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ABSTRACT

The emergence of connected and automated vehicles (CAVs) introduces a novel

dimension to the mobility paradigm that enables efficient communication and real-time

computation of control actions to optimize vehicle performance, traffic efficiency, and

other associated benefits. While several studies have shown the benefits of CAVs to

improve vehicle- and network-level performance by alleviating congestion at specific

traffic scenarios, most of these efforts have focused on 100% CAV penetration rate

without considering the interaction with human-driven vehicles (HDVs). The consid-

eration of such utopian scenarios may have facilitated the initial development of CAV

technologies, but cannot be realized in current transportation conditions. It is expected

that CAVs will gradually penetrate the market and interact with HDVs over the next

several years. Therefore, for the CAVs to be deployed en masse, technological advance-

ments are needed to be made considering a mixed traffic environment, where CAVs

can safely co-exist with the HDVs in the traffic network. In general, a mixed traffic

environment poses significant modeling and control challenges due to the stochastic

nature of human-driving behavior and lack of communication. Therefore, the ques-

tion that still remains unanswered is, “how can CAVs safely interact and co-exist with

HDVs?” In this dissertation, I address this question through the development of an

optimal control and coordination approach.

In the first part of my dissertation, I explore one extreme of the mixed traffic

environment spectrum, which is the 100% CAV penetration case, and address the

research gaps in the literature related to CAV coordination at traffic corridors consisting

of different traffic scenarios. I propose a vehicle dynamics (VD) controller that yields a

closed-form analytical solution to the optimal control problem and minimizes transient
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engine operation and travel time of the CAVs. The effectiveness of the VD controller

is validated through a sequential experimentation methodology that shows real-world

improvement in fuel economy and traffic throughput. Furthermore, I investigate the

problem of trajectory optimization in the presence of system constraints, which is

difficult to solve in real time due to its iterative solution methodology according to

the standard Hamiltonian analysis. To this end, I develop a condition-based control

framework that can identify the activation of system constraints a priori. The proposed

framework can explicitly incorporate the state, control, and safety constraints in its

formulation, and derive constrained motion primitives for the CAVs with an efficient,

real-time implementable algorithm.

In the second part of my dissertation, I address a mixed traffic environment

consisting of CAVs and HDVs, and investigate the implication of vehicle- and network-

level control of CAVs. First, I consider the problem of deriving safe trajectories for the

CAVs in the presence of HDVs with unknown driving behavior, and propose a predictive

control approach that considers the future trajectories of the HDVs to ensure collision

safety. Then, I investigate the impact of partial penetration of CAVs from a network-

level perspective, which indicates that the higher penetration rates of CAVs improve

transportation safety and performance metrics, while lower penetration cases result in

traffic congestion.

In an effort to address CAV coordination in a mixed traffic environment to alle-

viate traffic congestion, I propose a novel control paradigm that leverages the concept

of vehicle platooning. I transform the problem of mixed traffic coordination into two

hierarchical optimal control problems: (i) a platoon formation problem to indirectly

control the motions of the HDVs within the network, and once the mixed platoons

are formed, (ii) a platoon coordination problem to lead the platoons through a traf-

fic scenario. To address the former problem, I investigate the feasibility of platoon

formation by controlling the CAVs, and propose a comprehensive model-agnostic op-

timal controller which ensures platoon formation without having explicit knowledge
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of the human driver behavior. Then, I develop a safety-aware, multi-objective re-

ceding horizon controller that considers linear, non-linear, and data-driven prediction

models, and enables the formation of vehicle platoon satisfying the system constraints

that include enhanced safety. The proposed controller is able to form platoons at low

penetration rates while it is robust against a wide range of human driving behavior.

Subsequently, to coordinate the platoons formed in (i), I develop a robust, single-level,

multi-objective optimal platoon coordination framework that accounts for the effect of

delayed communication and system constraints. The closed-form analytical solution

of the proposed framework can be implemented in real time with the enforcement of

lateral and rear-end collision avoidance constraints in the presence of bounded delays.

The research efforts pursued in this dissertation bridge the gap between the

two extremes of the mixed traffic environment spectrum, and thus, have a significant

impact on the future of mobility. By adopting the computationally efficient and real-

time implementable control framework proposed in this dissertation, CAVs can derive

optimal motion primitives that can ensure safe and improved mobility in a mixed traffic

environment.
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“A journey of a thousand miles begins with a single step.”

—Chinese proverb

Chapter 1

INTRODUCTION

1.1 Motivation

The demand for intelligent transportation systems and mobility solutions world-

wide is rapidly growing due to several reasons. About 55% of the world’s population

currently live in urban areas, which is expected to rise to 68% by 2050 [1]. Conventional

mobility technologies and traffic management systems cannot cope with this growing

demand as the capacity of the current transportation network is being overwhelmed.

Based on the 2019 Urban Mobility Report, Schrank et al. [2] reported that in 2019

congestion in the United States caused urban commuters to spend 8.7 billion additional

hours on the road at an additional cost of 3.5 billion gallons of fuel, resulting in a total

cost estimated at $190 billion. A report by INRIX projects the combined annual cost

of traffic congestion in the United States, UK, France, and Germany to reach $293B by

2030, which is a 50% increase from 2013 [3]. According to a recent report from World

Economic Forum , traffic congestion has cost the U.S. economy nearly $87 billion in

2018 [4]. The transportation sector is one of the major contributors to greenhouse gas

emissions as well. According to the Inventory of U.S. Greenhouse Gas Emissions and

Sinks [5], transportation accounted for the largest portion (29%) of total U.S. green-

house gas emissions in 2017. In addition to having an adverse effect on economic and

environmental aspects, inefficient and overwhelmed transportation systems also have a

profound impact on human lives, since traffic congestion leads to risky driving maneu-

ver that has serious safety implication. Congestion at traffic junctions such as ramp

merging, roundabouts and intersections also consists of a high degree of safety-risks

leading to increased traffic accidents. Apart from the inherent complexity arising from
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a complicated driving maneuver in these scenarios, additional safety risks result from

driver anxiety, fatigue, distraction, and discomfort of the manually driven vehicles [6].

The U.S. National Highway Traffic Safety Administration (NHTSA) reports that 75%

of accidents in the United States are caused at the traffic junctions [7]. In 2018, 36,560

people lost their lives in road crashes, where 2,841 lives were claimed due to distracted

driving along with 9,378 speeding-related deaths [8].

The emergence of connected and automated vehicles (CAVs) introduces a novel

dimension to the mobility paradigm that enables efficient communication and real-time

computation of control actions. CAVs have attracted considerable attention for the

potential of improving mobility and safety along with energy and emission reduction

[9, 10]. CAVs can share endogenous and exogenous information with the neighboring

agents by subscribing to vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and

vehicle-to-everything (V2X) communication protocols, and derive their control policies

to achieve the desired objectives. To explore the full extension of this emerging tech-

nology, several aspects in the domain of the CAV-enabled mobility such as real-time

control, motion planning, powertrain control, etc., have drawn considerable attention

[11]. It is important to note that, the combination of real-time vehicle dynamics con-

trol and motion planning of CAVs gives birth to the concept of the automated highway

system and signal-free intersections (see [12–14]) that can eliminate congestion at ma-

jor traffic arteries. Tachet et al. [15] and Lioris et al. [16] indicated that transitioning

from intersections with traffic lights to autonomous ones has the potential of doubling

capacity and reducing delays. Indeed, the deployment of CAVs are demonstrated to

alleviate congestion at the major transportation segments such as urban intersections

[17–19], merging roadways [20–22], roundabouts [23, 24], speed reduction zones (SRZ)

[25] and traffic corridors [26]. The impact of the CAV technology on the future of

mobility and safety has become evident by the rapid development of the real-time im-

plementable computational framework and efficient control algorithm [20, 27–30], and

therefore has been a great interest of research in recent years [11, 31].
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While several studies have shown the benefits of CAVs to improve vehicle- and

network-level performance, and alleviate traffic congestion at specific traffic scenarios,

most of these efforts have focused on 100% CAV penetration rate without considering

the interaction with human-driven vehicles (HDVs). The consideration of such utopian

scenarios may have facilitated the initial development of CAV technologies, but cannot

be realized in current transportation conditions. It is expected that CAVs will gradu-

ally penetrate the market and interact with human-driven vehicles over the next several

years [32]. Therefore, to be able to deploy the CAVs en masse, technological advance-

ments are needed to be made considering a mixed traffic environment, where CAVs

need to safely co-exist with the HDVs in the traffic network. In general, a mixed traffic

environment poses significant modeling and control challenges due to the stochastic na-

ture of human driving behavior and the lack of common information flow. Considering

near-future CAV deployment, recent studies have already started exploring the traffic

and energy impact of partial CAV penetration under different transportation scenarios

[33–36]. However, the question that still remains unanswered is, “how can CAVs safely

interact and co-exist with HDVs?” In this dissertation, I address this question through

optimal control and coordination approach.

In what follows, I attempt to summarize the work reported in the literature

to date on CAV control, coordination, and platooning. Any such effort has obvious

limitations due to the vastness of the rich literature in this area. Thus, the focus is

limited to reference only the research efforts that are important for understanding the

fundamental concepts introduced in this dissertation, and for explaining any significant

departures of the proposed research from the existing literature.

1.2 Literature Review

1.2.1 Coordination using Connectivity and Automation

Several research efforts have been reported in the literature proposing opti-

mization and control approaches for coordinating CAVs at different traffic scenarios
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that include merging at roadways and roundabouts, crossing intersections, cruising in

congested traffic, passing through speed reduction zones, and lane-merging or passing

maneuvers. In terms of energy impact, many studies have shown that significant fuel

consumption and travel time benefits could be achieved through eco-driving and vehicle

coordination without sacrificing driver safety [28, 37–41].

One of the early efforts in the direction of CAV coordination was proposed by

Athans [42] for safe and efficient coordination of merging maneuvers to avoid conges-

tion. Earlier efforts on coordinating CAVs to improve traffic flow also include ap-

proaches such as fuzzy logic [43], genetic algorithms [44], rule-based cooperation [36]

and swarm optimization algorithms [45]. Since then, a significant number of research

efforts reported in the literature tried to achieve safe and efficient coordination of CAVs

at various traffic scenarios, where potential vehicle collisions may occur [46–55].

In recent years, the adoption of optimal control approach to control and coordi-

nate the CAVs to improve urban mobility and traffic safety has gained traction. Both

the centralized and decentralized framework are reported in the literature for optimal

coordination of CAVs. In centralized approaches, there is at least one task in the sys-

tem that is globally decided for all vehicles by a single central controller, whereas in

a decentralized approach, the vehicles are treated as autonomous agents that collect

traffic information to optimize their specific performance criteria while satisfying phys-

ical constraints. One of the main objectives of centralized and decentralized optimal

coordination is to smooth the traffic flow by reducing spatial and temporal speed vari-

ations, and minimizing braking events. A significant number of approaches explored

several domains of the optimal CAV coordination such as automated intersection cross-

ing [28, 56–58], cooperative merging [27, 40, 41], roundabout [24, 59, 60], and speed

harmonization through optimal vehicle control [61].

In 2004, Dresner et al. [46] presented one of the earliest directions in optimal

coordination by introducing a reservation scheme to control a single intersection con-

sisting of two roads. Similar approaches have been reported in the literature for safe
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and efficient coordination of CAVs at urban intersections [47–49, 62]. Colombo et al.

[62] constructed the invariant set for the control inputs that ensure lateral collision

avoidance. Some approaches have focused on coordinating vehicles at intersections

to improve the traffic flow [50, 51, 55]. The optimal control problem of coordinating

the CAV in intersection with the cost function involving travel time has also been

proposed [52–54, 63, 64]. In [65], an energy optimal scheme has been proposed for

CAVs by probabilistic prediction of traffic lights in an intersection. Kim et al. [55]

proposed a model predictive control (MPC) based approach which allows each vehi-

cle to optimize its movement locally with a given cost function. Makarem et al. [66]

formulated the optimal control problem as a linear quadratic regulator (LQR), and

solved it using MPC. Qian et al. proposed a hierarchical control framework, where a

high-level CAV coordination and a low-level multi-objective optimization scheme have

been introduced. Several papers have also focused on multi-objective optimization

problems using a receding horizon control (RHC) framework either in a centralized or

decentralized setup [30, 67, 68]. Additional details of the research efforts in optimal

coordination of CAVs can be found in the survey papers [6, 11, 31].

1.2.2 Decentralized Optimal Control Framework

In a decentralized optimal control framework, the vehicles are treated as au-

tonomous agents that collect traffic information to optimize their specific performance

criteria while satisfying physical constraints. A decentralized optimal framework to

minimize travel time has been proposed in [69], where an optimization problem is

solved to find the minimum time once the merging sequence is determined. Kamal et

al. [70] proposed Pontryagin minimum principle (PMP) based numerical algorithms

for CAV coordination in a signal-free intersection. Dynamic programming (DP) has

been used in [65, 71] to compute the optimal control input, which is inherently not fea-

sible for real-time application due to high computational effort. Sciarretta et al. [72]

developed an eco-driving controller for CAVs for adaptive cruise control maneuver,
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where the optimal problem minimizes the energy consumption with speed constraint.

A speed advisory system has been proposed in [73], where the longitudinal dynamics

of each CAV is optimized to minimize fuel consumption without considering the state

and control constraints. In [71], the authors provided a PMP-based speed profile op-

timization framework for minimizing fuel consumption, where the CAV dynamics is

not subject to any safety or acceleration/deceleration constraint. Detailed discussions

of the research efforts reported in the literature on the coordination of CAVs can be

found in [11, 74, 75].

In recent years, the decentralized optimal control framework has been researched

extensively for real-time coordination of CAVs in different transportation segments. For

example, the decentralized control framework was adopted in [20, 27, 40, 76, 77] for

coordinating CAVs at highway on-ramps, in [64, 78, 79] at intersections, in [23, 59, 60]

at roundabouts and [80] at traffic corridors. These efforts considered a control zone

inside of which the CAVs can communicate with each other.

In decentralized optimal control approaches, the performance metrics that are

generally considered for formulating the optimal control problem are travel time, energy

consumption, and passenger safety. Several decentralized control approaches can be

found in recent literature [20, 61, 78], where the control problem to maximize through-

put and energy efficiency has been addressed. Consideration of more than one objective

function leads to the formulation of the multi-objective optimal control problem that

can be solved in different manners. For example, a hierarchical framework has been

proposed in [27, 28, 40] that first solves an upper-level travel time minimization prob-

lem to generate optimal merging time, and then uses this result in a low-level energy

minimization problem to generate the optimal motion primitive. On the other hand,

a joint optimization framework has been proposed in [35, 76] that solves the multi-

objective optimal control problem by considering the convex combination of cost func-

tions consisting of energy consumption, travel time, passenger comfort, and safety. The

trade-offs among the considered optimization objectives have been studied extensively
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in these efforts.

Enforcement of system constraints is an important aspect while formulating and

solving a decentralized optimal control problem to ensure passenger and component

safety. The solution methodology of the unconstrained coordination problem has been

extensively explored in [6, 20, 81], and validated experimentally at the University of

Delaware scaled smart city using robotic CAVs [82–84] in a merging roadway scenario.

However, the solution methodology of the constrained optimal control problem is chal-

lenging according to the standard Hamiltonian analysis [85]. Therefore, many research

efforts have addressed only the partial constrained cases, i.e., either the state or the

control constraints, in their optimal control problem [71, 73, 86]. For example, Wang et

al. [87] formulated the multi-objective optimization problem for the CAVs approaching

an intersection, and derived the solution without considering the safety constraint. A

PMP-based approach was employed in [71] for optimizing the speed profile for fuel

consumption minimization without considering the acceleration or safety constraint.

Han et al. [86] proposed a safety-based eco-driving control for CAVs by considering the

state constraints. The solution of the optimal control problem considering state and

control constraints was presented in [28] at an urban intersection without considering

rear-end collision avoidance constraint, and the conditions under which the latter does

not become active were presented in [61]. More recently, a single-level multi-objective

framework has been proposed for CAV coordination, where the state, control, and

safety constraints are enforced a priori while solving the optimal control problem [88]

using the feasibility zone approach. This approach has demonstrated remarkable re-

sults in different applications such as the enforcement of control barrier certificates

[89], coordination based on Q-learning [90], traffic corridor coordination [64], etc. An-

other direction which the researchers have explored in the domain of decentralized

coordination is the consideration of system uncertainty. Several such approaches have

employed dynamic resequencing [91, 92], reinforcement learning [90, 93] and control

barrier functions [89, 94] to handle system uncertainties in a decentralized optimal
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control problem.

1.2.3 Coordination in a Mixed Traffic Environment

Despite all the potential CAV functionalities explored in the literature, the real-

ization of an automated traffic scenario is restricted to a 100% CAV penetration rate,

where all the vehicles on the road are assumed to have connectivity and automation.

With the current market and manufacturer trend, the existence of a 100% CAV pen-

etration rate is not expected before 2060 [95]. As a result, any control framework

developed for CAV coordination considering 100% penetration rate is not tractable for

real-world implementation and needs to be improved by considering a mixed traffic

environment.

The impact of partial CAV penetration in terms of fuel consumption and traffic

throughput has been studied through microscopic [14, 36, 96, 97] or meso/macroscopic

simulation [98, 99] environments. Rios-Torres and Malikopoulos [96] concluded that

the fuel improvement is significant only in the case of 100% CAV penetration rate

near low traffic volume. Similar rule-based studies have been also reported in the

literature that characterized the impact of CAV penetration in a mixed traffic envi-

ronment [35, 100]. In these approaches, each CAV dynamics is optimized for energy

consumption which does not account for the uncertainties ensuing from the random

driving pattern of HDVs modeled with a conventional car-following model [101]. These

penetration studies provide valuable insight into the macroscopic impact of a mixed

traffic environment, but they do not address the vehicle-level control problem. Thus,

researchers have also explored the possibility of vehicle-level control for CAV coordi-

nation in a mixed traffic environment. For example, the longitudinal dynamics of each

CAV is optimized for fuel consumption minimization in [73] considering a mixed traffic

environment at a signalized intersection. Jian [102] investigated the effect on fuel con-

sumption and traffic throughput in a signalized intersection considering partial CAV

penetration. The optimization problem was solved using an iterative method whereas
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the HDV dynamics was modeled using intelligent driver model car-following dynamics.

Ntousakis et al. [40] formulated an LQR-based automated on-ramp merging framework

to be solved by MPC, which takes into account possible disturbances inside the control

zone. They extended the problem to include manually driven vehicles following simple

car-following dynamics. A distributed MPC framework is proposed by Qian et al. [68]

for smooth trajectories of CAVs in an automated intersection by selecting a quadratic

running cost for penalizing the input variable. The modeling of successive vehicle dy-

namics through MPC is computationally exhaustive due to the limited computational

capability of the vehicle onboard. A common shortcoming of the reported approaches

[20, 35, 40, 100, 103, 104] considering the mixed traffic environment is that the dy-

namics of the human-driven vehicles are always modeled with simplified car-following

models to numerically simulate the actual human-driven vehicles on the road. However,

the stochastic driving pattern and other uncertainties related to the HDVs have not

been considered in the mathematical formulation, leaving the framework intractable for

practical implementation. Complex coupled vehicle dynamics between the CAVs and

HDVs, and trajectory uncertainties under different CAV penetration rates have not

been addressed in these papers as well. Some efforts have developed a learning-based

algorithm to mitigate the uncertainties of HDV trajectories, but are not real-time im-

plementable due to high computational complexity [105, 106]. Therefore, although the

above approaches [40, 96, 102, 104] deal with the problem of CAV and HDV interaction

in a mixed traffic environment, a mathematically rigorous optimal control framework is

yet to be addressed in the literature for a stable traffic interaction of CAVs and HDVs

in the context of automated traffic coordination.

1.2.4 Vehicle Platooning and Stability

An important direction toward the development and implementation of CAV

technology is the platoon-based operation that has the potential of yielding additional

improvement in vehicle and network performance. Significant research efforts have
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been reported in the literature in terms of vehicle platoon formation and stability. The

concept of forming platoons of vehicles traveling at a high speed has been a popular

system-level approach to address traffic congestion. Some of the earliest research efforts

to adopt vehicle platooning to address network congestion have been done in the 1980s

and 1990s [107–109]. Since then, research interest in vehicle platooning has gained an

ever-increasing momentum. The Energy ITS project in Japan [110], the Safe Road

Trains for the Environment program [111], and the California Partner for Advanced

Transportation Technology [112] are among the mostly-reported efforts in this area.

Maiti et al.[113] developed a formal model for vehicle platooning using an ontology,

and maintained that the different derived operations such as merge and split can be

expressed as an aggregate of primitive operations. Lioris et al. [16] analyzed the po-

tential mobility benefit from a platoon of CAVs under three different queuing models.

The authors concluded that at a signalized intersection, the formation of platoons by

the CAVs can increase the traffic throughput by double in contrast to the conventional

passing of the vehicles. The literature on vehicle platooning can be broadly classified

into two major categories: (a) platoon formation, where individual vehicles aim at cre-

ating a previously non-existent platoon or join an already existing platoon [114–117],

and (b) platoon control, where vehicles within an established platoon are controlled to

achieve some objectives, such as string stability, safe following gap control, coordina-

tion, etc [118–122]. A detailed overview of the literature on vehicle platooning can be

found in the survey papers [123, 124].

