
A Digital Smart City for Emerging Mobility Systems

Raymond M. Zayas, Logan E. Beaver, IEEE Student Member, Behdad Chalaki, IEEE Student Member,
Heeseung Bang, IEEE Student Member, Andreas A. Malikopoulos, IEEE Senior Member

Abstract— The increasing demand for emerging mobility
systems with connected and automated vehicles has imposed
the necessity for quality testing environments to support their
development. In this paper, we introduce a Unity-based virtual
simulation environment for emerging mobility systems, called
the Information and Decision Science Lab’s Scaled Smart
Digital City (IDS 3D City), intended to operate alongside
its physical peer and its established control framework. By
utilizing the Robot Operation System, AirSim, and Unity, we
constructed a simulation environment capable of iteratively
designing experiments significantly faster than it is possible in
a physical testbed. This environment provides an intermediate
step to validate the effectiveness of our control algorithms prior
to their implementation in the physical testbed. The IDS 3D City
also enables us to demonstrate that our control algorithms work
independently of the underlying vehicle dynamics, as the vehicle
dynamics introduced by AirSim operate at a different scale than
our scaled smart city. Finally, we demonstrate the behavior
of our digital environment by performing an experiment in
both the virtual and physical environments and comparing their
outputs.

I. INTRODUCTION

OVER the last decade, the growing population in ur-
ban areas, without a corresponding increase in road

capacity, has led to traffic congestion, increased delays,
and environmental concerns [1]. Integrating communication
technologies along with computational capabilities into con-
nected and automated vehicles (CAVs) has the potential
to revolutionize our overwhelmed transportation systems.
Through these advancements, our transportation system will
transition into an emerging mobility system, in which CAVs
can make better operational decisions—leading to improve-
ments in passengers safety as well as a significant reduction
of energy consumption, greenhouse gas emissions, and travel
delays [2]–[7].

Rigorous evaluation of the performance of CAVs requires
a broad spectrum of testing, ranging from numerical simu-
lation to real-world public roads. Recently, the emergence
of scaled cities has received significant global attention as
a more sustainable CAV testing solution [8]–[12]. These
closed-test facilities use robotic cars to ensure safety, com-
plete control of the test-environment variables, and quick,
repeatable experiments. A key intermediate step before test-
ing these new technologies in a scaled environment is to use
high-fidelity simulations to gather preliminary information
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about the system’s performance in an idealized environment
[13].

Several research efforts have been reported in the literature
on creating a digital version of the real environment using
physics-based simulation software. Zhang and Masoud [14]
used Gazebo to create a virtual environment to test CAVs due
to its ability to capture microscopic vehicle movement. The
authors selected Gazebo, rather than a game engine, due to
concerns about rigorously replicating the full dynamics of an
individual vehicle. In other efforts, a simulation framework
for CAVs has been linked to the robot operating system
(ROS) and game-engine platform Unity [15]–[17]. Tsai et
al. [16] demonstrated the validity of hardware-in-the-loop
simulation utilizing the ROS Unity link. Mizuchi et al.
[17] introduced virtual reality for multiple users into the
environment using Unity, and Yang et al. [18] modeled
an existing environment within Unity to validate simulated
sensors in a variety of weather and lighting conditions.

In this paper, we introduce the Information and Decision
Science Laboratory’s Scaled Smart Digital City (IDS 3D
City) in Unity, a full-scale digital recreation of the Informa-
tion and Decision Science Lab’s Scaled Smart City (IDS3C)
physical testbed [11], [12]. We are particularly interested
in how the collective behavior of the CAVs influences the
transportation network, and our focus is not on the perception
and low-level control of individual vehicles. IDS3C is a
1:25 scaled testbed spanning over 400 square feet, and it
is capable of replicating real-world traffic scenarios using up
to 50 ground and 10 aerial vehicles. Our digital replica can
communicate with the central mainframe computer using the
user datagram protocol (UDP), allowing users and potential
collaborators to evaluate the behavior of their algorithms
before running a physical experiment in the IDS3C. Using
IDS 3D City, we are also able to rapidly iterate the design
of our experiments before deploying them on the physical
city.

