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Abstract— The implementation of connected and au-
tomated vehicle (CAV) technologies enables a novel
computational framework for real-time control actions
aimed at optimizing energy consumption and associated
benefits. Several research efforts reported in the litera-
ture to date have proposed decentralized control algo-
rithms to coordinate CAVs in various traffic scenarios,
e.g., highway on-ramps, intersections, and roundabouts.
However, the impact of optimally coordinating CAVs
on the performance of a transportation network has
not been thoroughly analyzed yet. In this paper, we
apply a decentralized optimal control framework in a
transportation network and compare its performance to a
baseline scenario consisting of human-driven vehicles. We
show that introducing of CAVs yields radically improved
roadway capacity and network performance.

I. INTRODUCTION

Urban intersections, merging roadways, roundabouts,
and speed reduction zones along with the driver re-
sponses to various disturbances [1] are the primary
sources of bottlenecks that contribute to traffic con-
gestion [2]. Connectivity and automation in vehicles
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provide the most intriguing opportunity for enabling
users to better monitor transportation network condi-
tions and make better operating decisions. However,
investigating the impact of connected and automated
vehicles (CAVs) on a transportation network and related
implications on mobility and safety has been of great
concern in recent studies [3].

Several research efforts have been reported in the
literature proposing different approaches on coordinat-
ing CAVs at different transportation segments, e.g.,
intersections, roundabouts, merging roadways, speed
reduction zones, with the intention to improve traffic
flow. In 2004, Dresner and Stone [4] proposed the
use of the reservation scheme to control a single
intersection of two roads with vehicles traveling with
similar speed on a single direction on each road. Some
approaches have focused on coordinating vehicles at
intersections to improve the travel flow [5]-[10]. Lee
and Park [11] studied coordination of CAVs in an
intersection where a phase conflict map is used to
remove stop-and-go traffic signals. The approach was
extended [12] to an urban corridor that consisted of
multiple intersections. A detailed discussion of the
research efforts in this area can be found in [3], [13].

Most recently, a decentralized optimal control frame-
work was established for coordinating online CAVs
in different transportation scenarios. A closed-form,
analytical solution was presented and tested in merg-
ing roadways [14]-[17], intersections [18]—[21], round-
abouts [22], and speed reduction zones [23]. Rios-
Torres and Malikopoulos [24] discussed the traffic
and fuel consumption impacts of partial penetration of
CAVs for a highway on-ramp scenario.

In previous work [25], we discussed the potential
benefits of optimally coordinating CAVs in a corridor
such that stop-and-go driving is eliminated. However,



it is still not clear how a group of optimally controlled
CAVs changes the traffic patterns in a network. In this
paper, we explore the impact of the optimal decentral-
ized control framework the we developed in previous
work [16], [19], [23] for optimally controlling CAVs
in a corridor under different traffic conditions, and we
identify the benefits as well as the limitations.

The structure of the paper is organized as follows. In
Section II, we introduce the optimal control framework.
In Section III, we present the simulation platform and
the traffic scenarios that we consider. We provide the
evaluation results in Section I'V and concluding remarks
in Section V.

II. OpTIMAL CONTROL FRAMEWORK

We briefly review the model presented in [19]. We
consider a conflict zone where traffic from two different
roadways may cause potential lateral collisions, indi-
cated in red in Fig. 1. Before the entry of the conflict
zone, there is a control zone and a coordinator that
can communicate with the vehicles traveling inside the
control zone. Note that the coordinator is not involved
in any decision of the vehicles. The length of the
control zone is L and it is adjustable.
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Fig. 1: An intersection with optimally controlled CAVs.

We consider a number of CAVs N(t) € N, where
t € RT is the time, entering the control zone. Let
N(t) 1,...

control zone. The dynamics of each vehicle i € N (t)

,N(t) be a queue of vehicles in the

can be represented by a state equation
i(t) = [t 20 u), @i(8]) )

where z;(t),u;(t) are the state and control input of

_ .0
=z,

the vehicle, Y is the time that vehicle i enters the
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control zone, and z¥ is the initial value of the state.
For simplicity, we model each vehicle as a double
integrator, i.e., p; = v;(t) and v; = w;(t), where p;(t) €
Pi,vi(t) € Vi, and u;(t) € U; denote the position,
speed, and acceleration/deceleration (control input) of
each vehicle i. Let x;(t) = [p;(t) v;(t)]” denotes the
state of each vehicle i, with initial value z¥ = [0 )],
taking values in the state space X; = P; x V;. The
sets P;, V;, and U;,i € N (t), are complete and totally
bounded subsets of R. The state space X; for each
vehicle 7 is closed with respect to the induced topology
on P; X V; and thus, it is compact.