Stability is a fundamental concept that is often associated with the research

on vehicle platooning. In a locally stable platoon, each vehicle adjusts its motion to

return to the equilibrium position after a perturbation is introduced in the system,

and in a string stable platoon, the introduced perturbation is not amplified in the

along the platoon. Both centralized and decentralized control approaches have been

addressed in the literature regarding the stability of vehicle platoons. Kaku et al.

[125] developed a centralized controller for a platoon of three CAVs using the LQR
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approach for minimizing the overall fuel consumption of the platoon and compared

its performance to the decentralized one. Dunbar et al. [126] proposed a distributed

receding horizon control for a platoon of CAVs having non-linear decoupled double

integrator dynamics and addressed the string stability of such platoon. A receding

horizon control framework is applied to different vehicle connectivity topologies, namely

leader-follower and predecessor-follower communication. Details of this formulation

can be found in the literature [127, 128]. Morbidi et al. [129] synthesized an LQR

control policy with measurable disturbances for a two-vehicle platoon where the string

stability is established through feedback and feed-forward controller gain. In addition,

theH2 andH∞ performance criteria, denoting the group behavior and string stability of

the platoon, are simultaneously achieved using a compensator-blending method. Some

approaches have focused on the string stability only in the case of deceleration or “brake

control” of the leading CAV. In this area, Li et al. [130] and Guo et al. [131] proposed a

hierarchical framework for cooperative braking of a CAV inside a homogeneous vehicle

platoon. The upper layer consists of a leading CAV with a linear controller designed

to ensure the asymptotic convergence of the vehicle’s target set point after a braking

event. On the other hand, the lower-level controller for the follower vehicles is designed

based on the integrated sliding mode formulation considering the constant spacing and

constant time headway policy.

The literature addressing platoon control and string stability mentioned so far

only considered distributed control of the vehicles inside the platoon with decoupled

dynamics, and an assumption of 100% penetration.

1.2.5 Vehicle Platooning in a Mixed Traffic Environment

The problem of platoon formation, in general, has been widely studied consid-

ering 100% CAV penetration. For example, some approaches based on MPC have been

widely studied that guarantee string stability and safety [123, 132–134].

On the other hand, the literature on platoon formation is sparse in the context
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of a mixed traffic environment. One of the most prevalent research directions towards

developing a control framework for mixed traffic environment has been the develop-

ment of cruise controller and adaptive cruise controller (ACC), [132, 135], where a

CAV preceded by a single or a group of HDVs employs control algorithm to optimize

a given objective, e.g., improvement of fuel economy [136], minimization of backward

propagating wave [137], etc. A variation of the ACC framework has been developed to

control CAVs in a mixed traffic environment [103, 138, 139] to tackle the HDV behav-

ior and to ensure rear-end collision avoidance. Recently, some efforts have combined

the concept of ACC with V2V communication protocol and proposed cooperative ACC

[137, 140] for the CAVs traveling within a mixed traffic environment. Other approaches

have employed robust or data-driven MPC models to ensure the safety of the CAV in

mixed vehicle platoon [136, 141, 142]. The complexities in modeling the coupled dy-

namics and string stability during the interaction among CAVs and HDVs inside a

platoon are yet to be fully understood. On this note, the research from Gong et al.

[143] has been the most significant in addressing the coupled dynamics of a platoon of

vehicles while considering the distributed control based on constrained optimization.

The error states are used to formulate a primal-dual problem and solved using the

dual-based optimization scheme to ensure platoon transient traffic smoothness with

proven convergence. For an asymptotic dynamic performance, a closed-loop uncon-

strained linear system has also been established. Liu et al. [104] designed a provably

safe vehicle trajectory policy and coordination rules for a longitudinal roadway under

mixed traffic conditions. The HDVs are modeled with a car-following model while the

CAVs follow the MPC protocol with the capability of platoon formation. Li et al. [144]

proposed a dedicated short-range communication based vehicle platoon control consid-

ering vehicle-to-everything communication. With the leader-follower communication

topology, stable platoon formation and merging were achieved in field experiments vali-

dating the proposed framework. Ntousakis et al. [145] reviewed the controller modeling

efforts for the adaptive cruise control (ACC) systems based on different car-following

models, which gives an insight into the potential coupled dynamics in a string of HDVs.
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Accurate estimation and prediction of the HDV motion are essential to devel-

oping any feedback controller for the CAVs. For example, the performance of MPC-

based controllers is greatly affected by the accuracy of prediction of the HDV trajec-

tories within a look-ahead horizon. Several research efforts reported in the literature

have considered different methodologies to estimate and predict the driving behav-

ior of HDVs and incorporated them into their control framework. A variation of the

car-following model to design an eco-ACC controller has been considered in [146]. A

cooperative adaptive cruise controller has been proposed in [147] where the control

parameters are derived using system identification on real-world experimental data.

Naus et al. [148] proposed an explicit MPC-based ACC controller with constant speed

prediction, whereas Dollar et al. [149] utilized an IDM model to identify offline the

human driving styles in a car-following scenario. Jin et al. [150] proposed an optimal

cruise control design in which feedback gains and driver reaction time of HDVs were

estimated in real time by a sweeping least squares method. Gong and Du [151] devel-

oped a cooperative MPC framework and combined Newell car-following model with an

online curve matching algorithm to anticipate the response delay of the HDVs.

1.3 Identification of the Research Gaps

Based on the literature discussed in the previous section, I have identified several

open-ended questions and research gaps that are needed to be addressed to develop

a tractable pathway for CAV deployment in a mixed traffic environment. In what

follows, I present a detailed exposition of the research gaps in the literature related to

the optimal control and coordination of CAVs.

1. Traffic corridor problem: The coordination framework for CAVs reported

in the literature only considered single and isolated traffic scenarios in the formulation,

e.g., on-ramp merging roadways, intersections, roundabouts, etc. For example, research

efforts reported in the literature have primarily focused an individual transportation

segment for CAV coordination [30, 67, 68, 152–154].
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In general, the problem of CAV coordination in a traffic corridor has been ad-

dressed using a centralized control framework [47–49, 62]. Among these efforts, [56]

investigate coordination in intersections using a phase conflict map to remove stop-

and-go traffic signals. This work was extended later on and considered a corridor with

multiple intersections [155]. Centralized controllers are by design computationally in-

efficient due to the high volume of information usually being processed at the central

mainframe structure. Therefore, CAV coordination using the centralized control frame-

work is not a tractable solution.

In contrast, several decentralized optimal control approaches have been reported

in the literature for real-time coordination of CAVs at different transportation scenar-

ios, e.g., at highway on-ramp merging [27, 40], signal-free intersection [28], roundabout

[23], and speed reduction zone [61]. These approaches consider single and isolated

traffic scenarios in their formulation. Therefore, the fundamental structure considered

in these approaches fails if the traffic scenarios are closely spaced, or the roadways

leading to the traffic segment are asymmetric. Furthermore, optimization of only an

individual or isolated traffic segment in a traffic corridor may also result in traffic inef-

ficiency, transient engine operation upstream or downstream of the traffic segment, or

safety implications [83]. A complete decentralized optimal control framework for CAV

coordination in a traffic corridor consisting of multiple adjacent traffic scenarios has

not been investigated in detail.

2. Constrained optimal control problem: The computational complexity

to solve a combined state, control and safety constrained decentralized optimal con-

trol framework has not been addressed in the literature. Several decentralized optimal

control approaches can be found in recent literature [20, 40, 156], where the control

problem to maximize throughput and energy efficiency has been addressed without

considering the system constraints. the solution to the state and control unconstrained

control problem presented in [61] and [40] shows acceleration spikes (jerk) at the bound-

aries of the optimization horizon, possibly exceeding the vehicle’s physical limitation
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and giving rise to an undesired driving experience. To mitigate the aforementioned

terminal acceleration jerk, Ntousakis et al. [40] reformulated the optimal control prob-

lem with vehicle acceleration as an additional state and using jerk as the control input.

This approach provides safe state/control values at the terminal points, but can not

guarantee that the state and control constraints will not become active within the opti-

mization horizon. Therefore, the unconstrained solution can only guarantee that none

of the constraints are violated at the boundaries of the optimization horizon, hence

may not be admissible in a real-world application.

In general, it is difficult to solve the constrained optimal control problems in

real time due to its iterative solution structure according to the standard Hamiltonian

analysis that results in a complex arc-stitching methodology. Some approaches reported

in the literature have addressed partial constrained cases, i.e., either the state or the

control constraints, in their optimal control problem [71, 73, 86]. For example, the

longitudinal dynamics of a CAV are optimized for fuel consumption minimization in

[73], but the authors did not consider the speed and acceleration constraints while

formulating the Hamiltonian. A similar approach was employed in [71] for optimizing

the speed profile for fuel consumption minimization without including the acceleration

constraint. Han et al. [86] proposed a safety-based eco-driving control for CAVs. The

constrained optimal solution, in this case, only considers the state constraints and does

not include the control constraints in the formulation. Another way of approaching

the constrained optimal control problem has been explored using the feasibility zone

analysis [29, 87], which results in weaker enforcement of the constraints compared to the

explicit incorporation of the system constraints in the Hamiltonian formulation. Some

approaches have also addressed the constrained optimal control problem by relaxing

the terminal boundary conditions [35, 87]. However, none of these efforts address the

problem of explicit incorporation of all the state, control, and safety constraints in

their optimal control formulation given the terminal boundary conditions.
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The standard methodology to solve the constrained optimal control problem us-

ing the Hamiltonian analysis requires piecing the unconstrained and constrained arcs

together resulting in recursive numerical computations until all of the constraint acti-

vation cases are resolved. Such methodology has been explored in some efforts found in

the literature [28, 29, 35, 157]. However, this iterative way of piecing the constrained

and unconstrained arcs together until all the constraints activation cases are accounted

for is computationally expensive and might prevent real-time implementation. More-

over, the solution framework of the constrained optimization problem using Hamilto-

nian analysis adopted in these efforts only addresses individual constraint activation

cases without addressing the explicit interdependence between multiple constraint ac-

tivation cases. The notion of the interdependence of the constraint activation cases has

not been fully explored in the literature.

3. Mixed traffic scenario: The inherent problem of dealing with a mixed

traffic environment is the fact that the dynamics of HDVs, with the uncertainties in

their driving behavior, are assumed to be controlled only by human drivers. Thus the

presence of HDVs seriously inhibits any potential formulation of a distributed control

strategy to achieve vehicle cooperation at different traffic scenarios. Few papers in the

literature only analyzed the impact of a mixed traffic environment without addressing

the stochastic nature of the coupled HDV dynamics. To date, no rigorous mathematical

framework has been presented in the literature to address the problem of optimally

coordinating CAVs through traffic different scenarios in a mixed traffic environment

with partial CAV penetration. Coordinating CAVs and HDVs so that they can safely

co-exist, remains a challenging problem.

Recent efforts have reported several optimal control approaches for coordination

of CAVs at different traffic scenarios such as on-ramp merging roadways [40], round-

abouts [23, 59], speed reduction zones [61], signal-free intersections [55, 62, 158, 159],

and traffic corridors [83, 155]. These approaches have focused on 100% CAV penetra-

tion rates without considering human-driven vehicles (HDVs). However, the existence
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of having a transportation network with a 100% CAVs is not expected before 2060

[95]. Therefore, the need for a mathematically robust and tractable control framework

considering a mixed traffic environment consisting of both CAVs and HDVs is essential.

One of the most important research directions toward a rigorous control frame-

work for mixed traffic environment has been the development of CAV cruise controller

and adaptive cruise controller [132, 135], where a CAV preceded by a single or a group

of HDVs employs control algorithm to optimize a given objective, e.g., improvement of

fuel economy [136], minimization of backward propagating wave [137, 140], etc. These

approaches, however, cannot be adopted for coordinating CAVs at automated traffic

scenarios such as signal-free intersections, automated on-ramp merging, etc.

To establish an automated traffic scenario, the presence of HDVs poses signif-

icant modeling and control challenges to the CAVs due to the stochastic nature of

the human-driving behavior. Some approaches reported in the literature [73] have

included car-following models (e.g.,[101, 160, 161]) while others have been based on re-

inforcement learning [105, 106]. These approaches, however, do not provide a complete

coordination framework to impart any control framework on the HDVs in the network,

rather enable the CAVs to derive their trajectory based only on the estimation of

the HDV states assuming well-known car-following models (e.g.,[101, 160, 161]). Such

framework may result in traffic gridlock, i.e., HDVs on the arterial roadway yielding or

stopping to the vehicles on a priority roadway, defeating the purpose of an automated

traffic coordination framework [28].

The impact of partial CAV penetration in terms of fuel consumption and traffic

throughput has been studied by Rios-Torres and Malikopoulos[96], where the authors

concluded that the fuel improvement is significant only in the case of 100% CAV pene-

tration rate near low traffic volume. Here, each CAV dynamics is optimized for energy

consumption which does not account for the uncertainties ensuing from the random

driving pattern of HDVs modeled with a conventional car-following model [101]. The

longitudinal dynamics of each CAV are optimized for fuel consumption minimization
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in [73] for a mixed traffic environment in a signalized intersection, but the speed and

acceleration constraints were not considered while formulating the Hamiltonian. Jian

[102] investigated the effect on fuel consumption and traffic throughput in a signalized

intersection considering partial CAV penetration. The optimization problem was solved

using an iterative method whereas the HDV dynamics were modeled using intelligent

driver model car-following dynamics. Ntousakis et al.[40] formulated an LQR-based

automated on-ramp merging framework to be solved by MPC, which takes into account

possible disturbances inside the control zone. They extended the problem to include

manually driven vehicles following simple car-following dynamics. A distributed MPC

framework is proposed by Qian et al. [68] for smooth traversal of CAVs in an automated

intersection by selecting a quadratic running cost for penalizing the input variable. The

modeling of successive vehicle dynamics through MPC is computationally exacting due

to the limited computational capability of the vehicle onboard. A common shortcom-

ing of the reported approaches [20, 40, 103, 104, 162] considering the mixed traffic

environment is that the dynamics of the human-driven vehicles are always modeled

with simplified car-following models to numerically simulate the actual human-driven

vehicles on the road. However, the stochastic driving pattern, coupled car-following

dynamics, and other uncertainties related to the HDVs have not been taken into con-

sideration in the mathematical formulation, leaving the framework vulnerable during

practical implementation. Complex vehicle dynamics for CAVs and HDVs and trajec-

tory uncertainties under different CAV penetration rates have not been addressed in

these papers as well. Therefore, although these approaches [40, 96, 102, 104, 130] deal

with the problem of CAV-HDV interaction, a mathematically rigorous optimal control

framework is yet to be addressed in the literature to date for a stable traffic interaction

of CAVs and HDVs in the context of automated traffic coordination.

4. Formation and impact of mixed platoons: Although cooperative adap-

tive cruise control and CAV platoon dynamics in a 100% CAV penetration setting have
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been explored in the literature, formation and stability analysis of mixed platoons con-

sisting of CAVs and HDVs has not been reported in the literature.

The problem of platoon formation has been widely studied considering 100%

CAV penetration. For example, some approaches based on MPC (or distributed MPC)

have been studied that guarantee string stability and safety [123, 132–134]. Such

approaches, however, cannot be directly applied to a mixed traffic environment with

partial CAV penetration due to the presence of uncontrollable HDVs. On the other

hand, the literature on platoon formation is sparse in the context of a mixed traffic

environment. One of the most important research directions towards developing a

control framework for mixed traffic environment has been the development of cruise

controller and adaptive cruise controller (ACC), [132, 135], where a CAV preceded by

a single or a group of HDVs employs control algorithm to optimize a given objective,

e.g., improvement of fuel economy [136], minimization of backward propagating wave

[137], etc. A variation of the ACC framework has been developed to control CAVs in

a mixed traffic environment [103, 138, 139] to tackle the HDV behavior and to ensure

rear-end collision avoidance. Recently, some efforts have combined the concept of ACC

with a V2V communication protocol and proposed a connected cruise controller or

cooperative ACC [137, 140] for the CAVs traveling within a mixed traffic environment.

These approaches consider nonlinear dynamics and communication delays in a mixed

connected platoon, where the CAV controller can only maintain a desired gap from

the preceding vehicle. Other approaches have employed robust or data-driven MPC

methods to ensure the safety of the CAV in mixed vehicle platoon [141, 142]. These

approaches are limited to the cases where the objective is to control the target CAV

to join and/or to maintain the stability and safety of an already formed platoon.

5. System uncertainty in a mixed traffic environment:

The effect of system uncertainty and imperfect communication has been widely

studied in the literature in terms of the 100% CAV penetration rate. Several ap-

proaches have employed dynamic resequencing [91, 92], reinforcement learning [90, 93],
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control barrier functions [89, 94] and robust controller design [137] to handle system

uncertainties. These approaches have been demonstrated to handle uncertainties in

system dynamics and communication considering the CAVs. However, they do not

explicitly consider a mixed traffic environment, where additional system uncertainties

originating from the HDV behavior must be taken into account while deriving safe

motion primitives for the CAVs.

The most relevant research efforts regarding the uncertainty of HDV dynam-

ics have been done in the context of developing, calibrating, and validating the car-

following model to emulate the human driving behavior [161, 163]. However, the inter-

action of CAVs and HDVs in a mixed traffic environment results in state estimation

and dynamics prediction problems. Predicting HDV dynamics modeled with arbitrary

car-following dynamics introduces additional complexity in the system that has not

been addressed in the literature.

Accurate estimation and prediction of the HDV motion are essential to de-

veloping any feedback controller for the CAVs. For example, the performance of the

MPC-based controllers is greatly affected by the accuracy of prediction of the HDV tra-

jectories within a look-ahead horizon. Several research efforts reported in the literature

have considered different methodologies to estimate and predict the driving behavior

of HDVs and incorporated them into their control framework [146, 147, 164]. However,

ACC controllers using car-following models such as the intelligent driver model (IDM)

[161] do not always perform well while they exhibit string stability implications that

can lead to rear-end collision[164]. A cooperative adaptive cruise controller has been

proposed in [147] where the control parameters are derived using system identification

on real-world experimental data. The issue with such an approach is, that the con-

trol parameters cannot capture the instantaneous changes in HDV behavior. Naus et

al. [148] proposed an explicit MPC-based ACC controller that employs a prediction

model considering the time-invariant speed of the preceding vehicle within the pre-

diction horizon, and does not incorporate the complex car-following dynamics of the
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human drivers.

In this dissertation, I will address the research gaps discussed above and advance

the state of the art with the contributions outlined in the following section.

1.4 Research Contributions

The overarching goal of the proposed dissertation research is to develop an

optimal control framework for coordinating CAVs through automated traffic scenarios

in a mixed traffic environment consisting of conventional human-driven vehicles. The

traffic scenarios considered here can be the roadways with the possibility of traffic

congestion, e.g., highway on-ramp merging roads, roundabouts, speed reduction zones,

urban intersections, etc.

The key contributions of this dissertation are summarized as follows:

Contribution 1: Development of a condition-based optimal CAV control frame-

work that can handle the state, control, and safety constraints while deriving optimal

motion primitives. The proposed framework yields a closed-form analytical solution

to the constrained optimal control problem using an efficient, real-time implementable

control algorithm.

Contribution 2: Development of a safety-aware multi-objective receding horizon

control framework for mixed platoon formation that considers linear, non-linear, and

data-driven prediction models for HDVs’ trajectory estimation, and satisfies the system

constraints with enhanced rear-end collision safety.

Contribution 3: Development of a robust, single-level, multi-objective optimal

platoon coordination framework that can account for the effect of bounded communi-

cation delays and system constraints.

The first contribution addresses the major gaps in the literature related to the

development of an optimal controller that can explicitly handle the system constraint
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activation, as detailed in the previous section. In general, it is difficult to solve a con-

strained optimal control problem in real time due to its iterative nature. For example,

the standard methodology to solve the constrained optimal control problem (see [28])

is to employ Hamiltonian analysis with interior point state and/or control constraints.

To derive the optimal solution in this manner, one needs to iteratively piece the con-

strained and unconstrained arcs together until all the constraints activation cases are

accounted for, which can be computationally expensive and might prevent real-time

implementation. To address this issue, I develop a condition-based control framework

that can identify the activation of system constraints a priori. The salient features of

this contribution that advances the state of the art are: (1) an in-depth exposition of

the properties of the different combinations of the state and control constraint activa-

tion cases and a set of a priori conditions to identify the constrained solution without

any recursive steps, (2) elimination of the recursive solution structure for the state

and control constrained optimal control problems for CAV coordination by consider-

ing the constraint activation conditions, and (3) an explicit expression of the junction

point between the constrained and unconstrained arcs leading to a closed-form ana-

lytical solution of the constrained optimal control problem that can be used to derive

constrained motion primitives for the CAVs with an efficient, real-time implementable

algorithm. The aforementioned contributions are included in the following publications

[165–168].

- A M Ishtiaque Mahbub and Andreas A Malikopoulos. Conditions to Provable
System-Wide Optimal Coordination of Connected and Automated Vehicles. Au-
tomatica, 131(109751), 2021.

- A M Ishtiaque Mahbub and Andreas A Malikopoulos. Conditions for state and
control constraint activation in the coordination of connected and automated
vehicles. Proceedings of 2020 American Control Conference, pages 436–441, 2020.