While other virtual environments have been created to test
the performance of individual CAV, to the best of our knowl-
edge, the environment we report in this paper is the first one
that is capable of analyzing a transportation network at a
system level. IDS 3D City also facilitates the investigation
of different traffic scenarios, such as coordination of CAVs
in the presence of human-driven vehicles. Another benefit
of IDS 3D City is that it allows users to test their control
algorithms in the physical environment after validating them
in the virtual environment without further changes. This
is particularly important; unlike existing simulators, e.g.,
CARLA, the IDS 3D City directly interfaces with the control



software that operates the IDS3C.
The remainder of the paper proceeds as follows. In Section

II, we introduce IDS 3D City and elaborate on the different
features and their interactions. In Section III, we present a
coordination problem of CAVs at a roundabout, and compare
the results from IDS 3D City and IDS3C. Finally, we draw
concluding remarks and propose some directions for future
research in Section IV.

II. DIGITAL SIMULATION ENVIRONMENT

The IDS 3D City integrates seamlessly the current con-
trol framework used in its physical counterpart, IDS3C.
A schematic of the communication structure between the
IDS 3D City and IDS3C is shown in Fig. 1. During a
physical experiment, a central mainframe computer runs a
custom C++ application that generates a separate thread for
each CAV in the experiment. Each physical CAV in IDS3C
receives a desired trajectory from the mainframe computer
over WiFi, and the position and orientation of each CAV
are fed back to the mainframe computer through a VICON
motion capture system.

To imitate the behavior of IDS3C, we send trajectory data
over a local UDP socket from mainframe to the IDS 3D City
application. This trajectory data consists of the desired state
of each CAV in the simulation. After each physics update,
the position and orientation of each CAV in the IDS 3D City
are broadcast through ROS to a node that mimics the format
of VICON measurements. This information is accessed by
the mainframe computer, which updates the CAVs’ states,
executes the control algorithm, and sends new commands
over UDP. A major consequence of this design is that we
can seamlessly switch between running any individual car in
the physical or virtual environment with minimal changes to
our input files. The IDS 3D City is also capable of replaying
experimental data, allowing users to directly control a vehi-
cle, and streaming a live feed of the virtual cameras attached
to each vehicle. In the following subsections, we review the
three major aspects of our simulation environment: the Unity
game engine, Microsoft AirSim, and ROS#.

A. Unity Game Engine

We built a majority of the IDS 3D City using Unity,
a free and highly-customizable game engine with built-in
physics and a C# scripting framework; for a brief history
of the Unity game engine, see [15]. We selected Unity over
existing simulation packages, such as Gazebo, as it is easy to
deploy and performs well on a variety of platforms. Unlike
Zhang and Masoud [14], our interest lies in the system-
level coordination of CAVs, not the particular dynamics of
any individual CAV. Unity also relies heavily on the entity-
component paradigm of software design, which grants us
incredible flexibility in the design and control of vehicles in
the virtual environment. The built-in Nvidia PhysX engine
is open-source, which provides us the ability to modify the
physics of the experiment when necessary. Unity is capable
of building an executable for Windows, Mac, Linux, and
mobile devices, which ensures that the simulation will run

natively on all available hardware. Unity’s graphical settings
are also configurable per device, allowing weaker hardware
to access the IDS 3D City, while more powerful hardware
can produce high-fidelity videos and screenshots. Further-
more, Unity allows us to explore more accurate mixed-traffic
scenarios with built-in virtual reality support.

As a first step to creating the IDS 3D City, we re-
constructed the IDS3C’s road network at full scale and
placed environmental decorations within Unity. The road
network was defined in CAD files, which defines each
road segment as either a straight line or arc segment. To
handle the simulation logic, we created two manager scripts.
The Experiment Manager is the primary manager, which
controls the experiment clock used for data collection. It
also stores the initial conditions of all vehicles, this ensures
that an experiment can be repeated without restarting the
simulation software. The secondary manager script is the
Vehicle Manager, which handles all of the vehicles. The
vehicle manager spawns each vehicle at its initial position,
and if two vehicles overlap, the vehicle manager places
the second one behind the first to avoid infeasible initial
conditions. The vehicle manager also passes information
about the vehicles to the user interface (UI) and data logging
tools.