To ensure that the control input and vehicle speed
are within a given admissible range, the following
constraints are imposed

Umin < Uz(t) < Umaz, and

2
0 < Upmin < 0i(t) < Umaz, Yt € [19, t7],
where Umin, Uma, are the minimum deceleration and
maximum acceleration respectively, and vpin, Umaz are
the minimum and maximum speed limits respectively.
t? is the time that vehicle ¢ enters the control zone and
tlf is the time that vehicle 7 exits the conflict zone.
To ensure the absence of rear-end collision of two
consecutive vehicles traveling on the same lane, the
position of the preceding vehicle should be greater
than, or equal to the position of the following vehicle
plus a predefined safe distance ;(t), where 0;(t) is
proportional to the speed of vehicle i, v;(t). Thus, we

impose the rear-end safety constraint
si(t) = pe(t) = pi(t) > i), vt € 1), /], )

where vehicle k is immediately ahead of ¢ on the same
lane.

We consider the problem of minimizing the control
input (acceleration/deceleration) for each vehicle i €
N (t) from the time ¢! that the vehicle enters the control
zone until the time t{ that it exits the control zone.
Thus, we formulate the following optimization problem
for each vehicle in the queue N ()

1 [t
min —
),
subject to : (1),(2), (3),

U;
pi(t9) = p, vi(1?) = o2, pi(t])
10 4f

17 Y1 "

ui(t)dt, Vi e N(t), “4)

vl

and given



The closed-form, analytical solution of this problem
has been reported in [16], [19], [23].

III. SIMULATION EVALUATION
A. Simulation Environment

To compare network performance between conven-
tional human-driven vehicles, uncontrolled automated
vehicles (AVs), and optimally controlled CAVs, we
create a simulation network in PTV VISSIM environ-
ment in Newark, Delaware area, which includes two
signalized intersections (#1 and #2 in Fig. 2, two-lane
each direction with dedicated left-turn and right-turn
lanes at both intersections, one-lane on southbound at
intersection #2), an unsignalized intersection between
#1 and #2, and a major interchange (#3 in Fig. 2,
four-lane each direction, two separated ez-pass only
lanes on westbound that we do not consider in the
simulation network). In terms of network size, the
east-west road segment is approximately 2 km, and
the north-south segment is about 2.2 km. We obtain
hourly traffic information from 2017 annual average
daily traffic report published by Delaware Department
of Transportation [26], and simulate the morning peak
hour (i.e., 8:00AM - 9:00AM) traffic. The traffic signal
timings are optimized based on current network traffic
condition (75 s cycle length for intersection 2 and 90
s cycle length for intersection 1) for the base case.

For simulating human-driven vehicles, we apply the
Wiedemann car following model [27] that is adopted
in VISSIM, relating the minimum safe distance as a
function of standstill distance and time headway [28].
For this study, the default 1.5 m standstill distance and
1.2 s time headway are set for simulating the human
drivers’ car following behavior. Acknowledging that
more AVs are on road nowadays, VISSIM adapts its car
following model to simulate the AV’s driving behavior
through adjusting the variation in vehicle acceleration
and following distance accordingly. Besides these ad-
justment, we adopt 0.9 s time headway to reflect the
capability of an AV to follow a leading vehicle closer.

As discussed in the previous section, under optimal
control operation, each CAV inside the control zone
determines its own optimal acceleration profile to drive
through the conflict zone smoothly without stop-and-
go behavior. Once a vehicle exits an intersection or a
merging area, the control algorithm is deactivated such
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that the vehicle follows any leading vehicle based on
the Wiedemann car following model. We consider a
control length of 150 m for the coordination of CAVs.
In correspondence with different driving behavior be-
tween human-driven vehicles and AVs, we apply two
different time headway settings (i.e., 0.9 s and 1.2 5) in
our optimal control algorithm for fair comparison with
human-driven vehicles and AVs.

Fig. 2: Area considered for the case study.

IV. EVALUATION RESULTS
A. Base case with existing traffic demand

In one hour simulation period, there is approximately
12,000 vehicles entering the network, half of which
is served by the interchange. Traffic data is collected
every 60 s and vehicle trajectory data is collected
every 1 s. Note that there are both local and highway
segments in the network that we considered for the
case study. We collect individual vehicle trajectories to
analyze vehicle behavior on different routes and try to
understand how the optimal control framework affects
different groups of traffic.

We categorize the routes into four groups based on
the origin and destination road types: a) local traffic,
i.e., both origin and destination roads are arterial; b)
highway traffic, i.e., both origin and destination roads
are highway; c) local to highway; and d) highway to
local. The average travel distances for the four groups
are 1.7 km, 1.5 km, 1.7 km, and 2.0 km, respectively.
We consider the following scenarios: (1) headway 1.2
s with fixed time of the traffic signal controller; (2)



headway 0.9 s with fixed time of the traffic signal
controller; (3) headway 1.2 s, 150 m long control zone,
and disabled traffic signals; and (4) headway 0.9 s, 150
m long control zone, and disabled traffic signals.