- AM Ishtiaque Mahbub, Andreas A Malikopoulos, and Liuhui Zhao. Decentralized
optimal coordination of connected and automated vehicles for multiple traffic
scenarios. Automatica, 117(108958), 2020.
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- A M Ishtiaque Mahbub, Andreas A Malikopoulos, and L. Zhao. Impact of con-
nected and automated vehicles in a corridor. In Proceedings of 2020 American
Control Conference, 2020, pages 1185–1190. IEEE, 2020.

The second contribution addresses the problem of deriving the optimal trajec-

tory of a CAV in a mixed traffic environment that considers the interaction of HDVs.

Since HDVs cannot be controlled directly, and any prediction of their future trajec-

tories suffers from stochastic human driving behavior, it is challenging to establish

any cooperation between the CAVs and HDVs. The proposed hypothesis is that the

motion trajectory of the CAV can be controlled directly to restrict the motion of its

trailing HDVs, thus imparting indirect control on the HDVs. One natural solution to

validate the above hypothesis is to leverage the concept of vehicle platooning, where

a CAV within the network can be controlled to force the trailing HDVs to form a

platoon. As our second contribution, I propose a constrained multi-objective receding

horizon control framework that considers linear, non-linear, and data-driven prediction

models, and enables mixed platoon formation by directly controlling the CAVs with

enhanced rear-end collision safety. The optimization objectives of the CAV are (a) to

form a platoon with the trailing HDVs, and (b) to minimize its control effort. Our

proposed platoon formation framework employs a receding horizon controller that uses

a multi-successor safety constraint to enforce rear-end collision avoidance constraint

for multiple trailing HDVs while deriving and implementing the optimal control input

of the CAV. I propose two variants of the receding horizon control, namely, a model-

dependent and a model-independent framework that employs different prediction mod-

els for estimating the HDV trajectories: (a) a naive linear constant speed model, (b)

a nonlinear car-following model with nominal parameters and (c) a data-driven model

that estimates the driving behavior of the HDVs in real time using recursive least

squares algorithm to better predict the futures trajectories. In short, the approach

proposed in this contribution will guarantee the indirect control of the HDVs by form-

ing mixed platoons. These contributions are included in the following publications

[169–172].
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- A M Ishtiaque Mahbub and Andreas A Malikopoulos. A Platoon Formation
Framework in a Mixed Traffic Environment. IEEE Control Systems Letters (L-
CSS), 6:1370–1375, 2021.

- A M Ishtiaque Mahbub and Andreas A. Malikopoulos. Platoon Formation in
a Mixed Traffic Environment: A Model-Agnostic Optimal Control Approach.
Proceedings of 2022 American Control Conference, 4746–4751, 2022.

- A M Ishtiaque Mahbub, Viet-Anh Le, and Andreas A. Malikopoulos. A Safety-
Prioritized Receding Horizon Control Framework for Platoon Formation in a
Mixed Traffic Environment. in review, 2022.

- A M Ishtiaque Mahbub, Viet-Anh Le, and Andreas A. Malikopoulos. Safety-
Aware and Data-Driven Predictive Control for Connected Automated Vehicles
at a Mixed Traffic Signalized Intersection. 10th IFAC Symposium on Advances
in Automotive Control (to appear), 2022.

The third contribution addresses the problem of vehicle coordination in a mixed

traffic environment. Generally, the HDVs in a mixed traffic network do not communi-

cate and cooperate with other vehicles, which poses major difficulty in establishing a

coordination framework at traffic scenarios such as signal-free intersections, automated

on-ramp merging, etc. This contribution enables optimal coordination of CAVs and

HDVs at automated traffic scenarios using vehicle platooning. To this end, I develop a

robust, single-level, multi-objective optimal platoon coordination framework that can

coordinate the mixed platoons through an automated highway on-ramp merging sce-

nario. The proposed framework jointly maximizes the energy efficiency and throughput

of the network and is robust enough to mitigate the worst-case scenario attributed to

communication delay. The improvement of vehicle performance metrics such as energy

efficiency and travel time in the context of a mixed platoon are also explored through

this contribution. The following papers contain these contributions [173, 174].

- A M Ishtiaque Mahbub, Behdad Chalaki, and Andreas A Malikopoulos. A con-
strained optimal control framework for vehicle platoons with delayed communica-
tion. Special Issue of Network and Heterogeneous Media: Traffic and Autonomy
(accepted), 2022.

- A M Ishtiaque Mahbub, Hao Wang, Gabor Orosz, and Andreas A. Malikopoulos.
Coordination of Mixed Platoons at On-Ramp Merging: A Constrained Optimal
Control Framework. in review, 2022.
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The key contributions of this dissertation as described above are the result

of the gradual evolution of my research efforts in the domain of optimal control for

CAVs. Several other efforts are aimed at addressing the research gaps related to the

decentralized optimal coordination of CAVs in a traffic corridor consisting of multiple

congestion scenarios. These efforts were reported in the following list of publications:

- A M Ishtiaque Mahbub, Liuhui Zhao, Dimitris Assanis, and Andreas A Ma-
likopoulos. Energy-Optimal Coordination of Connected and Automated Vehicles
at Multiple Intersections. In Proceedings of 2019 American Control Conference,
pages 2664–2669, 2019.

- A M Ishtiaque Mahbub, V. Karri, Darshil Parikh, S. Jade, and Andreas A Ma-
likopoulos. A decentralized time- and energy-optimal control framework for con-
nected automated vehicles: From simulation to field test. In SAE Technical
Paper 2020-01-0579. SAE International, 2020.

- A M Ishtiaque Mahbub and Andreas A Malikopoulos. Concurrent optimization
of vehicle dynamics and powertrain operation using connectivity and automation.
In SAE Technical Paper 2020-01-0580. SAE International, 2020.

- Liuhui Zhao, A M Ishtiaque Mahbub, and Andreas A Malikopoulos. Optimal
vehicle dynamics and powertrain control for connected and automated vehicles.
Proceedings of 2019 IEEE Conference on Control Technology and Applications
(CCTA), pages 33–38, 2019.

There are several other contributions as a result of the collaboration with my

peers in the Information and Decision Science Lab. These contributions are not in-

cluded in this dissertation but have been reported in the following publications:

- Logan E Beaver, Behdad Chalaki, A M Mahbub, Liuhui Zhao, Ray Zayas, and
Andreas A Malikopoulos. Demonstration of a Time-Efficient Mobility System
Using a Scaled Smart City. Vehicle System Dynamics, 58(5):787–804, 2020.

- Behdad Chalaki, Logan E. Beaver, A M Ishtiaque Mahbub, Heeseung Bang, and
Andreas A. Malikopoulos. A research and educational robotic testbed for real-
time control of emerging mobility systems: From theory to scaled experiments.
IEEE Control Systems Magazine, 2022 (in press).

In summary, the key contributions discussed in this section will provide a rig-

orous mathematical solution to the problem of optimal control and coordination of
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CAVs in a mixed traffic environment. The outcome of the proposed research direction

not only provides a vehicle-level performance improvement but also realizes the auto-

mated coordination and merging concept, which increases the traffic performance from

a macroscopic viewpoint. Compared to the utopian scenario with 100% CAV pene-

tration, the developed control framework will be implementable online in real-world

mixed traffic network with a variety of scenarios.

1.5 Dissertation Overview

The remainder of this dissertation follows the following structure.

Chapter 2 provides some of our preliminary research efforts related to the decentral-
ized time- and energy-optimal coordination of CAVs traveling through a traffic corridor
consisting of major traffic congestion scenarios. In Section 2.1, I present an energy-
optimal VD controller for coordinating CAVs at multiple adjacent intersections using
interior-point constraints. In Section 2.2, I provide a detailed comparative analysis
between the conventional isolated control approach and the coordinated control ap-
proach developed in Section 2.1. I then extend the control paradigm in Section 2.3 and
show that the VD controller can be combined with a powertrain control architecture
to harness additional energy consumption benefits. To validate the effectiveness of the
VD controller, I present a sequential experimentation methodology in Section 2.4 that
shows significant improvement in terms of fuel economy and traffic throughput. The
content presented in this chapter is acquired from the following papers [175–178].

- A M Ishtiaque Mahbub, Liuhui Zhao, Dimitris Assanis, and Andreas A Ma-
likopoulos. Energy-Optimal Coordination of Connected and Automated Vehicles
at Multiple Intersections. In Proceedings of 2019 American Control Conference,
pages 2664–2669, 2019.

- A M Ishtiaque Mahbub, V. Karri, Darshil Parikh, S. Jade, and Andreas A Ma-
likopoulos. A decentralized time- and energy-optimal control framework for con-
nected automated vehicles: From simulation to field test. In SAE Technical
Paper 2020-01-0579. SAE International, 2020.

- A M Ishtiaque Mahbub and Andreas A Malikopoulos. Concurrent optimization
of vehicle dynamics and powertrain operation using connectivity and automation.
In SAE Technical Paper 2020-01-0580. SAE International, 2020.

- Liuhui Zhao, A M Ishtiaque Mahbub, and Andreas A Malikopoulos. Optimal
vehicle dynamics and powertrain control for connected and automated vehicles.
Proceedings of 2019 IEEE Conference on Control Technology and Applications
(CCTA), pages 33–38, 2019.
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Chapter 3 presents a rigorous mathematical framework to efficiently handle the con-
strained optimal control problems. In Section 3.1, I provide a condition-based control
framework that can derive constrained motion primitives in real time by identifying
the constraint activation cases a priori. An extension of this methodology is discussed
in Section 3.2, where the CAV control framework explicitly incorporates the safety
constraints while deriving the optimal trajectory for traversing a traffic corridor. The
content presented in this chapter is acquired from the following papers [165–168].

- A M Ishtiaque Mahbub and Andreas A Malikopoulos. Conditions to Provable
System-Wide Optimal Coordination of Connected and Automated Vehicles. Au-
tomatica, 131(109751), 2021.

- A M Ishtiaque Mahbub and Andreas A Malikopoulos. Conditions for state and
control constraint activation in the coordination of connected and automated
vehicles. Proceedings of 2020 American Control Conference, pages 436–441, 2020.

- AM Ishtiaque Mahbub, Andreas A Malikopoulos, and Liuhui Zhao. Decentralized
optimal coordination of connected and automated vehicles for multiple traffic
scenarios. Automatica, 117(108958), 2020.

- A M Ishtiaque Mahbub, Andreas A Malikopoulos, and L. Zhao. Impact of con-
nected and automated vehicles in a corridor. In Proceedings of 2020 American
Control Conference, 2020, pages 1185–1190. IEEE, 2020.

Chapter 4 explores the domain of mixed traffic environment. In Section 4.1, I con-

sider the problem of deriving a safe trajectory for the CAV approaching a signalized

intersection in the presence of HDVs with unknown driving behavior. Subsequently, I

investigate the impact of partial penetration of CAVs in a traffic corridor to quantify

the network-level performance in Section 4.2. The content presented in this chapter is

acquired from the following papers [172, 179].

- A M Ishtiaque Mahbub, Viet-Anh Le, and Andreas A. Malikopoulos. Safety-
Aware and Data-Driven Predictive Control for Connected Automated Vehicles
at a Mixed Traffic Signalized Intersection. 10th IFAC Symposium on Advances
in Automotive Control (to appear), 2022.

- A. Valencia, A M Mahbub, and Andreas A Malikopoulos. Performance analysis
of optimally coordinated connected automated vehicles in a mixed traffic envi-
ronment. In 30th Mediterranean Conference on Control and Automation, 2022
(accepted).
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Chapter 5 addresses the problem of platoon formation in a mixed traffic environment.

First, I explore the feasibility of mixed platoon formation in Section 5.1. Then, I present

a model-agnostic optimal platoon formation framework in Section 5.2. Continuing

further, in Section 5.3 I develop a safety-prioritized framework for creating a mixed

platoon of vehicles by proposing a constrained multi-objective receding horizon control

approach that considers linear, non-linear, and data-driven prediction models with

enhanced safety guarantee. The content presented in this chapter is acquired from the

following papers [169–171].

- A M Ishtiaque Mahbub and Andreas A Malikopoulos. A Platoon Formation
Framework in a Mixed Traffic Environment. IEEE Control Systems Letters
(LCSS), 6:1370–1375, 2021.

- A M Ishtiaque Mahbub and Andreas A. Malikopoulos. Platoon Formation in
a Mixed Traffic Environment: A Model-Agnostic Optimal Control Approach.
Proceedings of 2022 American Control Conference, 4746–4751, 2022.

- A M Ishtiaque Mahbub, Viet-Anh Le, and Andreas A. Malikopoulos. A Safety-
Prioritized Receding Horizon Control Framework for Platoon Formation in a
Mixed Traffic Environment. in review, 2022.

Chapter 6 presents a single-level optimal control framework for platoon coordination.
I first develop the platoon coordination framework for 100% CAV penetration case in
Section 6.1, and then extend the methodology to incorporate mixed traffic environment
in Section 6.2 for an on-ramp merging scenario. The content presented in this chapter
is acquired from the following papers [173, 174].

- A M Ishtiaque Mahbub, Behdad Chalaki, and Andreas A Malikopoulos. A con-
strained optimal control framework for vehicle platoons with delayed communica-
tion. Special Issue of Network and Heterogeneous Media: Traffic and Autonomy
(accepted), 2022 (arXiv:2111.08080).

- A M Ishtiaque Mahbub, Hao Wang, Gabor Orosz, and Andreas A. Malikopoulos.
Coordination of Mixed Platoons at On-Ramp Merging: A Constrained Optimal
Control Framework. in review, 2022.

Finally, Chapter 7 summarizes the contributions of this dissertation and provides

concluding remarks with a note on future research directions.
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Chapter 2

OPTIMAL COORDINATION AT A TRAFFIC CORRIDOR

Urban intersections, merging roadways, roundabouts, and speed reduction zones

along with the driver responses to various disturbances are the primary sources of

bottlenecks in corridors that contribute to traffic congestion. As a potential solution to

eliminate traffic congestion at these major traffic scenarios, researchers have proposed

different optimal coordination frameworks using CAVs. More recently, a decentralized

optimal control framework has been established for coordinating CAVs in different

transportation scenarios. A closed-form, analytical solution without considering state

and control constraints was presented in [20], [27], and [40] for coordinating online

CAVs at highway on-ramps, in [28, 78] at intersections, and in [23] at roundabouts.

These efforts only considered CAV coordination at an isolated traffic scenario. However,

these approaches fail to consider the following aspects.

1. The control framework for isolated traffic scenarios might fail in the presence of
closely-spaced adjacent traffic scenarios.

2. A traffic corridor including multiple traffic scenarios can have inefficient vehicle
trajectories in the uncontrolled regions.

In this chapter, I present a decentralized energy-optimal VD controller that

employs a coordinated control strategy for CAVs traveling through a traffic corridor

considering a 100% CAV penetration rate. Subsequently, I provide a comparative

analysis of the coordinated and isolated control strategy. Additionally, I show that

the developed VD controller can be combined with a powertrain control architecture

to harness additional energy consumption benefits. To validate the effectiveness of
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the VD controller, I present a sequential experimentation methodology that shows

significant improvement in terms of fuel economy and traffic throughput.

2.1 Energy-Optimal Coordination at Multiple Adjacent Intersections

In this section, I address the problem of optimally coordinating CAVs at multiple

adjacent intersections through the development of a coordinated coordination strategy.

Specifically, I address the gaps in the state of the art with the following contributions:

(1) development of a decentralized CAV coordination policy for throughput maximiza-

tion in a traffic corridor with multiple signal-free adjacent intersections, (2) formulation

of an energy-optimal control framework considering interior boundary constraints, and

(3) derivation of a closed-form analytical solution that yields optimal control policy for

CAV coordination. We evaluate the effectiveness of the solution through simulation.

Fuel consumption and travel time are significantly reduced compared to the baseline

scenario designed with conventional fixed time signalized intersections.

2.1.1 Problem Formulation

Let us consider a traffic corridor (Fig. 2.1) consisting of two adjacent urban

intersections separated by a length D. Each intersection includes an area of potential

lateral collision defined as the merging zone, shown by the red squares of length Sz for

merging zone z, z = 1, 2, in Fig. 2.1. The length and geometry of the merging zones are

not restrictive. Both intersections are located within a control zone illustrated in Fig.

2.1, inside of which the CAVs can communicate with each other and with a coordinator.

The distance between the entry of the control zone and the entry of the merging zone z

is denoted by Lz. Thus, the distance from the entry of the control zone to the nearest

and farthest entry of the merging zone is Lz = L and Lz = L+Sz+D, respectively (Fig.

2.1). When a CAV enters the control zone, it exchanges information with other CAVs as

well as the coordinator to derive its optimal control input (acceleration/deceleration)

to cross the intersections without any rear-end or lateral collision. Note that, the
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coordinator only facilitates the communication among the CAVs and is not involved

in any decision-making process. In the remainder of this dissertation, I use a similar

structure for formulating the problems that includes the reference of control zone and

coordinator without repetition of the definition.

Figure 2.1: Corridor with connected and automated vehicles.

Let N(t) ∈ N be the number of CAVs inside the control zone of the corridor

at time t ∈ R+ and z = 1, 2 be the number of merging zones of the intersections.

When a CAV enters the control zone of the corridor, the coordinator receives its route

information and assigns a unique identification number i ∈ N. Let N (t) = {1, ..., N(t)}

be the merging sequence that the vehicles enter the control zone. Let t0i be the initial

time that vehicle i enters the control zone of the corridor, and tmz
i and tfzi be the time

that CAV i enters and exits each merging zone z, z = 1, 2 along its route, respectively.

Let tfi be the time that the CAV i exits the last conflict zone on its route. Therefore,

tfi = tm2
i if the last conflict zone ID is z = 2.
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Definition 2.1.1. Qz(t) is a local merging sequence such that Qz(t) ⊂ N (t) and

includes all CAVs M z(t) ∈ N at time t ∈ R+ that will be entering the merging zone z,

z = 1, 2.

For example, CAV #2, 3, 4, 5, 6 ∈ Q1(t) but CAV #1, 7, 8 /∈ Q1(t) (Fig. 2.1).

Similarly, CAV #1, 3, 4, 5, 7, 8 ∈ Q2(t) but CAV #2, 6 /∈ Q2(t) (Fig. 2.1). If a CAV i

enters the control zone at time t0i with a route designating to cross the merging zone

z, i.e., i ∈ Qz(t), it needs to compute the optimal time t
m∗

z
i to enter the merging zone

z, z = 1, 2, to avoid collision. The order of CAV i ∈ Qz(t) satisfies the following

condition,

t
m∗

z
i ≥ t

m∗
z

i−1, ∀i ∈ Qz(t), i > 1. (2.1)

When a CAV i ∈ Qz(t) enters the control zone at time t0i , the merging time tmz
i =

t0i +
Lz

vi(t0i )
corresponding to its initial constant speed is compared to the optimal merging

time t
m∗

z
i−1 of the previous CAV in the queue. If the following condition holds

tmz
i ≥ t

m∗
z

i−1, i ∈ Qz(t), i > 1, (2.2)

then the merging sequence Qz(t) is remained unchanged. However, if (2.2) does not

hold, Qz(t) can be updated to change the order of the CAVs entering the merging

zone so that (2.1) is not violated. The policy through which the merging sequence

Qz(t) is updated can be obtained as the result of an upper level vehicle coordination

problem, as described in the following section. Once the optimal merging time t
m∗

z
i

is fixed, each vehicle solves a lower-level energy minimization problem that yields an

analytical, closed-form optimal solution.

2.1.2 Modeling Framework and Constraints

Each CAV is modeled as a double integrator,

ṗi = vi(t), v̇i = ui(t), (2.3)
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where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the position, speed and acceleration

of each vehicle i in the control zone of the corridor. The sets Pi, Vi, and Ui, i ∈ N (t),

are complete and totally bounded subsets of R. Let xi(t) = [pi(t) vi(t)]
T denote the

state of each vehicle i, with initial value x0
i = xi(t

0
i ) = [p0i v0i ]

T
, where p0i = pi(t

0
i ) = 0

at the entry of the corridor, taking values in Xi = Pi × Vi. The state space Xi for

each vehicle i is closed with respect to the induced topology on Pi × Vi and thus, it is

compact.

We need to ensure that for any initial state (t0i , x
0
i ) and every admissible control

ui(t), the system (2.3) has a unique solution xi(t) on some interval [t0i , t
f
i ]. The following

observations from (2.3) satisfy some regularity conditions required both on the model

and admissible controls ui(t) to guarantee local existence and uniqueness of solutions

for (2.3): a) The model is continuous in u and continuously differentiable in the state

x, b) The first derivative of the model in x is continuous in u, and c) The admissible

control ui(t) is continuous with respect to t.

To ensure that the control input and vehicle speed are within a given admissible

range, the following constraints are imposed,

umin ≤ ui(t) ≤ umax, and

0 ≤ vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
f
i ],

(2.4)

where umin, umax are the minimum and maximum acceleration for each vehicle i ∈

N (t), and vmin, vmax are the minimum and maximum speed limits respectively.

To characterize the physical location of the CAV i−1 ∈ Qz(t) inside the control

zone, three subsets Lz
i (t),Oz

i (t) and Czi (t) of Qz(t) with respect to CAV i are defined

as follows.