To initialize vehicles into the environment, we use Unity’s
prefab system which allows us to configure each vehicle
based on the initialization data sent from the mainframe
computer. For each vehicle, the initialization data includes
the control algorithm name, controller parameters, the initial
state, and vehicle appearance. We implemented the vehicles
as an abstract class, thus the vehicle manager is flexible
enough to initialize and coordinate any additional vehicle
types that we may add in the future. A schematic of the
key components in our vehicle prefab is presented in Fig. 2,
and the behavior of the AirSim and ROS# components are
explained in the relevant sections that follow.

We use the passenger car as the main vehicle type in our
simulation. This is controlled by a custom car script, which
is a child of the abstract vehicle class. The car script takes a
timestamped waypoint as input, which consists of a desired
position in R2, an orientation in R, and a speed in R. This
information is passed to a low-level tracking controller to
generate a steering angle and throttle command. The steering
angle is computed using a modified Stanley controller [19],

δ(t) =
(
ψ(t)− ka · v(t) · ψ̇(t)

)
+ arctan

{ keye(t)

ks + v(t)

}
− ky

(
ψ̇(t)− ψ̇d

)
, (1)

where δ(t) is the steering angle, ψ(t) is current yaw angle,
ψd(t) is the desired yaw angle, v(t) is the current speed,
ye(t) is the lateral tracking error, ka, ke, ky are proportional
tracking constants, and ks is a small constant that ensures the
controller can operate at low speeds. The throttle command
is generated through a feedforward-feedback controller, i.e.,
the desired position is tracked using PID control, and we
compensate for the vehicle’s speed at that point with a feed-
forward term in the control loop [20]. The throttle command



Fig. 1. Comparison of the physical and virtual city environments. The mainframe computer can switch between physical and virtual experiment seamlessly.

is sent through a second layer of the controller where it is
translated into gas, brake, and handbrake inputs (formally
defined in the next section). Finally, the steering angle and
throttle commands are sent to the AirSim controller, which
updates the state of the vehicle using its own dynamic model.

The final major component within Unity is the UI, which
is visible in Fig. 3. The UI displays information about the
current experiment and CAVs in a human-readable format.
The UI includes all of the relevant information about each
vehicle, including the vehicle’s ID, status, current position,
and speed. We also included buttons that allow the user to
open a preview panel for any vehicle. The preview panel
contains a live feed of the camera attached to the CAV, as
well as the current steering angle, gas, brake, and handbrake
commands.

B. AirSim

To model the dynamics and sensors of each vehicle, we
included Microsoft AirSim’s work-in-progress Unity mod-
ule1. We accomplished this by using the AirLib wrapper
plugin, which allows us access to AirSim’s C++ API while
maintaining the Unity code base in C#. Our vehicle prefabs
(Fig. 2) are based on the prefabs contained in AirSim. AirSim
provides convenient code packages, for vehicles and drones,
that model physically accurate behavior while being fully
configurable. Configurable variables include motor torque,
steering angle limits, weight, and aerodynamic drag. This
allows us to validate our approaches to CAV coordination

1AirSim: https://microsoft.github.io/AirSim/Unity/

on a variety of vehicles, and further helps us demonstrate
that our control algorithms are independent of the underlying
vehicle dynamics. Another major feature of AirSim is its
sensor suite. Namely, each vehicle is equipped with an RGB
camera to collect qualitative data and to give visual feedback
to a human operator.

We made several modifications to the AirSim source
code, both to fix undesirable behaviors and to customize the
vehicles for our use case. We fixed apparent bugs in the
braking behavior, one where extreme braking would occur,
and another where the brakes would lock and be unable to
move. Finally, our low-level tracking controller outputs a
normalized throttle command ud(t) ∈ [−1, 1]; however, the
AirSim controller expects three input variables, gas, brake,
and handbrake. We map the desired throttle to these variables
using an intermediate layer,

h(t) =

{
1 if ud(t) ≤ −0.5,

0 otherwise,
(2)

b(t) = max
{

0,−ud(t)
}
·
(
1− h(t)