With the optimal control framework, the following
distances are increased for all four traffic groups. There
are two major reasons: (1) vehicle movements inside
the control zones are optimally controlled such that
the desired time headway could be guaranteed at each
conflict zone; and (2) vehicle stopping at each conflict
zone is eliminated as a result of coordination (shown in
Table I). Furthermore, looking into vehicle lane change
behavior, we find that the average number of lane
change is reduced under scenarios 3 and 4. Especially,
almost a half of the total lane changes is eliminated for
highway traffic, e.g., an average of 0.34 under scenario
1 vs. 0.18 under scenario 3 in Table I. For human-driven
vehicles or uncontrolled AVs, it is usually the case
that mainline vehicles (especially those on the travel
lanes closest to the ramp) would prefer to make lane
changes near ramps to avoid interruptions from ramp
vehicles. Whereas, under optimal control, all CAVs
coordinate with each other such that lane change is
not necessary for mainline vehicles. As a result, the
number of lane changes is significantly reduced in
the network. Through eliminating stop-and-go driving
and reducing the number of lane changes, the optimal
control framework not only improves traffic mobility,
i.e., reduced average travel time as shown in Table I,
but also improves safety in the network.

TABLE I: Trip performance measurements under dif-
ferent scenarios.

Scenario l 1 2 3 4 I[ 1 2 3 4

Average Travel Time (s) Average Speed (m/s)

local->local 126.8 1239 922 90.7 13.6 13.9 18.7 19.0

highway->highway| 539 538 528 526 | 295 296 301 302
locak>highway | 981 974 769 761 | 181 182 231 234
highway->local | 1040 1022 856 847 | 196 199 238 240

Average Stops Average Number of Lane Change

local->local 0.8 0.8 0.0 0.0 0.61 0.56 0.60 0.56
highway->highway|| 0.0 0.0 0.0 0.0 0.34 0.24 0.18 0.11
local->highway 0.1 0.1 0.0 0.0 1.04 0.99 1.03 0.90
highway->local 0.4 0.4 0.0 0.0 1.15 1.16 093 0.83
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B. Sensitivity analysis with varying traffic demand lev-
els

To evaluate the effectiveness of the optimal control
framework under different traffic conditions, we con-
duct simulation for a set of traffic demand levels, i.e.,
10% - 200% of the existing traffic demand, and collect
traffic data on the road segments between intersections
1 and 2, and between intersection 1 and the interchange.
In Fig. 3, we plot the number of arrived vehicles versus
total travel time by these vehicles for all the traffic de-
mand levels under four different scenarios, with points
representing the data under different demand levels. We
find that, under scenarios 1 and 2, the network operates
well with any traffic demand level below 150%, where
the total travel time linearly increases with the number
of arrived vehicles. When the traffic demand level is
above 150%, the time spent to serve an additional 10%
of vehicles increases exponentially.
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Fig. 3: Total number of arrived vehicles vs. total travel
time in the network.

The relationship between traffic flow (vehicles per
hour per lane, veh/hr—In) and traffic density (vehicles
per km per lane, veh /km—In) under different scenarios
is shown in Fig. 4. The eastbound and westbound (Fig.
4a and 4b) represent local traffic between intersections
1 and 2, whereas the northbound and southbound (Fig.
4c and 4d) represent local to highway traffic between
intersection 1 and the interchange. From Fig. 4, we
can see that when the demand increases, the traffic gets
congested in the network of uncontrolled human-driven
vehicles and AVs (scenarios 1 and 2). Especially, when



cycle lengths of two traffic signals are not sufficient
enough to accommodate the increased traffic demand,
the queues build up easily upstream the intersections
and are difficult to resolve, e.g., traffic breakdown on
northbound.

Under scenario 3, traffic flow is generally improved
with 1.2 s headway setting, e.g., traffic congestion
is resolved for westbound and southbound directions.
However, when the traffic demand is extremely high,
e.g., over 2000 veh/hr — In on the northbound, it is
apparent that 1.2 s headway and/or 150 m control zone
length limit the extent to which network capacity could
be utilized such that all the traffic demand could be
satisfied. Therefore, we observe that the optimal control
fails in the extreme traffic demand cases, resulting
in unresolved traffic congestion, i.e., eastbound and
northbound traffic under scenario 3 in Fig. 4, and the
increased travel time (Fig. 3). If, however, we take
into account the capability of shorter headways for
the CAVs, the optimally controlled CAVs are able to
form a smooth traffic flow and eliminate congestion in
the network even with the highest traffic demand level
(as shown by the linear flow-density relationship under
scenario 4 in Fig. 4).

V. CONCLUDING REMARKS

In this paper, we compared the performance of a
transportation network between optimally controlled
CAVs and uncontrolled human-driven vehicles. The
results highlight the impact of coordination of CAVs
in terms of fuel economy and traffic safety. We have
shown that the control parameters of the decentralized
framework need to be handled carefully to fully utilize
roadway capacity and satisfy different traffic demand
levels in the network. While the potential benefits of
full penetration of CAVs to alleviate traffic congestion
and reduce fuel consumption have become apparent,
different penetrations of CAVs can alter significantly
the efficiency of the entire system. Future work should
investigate the implications of different penetration
CAV penetration rates.
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