Definition 2.1.2. 1) The set Lz
i (t) contains all vehicles traveling in the same direction

and same lane as vehicle i with a potential of rear-end collision, e.g., L1
5(t) contains

CAV #4 (Fig. 2.1), 2) Oz
i (t) contains all vehicles that travel in the opposite direction

as vehicle i, and thus no rear-end or lateral collision is possible, e.g., O2
1(t) contains
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CAV #3 (Fig. 2.1), and 3) Czi (t) contains all vehicles from different entry points with

the possibility of lateral collision with vehicle i, e.g., C28(t) contains CAV #1 (Fig. 2.1).

To ensure the absence of rear-end collision of two consecutive vehicles traveling

in the same lane, the position of the physically immediately preceding CAV k ∈ Lz
i (t)

should be greater than or equal to the position of the following vehicle plus a predefined

safe distance headway δi(t), which is a function of speed vi(t). Thus we impose the

rear-end safety constraint,

pk(t)− pi(t) ≥ δi(t), ∀t ∈ [t0i , t
f
i ]. (2.5)

For each CAV i ∈ Qz(t), the lateral collision is possible within the set Γi,

Γi
∆
= {t | t ∈ [tmz

i , tfzi ]}. (2.6)

Lateral collision between any two CAVs i, j ∈ Qz(t) can be avoided if the following

constraint hold

Γi ∩ Γj = ∅, ∀t ∈ [tmz
i , tfzi ], i, j ∈ Qz(t). (2.7)

Assumption 2.1.1. Left/right turns or lane changes inside the control zone are not

allowed.

Assumption 2.1.2. Communication among CAVs occurs without any delays and er-

rors. Each CAV i is equipped with sensors to measure and share their local information.

Assumption 2.1.3. None of the state and control constraints are active at time t0i

when each CAV i ∈ N (t) enters the control zone.

Assumption 2.1.1 is imposed to simplify the problem and focus on the implica-

tions of the analytical solution without adding more degrees of complexity and can be

relaxed to allow left/right turns and lane changes without loss of generality. Assump-

tion 2.1.2 may be strong, but it is relatively straightforward to relax it as long as the

noise in the measurements and/or delays is bounded. For example, we can determine
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upper bounds on the state uncertainties as a result of sensing or communication errors

and delays, and incorporate these into more conservative safety constraints. Finally,

Assumption 2.1.3 ensures that, for each CAV i ∈ N (t), the initial state and control

input at the entry of the control zone is feasible. This implies that the initial condition

for the optimal control problem will be feasible.

2.1.3 Upper-Level Vehicle Coordination Problem

The upper level vehicle coordination problem provides the time t
m∗

z
i that each

CAV i ∈ Qz(t) uses to enter the merging zone z, z = 1, 2. For i = 1, due to the

absence of any prior CAV inside the control zone, the safety constraints (2.5) and

(2.7) are not active. This leads to the trivial solution v∗1(t) = v0i , ∀t ∈ [t0i , t
mz
i ] and

t
m∗

z
i = t0i +

Lz

vi(t0i )
. For the rest of the CAVs i ∈ Qz(t), we seek to maximize the traffic

throughput by minimizing the inter-vehicle gaps according the following optimization

scheme,

min
t(2:Mz(t))

2∑
z=1

Mz(t)∑
i=2

(tmz
i − tmz

i−1) = min
t(Mz(t))

2∑
z=1

(tmz

Mz(t) − tmz
1 )

subject to : (2.1), (2.4), (2.5), (2.7).

(2.8)

The solution of the optimal control problem (2.8) recursively yields a feasible merging

time t
m∗

z
i for each vehicle i to cross the merging zone z satisfying condition (2.1)

Theorem 2.1.3. If the state and control constraints in (2.4) are inactive, the solution

T ∗ = {tm
∗
z

2 , ..., t
m∗

z

Mz(t)} of (2.8) can be obtained through the following recursive structure

over i = 2, ...,M z(t) for each z, z = 1, 2,

t
m∗

z
i =



t
m∗

z
k + δi(t)

vk(t
m∗

z
k )

, if i− 1 ∈ Lz
i (t),

max

{
t
m∗

z
i−1, t

m∗
z

k + δi(t)

vk(t
m∗

z
k )

}
,

if i− 1 ∈ Oz
i (t)

max

{
t
m∗

z
i−1 +

Sz

vi−1(t
m∗

z
i−1)

,

t
m∗

z
k + δi(t)

vk(t
m∗

z
k )

}
, if i− 1 ∈ Czi (t)

(2.9)
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Proof. We need to consider three cases based on the interdependency between CAV i

and i− 1.

Case 1: If i − 1 ∈ Lz
i (t), then (2.5) becomes active whereas (2.7) becomes

inactive. As CAV i−1 also represent the CAV k, which is physically located in front of

i, we can denote i−1 as k in this particular case. From (2.5) we get, (pk(t
mz
i )−pi(tmz

i )) =

Lz+vk(t
mz
i −t

mz
k )−Lz ≥ δi(t), yielding t

m∗
z

i = t
m∗

z
k + δi(t)

vk(t
m∗

z
k

. According to (2.1), t
m∗

z
i ≥ t

m∗
z

i−1.

Therefore, t
m∗

z
i = max

{
t
m∗

z
k + δi(t)

vk(t
m∗

z
k )

, Lz

vmax
+ t0i

}
.

Case 2: If CAV i− 1 ∈ Oz
i (t), then constraint (2.7) and (2.5) are not active for

CAV i. In this case, the inter-vehicle time gap (tmz
i − t

m∗
z

i−1) can be minimized by setting

the optimal solution t
m∗

z
i such that t

m∗
z

i = t
m∗

z
i−1. However, constraint (2.5) becomes active

if there exists at least one CAV k, k ∈ Lz
i (t). Following the reasoning from case (1),

we get, max

{
t
m∗

z
i−1, t

m∗
z

k + δi(t)

vk(t
m∗

z
k )

}
, if i− 1 ∈ Oz

i (t).

Case 3: If i − 1 ∈ Czi (t), (2.7) becomes active. In this case, (tmz
i − t

m∗
z

i−1) can be

minimized by taking tmz
i = tfi−1 = t

m∗
z

i−1 +
Sz

vi−1(t
m∗

z
i−1)

. Again, if there exists a vehicle k ∈

Lz
i (t), (2.5) becomes active. To satisfy (2.1), we have t

m∗
z

i = max

{
t
m∗

z
i−1+

Sz

vi−1(t
m∗

z
i−1)

, t
m∗

z
k +

δi(t)

vk(t
m∗

z
k )

}
If the condition (2.2) is violated, two special cases arise. Based on the following

proposition, CAV i can either follow i− 1 or reach the merging zone before i− 1.

Proposition 2.1.1. If there exists a CAV j ∈ Czi (t) :
∣∣∣tmz

i − t
m∗

z
j

∣∣∣ < ρi or k ∈ Lz
i (t),

the order of the CAVs in Qz(t) is conserved and t
m∗

z
i is calculated by (2.9). If there

is no CAV k ∈ Lz
i (t) and

∣∣∣tmz
i − t

m∗
z

j

∣∣∣ ≥ ρi,∀j ∈ Czi (t), then the order of the CAVs in

Qz
i (t) is updated and t

m∗
z

i = t0i +
Lz

vi(t0i )
. Here, ρi is a predefined safe time headway.

Proof. Part 1: If there exists a CAV k ∈ Lz
i (t), or j ∈ Czi (t) :

∣∣∣tmz
i − t

m∗
z

j

∣∣∣ < ρi, CAV

i cannot have a collision free trajectory. This implies i cannot travel with its initially

36



calculated merging time tmz
i and has to merge after CAV i − 1. To satisfy (2.1), the

merging sequence is conserved, and t
m∗

z
i is calculated by (2.9) which minimizes (2.8).

Part 2: With the absence of k ∈ Lz
i (t), if

∣∣∣tmz
i − t

m∗
z

j

∣∣∣ ≥ ρi,∀j ∈ Czi (t), vehicle

i can have a collision-free trajectory and maintain its initial velocity such that t
m∗

z
i =

tmz
i = t0i +

Lz

vi(t0i )
. In this case, the merging sequence is updated so that (2.1) is not

violated.

2.1.4 Low-Level Energy Minimization Problem

For each vehicle i ∈ N (t), we formulate the decentralized optimial control prob-

lem that minimizes the cost function Ji(u(t)) in [t0i , t
f
i ],

min
ui∈Ui

Ji(u(t)) =

∫ tfi

t0i

Ci(ui(t)) dt, (2.10)

subject to : (2.3), (2.4), pi(t
0
i ) = 0, pi(t

mz
i ) = Lz,

and given t0i , v
0
i , t

mz
i .

Here, Ci(ui(t)) is monotonically increasing function of the control input ui(t) and can

be viewed as a measure of energy. When Ci(ui(t)) is considered as the L2-norm of the

control input, i.e. Ci(ui(t)) =
1
2
u2
i (t), the transient engine operation can be minimized,

which eventually represents the minimization of fuel consumption [180]. Note that, the

safety constraints are not included in (2.10). The lateral collision constraint (2.7) is

implicitly included by solving the upper-level vehicle coordination problem. The rear-

end collision constraint (2.5) can be avoided under proper initial conditions [t0i , v
0
i (t)]

as described in [28].

In what follows, we provide the closed-form solution of the optimal control

problem formulated in (2.10) for each vehicle i ∈ N (t).
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2.1.5 Closed-Form Analytical Solution

The solution of the constrained problem has been addressed in [28], and it

requires the constrained and unconstrained arcs of the state and control input to be

pieced together to satisfy the Euler-Lagrange equations and necessary condition of

optimality. Due to the page limitations, we provide the general formulation and include

only the solution of the unconstrained case here. From (2.10), the state equations (2.3)

and the constraints (2.4), for each vehicle i ∈ N (t) the Hamiltonian function with the

state and control adjoined is

Hi

(
t, x(t), u(t)

)
=

1

2
u2
i + λp

i · vi + λv
i · ui + µa

i · (ui − umax) + µb
i · (umin − ui)

+µc
i · (vi − vmax) + µd

i · (vmin − vi), ∀i ∈ N (t), (2.11)

where λp
i and λv

i are the co-state components, and µa
i , µ

b
i , µ

c
i and µd

i are the Lagrange

multipliers.

µa
i =

 > 0, ui(t)− umax = 0,

= 0, ui(t)− umax < 0,
(2.12)

µb
i =

 > 0, umin − ui(t) = 0,

= 0, umin − ui(t) < 0,
(2.13)

µc
i =

 > 0, vi(t)− vmax = 0,

= 0, vi(t)− vmax < 0,
(2.14)

µd
i =

 > 0, vmin − vi(t) = 0,

= 0, vmin − vi(t) < 0.
(2.15)

The Euler-Lagrange equations can be written as,

λ̇p
i (t) = −

∂Hi

∂pi
= 0, (2.16)

and

λ̇v
i = −

∂Hi

∂vi
=



−λp
i , vi(t)− vmax < 0 and

vmin − vi(t) > 0,

−λp
i + µc

i , vi(t)− vmax = 0,

−λp
i − µd

i , vmin − vi(t) = 0.

(2.17)
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The necessary condition for optimality is

∂Hi

∂ui

= ui + λv
i + µa

i − µb
i = 0. (2.18)

2.1.5.1 Analytical Solution without Interior Constraints

If the inequality state and control constraints (2.4) are not active, we have

µa
i = µb

i = µc
i = µd

i = 0. Applying the necessary condition, the optimal control can be

given

ui(t) + λv
i = 0, i ∈ N (t). (2.19)

From Euler-Lagrange equations, we have λp
i (t) = ai, and λv

i (t) = −
(
ai · t + bi

)
. The

coefficients ai and bi are constants of integration corresponding to each vehicle i. From

(2.19), the optimal control input (acceleration/deceleration) as a function of time, and

the corresponding state trajectories are given by

u∗
i (t) = ai · t+ bi, ∀t ≥ t0i . (2.20a)

v∗i (t) =
1

2
ai · t2 + bi · t+ ci, ∀t ≥ t0i (2.20b)

p∗i (t) =
1

6
ai · t3 +

1

2
bi · t2 + ci · t+ di, ∀t ≥ t0i , (2.20c)

where ci and di are constants of integration. The constants of integration ai, bi, ci,

and di can be computed once at time t0i using the initial and final conditions, and the

values of the one of terminal transversality condition, i.e., λv
i (t

mz
i ) = 0.

2.1.5.2 Analytical Solution with Interior Constraints

In the case that the path of vehicle i consists of more than one merging zone,

for example, the eastbound CAV i enters from the left and travels through merging

zones #1 and #2 in Fig. 2.1 between the time t0i that the vehicle enters the control

zone and the time tfi that the vehicle exits the merging zone #2, vehicle i has to travel
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across the intermediate merging zone #1 at the designated time tm1
i . Therefore, we

need to impose an additional interior boundary condition [33]

pi(t
m1
i ) = L1. (2.21)

If a speed constraint v1 is imposed as an interior boundary condition, then

vi(t
m1
i ) = v1. (2.22)

Let tm1−
i and tm1+

i represents the time just before and after the jump conditions. Then

λp
i (t

m1−
i ) = λp

i (t
m1+
i ) + π0, (2.23)

λv
i (t

m1−
i ) = λv

i (t
m1+
i ) + π1, (2.24)

H− = H+ − π0 · vi(tm1
i )− π1 · ui(t

m1
i ), (2.25)

where π0 and π1 are constant Lagrange multipliers, determined so that (2.23) and (2.24)

are satisfied. Equations (2.23)- (2.25) imply discontinuities in the position and speed

co-states and the Hamiltonian at tm1
i . The two arcs, i.e., equations before and after

tm1
i , are pieced together to solve the problem with 9 or 10 unknowns [if (2.22) is also

imposed] including the constants of integration, π0 and/or π1, and the corresponding

equations: the initial conditions, i.e., vi(t
0
i ) and pi(t

0
i ), the interior conditions as defined

in (2.21), [and/or (2.22)] the final conditions, i.e., λi(t
mz
i ), pi(t

mz
i ), and the junction

point defined in (2.23) [and/or (2.24)].

To derive online the optimal control for each vehicle i, we need to calculate the

constants of integration at time t0i , so that the controller yields the optimal control
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online for each vehicle i. We form the following system of nine equations, namely

(t0i )
2

2 (t0i ) 1 0 0 0 0 0 0

(t0i )
3

6
(t0i )

2

2 t0i 1 0 0 0 0 0

(t
m1
i )3

6
(t

m1
i )2

2 tm1
i 1 0 0 0 0 0

(t
m1
i )2

2 tm1
i 1 0 − (t

m1
i )2

2 −tm1
i −1 0 0

0 0 0 0
(t

m2
i )3

6
(t

m2
i )2

2 (tm2
i ) 1 0

0 0 0 0 −tm2
i −1 0 0 0

0 0 0 0
(t

m1
i )3

6
(t

m1
i )2

2 tm1
i 1 0

tm1
i 1 0 0 −tm1

i −1 0 0 0

1 0 0 0 −1 0 0 0 −1



·



ai

bi

ci
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, ∀t ≥ t0i .

(2.26)

where ai, bi, ci, di are the constants of integration for the first arc, and gi, hi, qi, wi are

the constants of integration for the second arc.

2.1.6 Simulation Results and Discussion

To evaluate and validate the effectiveness of the proposed approach, I conducted

computational studies using the commercial software platforms of TASS International

PreScan in conjunction with Mathworks MATLAB and Simulink. A corridor with two

adjacent intersections (intersection-1 and intersection-2) is considered in Mcity (Fig.

2.2), a 32 acre vehicle testing facility. The dimensions of the conflict zones are 18

m × 12 m for intersection-1 and 34 m × 28 m for intersection-2. The length of the

control zone to be 100 m is measured from the entry of each intersection. Six different

routes have been designed for the scenario in Fig. 2.2 with 14 CAVs: 1) two eastbound

routes with 5 CAVs, 2) two westbound routes with 4 CAVs, 3) one southbound route

with 2 CAVs, and finally, 4) one northbound route with 3 CAVs. Note that, east and

westbound vehicles travel through only one intersection in their path. The routes and

CAV positions were designed in such a way that the trajectories of the CAVs present a

worst-case collision scenario. To analyze the individual performance of the simulated
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CAVs, we considered a northbound vehicle (ego-CAV) as the test vehicle (see Fig. 2.2).

Figure 2.2: Illustration of the corridor in Mcity.
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Figure 2.3: Optimal vehicle trajectory traveling through two adjacent intersections.
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The merging scenario at intersection-1 with 10 incoming CAVs is depicted in

Fig. 2.4 (left). Note that, CAV#4 heading westbound and CAV#7 heading eastbound

are allowed to enter the conflict zone at the same time since their routes have opposite

directions and thus are non-conflicting. The simulation results for the decentralized

optimization problem for the ego-CAV are depicted in Fig. 2.3. It is observed that the

optimal control takes hold of the ego-CAV at the entry of the control zone denoted at

time t0i and leads it optimally through intermediate collision points of intersection-1 at

time tm1
i and tm2

i . Also note that, within the time horizon tm2
i − tm1

i , we have linear

control input profile, quadratic speed profile, and cubic path trajectory according to

(2.20). To compare the performance of the proposed optimal solution, we construct

Figure 2.4: Collision-free optimal trajectory of 10 CAVs approaching towards
intersection-1 (left) and cumulative fuel consumption of the optimized and baseline
scenarios (right).

a baseline scenario with fixed time signalized intersections with a switching time of

10 seconds. The vehicles were governed by the Gipps car-following model [101]. To

quantify the effect of optimal vehicle coordination on fuel consumption, a polynomial

meta-model proposed in [67] was used. A comparison of fuel consumption for the ego-

CAV between the baseline and optimized scenarios is shown in Fig. 2.4 (right). We
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Figure 2.5: Stoppage time (left) and average coefficient of power demanded (right) of
the optimized and baseline scenarios.
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Figure 2.6: Fleet travel time of the optimized and baseline scenarios.

observe 40.9% improvement in fuel efficiency for the ego-CAV under the constructed

baseline scenario.

The proposed framework alleviates stop-and-go driving, and thus, minimizes

associated transient engine operation in this corridor, yielding improvements in fuel

consumption. To quantitatively investigate this observation, the individual drive cycles

of the vehicles in the baseline and optimized scenarios are analyzed using three metrics:

(1) total travel time, (2) stop factor, and (3) average coefficient of power demanded.
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The stop factor provides a convenient indication of idle engine operation over a driving

cycle. The coefficient of power demanded provides an indication of the transient engine

operation since it is proportional to the power demanded by the driver. Total stoppage

time in the drive cycle, shown in Fig. 2.5 (left), was eliminated for every vehicle in

the fleet. The coefficient of power demand, shown in Fig. 2.5 (right), only considers

vehicle power demanded under both positive acceleration and velocity events and was

able to be reduced by 40.8% across the fleet of 14 vehicles. The total travel time (Fig.

2.6) for all 14 vehicles was improved by 13.2% with the proposed framework compared

to the baseline scenario.

In this section, I addressed the problem of coordinating CAVs at two signal-

free adjacent intersections by formulating a decentralized optimal control problem. A

closed-form analytical solution is presented that considers interior boundary conditions

and provides optimal fuel-efficient and collision-free trajectories to the CAVs for their

predetermined routes. The proposed decentralized framework exhibits significant im-

provement in terms of fuel efficiency, average power demand, and average travel time

when compared to the baseline scenario.

2.2 Isolated and Coordinated Control at a Traffic Corridor

Implementation of different coordination strategies can impact the performance

of CAVs traveling through a traffic corridor consisting of multiple congestion scenarios.

In this section, I consider two coordination strategies: (1) an isolated control approach,

where no information is shared among the coordinators, and (2) a coordinated control

approach, where all the coordinators share common information. The objective of each

CAV is to optimize its trajectories in terms of energy consumption and travel time while

implementing one of the above control strategies. We evaluate the effectiveness of the

proposed architecture through a simulation environment and provide a comparison of

the performance of the two different control approaches.

In the following section, the two approaches for the vehicle dynamics (VD)
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Figure 2.7: The corridor in Mcity with the conflict zones.

controller, namely, isolated control and coordinated corridor control, are introduced.

2.2.1 Isolated Conflict Zone Control

Let us consider a corridor that contains three conflict zones (Fig. 2.7), e.g.,

a merging roadway (conflict zone 1), a speed reduction zone (conflict zone 2), and a

roundabout (conflict zone 3), as shown in Fig. 2.7. Upstream of each conflict zone,

we have a control zone where CAVs coordinate with each other. For each control

zone, there is a coordinator that communicates with the CAVs traveling within that

specific control zone. In the isolated control approach: (1) none of the CAVs can

communicate outside of the current control zone, and (2) none of the coordinators

share their information with each other.