)
, (3)

g(t) = max
{

0, ud(t)
}
·
(
1− h(t)

)
, (4)

where h(t) ∈ {0, 1} is the handbrake, b(t) ∈ [0, 1] is the
brake command, and g(t) ∈ [0, 1] is the gas command.
This results in the AirSim controller tracking the desired
speed, and the vehicle only triggers the handbrake when a
sufficiently large deceleration is requested. It also guarantees
that the vehicle will stop, rather than shifting into reverse, if
it overshoots its current waypoint.

https://microsoft.github.io/AirSim/Unity/


Fig. 2. A diagram showing the different components that make up a single
vehicle in the Unity simulation. The dashed arrows denote communication
between different subsystems of the car script, which is a child of the
abstract vehicle class.

Fig. 3. The digital simulation UI during one run of the experiment. The
vehicle UI nodes are on the left, the experiment controls on top, and the
preview panel on the right.

C. ROS Framework

ROS provides a flexible framework for robotics software,
particularly through its standardized communication proto-
cols. These protocols give separate software components
the ability to exchange information reliably, while providing
access to a wide suite of debugging tools. To introduce
ROS functionality into Unity, we integrated Siemens’s open-
source ROS# package2. In the IDS3C, we use ROS to access
VICON motion capture data and determine the state of each
vehicle in real time. In the IDS 3D City, we use ROS# to
mimic the VICON ROS topic by attaching two ROS-specific
components called publisher and client to the vehicle prefab.

The publisher component captures the position and orien-
tation data of the vehicle. This information is composed into
ROS messages to be published as a timestamped transform

2ROS#: https://github.com/siemens/ros-sharp

message. The client component connects to a ROS server
that runs on the mainframe computer. The client streams
the state data of each vehicle to the ROS server, which the
server broadcasts in the same format as the VICON motion
capture system. This setup also enables us to control virtual
and physical vehicles simultaneously and have access to the
state information of all vehicles in real time.

III. VIRTUAL AND PHYSICAL EXPERIMENT

To demonstrate the capabilities of the IDS 3D City, we
consider a scenario of homogeneous human-driven vehicles
operating in a single-lane roundabout, depicted in Fig. 4.
We consider N = 6 vehicles entering the roundabout in
two groups of 3, one from the northern entry and one from
the eastern entry. Our approach to planning trajectories for
each vehicle i ∈ {1, 2, . . . , N} considers double integrator
dynamics,

ṗi(t) = vi(t), (5)
v̇i(t) = ui(t), (6)

where pi(t), vi(t) ∈ R are the longitudinal position and
speed of vehicle i, and ui(t) ∈ R is the control input. We
also impose the state and control constraints,

0 ≤ vmin ≤ vi(t) ≤ vmax, (7)
umin ≤ ui(t) ≤ umax, (8)

where vmin, vmax are the minimum and maximum speed
limit and umin, umax are the minimum and maximum control
inputs.

In general, we have implemented optimal coordination,
human-driven vehicles, and driver models in the IDS3C [11],
[12], [21]. For simplicity, we present a scenario that employs
the Intelligent Driver Model (IDM) [22], which is known to
mimic the behavior of human drivers. This model outputs
the acceleration for a vehicle i based on the relative state of
a preceding vehicle, k ∈ {1, 2, . . . , N} \ {i},

ui(t) = umax

[
1−

(
vi(t)

vmax

)δ
−
(
s∗(vi(t),∆vi(t))

si(t)

)2
]
,

(9)
where s∗ is the desired headway of the vehicle,

s∗(vi(t),∆vi(t)) = s0 +max

(
0, vi(t)T +

vi(t)∆vi(t)

2
√
uminumax

)
,

(10)
where si(t) is the bumper-to-bumper distance between vehi-
cles i and k, and ∆vi(t) = vi(t) − vk(t). The constants
s0, T, δ are parameters that correspond to the standstill
stopping distance, time headway, and an exponential factor
that determine the acceleration and braking behavior, respec-
tively. Standard values for each of these parameters can be
found in [22].

