν∗e = 0, (12)

λei
∗ · (θei ∗ − θ

e) = 0, ∀e ∈ E , ∀i ∈ I, (13)

ν∗e ·

(∑
i∈Se

αi · θei
∗ − ce

)
= 0, ∀e ∈ E , (14)

λei
∗, ν∗e ≥ 0, ∀e ∈ E , ∀i ∈ I. (15)

Since the KKT conditions are necessary and sufficient to
guarantee the optimality of any allocation of travel time that
satisfies them, it is enough to find λei

∗ and ν∗e such that the
above conditions are satisfied.

Theorem 1 (Feasibility). For any message profile µ, the
corresponding travel time allocation θ is a feasible point
of Problem 1.

Proof. Consider any traveler i and denote by C the constraint
set of Problem 1. Then, for a reported preferred travel time
θ̃i, the travel time θi of Problem 1 generated by the outcome
function is equal to (i) θ̃i if θ̃i ∈ C; or (ii) θ0i if θ̃i /∈ C, where
θ̃i = (θ̃ei : e ∈ Ri), and θ0i is the point on the boundary of C
(i.e., we ignore the “unreasonable” demand of traveler i and
allocate only the portion of the resource that is available).
By construction, it follows immediately that if θ̃i ∈ C, then
the allocation θi is feasible for any traveler i ∈ I. In the case
of θ̃i /∈ C, the allocation is on the boundary of C, hence it
is still feasible as the constraint set of Problem 1 is closed.
Thus, the result follows.

Lemma 3. Let µ∗ be a NE of the induced game. Then, we
have τei

∗ = ν∗e , for all i ∈ I and each e ∈ Ri. In addition,
it follows that τe−i =

∑
j∈Se:j 6=i

τe
j

|Se|−1 = τei
∗.

Proof. Suppose there is one traveler, say i, that deviates from
the NE message profile µ∗ and instead reports the message
mi = (θ̃∗i , τi). This deviation to be justifiable has to provide
a higher utility to traveler i ∈ I. But, we have

vi(θ̃
∗
i ) − ti(m

∗
i ,m

∗
−i) ≥ vi(θ̃

∗
i ) − ti(mi,m

∗
−i). (16)

Next, we substitute (4) into (16). For ease of notational

exposition, let ξ =
(
ce −

∑
i∈Se αi · θ̃

e
i
∗
)2

. Thus,∑
e∈Ri

(τei
∗ − ν∗e )2 + τe−i

∗ · (τei
∗ − τe−i

∗) · ξ

≤
∑
e∈Ri

(τei − ν∗e )2 + τe−i
∗ · (τei − τe−i

∗) · ξ. (17)

Since traveler i behaves as a utility-maximizer, we need to
minimize the right hand side of (17). Thus, the best price



is τei = τe−i
∗, and also the solution of the minimization

problem min(τe
i )

∑
e∈Ri

(τei − ν∗e )2. Therefore, at µ∗, we
have τei

∗ = ν∗e , for all e ∈ E and for all i ∈ I and
τe−i =

∑
j∈Se:j 6=i

τe
j

|Se|−1 = τei
∗ follows immediately.

Lemma 4. Let µ∗ be a NE of the induced game. Then, for
every traveler i ∈ I, we have φi(θ̃∗i ) = 0.

Proof. We prove this by contradiction. Suppose there exists
a NE message µ∗ = (m∗i = (θ̃∗i , τ

∗
i ))i∈I such that φi(θ̃∗i ) 6=

0 for traveler i ∈ I. By (6), we only have two cases to
consider: let θ̃ei

∗ > θe with |Se| = 1 (the proof for the other
case is similar). Suppose traveler i deviates from the NE with
message mi = ((θ̃ei = θe : e ∈ Ri), τ∗i ). By Definition 4,
we have

ui(g(mi,m
∗
−i)) ≤ ui(g(m∗)). (18)

Substitute (1), (4), and (6) into (18) and then Lemma 3 gives

[vi(θ̃i)−vi(θ̃i∗)]−
∑
e∈Se

αi ·ν∗e ·(θ̃ei−θ̃ei ∗)+φi(θ̃
∗
i ) ≤ 0, (19)

where by Assumption 1, the first difference term of (19) is
negative; likewise the difference of (θ̃ei − θ̃ei

∗) is positive.
Thus, it follows that, since φi(θ̃∗i )� 0, traveler i rightfully
deviates from the NE as (19) cannot be true, by construction
of (6). The case of θ̃ei < θe, where φi(θ̃i) = +∞ is
straightforward to show, and the proof is complete.