Let z ∈ Z be the index of a conflict zone in the corridor. When a CAV enters

the control zone, the coordinator receives its information and assigns a unique identity

i to the CAV. Let t0zi be the time when CAV i enters the control zone towards conflict
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zone z, and tfzi be the time when CAV i exits the corresponding control zone. In each

control zone, we denote the sequence of the CAVs to be entering a conflict zone as

Nz(t) = {1, ..., N(t)}. Thus, the following optimization problem is formulated for each

CAV in the queue Nz(t)

min
ui

1

2

∫ tfzi

t0zi

u2
i (t)dt, ∀i ∈ Nz(t), ∀z ∈ Z (2.27)

Subject to : (2.3), (2.4), (2.7), (2.5),

pi(t
0z
i ) = p0zi , vi(t

0z
i ) = v0zi , pi(t

fz
i ) = pz,

and given t0zi , tfzi .

where pz is the location (i.e., entry position) of conflict zone z, p0zi , v0zi are the initial

position and speed of CAV i when it enters the control zone of conflict zone z. The

analytical solution of the above optimal control problem has been presented for the

unconstrained case in [27, 61, 78], and for the constrained case in Chapter 3, and thus

omitted here.

2.2.2 Coordinated Corridor Control

In this control approach, we consider a single coordinator that monitors all

CAVs traveling along the corridor. Note that the coordinator serves as an information

center that can collect vehicular data through V2I and/or V2V communication, and

is not involved in any decision on the CAV operation. Roadside units could be placed

in each conflict zone and used to transmit data between CAVs and the coordinator.

Thus, the coverage of the coordinator is flexible and the length of the corridor could

be extended in the presence of connected infrastructure.

Let N (t) ∈ N be the number of CAVs in the corridor at time t ∈ R+. When

a CAV enters the boundary of the corridor, it broadcasts its route information to

the coordinator. Then, the coordinator assigns a unique integer i that serves the

identification purpose inside the corridor. Let t0i be the initial time that CAV i enters

the corridor, tzi be the time for CAV i to enter the conflict zone z, z ∈ Z, and tfi be
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the time for CAV i to enter the final conflict zone. To avoid any possible collision, the

merging time tzi for each CAV i can be computed using the upper level coordination

policy presented in Section 2.1.3. The upper-level scheduling procedure yields the

sequence that the CAVs will be traversing through the corridor. Each CAV i determines

the time tzi that will be entering the conflict zone z ∈ Z upon arrival at the entry of the

corridor. Thus, the next CAV i + 1, upon its arrival at the entry of the corridor, will

search for feasible times to cross the conflict zones based on available time slots. The

recursion is initialized when the first CAV enters the control zone, i.e., it is assigned

i = 1. For each CAV, the following optimal control problem is formulated, the solution

of which yields the optimal control input (acceleration/deceleration) to achieve the

assigned time tzi (upon arrival of CAV i) without collision

min
ui

1

2

∫ tfi

t0i

u2
i (t)dt, ∀i ∈ N (t) (2.28)

Subject to : (2.3), (2.4), (2.7), (2.5),

pi(t
0
i ) = p0i , vi(t

0
i ) = v0i , pi(t

z
i ) = pz,

and given t0i , t
z
i , t

f
i , ∀z ∈ Z,

where p0i , v
0
i are the initial position and speed of CAV i when it enters the corridor,

and tzi is the time when CAV i enters the conflict zone z. The details of deriving the

closed-form analytical solution of the lower-level optimal control problem using interior

point constraints is presented in Section 2.1.3, and thus omitted here.

2.2.3 Performance Evaluation and Comparison

We primarily focus on two aspects of the analysis: 1) evaluation of the net-

work performance under the two different control approaches, and 2) evaluation of the

efficiency under three different traffic levels (i.e., light, medium, and heavy traffic con-

ditions). To this end, we develop the following three scenarios.
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Scenario 1: (Baseline) All vehicles in the network are non-connected and non-

automated vehicles. In this scenario, the Wiedemann car following model [160] built-

in VISSIM is applied. The intersection is controlled by a fixed-time signal controller,

whose signal timing is optimized for the traffic condition set in the study.

Scenario 2: (Isolated conflict zone control)We consider 100% market penetration

of CAVs in this scenario. The vehicles optimize their trajectory based on the isolated

conflict zone control approach presented in Section 2.2.1.

Scenario 3: (Coordinated corridor control) We consider 100% market penetra-

tion of CAVs in this scenario. The vehicles optimize their trajectory based on the

coordinated corridor control approach presented in Section 2.2.2.

The corridor has a length of 1.3 km in MCity (Fig. 2.7). The desired speeds for

the highway, urban and SRZ are set as 17 m/s, 11 m/s, and 8 m/s respectively. The

length of the speed reduction zone is 125 m. For Scenario 2, the length of the control

zone for the on-ramp, the SRZ, and the roundabout were selected to be 150 m.

Figure 2.8: Vehicle speed profiles under different VD control approaches.

We plot vehicle trajectories in Fig. 2.9 to investigate the network-level perfor-

mance of the controllers. Under Scenario 1, the vehicles need to slow down or stop

before merging into the highway or roundabout. Therefore, we can see in the top panel
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of Fig. 2.9 that there are a significant number of stop-and-go events in vehicle speed

profiles under the baseline scenario. Under scenario 2 (shown in the middle panel of

Fig. 2.9), with an isolated control scheme, we observe smooth speed profiles inside

each control zone. At the downstream of each conflict zone, vehicles exit from the VD

control zone, thus we see similar speed patterns as under scenario 1 outside the con-

trol zones. We also note that while the isolated control approach is able to eliminate

stop-and-go driving, the resulting increased traffic flow into the downstream speed re-

duction zone leads to speed reduction downstream of the highway on-ramp segment.

This implies that a lack of coordination among the vehicles of different control zones

results in inefficient transient driving behavior. On the contrary, with the coordinated

control scheme under scenario 3, traffic information of the entire corridor is shared

among all vehicles. Therefore, all the CAVs travel through the corridor are able to

optimize their trajectories both at the upstream and downstream of the conflict zones,

and drive smoothly throughout the corridor, even with high traffic demand levels (as

shown in the bottom panel of Fig. 2.9). The elimination of transient engine operation

between the uncontrolled zone of the traffic scenarios has significant implications in

terms of fuel economy. In Table 2.1, it can be observed that the coordinated corridor

control approach leads to significantly higher fuel economy improvement in compari-

son with the isolated control approach under low, medium, and high traffic volumes.

This improvement can be attributed to the fact that, since the coordinated corridor

control approach eliminates all the uncontrolled patches between the control zones of

different traffic scenarios as opposed to the isolated control approach, and optimizes

the complete route inside the corridor, it leads to improved fuel efficiency.

Table 2.1: Percentage improvement in fuel economy over the baseline scenario under
different traffic conditions.

High [%] Medium [%] Low [%]
Isolated Control 14.9 10.3 8.2
Coordinated Control 29.9 24.4 22.4

Under three different traffic conditions, we calculate vehicle travel times through
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(a) light traffic demand level (b) heavy traffic demand level

Figure 2.9: Speed profiles for all CAVs under different VD control approaches and
demand levels.

the corridor under different VD control approaches and plot travel time distribution

in Fig. 2.10. We observe that with a coordinated corridor control approach, due to

longer preparation for downstream roadway segments, the average travel time under

light traffic conditions is longer than the baseline scenario. However, the results reveal

that through the corridor coordination, the traffic flow is further smoothed (much lower

variation in vehicle travel times as shown in Fig. 2.10) compared to the isolated conflict

zone control approach.

In this section, we compared the efficiency of different VD control approaches

and showed that the coordinated corridor approach improves significantly fuel efficiency

compared to the isolated conflict zone control approach.

Note that, each CAV has different subsystems that can leverage the developed

VD controller to generate improved performance. For example, if we consider that the

CAVs are plug-in-hybrid-electric vehicles (PHEVs), then the VD controllers developed

in the previous sections can be combined with a powertrain (PT) control architecture
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Figure 2.10: Travel time distribution under different VD control approaches and traffic
demand levels.

to harness additional energy consumption benefits. In the following section, I explored

the concept of coupling the VD and PT controllers of the CAV, and show that the

combination can improve fuel economy.

2.3 Concurrent Optimization of Vehicle Dynamics and Powertrain

In this section, I explore the possibility of concurrent optimization of the CAV’s

vehicle dynamics and powertrain. Specifically, I propose a supervisory control architec-

ture for CAVs that optimizes (1) the vehicle’s speed profile, aimed at minimizing stop-

and-go driving, and (2) the powertrain efficiency of the vehicle for the optimal speed

profile derived in (1). The complexity of the problem dimensionality can be managed

by establishing two parallel and appropriately interacting computational levels: (1) a

cloud-based, and (2) a vehicle-based level. Thus, the proposed control framework can

be implemented onboard the vehicle in real time with minimal computational effort.

2.3.1 Supervisory Controller Architecture

We consider a network of connected and automated PHEVs (CA-PHEVs) driv-

ing through a corridor in Mcity that consists of several conflict zones, e.g., a merging

at roadways on-ramp, a speed reduction zone, and a roundabout, as shown in Fig. 2.2.

The CA-PHEVs are retrofitted with necessary communication devices to interact with
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Figure 2.11: Supervisory control architecture.

other CA-PHEVs and structures within their communication range through V2V and

V2I communication. In this work, the CA-PHEV under consideration is an Audi A3

e-tron plug-in hybrid electric vehicle (Fig. 2.12).

The supervisory controller oversees the VD and PT controllers, and communi-

cates the endogenous and exogenous information appropriately, as shown in Fig. 2.11.

The VD controller optimizes online the acceleration/deceleration and speed profile of

the vehicle in situations where there is a potential conflict with other vehicles, e.g.,

in traffic lights, stop signs, roundabouts, etc, to avoid stop-and-go driving. The PT

then controller computes the optimal nominal operation (set-points) for the engine

and motor corresponding to the optimal solution of the VD controller. The supervi-

sory controller coordinates the VD and PT controllers to ensure the optimal solution

yielded by the VD controller is feasible for the PT controller and eventually results in

maximization of the vehicle’s energy efficiency.

Similar to Section 2.2, we consider a corridor that contains three conflict zones

z = 1, 2, 3 representing a merging roadway, a speed reduction zone, and a roundabout

respectively. The corridor containing the CA-PHEV’s main route is illustrated by the
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black trajectory in Fig. 2.7. The details of the setup are the same as in Section 2.2. The

objective of each CA-PHEV is to derive its optimal control input (acceleration) to cross

each of the conflict zones without any rear-end or lateral collision with other vehicles,

and simultaneously optimize its powertrain to achieve better energy efficiency. The

VD control framework for CAVs traveling through traffic corridors has been presented

in the previous sections (see Sections 2.1 and 2.2). Therefore, the focus of the following

section is only on developing the powertrain control architecture.

Figure 2.12: The test vehicle, Audi A3 e-tron, in Mcity.

2.3.2 Optimization of the Powertrain Controller

The CA-PHEV considered here has a parallel configuration, where the gasoline

engine and the electric motor can provide the necessary power to the wheel either

independently or in combination. The engine, which can be fully decoupled in elec-

tric motor-only operation, is connected to the integrated motor-generator (IMG) unit

through a singular clutch, which is in turn connected to a dual-clutch transmission.

The electric motor is coupled with the engine and gearbox and can act as a generator

for charging the battery.

The vehicle is operated on the battery-hold mode, and thus, the state-of-charge

(SOC) of the battery is constrained within a 1% SOC bandwidth around the target
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SOCtarget with lower bound SOClb and upper bound SOCub. Based on the current

SOC of the battery, the controller decides whether to charge or discharge the battery.

Following the modeling framework in [181], the evolution of the CA-PHEV state

is modeled as a controlled Markov chain with a finite state space, S ⊂ Rn, and finite

control space, U ⊂ Rm, n,m ∈ N, from which the power management controller selects

control actions. In our formulation, the state space is the entire range of the engine

and motor speed, S ⊂ R2, where the engine and motor speed progress in a compact

subset of R. The control space U is the vector of the engine and motor torque, U ⊂ R2.

The evolution of the state occurs at each of a sequence of stages t = 0, 1, ...,

and it is portrayed by the sequence of the random variables Xt(1:2) = (Xt(1), Xt(2)))
T =

(Neng, Nmot)
T ∈ S and Ut(1:2) = (Ut(1), Ut(2)))

T = (Teng, Tmot)
T ∈ U , corresponding

to the HEV state (engine and motor speed) and control action (engine torque and

motor torque) respectively. For each state Xt(1:2) = i ∈ S a nonempty set C(i) ⊂ U

of admissible control actions (engine and motor torque) is given which implies that

at each state i ∈ S, the control action set C(i) ⊂ U should include only the control

actions that satisfy the physical constraints of the engine and the motor. At each

stage t, the controller observes the engine and motor speed, Xt(1:2) = i ∈ S, which is a

function of the vehicle speed, and executes an action, Ut(1:2) = µ(Xt(1:2)) (engine and

motor torque), from the feasible set of actions, Ut(1:2) ∈ C(i), at that state. At the

same stage t, an uncertainty, Wt(1:2), is incorporated in the system consisting of the

torque demanded by the driver as designated by the pedal position, e.g., accelerator or

brake. At the next stage, t+ 1, the system transits to the state Xt+1(1:2) = j ∈ S and

a one-stage expected cost, k(Xt(1:2), Ut(1:2)), is incurred corresponding to the engine’s

and motor’s efficiency. After the transition to the next state, a new action is selected

and the process is repeated. The state transition from one state to another is imposed

by a discrete-time equation that describes the dynamics of the CA-PHEV.

The objective of the PT controller is to derive a control policy that minimizes

the long-run expected average cost of the CA-PHEV to split the torque demanded
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by the driver between the engine and the motor for the optimal speed profile derived

by the VD controller as a solution of Eq. (2.10). For the power management control

problem here, we select the average cost criterion as we wish to optimize the efficiency

of each CA-PHEV on average, hence

Jπ = lim
T→∞

1

T + 1
Eπ

[
T∑
t=0

k(Xt(1:2), Ut(1:2))

]
, (2.29)

where k(Xt(1:2), Ut(1:2)) is the one-stage cost of CA-PHEV. However, the computational

burden associated with deriving the optimal control policy in Eq. (2.20) prohibits

online derivation onboard a vehicle. It has been shown [182] that the optimal control

policy in Eq. (2.29) is equivalent to the Pareto control policy that can be derived by

formulating a multiobjective problem. The latter consists of the engine’s efficiency, ηeng,

and the motor’s efficiency, ηmot. Given the engine and motor speedXt(1:2), the objective

is to find the optimal control action Ut(1:2) (engine and motor torque) that optimizes a

multiobjective function reflecting both the engine’s and the motor’s efficiency. Hence,

one of the objectives is the engine’s efficiency

f1(Neng, Teng) = ηeng, (2.30)

and the other one is the motor’s efficiency,

f2(Nmot, Tmot) = ηmot. (2.31)

The multiobjective optimization problem is formulated as

min
Ut

k(Xt(1:2), Ut(1:2)) =

max
Ut

(
α · f1(Xt(1), Ut(1)) + (1− α) · f2(Xt(2), Ut(2))

)
, (2.32)

s.t.
2∑

i=1

Ut(i) = Tdriver,

where α is a scalar that takes values in [0,1], Xt(1:2) = (Xt(1), Xt(2)))
T = (Neng, Nmot)

T ∈

S, Ut(1:2) = (Ut(1), Ut(2)))
T = (Teng, Tmot)

T ∈ U is the vector of engine and motor torque.

The multiobjective optimization problem in Eq. (2.32) yields the Pareto efficiency set
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between the engine and the motor by varying α from 0 to 1 at any given state of

the HEV. For each state of the CA-PHEV and torque demand, we derive the Pareto

efficiency set of Eq. (2.32) offline and store it in a table. If there are multiple solutions,

then one of these solutions is selected randomly since all of them will yield the same

one-stage expected cost. The Pareto control policy is then implemented online using

this table.

2.3.3 Powertrain Calibration with VESIM

To model the powertrain of Audi A3 etron, we adopt a hybrid electric vehicle
simulation tool VESIM [183], and create separate powertrain models for the baseline
scenario and the optimized scenario. The purpose of this model is to represent the
hybrid PT controller architecture of an HEV. The general architecture of the VESIM
model is illustrated in Fig. 2.13. We modify the VESIM to generate two different
vehicle powertrain models as follows. The baseline VESIM model has been calibrated

Figure 2.13: VESIM Model for modelling the powertrain of the plug-in hybrid electric
vehicle.

to reproduce the vehicle characteristics generated by the factory controller of the Audi
A3. Due to the combined contribution of the internal combustion engine and the
motor of the Audi A3, the VESIM model computes the miles-per-gallon of gasoline
equivalent (MPGe) according to the EPA standard. By feeding the baseline and the
VD controller’s speed profiles to the VESIM model, we quantify the fuel consumption
of the Audi A3, and evaluate the performance of the VD controller at different conflict
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scenarios. Some of the most essential VESIM parameters required for the calibration
purpose are summarized in Table A.3. The Audi A3 has several modes of operation:

1. EV mode: Motor only operation, where the engine remains turned off.

2. Charge Battery Mode: The engine provides the torque demanded by the
driver and also provides torque to the IMG unit to charge the battery.

3. Hold Battery Mode: The SOC of the battery is maintained within a certain
bandwidth of the initial SOC. Although the engine provides the torque demanded,
the motor can contribute if the torque demand is higher than the maximum
capacity of the engine.

4. Hybrid Mode: The vehicle can use both the engine and the IMG unit to provide
the torque demanded by the driver.

We calibrate the VESIM model for each of the aforementioned modes of Audi

A3 to capture appropriate engine and IMG characteristics. Fig. 2.13 shows a repre-

sentation of such effort, where the speed and battery SOC profile of the Audi A3 and

corresponding calibrated VESIM model for hold battery mode are illustrated. Note

that, the hold battery mode is characterized by the SOC variation constrained within

a certain SOC bandwidth. We observe that the calibrated VESIM model can trace

the reference speed of the actual Audi A3’s drive cycle very closely, which is illustrated

by their complete overlap in Fig. 2.14. We obtain MPGe of 29.73 from the calibrated

VESIM model compared to the Audi A3 MPGe of 30.92 for the same drive cycle, with

3.8 % deviation.

2.3.4 Integration of Powertrain Controller in VESIM

For deriving the optimal control policy of the PT controller, we first derive the

engine’s efficiency map from its brake-specific fuel consumption (BSFC) data, contrary

to the motor’s efficiency map which is readily available. With the engine’s and motor’s

efficiency map, we solve the multiobjective optimization problem in Eq. (2.32) offline.

We discretize the torque, engine/motor speed and the scalar α with the resolution of 10

Nm, 100 RPM and 0.05 respectively, and use the optimization toolbox of MATLAB to

58



0 50 100 150 200 250 300 350 400

Time [sec]

0

5

10

15

20

25

30

35

40

V
e

h
ic

le
 S

p
e

e
d

 [
M

P
H

]

0.8

0.805

0.81

0.815

0.82

0.825

0.83

S
ta

te
 o

f 
C

h
a

rg
e

Audi A3 Speed

VESIM Speed

Audi A3 SOC

VESIM SOC

Figure 2.14: VESIM calibration model for hold battery mode.

solve Eq. (2.32). Finer resolution of α increases the solution time significantly without

yielding proportional changes to the solution matrix. The optimization process yields

a Pareto efficiency set that we store in the CA-PHEV memory for later online use. For

each torque demanded by the driver and corresponding engine/motor speed, the CA-

PHEV searches the Pareto efficiency table to obtain the optimal torque split between

the engine and the IMG unit.

The Pareto efficiency computed off-line is illustrated in Fig. 2.15. We note that

when the driver’s torque demand is below 300 Nm, the optimal solution is to use the

motor exclusively to satisfy the torque demanded by the driver. This is because the

electric motor considered here has high efficiency (almost 95%) in most of its operating

regions compared to the engine, which has a peak efficiency of 35%.

2.3.5 Vehicle Dynamics and Powertrain Controller Performance

To evaluate the effectiveness of the proposed control architecture, we design a

simulation scenario using the commercial software PTV VISSIM [184]. We create a

simulation environment resembling the Mcity vehicle testing facility and define the net-

work routes for all the vehicles. In terms of the nature of vehicle control, we consider
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Figure 2.15: Pareto efficiency set of the powertrain controller.

two scenarios:

1. Baseline Vehicle Dynamics: All vehicles are human-driven without any con-

nectivity and automation. The VISSIM employs the Wiedemann car following model

[160] to emulate the behavior of the human-driven vehicles. However, the VISSIM

built-in car following models is slightly different from the original Wiedemann model

in [160] due to the inclusion of certain parameters to introduce additional randomness

and heterogeneity in terms of driving behavior. We apply VISSIM’s Wiedemann-74

car-following model for the urban traffic and Wiedemann-99 for the freeway traffic. The

conflict zones inside the corridor have conventional traffic signals, which the vehicles

must abide by. We model the traffic signals (yield behavior) at the on-ramp merging,

and the roundabout by imposing VISSIM’s priority rule object in the conflict areas.

To model the speed reduction zone, we apply VISSIM’s reduced speed area object with

specified route length and speed.