We designed the roundabout scenario in Fig. 4 such that
the two groups of vehicles would reach at the merging point
at the same time. To ensure safety, vehicles at the northern
entry (Path 1) must yield to roundabout traffic (Path 2). We
achieved this by placing a virtual stopped vehicle at the

https://github.com/siemens/ros-sharp


Fig. 4. A schematic of the roundabout scenario showing the two paths and
the yield sign location.

position of the yield sign whenever a vehicle from Path 2
was near the merging point [23]. When the area in front of
the merging point was clear, the virtual vehicle was removed
and vehicles on Path 1 were allowed to enter the roundabout.
Otherwise, the vehicles traveling along Path 1 form a queue
and wait for the vehicles along Path 2 to pass through the
merging point.

The speed of each vehicle following Path 1 is plotted
against position in Figs. 5 and 6 for the simulation and
experiment, respectively. The effect of the yield sign can
be seen around 3.3 m in both cases, where the front vehicle
traveling on Path 1 comes to a full stop and a queue begins
to form. In simulation, after approximately two seconds,
the front vehicle squeezes into a gap and merges with the
vehicles on Path 2. This causes the second vehicle on Path
1 to creep forward before coming to a complete stop again.
In contrast, the front vehicle in the experiment comes to
a complete stop, is unable to merge, and a queue forms
behind it. This resulted in all vehicles on Path 1 yielding to
all vehicles on Path 2 before entering the roundabout. This
observation demonstrates that while the IDM controller and
vehicle dynamics behave similarly, the delays, noise, and dis-
turbances in the physical experiment ultimately prevent the
front vehicle from merging early in this particular scenario.

The position of all vehicles is plotted against the time
trajectory for the simulation and experiment in Figs. 7 and 8
respectively. The horizontal black line around 2.1 m marks
one car length upstream from the merging point, and we
have translated the reference frame of Path 2 such that
the distance to the merging point is equal on both paths,
i.e., the same distance corresponds to the same physical
position. Therefore, overlapping lines of different colors only
correspond to collisions between vehicles at distances greater
than 2.1 m. Despite the different vehicle dynamics in the
simulation and experiment, Figs. 5 - 8 demonstrate that both
environments result in appropriate IDM behavior, and neither
case leads to a collision between vehicles. In addition, these
results show that the simulated vehicles have smoother speed
profiles compared to the experiment, as expected. Videos
of the experiment and simulation, as well as supplemental
material on the capabilities of the IDS 3D City, can be found

Fig. 5. Speed vs position for the vehicles on Path 1 in the IDS 3D City
simulation with a 0.1 s moving average filter applied.

Fig. 6. Speed vs position for the vehicles on Path 1 in the IDS3DC
experiment with a 0.1 s moving average filter applied.

on our website https://sites.google.com/view/
ud-ids-lab/IDS3DCity.

IV. CONCLUSION

In this work, we presented an overview of our virtual
recreation of the IDS3C. Our simulation environment lever-
ages the Unity game engine, AirSim, and ROS# to control
full-scale virtual vehicles, and to verify the behavior of our
control algorithms before they are deployed in our physical
environment. We described how the simulated environment
hooks into the control code for the physical city, which
enables us to quickly iterate the design of an experiment and
debug our control algorithms in simulation. In particular, we
illustrated that the intelligent driver model in a roundabout
behaves properly, and we demonstrated that our control
framework is independent of the underlying dynamics of
individual vehicles. Ongoing work includes performing ex-
periments to implement our optimal control framework [21]
and mixed traffic input [24]. The most immediate direction
for future research is to fully integrate the virtual vehicles
with a physical experiment, resulting in an augmented-
reality cyber-physical system. Another intriguing direction

https://sites.google.com/view/ud-ids-lab/IDS3DCity
https://sites.google.com/view/ud-ids-lab/IDS3DCity


Fig. 7. Position vs time trajectory vehicles in the simulation for the Path 1
(red) and Path 2 (blue). The horizontal black line corresponds to the position
of merging point.

Fig. 8. Position vs time trajectory vehicles in the experiment for the Path 1
(red) and Path 2 (blue). The horizontal black line corresponds to the position
of merging point.

is including AirSim drones in the simulated environment for
applications that require air-ground cooperation.
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