Theorem 2 (Budget Balance). Let the message profile µ∗ be
a NE of the induced game. The proposed mechanism at µ∗

does not require any external or internal monetary payments,
i.e.,

∑
i∈I ti(µ

∗) = 0 for all µ∗.

Proof. Summing (4) over all travelers yields
∑
i∈I ti(µ

∗) =∑
i∈I
[∑

e∈Ri
tei (µ

∗)
]

=
∑
e∈H

∑
i∈Se t

e
i (µ
∗), where H is

the set of competitive edges in the network (i.e., any edge
utilized by more than two travelers). Hence,

∑
e∈H

∑
i∈Se

τe−i
∗ ·
(
αi · θ̃ei ∗ −

ce
|Se|

)
+ (τei

∗ − ν∗e )2

+ τe−i
∗ · (τei

∗ − τe−i
∗) ·

(
ce −

∑
i∈Se

αi · θ̃ei ∗
)
. (20)

By Lemma 3, we have for all e ∈ H,
∑
i∈I ti(µ

∗) =∑
e∈H ν

∗
e ·
(∑

i∈Se αi · θ̃
e
i
∗ − ce

)
, which is equal to zero

by the KKT conditions in Lemma 2.

Theorem 3 (Individually Rational). The proposed mecha-
nism is individually rational. In particular, each traveler
prefers the outcome of any NE of the induced game to the
outcome of no participation.

Proof. Let the message profile µ∗ be an arbitrary NE of the
induced game. We need to show that ui(µ∗) ≥ ui(0) = 0
for each traveler i (see Definition 5). Consider the message
mi = (θ̃i, τi) with θ̃i = 0 and τi = (τei = νe : e ∈ Ri).

That is, traveler i deviates with mi while the other travelers
adhere to the NE µ∗. By Definition 4, we have the following:

ui(g(µ∗)) ≥ ui(g(mi,m
∗
−i))

= vi(0)−
∑
e∈Ri

τe−i
∗ ·
(

0− ce
|Se|

)
=
∑
e∈Ri

ν∗e ·
(
ce
|Se|

)
≥ 0. (21)

Thus, from (21), the result follows.

In our next result, we show that our mechanism is strongly
implementable at NE. Strong implementation ensures that
the efficient allocation of travel time to the travelers is
implemented by all equilibria of the induced game [25].

Theorem 4 (Strong Implementation). At an arbitrary NE
µ∗ of the induced game, the allocation travel time (θ̃∗i )i∈I
is equal to the optimal solution (θ∗i )i∈I of Problem 1 for
each i ∈ I.

Proof. Suppose µ∗ is a NE of the induced game. Then, by
Lemma 3, it follows that τei

∗ = τe−i
∗ = ν∗e for each e ∈

Ri. Next, consider some traveler i that participates in the
mechanism and has preferred travel time θi. The utility of
traveler i for such an allocation is given by

ui(g(mi,m
∗
−i)) = vi(θi)− ti(mi,m

∗
−i), (22)

where ti(mi,m
∗
−i) =

∑
e∈Ri

ν∗e

(
αi · θei − ce

|Se|

)
. By Def-

inition 4, it follows that at NE no traveler should have an
incentive to deviate. Hence, the maximization of traveler i’s
utility (22) must be attained at the NE travel time allocation,
i.e., θ∗i = θ̃∗i . The Nash-maximization problem is

θ̃ei
∗ = arg max

θei

[∑
e∈Ri

vi(θ
e
i )−

∑
e∈Ri

ν∗e

(
αi · θei −

ce
|Se|

)]
,

(23)
subject to the exact same constraints as in Problem 1. Now,
it is easy to derive the KKT conditions that will give the
optimal “Nash solution.” By Lemma 2, the KKT conditions
are necessary and sufficient to guarantee the optimality of
any travel time allocation (θi)i∈I that satisfies them. Thus,
it is sufficient to show that there exist appropriate Lagrange
multipliers λei

∗ and ν∗e such that (7) - (9) are satisfied. By
setting λei = 0 and νe = τei for all e ∈ E , by differentiation
of (4) with respect to θei and τei , we get

∂vi(θ̃
e
i
∗)

∂θ̃ei
=
∑
e∈Ri

αi · ν∗e , ∀i ∈ I, (24)

ν∗e ·

(∑
i∈Se

αi · θ̃ei ∗ − ce

)
= 0, ∀e ∈ E . (25)

It is straightforward to see that (24) and (25) are identical
to (7) and (9), respectively. Condition (8) in both problems
holds trivially. Consequently, the solution θ̃∗ = (θ̃∗1 , . . . , θ̃

∗
n)

of (24) and (25) along with the specification of the payment
functions (4) are equivalent to the optimal unique solution of



Problem 1. Thus, at any NE µ∗, we get an identical allocation
g(µ∗) = (θ̃∗1 , . . . , θ̃

∗
n, t
∗
1, . . . , t

∗
n) that is equal to the optimal

solution of Problem 1, and the proof is complete.