2. Optimal Vehicle Dynamics: In this case, we have CA-PHEVs (i.e., connected

and automated PHEVs) traveling through the corridor. The CA-PHEVs employ the

VD controller to optimize their speed profile for increasing fuel efficiency. We consider

an automated conflict zone, where the conventional traffic signals are not present. We
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modify one of VISSIM’s API, namely the DriverModel.dll to implement the VD con-

troller written in C++ for the CA-PHEVs in the optimal controlled case. Within each

CZ, we override each vehicle’s internal car-following model with the DriverModel.dll

containing the VD controller logic. Outside the CZ, the vehicles can switch back to the

VISSIM’s built-in Wiedemann car-following model. At each simulation time step, each

vehicle access the external DriverModel.dll, and computes the optimal control output

based on its location in the route.

To investigate the robustness of the VD controller through different conflict

zones of the corridor, we consider three different traffic volumes in the VISSIM’s traffic

network. The traffic flow in both the main route and the congestion routes are modified

to achieve different traffic scenarios. Table A.1 presents the different traffic flows con-

sidered to achieve the low, medium, and high traffic volume. The parameters relevant

to the VISSIM simulation environment are compiled in Table A.2. The impact of the

PT controller on engine operation is shown in Fig. 2.17. For the baseline scenario, we

use the calibrated VESIM model, while the PT-controlled CA-PHEVs were operated

by the optimal VESIM model embedded with the Pareto efficiency table. We first eval-

uate the impact of the PT controller under different driving behavior. To this end, we

use three standardized drive cycles, namely the highway fuel economy driving schedule

(HWFET), urban dynamometer driving schedule (UDDS), and the US06 supplemental

federal test procedure to represent the 60mph-highway, heavy-duty urban, and high

acceleration aggressive driving behavior. We incorporate the aforementioned driving

behaviors in a single drive cycle by stitching the considered drive cycles together to ob-

tain a combined cycle of 25.72 miles. We characterize the performance of the proposed

Pareto efficient powertrain controller compared to the baseline Audi A3 powertrain by

tracing the drive cycles through the corresponding VESIM model. Fig. 2.16 shows the

UDDS drive cycle traced by the VESIM for the baseline (Audi A3 powertrain) and the

optimal controlled (Pareto efficient) case. Note that, in both cases, the VESIM model

was able to trace the UDDS drive cycle completely, as represented by the complete
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Figure 2.16: The UDDS drive cycle traced by the baseline (Audi A3) powertrain and
the optimal controlled Pareto efficient powertrain.

overlap of the reference and actual vehicle speed profile in Fig. 2.16. The battery SOC

for the baseline and the optimal PT controlled case are also illustrated at the right

axis of Fig. 2.16. We observe that the battery SOC is constrained within a certain

bandwidth of the initial SOC to represent the Audi A3’s hold-battery mode.

The energy consumption results (MPGe) of the Audi A3’s baseline powertrain

and the optimal PT controlled case for the aforementioned standardized drive cycles are

summarized in Table 2.2. We note that the optimal PT controller shows improvement

in terms of energy efficiency compared to its baseline counterpart in all the standardized

drive cycles considered here. The most fuel consumption benefit is obtained for the

UDDS drive cycle and the least for HWFET.

Table 2.2: PT controller validation for standardized drive cycles.

Drive Cycle [miles] US06
(8.0 )

UDDS
(7.5)

HWFET
(10.3)

Combined
(25.7)

Baseline [MPGe] 26.4 28.2 32.5 29.1
PT Controller [MPGe] 27.8 30.4 38.1 31.8
Improvement [%] 7.7 17.1 5.3 9.1
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Figure 2.17: Engine operating points without and with the PT controller.

In Fig. 2.17, we observe that the PT controller operates the engine at the most

efficient brake-specific fuel consumption regimes. In the baseline scenario, in contrast,

there is a spread of operating points in non-efficient regimes. As the Pareto control

policy yields an online equivalent solution to DP, the benefits of the PT controller

would be apparent for any heuristic approach used in the baseline scenario.

Figure 2.18: Average vehicle speed trajectories for high traffic volume.

Fig. 2.18 illustrates the average of vehicle speed profiles corresponding to

PHEVs with the baseline scenario, and the average of speed profiles corresponding

to the CA-PHEVs with the VD controller traveling through the corridor under a high
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traffic scenario. Note that the average speed profile of the baseline scenario in Fig.

2.18 shows that CAVs cruise with low speed in the control zones at ramp-merging

and roundabout. The control zones of on-ramp merging and roundabout denote the

upstream area of the entry to these bottlenecks. Human-driven vehicles on the ramp

have to yield to the incoming vehicles from the main road. The human-driven vehi-

cles exhibit stop-and-go behavior if the main road is very congested. Therefore, the

resulting average speed in the baseline scenario (Fig. 2.18) is low inside the control

zones. On the other hand, with the VD controller, the CAVs can space themselves

in such a way that they can enter the conflict zones without any stop-and-go driving

behavior. As a result, the average speed of all CAVs is higher than the baseline in the

control zones. Another interesting observation is that the average speed profile in the

baseline scenario (Fig. 2.18) is high at the SRZ control zone marked as Spd-Harm. The

SRZ is located at the end of a straight segment of Mcity (see Fig. 2.7) which allows

the vehicles to pick up speed. Since the conventional human-driven vehicles do not

have any information regarding the upcoming SRZ or the slower moving vehicle inside

the SRZ, they pick up speed upstream of the SRZ and suddenly start decelerating at

the entry of the SRZ. This behavior results in the backward propagating traffic wave.

On the other hand, the CAVs know beforehand the state of the previous vehicles ap-

proaching the SRZ. Therefore, the CAVs adjust their speed inside the control zone of

the SRZ in such a way that they have a smooth entry at the SRZ while eliminating

the backward propagating traffic wave. We observe that under the optimal scenario of

the VD controller, the average vehicle speed is more streamlined at the conflict zones

compared to the average speed of the vehicles under the baseline scenario where speed

oscillations at the upstream and downstream of the conflict zone is observed. The

streamlined speed profile of the VD controller indicates a reduction in transient engine

operation, resulting in 21.3% better fuel efficiency compared to the baseline for high

traffic volume.

To further investigate and quantify the individual as well as the combined con-
tribution of the VD and PT controller, we consider four different simulation cases where
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the different combinations of the VD and PT controllers are active.

1. VD and PT controller inactive (Baseline): None of the VD and PT con-
trollers are active in the CA-PHEV. The vehicle traverses the whole corridor by
following the conventional traffic laws and uses the Wiedemann [160] car-following
model. The engine and motor operating points are also determined by Audi A3’s
factory powertrain setting as determined by the baseline VESIM model.

2. VD controller active: The CA-PHEVs traverse the route with optimal VD
controller by communicating with other CA-PHEVs, but using the Audi A3’s
factory powertrain model for selecting its torque set-point.

3. PT controller active: The CA-PHEVs use the optimal PT controller to select
the torque distribution between their engine and the IMG unit to meet the driver’s
demand. However, the vehicle is driven by conventional human drivers without
the help of connectivity and automation.

4. VD and PT controller active: The CA-PHEVs employ the VD controller
within the CZ to optimize its speed profile. For each optimal desired speed, the
vehicle demands torque from the powertrain. The vehicle then uses the optimal
PT controller to select the optimal power split between the engine and the IMG
unit to meet the torque demanded.

To evaluate the robustness of these control cases in different traffic congestion,

we consider low, medium, and high traffic conditions. 2.3 summarizes the VD and PT

controller’s impact on fuel efficiency in three different traffic conditions. We observe

a significant increase in fuel efficiency in all traffic scenarios considered. Note that,

the VD controller shows comparatively better improvement for high traffic volume as

it streamlines the extreme stop-and-go driving behavior associated with high conges-

tion scenarios. On the other hand, the PT controller performs comparatively better

in the low-traffic scenario. Although the VD and PT controller show energy improve-

ment individually, their combination manages to obtain the most benefit in all traffic

scenarios.

In Table 2.4, we summarize the mean and standard deviation of the distribution

of the control cases under different traffic volumes. We observe that, for all the traffic

volume cases, the VD controller reduces the standard deviation and increases the mean

of the MPGe distribution compared to the baseline scenario. This implies that, by
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Table 2.3: Fuel Efficiency Improvement for VD and PT controller.

Controllers / Traffic Level Low Medium High
VD Controller Only [%] 17.3 17.7 21.3
PT Controller Only [%] 25.9 25.4 21.8
PT & VD Controller
Combined [%]

34.0 32.7 29.2

Table 2.4: Mean and standard deviation of the MPGe distribution for different traffic
flow scenarios.

Baseline VD
Active

PT Active VD+PT
Active

Low Traffic
Mean [MPGe] 19.5 23.5 26.3 29.8
Std. Deviation 1.5 1.3 1.9 2.8

Medium Traffic
Mean [MPGe] 19.6 23.7 26.2 29.2
Std. Deviation 1.7 1.5 1.8 2.9

High Traffic
Mean [MPGe] 21.9 27.8 28.1 30.9
Std. Deviation 1.8 1.51 2.5 1.7

streamlining the vehicle speed profiles, the VD controller enables a more closely packed

distribution of fuel consumption. On the other hand, the PT controller only case shows

energy improvement compared to the baseline case for all traffic volumes as evident by

the higher mean of the distribution but shows an increase in the standard deviation.

Finally, the combined effect of the VD and PT controller is observed for the increase

in the mean MPGe. However, the standard deviation of the distribution increases for

both the low and medium traffic volume cases. Note that, for low and medium traffic

volume, the increase in average MPGe for the combined VD and PT controlled case

compared to the baseline case is additive, i.e., the MPGe increase for only the case

of the VD controller, and the MPGe increase for only the PT controlled case can be

added to obtain the MPGe increase for their combined control. The high traffic volume

case, however, slightly varies from this observation.

In this section, a two-level control architecture to optimize simultaneously the
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vehicle-level and powertrain-level operation of a PHEV is presented. The proposed

architecture is applied to the operation of CA-PHEVs over a range of real-world driving

scenarios, and its effectiveness is validated with simulation analysis.

2.4 Experimental Validation of Optimal Controllers: From Simulation to

Field Test

Before CAVs incorporated with the decentralized vehicle dynamics controller

can be deployed on public roads, they need to be tested extensively. In this section,

I present a sequential experimentation methodology to implement the optimal control

framework, developed in Sections 2.1 and 2.2, in an Audi A3 etron plug-in hybrid

electric vehicle and demonstrate that the vehicle’s efficiency and travel time in a real-

world traffic corridor can be improved. The remaining exposition in the section includes

the development, integration, implementation, and validation of the experimentation

framework that includes a (1) hi-fidelity simulation environment, (2) hardware-in-the-

loop (HIL) testing, (3) connectivity enabled virtual reality-based bench-test, and (4)

field test in Mcity. I show that by adopting such an inexpensive, yet effective process, we

can efficiently integrate and test the control framework, establish proper connectivity

and data transmission between different modules of the system, and reduce uncertainty

stemming from the test environment.

2.4.1 A Sequential Test Strategy for Connected Automated Vehicles

Our goal is to validate the effectiveness of the VD controller and investigate its
performance in a real-world scenario. To this end, I develop a systematic and sequen-
tial approach to validate the VD controller performance. The controller validation is
initiated in the simulation environment and completed with a real-world field test at
MCity. These sequential steps can be briefly summarized as follows:

1. Simulation Environment: We create a simulation environment of Mcity in
commercial software (i.e., PTV VISSIM), and develop the baseline and optimal
scenarios.The baseline scenario considers the case of 0% penetration rate of CAVs.
The optimal scenario corresponds to the 100% penetration rate of CAVs, and they
all are controlled by the VD controller.
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2. Hardware-in-the-Loop Test: We make necessary modifications to the Audi
A3 in terms of vehicle hardware and software to be able to implement the VD
controller output (recommended speed). We feed the baseline and optimal con-
trolled speed profiles generated in the simulation environment in step 1 to the
Audi A3, and trace them in a chassis-dyno setup.

3. Bench Test: We integrate the controller in the Audi A3’s head unit. We develop
a bench-test method and conduct a basic system validation. Here, we employ
the message queuing telemetry transport (MQTT) protocol, which is a publish-
subscribe based messaging protocol of IoT, in conjunction with a simulation-
based virtual traffic environment. We establish both the controller integration
and the V2X communication framework.

4. Field Test: After following these steps, the Audi A3 integrated with the pro-
posed VD controller can be taken to the test facility. Steps 1-4 not only reduce
the possibility of technical complications during the field test but also provide an
extra layer of safety to the driver and the test vehicle components. Therefore,
these prerequisite steps can be considered essential before the on-field vehicle
test session. Finally, we conduct the field test in a V2X enabled virtual reality-
based test facility in Mcity with the Audi A3 (Fig. 2.12). We provide a detailed
exposition of the various aspects of the field test in the following sections.

In what follows, we provide a detailed exposition of each of the aforementioned steps.

2.4.2 Simulation Framework

To implement the control framework for optimizing vehicle dynamics presented

in Sections 2.1,2.2, we use the microscopic multi-modal commercial traffic simulation

software PTV VISSIM. The attributes of the simulation environment are similar to

the setup presented in Section 2.2.3, thus the detailed exposition is omitted here. The

corridor through which the Audi A3 travels has a length of 1500 m length within Mcity.

The control zone of each conflict scenario is selected in such a way that no sharp turns or

bends fall inside the controlled region. The vehicle dynamics parameters are calibrated

by the data collected through driving the vehicle inside the Mcity facility. Medium

to a high level of traffic congestion is considered for investigating the robustness of

the controller. Table A.2 contains the essential parameter required for setting up the

simulation environment.
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The speed profiles of human-driven vehicles (baseline scenario) with Wiedemann

human driver model [160] in the test route are shown in Fig. 2.19a. We notice significant

stop-and-go driving at the on-ramp merging and roundabout conflict zones because the

conventional human-driven vehicles have to yield to the incoming main-road vehicles.

The human-driven vehicles can either show stop-and-go behavior if the main road is

very congested or have a free merging if the main road is empty. Moreover, we observe

an increase in vehicle speed in the region before the SRZ. The SRZ is located near the

end of a straight segment of Mcity (see Fig. 2.7) which allows the vehicles to gain speed.

Since the human-driven vehicles do not have any information regarding the upcoming

SRZ or the slower moving vehicles in the SRZ, they pick up speed until the entry of the

SRZ and start decelerating at the entry of the SRZ. We also observe that the stop-and-

go driving behavior at each conflict scenario has negative implications upstream and

downstream of the route. Due to the presence of high-speed variation inside the CZ,

backward propagating traffic waves may result, which impacts the energy efficiency of

the vehicles traveling outside the CZ.

In Fig. 2.19b, we show the speed profiles of simulated CAVs under the optimal

VD controller. We observe that the CAVs can be coordinated using the VD controller

to space themselves out in such a way that they can pass through the conflict zones

without stop-and-go driving. The VD controller smooths the traffic flow and eliminates

traffic congestion. We also note that in the SRZ, the speed of the CAVs is harmonized

contributing to some additional benefits in fuel consumption. In this case, the CAVs

know beforehand the state of the previous CAVs approaching the SRZ. Therefore, the

CAVs can adjust their speed inside the control zone of the SRZ in such a way that they

have a smooth entry at the SRZ and negate the backward propagating traffic wave.

Moreover, we observe that the driving behavior of the CAVs located upstream and

downstream of each CZ is streamlined, which adds additional energy efficiency benefits

to the vehicles traveling outside the CZ.

Table 2.5 summarizes the performance evaluation of the VD controller in terms
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(a) Speed profile of baseline vehicles in sim-
ulation for high traffic volume.

(b) Speed profile of optimal controlled CAVs
in simulation for high traffic volume.

of fuel consumption and shows the average improvements in each conflict zone in terms

MPGe of the CAVs under medium and heavy traffic volumes. The human-driven

vehicles in the baseline simulation scenario exhibit stop-and-go driving, which in turn

increases the transient engine operation [185]. On the other hand, the optimal speed

profiles of the VD controller in Fig. 2.19b reduce the CAVs’ transient engine operation

by eliminating the stop-and-go driving behavior.

Table 2.5: Summary of fuel consumption [MPGe] comparison in simulation.

Conflict Scenario On-Ramp SRZ Roundabout
Improvement
(MPGe)[%]

15.6 21.2 35.3

Table 2.6: Summary of travel time comparison in simulation.

Conflict Scenario On-
Ramp

SRZ Roundabout Corridor

Avg. Travel Time
(Baseline) [s]

24.8 19.82 18.71 176.9

Avg. Travel Time
(VD Controlled) [s]

15.9 19.78 13.4 131.1

Improvement [%] 35.5 0.17 28.1 25.9

Table 2.6 reports the average travel time of the CAVs to cross each of the conflict

zones for both the baseline and the optimal VD controlled scenarios. We observe that,
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in the scenario corresponding to the VD controller, we have on average 26% reduction

in travel time for the whole corridor.

Note that, the simulation in VISSIM only outputs the speed profile of the vehicle

in the network, and does not yield any fuel consumption result specific to the Audi

A3. Since, the Audi A3 is PHEV, fuel consumption models for conventional vehicles

are not applicable. Therefore, we adopt a hybrid electric vehicle simulation model

VESIM model, reported in [186] and references therein, calibrated appropriately to

emulate the fuel consumption of the Audi A3 (see Fig. 2.13). Due to the combined

contribution of the internal combustion engine and the motor of the Audi A3, the

VESIM model calculates the miles-per-gallon of gasoline-equivalent, MPGe according

to the EPA standard. By feeding the baseline and the VD-controlled speed profiles to

the VESIM model, we quantify the fuel consumption of the Audi A3, and evaluate the

performance of the VD controller at different conflict scenarios.

2.4.3 Hardware-in-the-Loop (HIL) Test

We investigate the performance of the VD controller in a HIL environment

through the chassis-dyno setup. In our application, only limited ECU variables of the

Audi A3 can be monitored and, if necessary, bypassed. The rest of the variables are

solely controlled by the Audi A3’s software system and cannot be accessed externally.

To bypass the control input (acceleration) expected from the driver pedal, we override

the ECU variables responsible for the Audi A3’s cruise controller. We also override

the ECU variables relevant to the torque-regeneration module of the integrated motor-

generator (IMG) unit to introduce braking (deceleration) force when required. That

is, we use the brake regeneration functionality of the IMG unit of the Audi A3 to apply

braking force when decelerating. However, the braking power generated by the IMG

unit in this way is not as accurate as of the typical hydraulic/mechanical brakes. Note

that, applying brake through IMG is only possible when the state of the charge (SOC)

of the battery is below a certain threshold to allow charging. If the battery SOC is above
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Figure 2.20: Medium traffic volume.
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Figure 2.21: High traffic volume.

this certain threshold value, braking through IMG is not possible. The bypass of the

aforementioned ECU variables has been realized by the ETAS ES910 rapid prototyping

device. We calibrate the override coefficients to improve the tracking performance of the

vehicle. Afterward, we feed the speed profiles generated by the simulation environment

for both the baseline and optimal controlled case. We consider three different traffic

volumes (e.g., low, medium, and high) to investigate the robustness of the VD controller

performance, and record and analyze the fuel consumption data.

The speed profiles generated by the hardware in the loop testing in the chassis-

dyno setup are illustrated in Figs. 2.20 and 2.21 for medium and high traffic volume

respectively. We observe that the vehicle can trace the reference speed well while ac-

celerating. While decelerating, we find a discrepancy between the reference speed and

the actual vehicle speed. As we mentioned earlier, we use the brake regeneration func-

tionality of the IMG unit of the test vehicle to apply braking force when decelerating.

However, the braking power generated by the IMG unit in this way is not as accurate

as of the typical hydraulic brakes. Table 2.7 summarizes the fuel consumption result

for low, medium and heavy traffic volumes.
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Table 2.7: Summary of energy improvement in HIL Test.

Traffic Baseline
[MPGe]

Optimal
[MPGe]

Improve-
ment[%]

Low 27.7 37.1 33.7
Medium 36.6 49.0 34.2
High 36.1 50.8 41.0

2.4.4 Bench Test of Integrated System

We develop an IoT-based virtual reality framework to implement and debug the

proposed VD controller on the bench. This particular bench test acts as a prerequisite

to the actual field test and performs general system validation of the integrated VD

controller. In Fig. 2.22, we illustrate the proposed framework, which enables system

validation before the field test. The framework we employ here can be carried out in

a single computer without requiring any additional hardware or devices, which signifi-

cantly reduces the setup and execution time. The bench-test architecture in Fig. 2.22

Figure 2.22: Bench test model emulating the virtual reality based field test.

can be subdivided predominantly into two platforms, namely the simulation environ-

ment and the emulated head unit of the Audi A3. The connectivity of the platforms is

established using the MQTT connectivity protocol. First, virtual vehicle information
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generated from the aforementioned VISSIM simulator is stored offline. To mimic the

data transfer process via the V2X communication framework, a python script reads

the stored virtual vehicle information, parses them into suitable Basic Safety Message

(BSM) strings, and publishes them sequentially to an MQTT topic in the BSM for-

mat as expected during the actual field test. An MQTT subscription thread runs in

the emulated head unit, which subscribes to the specific MQTT topic to receive the

incoming BSMs of virtual vehicles. Once received, the head unit reads the published

BSMs instantaneously, and uses its hard-coded decoder algorithm to parse and assign

the necessary information to its internal memory. Afterward, the head unit passes this

stored information to the integrated VD controller to compute the optimal speed pro-

file online. Note that, this is an open-loop process, namely, the test-vehicle information

is not transmitted back to the simulation environment as the simulator works offline.

With some simple modification, the process could be transformed into a closed-loop

one where the BSMs from the test vehicles are transmitted back to the simulator, and

the virtual vehicles inside the simulator could react to the state of the test vehicle.

2.4.5 Virtual Reality Based Field Test

Figure 2.23: Workflow of virtual reality based V2X enabled field test in Mcity.
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The general architecture of the virtual reality-based test environment of Mcity
is shown in Fig. 2.23. The test environment is composed of three main subsystems as
follows:

1. Test Vehicle: The Audi A3 is placed inside Mcity and is retrofitted with an
onboard unit (OBU). The OBU considered here is a dedicated short-range com-
munication (DSRC) device from COHDA Wireless (model MK5). The COHDA
MK5 model has a latency of 1500 ns and a GNSS accuracy of 2.5 m. A GPS
device (model BU-353-S4) with 5 Hz data output rate is used to get the latitude
and longitudinal coordinates of the Audi A3 during the test. The head unit of
the Audi A3 is emulated by a Linux machine, which is connected to the Audi
A3’s ECU through ETAS ES-910 rapid prototyping device.

2. Infrastructure Equipment: The infrastructure equipment includes roadside
units (RSUs), traffic signal controllers, and vehicle detectors. The RSUs act as
a two-way communication channel between the Audi A3 at the test facility, and
the simulation platform located at the main control center.

3. Simulation Platform: The virtual environment is provided by a simulation
platform located at the main control center. The simulator can generate virtual
vehicles and provide their information to real-world structures. The simulation
platform uses the commercial software PTV-VISSIM [184], where different test
scenarios can be saved as different projects. We construct the VESIM model
based on the parameters presented in Table A.2. The VISSIM APIs, namely the
SignalControl.DLL, DriverModel.DLL, and COM interfaces are used for interac-
tions with the real-world environment and the simulation managing application.
We modify the DriverModel.DLL to integrate the proposed VD controller appli-
cable to all the virtual vehicles within the simulation platform. To enable the
VISSIM simulator to receive and transmit BSMs, we embed the DriverModel.DLL
with the appropriate BSM encoder and decoder. At each time step, each virtual
vehicle communicates with one another internally and derives its optimal speed.
Information from simulated virtual vehicles is then encoded and sent out by the
DriverModel.DLL to the real-world Audi A3.

The workflow of the vehicle testing procedure through virtual reality in Mcity

is shown in Fig. 2.23. The Audi A3 communicates with the RSUs through the OBU

and receives basic safety messages (BSMs) coming from the simulation platform, and

the signal phase and timing (SPaT) messages coming from the infrastructure. The

Audi A3 computes its optimal desired speed and passes this speed recommendation

onto its ECU through CAN. At the same time, the Audi A3 broadcasts its state infor-

mation (GPS location and speed) back to the RSUs through the OBU. Note that the
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OBU considered here is a DSRC device that transmits messages to/from the RSU. The

RSU’s data processor receives and processes the incoming data from the Audi A3, and

sends the processed information to the simulation platform at the main control center.

All of the traffic network and infrastructure attributes of the vehicle test facility are

virtually designed and modeled in a simulation environment. Virtual vehicles are gen-

erated and their trajectories are updated based on the preset simulation setting and the

information received from the Audi A3. Finally, the virtual vehicles in the simulation

platform broadcast their information as BSMs to the RSUs, which is then received by

the OBU of the Audi A3 and the process repeats itself. Through this communication

framework, both the virtual vehicles in the simulation environment and the Audi A3 in

Mcity can interact with each other in real-time throughout the test session. Therefore,

the behavior of both virtual and Audi A3 are completely synchronized. However, there

are some drawbacks to this approach. First, significant efforts have to be taken for

creating a proper simulation environment and communication framework between the

real and virtual world. Second, preparing the Audi A3 for such an environment might

not be straightforward, and would require significant involvement of the test facility

itself. Lastly, the developed framework might not be easily transferable to other vehicle

test facilities without significant modifications.

2.4.5.1 Audi A3 System Architecture

The system architecture inside the HU of the Audi A3 consists of the following

subsystems,

1. GPS thread: Collects and transmits the vehicle’s latitude, longitude, and ve-
locity information.

2. BSM thread: Collects the incoming BSMs from the DSRC device, parses them
into usable values, and transmits them to the main process.

3. SPaT thread: Collects the incoming SPaT information from the DSRC device,
parses them into usable information, and transmits them to the main process.
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4. Mainframe: Based on the connectivity protocol, the mainframe can have a sin-
gle or multiple subscription threads to receive the incoming information from the
previous threads. The mainframe houses the integrated VD controller which uses
the incoming information. Once the VD controller outputs an optimal recom-
mended speed, the mainframe transmits it to the vehicle through CAN.

Based on the choice of connectivity framework, we develop two architectures as shown

in Fig. 2.24a and Fig. 2.24b.

2.4.5.2 MQTT and Socket Based Connectivity Protocols

MQTT (MQ Telemetry Transport) is a connectivity protocol used to pub-

lish/subscribe messaging transport. In the architecture illustrated in Fig. 2.24a, the

GPS, BSM, and SPaT information acquisition and transmission threads run as indi-

vidual processes. Each of these processes is eventually connected to the mainframe of

the head unit through basic MQTT protocol. The MQTT protocol is realized by an

inner publish and subscription thread, which means that for every data transmission,

the sender has to publish the data to a specific topic, which is, in turn, retrieved by the

receiver through subscription to that specific topic. Due to the requirement of several

publish/subscription threads, the resulting system structure becomes complicated with

additional data transmission and processing delays. The system delay can have a neg-

ative impact as it may prevent the real-time synchronization of virtual vehicles in the

simulation platform and the Audi A3. To reduce the system delay associated with the

MQTT-based architecture, we adopt an improved version of the communication frame-

work (Fig. 2.24b). In this updated version, we unify all the different threads (GPS,

BSM, and SPaT) under a single process. We eliminate the publish/subscription-based

MQTT protocol, and use a significantly faster connection through direct sockets. A

socket is essentially defined as a connection having a unique IP address and relevant

port number. By tapping into the IP address of the DSRC device, and using different

ports to handle the BSM and SPaT information, we have greatly simplified the data

acquisition and transmission procedure. The resulting framework has been tested to be
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(a) Workflow of MQTT Connectivity for in-
dividual processes.

(b) Workflow of socket-based connectivity for
the unified architecture.

Figure 2.24: Communication protocol for the Audi A3 etron.

significantly faster than the older version. For example, the head unit’s data transmis-

sion frequency with the MQTT protocol is 1 Hz, whereas it increased to greater than

100 Hz with the socket-based protocol. The aforementioned modifications have been

implemented to collect the optimal control field test data for the on-ramp merging,

SRZ, and the roundabout presented in this section.

2.4.5.3 Optimal Vehicle Dynamics Controller Integration

We integrate the VD controller algorithm in the emulated head unit of Audi
A3, and link it up with the BSM and SPAT encoder/decoder. Therefore, the VD
controller can receive the essential information necessary for Audi A3’s optimal speed
calculation. To calculate the optimal speed trajectory, the Audi A3’s head unit has to
find the answers to the following sequential questions:

1. Which control scenario does the test vehicle currently belong to?

2. Which particular virtual vehicle is acting as the putative leader in this specific
control scenario?

3. What is the merging time of that particular putative leader?

Note that, the answer to the above questions can not be obtained directly from the

incoming virtual vehicle information available from the regular BSM string as specified

in the SAE-J2735 standard [187]. Therefore, we override some of the data sent by the

regular BSM string to include the specific data useful to answer the aforementioned
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questions. For example, we override the regular data to be transmitted through the

BSM’s elevation, vehicle length, and vehicle width variables to contain respectively the

vehicle’s merging time, vehicle’s distance to the conflict zone, and vehicle’s current CZ

information. This updated BSM information is fed to the head unit of the Audi A3

where the optimal control input is computed through a workflow illustrated in Fig.

2.25.

Figure 2.25: Workflow of VD Controller implementation within the head unit of Audi
A3.

From the initialization of the test session, the Audi A3 continuously computes

its total distance traveled by integrating its current speed over each time step. Based

on the total distance traveled and the hard-coded location values of the conflict zones,

the Audi A3 determines whether it has entered the CZ of a particular conflict scenario.

Once the Audi A3 is within a specific CZ, it uses the CZ information from the incoming

BSM strings of the virtual vehicles and sorts out the virtual vehicles pertaining only to

that particular CZ. Afterward, the Audi A3 sorts the virtual vehicles pertaining to the

corresponding CZ by the distance to conflict zone information to find the preceding

virtual vehicle. Finally, the Audi A3 uses the merging time, tm,z
i−1 of the determined

preceding virtual vehicle to calculate its optimal speed input using Eq. (3.12). If there

are no preceding virtual vehicles at any time t, the Audi A3 computes the optimal speed
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trajectory based on its estimated arrival time. The optimal speed input is transmitted

to the vehicle’s ECU via CAN-Bus.

We summarize the field test results in Mcity in Table 2.8 and Table 2.9 which

quantifies the Audi A3’s performance in terms of fuel efficiency and travel time. The

VD-controlled Audi A3 shows improved fuel efficiency over the baseline scenario (human-

driven Audi A3) exhibiting an overall 20 % improvement. A representative baseline

and VD controlled speed profile of the Audi A3 from the field test in Mcity is shown in

Fig. 2.26. We observe that the optimal VD controlled speed profile is comparatively

smoother than the baseline one.

Figure 2.26: Speed profile of the Audi A3 etron considering the baseline and optimal
VD controlled case at the field test in Mcity.

The optimal VD controller also shows improvement in terms of travel time

through each of the conflict zones. Essentially, by optimizing the speed profile, and

eliminating the stop-and-go behavior at the bottlenecks, the VD controller achieves

17% reduction in travel time in the whole corridor.

In this section, the effectiveness of the VD controller is validated systematically

through a sequence of approaches, leading up to the virtual reality-based real-world

field test. The Audi A3’s performance for baseline and optimal VD controlled scenarios
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Table 2.8: Summary of MPGe Improvement in Field Test.

Optimal
[MPGe]

Baseline
[MPGe]

Improvement[%]

On-Ramp 57.3 47.5 20.6
SRZ 63.3 48.6 30.2
Roundabout 65.4 57.7 13.3
Total 64.8 54.0 20.0

Table 2.9: Summary of travel time comparison of field test.

Conflict Scenario On-
Ramp

SRZ Roundabout Corridor

Avg. Travel Time
(Baseline) [s]

34.3 19.4 15.3 218.2

Avg. Travel Time
(VD Controlled) [s]

32.4 19.2 9.38 180.2

Improvement [%] 5.6 1.0 38.8 17.4

has been quantified with real-world data, and a comparative analysis between different

traffic scenarios and congestion levels is conducted. It can be concluded that the Audi

A3 retrofitted with the optimal VD controller shows significant improvements in terms

of fuel consumption and travel time.
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Chapter 3

MOTION PRIMITIVES WITH CONSTRAINED OPTIMAL CONTROL

In the previous chapter, I presented some of our preliminary research efforts

on the decentralized time- and energy-optimal coordination of CAVs traveling through

major traffic congestion scenarios. In general, it is difficult to solve a constrained opti-

mal control problem in real time due to its iterative nature. For example, the standard

methodology to solve the low-level optimal control problem (see [28]) is to employ

Hamiltonian analysis with interior point state and/or control constraints. Namely, we

first start with the unconstrained arc and derive the solution to the low-level optimal

control problem. If the solution violates any of the state or control constraints, then

the unconstrained arc is pieced together with the arc corresponding to the violated

constraint. The two arcs yield a set of algebraic equations which are solved simulta-

neously using the boundary conditions and interior constraints between the arcs. If

the resulting solution, which includes the determination of the optimal switching time

from one arc to the next one, violates another constraint, then the last two arcs are

pieced together with the arc corresponding to the new violated constraint, and we re-

solve the problem with the three arcs pieced together. The three arcs will yield a new

set of algebraic equations that need to be solved simultaneously using the boundary

conditions and interior constraints between the arcs. The resulting solution includes

the optimal switching time from one arc to the next one. The process is repeated

until the solution does not violate any other constraints. This recursive process of

piecing the arcs together to derive the optimal solution to the low-level problem can

be computationally expensive and might prevent real-time implementation.
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In this chapter, I present a rigorous mathematical framework to efficiently handle

the constrained optimal control problems. Specifically, in Section 3.1, I provide a

condition-based control framework that can derive constrained motion primitives in

real time by identifying the constraint activation cases a priori. In Section 3.2, I

present a decentralized optimal control framework for CAV coordination (100% CAV

penetration rate) through multiple traffic scenarios, where we formulate the upper-level

CAV coordination problem with dynamic re-sequencing queue, and explicitly consider

rear-end collision avoidance constraint in the low-level trajectory optimization problem.

3.1 A Condition-Based Framework for Constrained Optimal Control

In this section, I address the problem of trajectory optimization of CAVs in the

presence of system constraints, which is difficult to solve in real time due to its iterative

solution structure according to the standard Hamiltonian analysis. The objectives

of this section are (i) to derive a set of a priori conditions to identify the different

activation cases of state and control constraints, (ii) to simplify the iterative process of

the Hamiltonian analysis required to solve the optimal constrained problem for deriving

energy-optimal motion primitives, and (iii) to increase the computational efficiency

of the derivation of the solution in (ii) by eliminating numerical computations and

constructing closed-form analytical solution using (i).

3.1.1 Comparison With Related Work

The framework that I present in this section advances the state of the art in the

following ways. First, the solution to the state and control unconstrained control prob-

lem presented in [61] and [40] shows acceleration spikes (jerk) at the boundaries of the

optimization horizon, possibly exceeding the vehicle’s physical limitation and giving

rise to undesired driving experience. In addition, the unconstrained solution can only

guarantee that none of the constraints are violated at the boundaries of the optimiza-

tion horizon only. In our proposed framework, we can guarantee that none of the state

83



and control constraints are violated throughout the entire optimization horizon. Sec-

ond, in contrast to some approaches reported in the literature, e.g., [71, 73, 86], where

either the state or the control constrained optimal control problem was addressed, our

framework addresses all state and control constraints cases. Moreover, we explicitly

include the state and control constraints in the Hamiltonian analysis as opposed to

using a feasibility zone [87]. Third, several approaches have considered free terminal

time to address the state/control constraints within the optimization horizon [35, 87].

In contrast, in our framework, we incorporate the constraints in the low-level control

problem with the fixed time horizon. Fourth, the solution of the constrained optimal

control problem requires piecing the unconstrained and constrained arcs together re-

sulting in recursive numerical computations until all of the constraint activation cases

are resolved [28, 35, 157]. In our proposed framework, we eliminate this recursive pro-

cedure to derive a real-time implementable closed-form analytical solution. Finally, the

solution of the constrained optimization problem using Hamiltonian analysis reported

in some approaches, e.g., [28], [157] and [35], only addresses different constraint activa-

tion cases without addressing the explicit interdependence between multiple constraint

activation. In this section, we explore the interdependence of the combination of the

constraint activation cases and explicitly provide the conditions for their realization.

In summary, the key features of this section that advances the state of the art

are: (1) an in-depth exposition of the properties of the different combinations of the

state and control constraint activation cases and a set of a priori conditions to identify

the constrained solution without any recursive steps, (2) elimination of the recursive

solution structure for the state and control constrained optimal control problems for

CAV coordination by considering the constraint activation conditions, and (3) an ex-

plicit expression of the junction point between the constrained and unconstrained arcs

leading to a closed-form analytical solution of the constrained optimal control problem.
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3.1.2 Constrained Optimal Control Problem

We consider CAVs travelling through a traffic network containing a four-way

signal-free intersection, as shown in Fig. 3.1. Although our analysis can be applied

to any traffic scenario, e.g., merging at roadways, roundabouts, and passing through

speed reduction zones, we use an intersection (Fig. 3.1) as a reference to present

the fundamental ideas and results of this section, since an intersection provides unique

features making it technically more challenging compared to other traffic scenarios. We

define the area illustrated by the red square of dimension S in Fig. 3.1 as the merging

zone where the potential lateral collision of CAVs may occur. Upstream of the merging

zone, we define a control zone of length L inside of which CAVs can communicate with

each other using a vehicle-to-vehicle communication protocol [177]. The intersection

also has a coordinator that communicates with the CAVs traveling inside the control

zone. Note that the coordinator does not make any decisions for the CAVs. When

a CAV enters the control zone, the coordinator receives its information and assigns a

unique identity i ∈ N to it. Let N (t) = {1, . . . , N(t)}, where N(t) ∈ N is the number

of CAVs inside the control zone at time t ∈ R+, be the queue of CAVs to enter the

merging zone shown in Fig. 3.1. The time that a CAV i ∈ N (t) enters the control and

merging zones is denoted by t0i and tmi , respectively, while the time that a CAV i exits

the merging zone is denoted by tfi . In our exposition, we assume that the queue N (t)

and the optimal time to enter the merging zone tmi is given a priori and can be derived

by solving an upper-level vehicle coordination problem subject to rear-end and lateral

safety constraints, as detailed in [28, 167, 175]. Given tmi a priori, the objective of each

CAV i ∈ N (t) is to derive its optimal control input (acceleration/deceleration) to cross

the intersection without any lateral or rear-end collision with the other CAVs, and

without violating any of the state and control constraints. For each CAV i ∈ N (t),

we employ the double integrator dynamics as considered in (2.3), and impose the

same state, control and safety constraints as in (2.4), (2.7) and (2.5), respectively.

In the modeling framework described above, we also consider perfect communication
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Figure 3.1: A traffic network of connected automated vehicles approaching a four-way
signal-free intersection.

(Assumption 2.1.2), no lane changes or left/right turns (Assumption 2.1.1) and feasible

initial condition (Assumption 2.1.3).

3.1.3 Low-level Optimal Control Problem

For each CAV i ∈ N (t), t ∈ [t0i , t
m
i ], traveling inside the control zone, we

formulate the following optimal control problem

min
ui(t)∈Ui

∫ tmi

t0i

1

2
u2
i (t) dt, (3.1)

subject to : (2.3), (2.4), pi(t
0
i ) = 0, pi(t

m
i ) = L,

and given t0i , vi(t
0
i ), t

m
i ,

where we consider the L2-norm of the control input, i.e., u2
i (t), as the cost function.

By minimizing transient engine operation, we have direct benefits in fuel consumption

in conventional vehicles (vehicles with internal combustion engines) [28]. Note that we

do not explicitly include the lateral (2.7) and rear-end (2.5) safety constraints in (3.1).

The lateral collision constraint is enforced by selecting the appropriate merging time tmi

86



for each CAV i in the upper-level throughput maximization problem. The activation

of rear-end safety constraint can be avoided under certain conditions [61].

In our formulation, the state constraints are

Si(t,xi(t)) :=

vi(t)− vmax

vmin − vi(t)

 ≤ 0. (3.2)

Note that, Si(t,xi(t)) is not an explicit function of the control input ui(t). Thus,

to formulate the tangency constraints, we need to take successive time derivatives of

Si(t,xi(t)) until we obtain an expression that is explicitly dependent on ui(t); see

[188]. If q time derivatives are required, we refer to each constraint in S
(q)
i (t,xi(t)) as

the qth-order state variable inequality constraint. In our case, we have 1st-order speed

constraint, e.g., S
(1)
i (t,xi(t), ui(t)) =

 ui(t)

−ui(t)

 .