Theorem 5 (Existence). Let θ∗ be the optimal solution of
Problem 1 and ν∗e be the corresponding Lagrange multipliers
of the KKT conditions. If for each i ∈ I, m∗i = (θ̃∗i =
θ∗i , τ

∗
i ), where τ∗i = (τei

∗ = ν∗e : ∀e ∈ Ri) and φi(θ̃∗i ) = 0
for all i ∈ I. Then the message µ∗ = (m∗i )i∈I is a NE of
the induced game.

Proof. We show that the message profile µ∗ = (m∗i )i∈I
where m∗i = (θ̃i = θ∗i , τ

∗
i ) is a NE. By Lemma 2, it follows

that θ∗ along with the appropriate Lagrange multipliers
satisfies the KKT conditions of Problem 1 and is the only
feasible allocation. For any traveler i, the utility at message
µ∗ is ui(g(µ∗)) = vi(θ̃

∗
i ) −

∑
e∈Ri

ν∗e ·
(
αi · θ̃ei ∗ − ce

|Se|

)
.

Now, suppose traveler i deviates from µ∗ by changing their
message while all the other travelers adhere to the message
µ∗ (though we would still have τe−i

∗ = ν∗e ). We have

ui(g(mi,m
∗
−i)) ≤ vi(θ̃′i)−

∑
e∈Ri

ν∗e ·
(
αi · θ̃ei ′ −

ce
|Se|

)

≤ max
θ̃′i

[
vi(θ

′
i)−

∑
e∈Ri

ν∗e ·
(
αi · θ̃ei ′ −

ce
|Se|

)]
. (26)

The maximization problem (26) is equivalent to (23). As the
message µ∗ clearly satisfies the KKT conditions of (23), we
have θi = θ̃i = θ̃′i, which in turn implies:

ui(g(mi,m
∗
−i)) ≤ vi(θ̃∗i )−

∑
e∈Ri

ν∗e ·
(
αi · θ̃ei −

ce
|Se|

)
,

(27)
where the right hand side of (27) is equal to ui(g(µ∗)), for
all m∗i and all i ∈ I. Therefore, message µ∗ is a NE.

V. CONCLUDING REMARKS

In this paper, we formulated the routing of strategic
travelers that use CAVs in a transportation network as a social
resource allocation mechanism design problem. Considering
a Nash-implementation approach, we showed that our pro-
posed informationally decentralized mechanism efficiently
allocates travel time to all travelers that seek to commute in
the network. Our mechanism induces a game which at least
one equilibrium prevents congestion (a significant rebound
effect), while also attaining the properties of individually
rationality, budget balanced, strongly implementability. On-
going work includes conducting a simulation-based analysis
under different traffic scenarios to showcase the practical
implications of our mechanism. Extending and enhancing
the traveler-behavioral model, motivated by a social-mobility
survey can be a worthwhile undertaking as a future research
direction allowing the study of the relationship of emerging
mobility and the intricacies of human decision-making.
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[14] T. Alpcan and T. Başar, “A game-theoretic framework for congestion
control in general topology networks,” Proceedings of the 41st IEEE
Conference on Decision and Control, vol. 2, 2002.

[15] G. H. de Almeida Correia and B. van Arem, “Solving the user opti-
mum privately owned automated vehicles assignment problem (UO-
POAVAP): A model to explore the impacts of self-driving vehicles
on urban mobility,” Transportation Research Part B: Methodological,
vol. 87, pp. 64–88, 2016.

[16] E. Aria, J. Olstam, and C. Schwietering, “Investigation of automated
vehicle effects on driver’s behavior and traffic performance,” Trans-
portation research procedia, vol. 15, pp. 761–770, 2016.

[17] Z. Wadud, D. MacKenzie, and P. Leiby, “Help or hindrance? the
travel, energy and carbon impacts of highly automated vehicles,”
Transportation Research Part A: Policy and Practice, vol. 86, pp. 1–
18, 2016.

[18] F. D. Vivanco, J. Freire-González, R. Kemp, and E. van der Voet,
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