To derive an analytical solution of the optimal control problem in (3.1) for each

CAV i ∈ N (t), we formulate the adjoined Hamiltonian function Hi

(
t,xi(t), ui(t)

)
,

t ∈ [t0i , t
m
i ], as follows,

Hi

(
t,xi(t), ui(t)

)
=

1

2
u2
i (t) + λp

i (t) · vi(t) + λv
i (t) · ui(t)

+ µT
i (t) ·Ci(t,xi(t), ui(t)) + ηT

i (t) · Si(t,xi(t))

=
1

2
u2
i (t) + λp

i (t) · vi(t) + λv
i (t) · ui(t) (3.3)

+ µa
i (t) · (ui(t)− umax) + µb

i(t) · (umin − ui(t))

+ ηci (t) · (vi(t)− vmax) + ηdi (t) · (vmin − vi(t)),

where, Ci(t,xi(t), ui(t)) := [ui(t) − umax umin − ui(t)]
T is the vector of control con-

straints in (2.4), λp
i (t), λv

i (t) are the co-state components corresponding to the state

vector xi(t), and µi(t) is the path co-vector for control constraints consisting of the
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Lagrange multipliers with the following conditions,

µa
i (t) =

 > 0, ui(t)− umax = 0,

= 0, ui(t)− umax < 0,
(3.4)

µb
i(t) =

 > 0, umin − ui(t) = 0,

= 0, umin − ui(t) < 0,
(3.5)

and ηi(t) is the path co-vector for state constraints consisting of the Lagrange multi-

pliers,

ηci (t) =

 > 0, vi(t)− vmax = 0,

= 0, vi(t)− vmax < 0,
(3.6)

ηdi (t) =

 > 0, vmin − vi(t) = 0,

= 0, vmin − vi(t) < 0.
(3.7)

The corresponding Euler-Lagrange equations at time t ∈ [t0i , t
m
i ] are

λ̇p
i (t) = −

∂Hi

∂pi
= 0, (3.8)

λ̇v
i (t) = −

∂Hi

∂vi
=



−λp
i (t), vi(t)− vmax < 0

and vmin − vi(t) < 0,

−λp
i (t)− ηci (t), vi(t)− vmax = 0,

−λp
i (t) + ηdi (t), vmin − vi(t) = 0,

(3.9)

and
∂Hi

∂ui

= ui(t) + λv
i (t) + µa

i (t)− µb
i(t) = 0. (3.10)

3.1.4 Unconstrained Solution

If the inequality state and control constraints (2.4) are not active, we have

µa
i (t) = µb

i(t) = ηci (t) = ηdi (t) = 0. Applying the necessary conditions, the optimal

control u∗
i (t) can be derived from u∗

i (t) + λv
i (t) = 0, i ∈ N (t). From (3.8) and (3.9) we

have λp
i (t) = ai, and λv

i (t) = −
(
ai · t+ bi

)
, where ai and bi are constants of integration
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corresponding to each CAV i ∈ N (t). Therefore, the unconstrained optimal control

input u∗
i (t) is

u∗
i (t) = ai · t+ bi, t ∈ [t0i , t

m
i ]. (3.11)

Substituting the last equation into (2.3) we find the optimal speed and position for

each CAV i ∈ N (t), namely

v∗i (t) =
1

2
ai · t2 + bi · t+ ci, (3.12)

p∗i (t) =
1

6
ai · t3 +

1

2
bi · t2 + ci · t+ di, t ∈ [t0i , t

m
i ], (3.13)

where ci and di are constants of integration corresponding to each CAV i ∈ N (t). The

constants of integration ai, bi, ci, and di can be determined from (3.11)-(3.13) using the

initial and boundary conditions imposed in (3.1). Note that, we can either compute ai,

bi, ci, and di only once at time t = t0i and apply the solution throughout optimization

horizon [t0i , t
m
i ], or update the constants of integration by recomputing (3.11)-(3.13) at

some discrete time step in [t0i , t
m
i ] to account for any disturbance within the control

zone. For the remainder of the section, we reserve the notations ai, bi, ci, and di only

for the unconstrained optimal solution given in (3.11)-(3.13).

Remark 3.1.1. For the case where the constants of integration ai = 0 and bi = 0,

we have the trivial solution of the unconstrained problem (3.11)-(3.13) as u∗
i (t) =

0, v∗i (t) = ci, p∗i (t) = ci · t+ di, t ∈ [t0i , t
m
i ]. This implies that if the speed is constant

and the speed constraint is not active at time t = t0i (Assumption 2.1.3), none of the

state and control constraints becomes active for t ∈ [t0i , t
m
i ]. If ai, bi ̸= 0, we have

u∗
i (t

0
i ) ̸= 0.

In what follows, we only consider the non-trivial case (Remark 3.1.1) of the

constrained optimization problem (3.1) where ai, bi ̸= 0.

3.1.5 Analysis of the Constrained Optimal Control Problem

To derive the constrained analytical solution of (3.1), we follow the standard

methodology used in optimal control problems with interior point state and/or control
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constraints [85, 188]. Namely, we first start with the unconstrained arc and derive

the solution using (3.11)-(3.13). If the solution violates any of the state or control

constraints, then the unconstrained arc is pieced together with the arc corresponding

to the activated constraint, and we re-compute the problem with the two arcs pieced

together at the junction point between the constrained and unconstrained arcs of the

constrained solution (3.1). The two arcs yield a set of algebraic equations which are

solved simultaneously using the boundary conditions of (3.1) and the interior condi-

tions between the arcs. If the resulting solution, which includes the determination of

the junction point from one arc to the next one, violates another constraint, then the

last two arcs are pieced together with the arc corresponding to the newly activated

constraint, and we re-compute the problem with the three arcs pieced together. The

three arcs will yield a new set of algebraic equations that need to be solved simultane-

ously using the boundary conditions of (3.1) and interior conditions between the arcs.

The resulting solution includes the junction point from one arc to the next one. The

process is repeated until the solution does not violate any other constraints.

This process can be computationally intensive for the following reasons. First,

the recursive solution process to resolve all possible combinations of constraint acti-

vation might lead to intensive computation that prohibits real-time implementation.

Second, each of the aforementioned recursion needs to be solved numerically due to

the presence of implicit functions. To address both issues, we introduce a condition-

based framework for the optimal control problem in (3.1) which leads to a closed-form

analytical solution without this recursive procedure.

3.1.5.1 Condition of Constraint Exclusion

For the optimal control problem in (3.1), we have two state and two control

constraints leading to 15 possible constraint combinations in total that can become

active within the optimization horizon [t0i , t
m
i ]. In this section, we show that it is only

possible for a subset of the constraints to become active in [t0i , t
m
i ]. Therefore, it is
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not necessary to consider all the cases in (3.1). In what follows, we delve deeper into

the nature of the unconstrained optimal solution given in (3.11)-(3.13) to derive useful

information about the possible existence of constraint activation within the control

zone.

Lemma 3.1.1. For each CAV i ∈ N (t), let ai and bi be the constants of integration

of the unconstrained solution of (3.1) corresponding to the optimal control input u∗
i (t),

t ∈ [t0i , t
m
i ]. If the speed vi(t) is not specified at tmi , then

ai · tmi + bi = 0, tmi > t0i ≥ 0. (3.14)

Proof. For all i ∈ N (t), since the speed vi(t) at t = tmi > t0i is not fixed, we have

λv
i (t

m
i ) = 0 [189], which implies u∗

i (t
m
i ) = 0, and the result follows.

Corollary 3.1.1. The constants of integration ai and bi of the unconstrained solution

of (3.1) have opposite signs.

Proof. Since tmi is positive and non-zero, the result follows from (3.14).

Corollary 3.1.2. The unconstrained optimal control input u∗
i (t) is linearly either in-

creasing or decreasing with respect to time, and u∗
i (t

m
i ) = 0.

Proof. From (3.11), u∗
i (t) is a linear function with u∗

i (t
0
i ) ̸= 0 for the non-trivial case

(Remark 3.1.1), and u∗
i (t

m
i ) = 0 (Lemma 3.1.1), so the result follows.

Remark 3.1.2. The constants of integration ai and bi of the unconstrained solution

of (3.1) represents the slope of u∗
i (t), t ∈ [t0i , t

m
i ], and the initial value of the control

input u∗
i (t) at time t = t0i , respectively.

Lemma 3.1.2. Let vi(t
0
i ) be the initial speed of CAV i ∈ N (t) when it enters the

control zone at pi(t
0
i ) and travels up to the entry of the merging zone at pi(t

m
i ). Then

the nature of the unconstrained optimal control input u∗
i (t) can be characterized using

the following conditions based on the boundary conditions of vi(t
0
i ), pi(t

0
i ) and pi(t

m
i ):
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(i) The unconstrained optimal control input u∗
i (t) is linearly decreasing if vi(t

0
i ) <

(pi(t
m
i )−pi(t

0
i ))

tmi
. (ii) The unconstrained optimal control input u∗

i (t) is linearly increasing

if vi(t
0
i ) >

(pi(t
m
i )−pi(t

0
i ))

tmi
.

Proof. From (3.12) and (3.13), we can write vi(t
0
i ) = 1

2
ai · (t0i )2 + bi · t0i + ci and

pi(t
0
i ) =

1
6
ai · (t0i )3 + 1

2
bi · (t0i )2 + ci · t0i + di. Without loss of generality, if we let t0i = 0,

we have

ci = vi(t
0
i ), di = pi(t

0
i ). (3.15)

Evaluating (3.13) at t = tmi , we have pi(t
m
i ) = 1

6
ai · (tmi )3 + 1

2
bi · (tmi )2 + ci · tmi + di.

Substituting (3.14) and (3.15) in the above equation and solving for ai, we have

ai =
3(vi(t

0
i ) · tmi − (pi(t

m
i )− pi(t

0
i )))

(tmi )
3

. (3.16)

Since tmi > 0, we have a non-positive constant of integration ai, if (vi(t
0
i ) · tmi −(pi(t

m
i )−

pi(t
0
i ))) < 0. From Corollary 3.1.2 and Remark 3.1.2, a non-positive ai indicates a

negative slope for u∗
i (t), which implies that u∗

i (t) is a linearly decreasing acceleration,

and the proof is complete. The second part of Lemma 3.1.2 can be proved following

similar steps, hence it is omitted.

Remark 3.1.3. When the CAV i ∈ N (t) travels with its initial speed vi(t
0
i ) throughout

the control zone, we have vi(t
0
i ) · tmi = (pi(t

m
i ) − pi(t

0
i )). From (3.16), this implies

that ai = 0, referring to an optimal control input u∗
i (t) with horizontal slope. Since

u∗
i (t

m
i ) = 0 (Lemma 3.1.1), we have u∗

i (t) = 0, for all t ∈ [t0i , t
m
i ].

Lemma 3.1.3. For the unconstrained optimal solution of (3.1), if either vi(t)−vmax ≤

0 or ui(t) − umax ≤ 0 becomes active at any time t ∈ [t0i , t
m
i ], neither vmin − vi(t) ≤ 0

nor umin − ui(t) ≤ 0 can become active in [t0i , t
m
i ]. The reverse also holds.

Proof. Let u∗
i (t) = ai · t + bi > 0 > umin at some time t ∈ [t0i , t

m
i ). Since u∗

i (t
m
i ) = 0

(Lemma 3.1.1) and u∗
i (t) is a linearly decreasing function (Corollary 3.1.2), we have

u∗
i (t) > umin, for all t ∈ [t0i , t

m
i ], i.e., the constraint umin − ui(t) ≤ 0 can not become
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active at any time in t ∈ [t0i , t
m
i ]. The corresponding quadratic optimal speed profile

v∗i (t) in (3.12) is a parabolic function of degree 2 with y-symmetric axis located at tmi

in the speed-time graph. Applying the necessary and sufficient condition of optimality

in (3.12), we have

v̇∗i (t) = ai · t+ bi = 0, v̈∗i (t) = ai, t ∈ [t0i , t
m
i ]. (3.17)

Solving the first equation of (3.17), we have the extremum point at t = − bi
ai

which

corresponds to the vertex of the parabola of (3.12) at t = tmi . Whether this point

corresponds to the maximum or minimum of the (3.12) can be determined from the

second part of (3.17). Since u∗
i (t) is decreasing, ai < 0 (Remark 3.1.2). Thus, the

second equation of (3.17) indicates a maximum value at the vertex tmi , indicating a

concave quadratic profile of v∗i (t). Since the extremum of the quadratic profile of v∗i (t)

is located at tmi and vmin < vi(t
0
i ) < vmax (Assumption 2.1.3), we have v∗i (t) > vmin for

all t ∈ [t0i , t
m
i ]. Therefore, the constraints vmin − vi(t) ≤ 0 can not become active at

any time t ∈ [t0i , t
m
i ], and the proof of the first part of Lemma 3.1.3 is complete.

Conversely, let u∗
i (t) = ai · t + bi < 0 < umax at some t ∈ [t0i , t

m
i ]. Since

u∗
i (t

m
i ) = 0 (Lemma 3.1.1) and u∗

i (t) is linearly increasing in t ∈ [t0i , t
m
i ] (Remark 3.1.2),

umin − ui(t) ≤ 0 can not become active at any t ∈ [t0i , t
m
i ]. In addition, u∗

i (t) yields a

convex quadratic profile of v∗i (t) with vertex at t = tmi . Since the extremum point is

located at tmi and vmin < vi(t
0
i ) < vmax (Assumption 2.1.3), we have v∗i (t) < vmax for

any t ∈ [t0i , t
m
i ], which implies that the state constraint vi(t)− vmax ≤ 0 cannot become

active at any time t ∈ [t0i , t
m
i ].

Corollary 3.1.3. The sign of ai corresponding to the unconstrained solution of (3.1)

dictates the activation of either constraint set {vi(t)− vmax ≤ 0, ui(t)− umax ≤ 0} or

{vmin − vi(t) ≤ 0, umin − ui(t) ≤ 0}.

Proof. Since ai is the slope of the optimal control input u∗
i (t) (Remark 3.1.2), the sign

of ai determines whether u∗
i (t) is positive and decreasing or negative and increasing,

which, in turn, determines the constraint activation criteria in Lemma 3.1.3.
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Remark 3.1.4. The sign of ai can provide direct insight on which of the state and

control constraints becomes active, and thus it can reduce the cardinality of the set of

possible constrain activation cases.

Based on Lemmas 3.1.2 and 3.1.3, we now present the following result which

provides the condition under which the state and control constraints become active.

Note that the result is based on the initial and final conditions of (3.1) which en-

able the determination of the possible constraint activation set without solving the

unconstrained optimization problem in (3.1).

Theorem 3.1.4. Let CAV i ∈ N (t) enter the control zone with initial speed vi(t
0
i )

and travel with the unconstrained optimal control input u∗
i (t), t ∈ [t0i , t

m
i ]. Then, (i)

vmin − vi(t) ≤ 0 and umin − ui(t) ≤ 0 do not become active in t ∈ [t0i , t
m
i ], if vi(t

0
i ) <

(pi(t
m
i )−pi(t

0
i ))

tmi
, and (ii) vi(t) − vmax ≤ 0 and ui(t) − umax ≤ 0 do not become active in

t ∈ [t0i , t
m
i ], if vi(t

0
i ) >

(pi(t
m
i )−pi(t

0
i ))

tmi
.

Proof. If vi(t
0
i ) <

(pi(t
m
i )−pi(t

0
i ))

tmi
, then from (3.16) ai < 0, hence u∗

i (t) is linearly decreas-

ing (Lemma 3.1.2). Therefore, from Lemma 3.1.3, vmin−vi(t) ≤ 0 and umin−ui(t) ≤ 0

can not become active in t ∈ [t0i , t
m
i ], which concludes the proof of the first part.

For the second part of Theorem 1, suppose that vi(t
0
i ) >

(pi(t
m
i )−pi(t

0
i ))

tmi
. Hence

ai > 0 (Lemma 3.1.2), and u∗
i (t) is linearly increasing. Therefore, from Lemma 3.1.3,

vi(t)− vmax(t) ≤ 0 and ui(t)− umax ≤ 0 can not become active in t ∈ [t0i , t
m
i ], and the

proof is complete.

Remark 3.1.5. Theorem 3.1.4 aims at reducing the possible set of constraint acti-

vation cases. For example, if the condition in part (i) of Theorem 3.1.4 holds, then

from the 15 possible cases of constraint activation, we only need to consider 3 cases: (a)

vi(t)−vmax ≤ 0, (b) ui(t)−umax ≤ 0, and (c) both vi(t)−vmax ≤ 0 and ui(t)−umax ≤ 0.

Similarly, if the condition in part (ii) of Theorem 1 holds, then from the 15 possible

cases of constraint activation, we only need to consider 3 cases: (a) vmin − vi(t) ≤ 0,

(b) umin − ui(t) ≤ 0, and (c) both vmin − vi(t) ≤ 0 and umin − ui(t) ≤ 0.
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Although Theorem 3.1.4 aims at reducing the possible constraint activation

cases, it does not lead to the identification of the exact constraint activation of the

unconstrained solution of (3.1). In what follows, we provide the conditions that can be

used to extend the results of Theorem 3.1.4 and identify the activation of any constraint

case in [t0i , t
m
i ].

3.1.5.2 Conditions of Constraint Activation

We start our exposition with some results that contain essential properties of

the state and control constraint activation.

Lemma 3.1.5. If neither ui(t) − umax ≤ 0 nor umin − ui(t) ≤ 0 is active at t = t0i ,

then it is guaranteed that neither of them will become active for all t ∈ [t0i , t
m
i ].

Proof. Suppose that the unconstrained optimal solution of (3.1) yields u∗
i (t) = ait+ bi

with ai < 0. From Corollary 3.1.2 and Remark 3.1.2, u∗
i (t) decreases with respect

to t, and at tmi , u
∗
i (t

m
i ) = 0. Therefore, if u∗

i (t
0
i ) < umax, then u∗

i (t) < umax for all

t ∈ [t0i , t
m
i ]. The second part of Lemma 3.1.5 can be proved following similar steps,

hence it is omitted.

Lemma 3.1.6. If either vi(t) − vmax ≤ 0 or vmin − vi(t) ≤ 0 becomes active at any

time t ∈ [t0i , t
m
i ), then it will remain active until t = tmi .

Proof. Suppose that the unconstrained optimal solution of (3.1) yields u∗
i (t) = ait+ bi

with ai < 0. From Corollary 3.1.2 and Remark 3.1.2, u∗
i (t) decreases with respect to

t, and at tmi , u
∗
i (t

m
i ) = 0, which implies that v∗i (t) is monotonically increasing, i.e.,

v∗i (t
m
i ) ≥ v∗i (t) in t ∈ [t0i , t

m
i ). Therefore, vi(t) − vmax ≤ 0 will remain active until

t = tmi . The second part of Lemma 3.1.6 can be proved following similar steps, hence

it is omitted.

Remark 3.1.6. Lemma 3.1.5 implies that the entry of the control-constrained arc can

be only at t = t0i , while Lemma 3.1.6 implies that there is no exit point in [t0i , t
m
i ] of

the state-constrained arc after it becomes active.
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The following results provide the conditions for which state and control con-

straint activation cases can be identified for the optimal control problem (3.1) a priori.

Theorem 3.1.7. Let u∗
i (t) = ait+ bi, t ∈ [t0i , t

m
i ], be the optimal control input of CAV

i ∈ N (t) for the unconstrained solution of (3.1). Then, (i) for ai < 0, vi(t)− vmax ≤ 0

becomes active if tmi ≤
3(pi(t

m
i )−pi(t

0
i ))

vi(t0i )+2vmax
, and (ii) for ai > 0, vmin − vi(t) ≤ 0 becomes

active if tmi ≥
3(pi(t

m
i )−pi(t

0
i ))

vi(t0i )+2vmin
.

Proof. For ai < 0, suppose that there exists a time tsi ∈ (t0i , t
m
i ] at which vi(t)−vmax ≤ 0

becomes active. Then, from (3.12) and (3.15), we have 1
2
ai ·(tsi )2+bi · tsi +vi(t

0
i ) = vmax.

Solving the quadratic equation for tsi , we have tsi =
−2bi±

√
4b2i−8ai·(vi(t0i )−vmax)

2ai
, which

yields tsi = tmi ±
√

4b2i−8ai·(vi(t0i )−vmax)

4a2i
. Since tsi ≤ tmi , a feasible solution of tsi exists if we

have
√

4b2i − 8ai · (vi(t0i )− vmax) ≥ 0 resulting in ai ≤ 2(vi(t
0
i )−vmax)

(tmi )2
. Combining with

(3.16), the proof of the first statement of Theorem 3.1.7 follows.

For ai > 0, suppose that there exists a time tsi ∈ (t0i , t
m
i ] at which the state

constraint vmin − vi(t) ≤ 0 becomes active. Then, from (3.12) and (3.15), we have

1
2
ai · (tsi )2 + bi · tsi + vi(t

0
i ) = vmin. Solving the above equation for tsi , we have tsi =

−2bi±
√

4b2i−8ai·(vi(t0i )−vmin)

2ai
, which yields tsi = tmi ±

√
4b2i−8ai·(vi(t0i )−vmin)

4a2i
. Since tsi ≤ tmi , we

need to have
√

4b2i − 8ai · (vi(t0i )− vmin) ≥ 0, and combining with (3.16), the proof of

the second statement of Theorem 3.1.7 follows.

Theorem 3.1.8. Let u∗
i (t) = ai · t + bi, t ∈ [t0i , t

m
i ], be the optimal control input

of CAV i ∈ N (t) for the unconstrained solution of (3.1). Then, (i) for ai < 0,

ui(t) − umax ≤ 0 becomes active if tmi ≤
−3vi(t

0
i )+
√

9(vi(t0i ))
2+12umax·(pi(tmi )−pi(t0i ))

2umax
, and (ii)

for ai > 0, umin−ui(t) ≤ 0 becomes active if tmi ≥
−3vi(t

0
i )+
√

9(vi(t0i ))
2+12umin·(pi(tmi )−pi(t0i ))

2umin
.

Proof. For ai < 0, without loss of generality, we let t0i = 0. Given vi(t
0
i ), pi(t

0
i ) and

pi(t
m
i ), we will show that tmi determines whether ui(t) − umax ≤ 0 becomes active or

not. Let t̂mi be the value for which ui(t) − umax ≤ 0 becomes active at t0i , and âi, b̂i

the corresponding constants of integration. Then from (3.14) and (3.16), we can write
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b̂i = −3(vi(t
0
i )·t̂mi −L)

(t̂mi )2
= umax, where L = pi(t

m
i ) − pi(t

0
i ) = pi(t̂

m
i ) − pi(t

0
i ), which can

be reduced to umax · (t̂mi )2 + 3vi(t
0
i ) · t̂mi − 3L = 0. The solution of the last equation

yields t̂mi =
−3vi(t

0
i )±
√

9(vi(t0i ))
2+12umax·L)

2umax
. Since t̂mi > 0, t̂mi =

−3vi(t
0
i )+
√

9(vi(t0i ))
2+12umax·L)

2umax
.

Hence, for any tmi such that tmi ≤ t̂mi , ui(t) − umax ≤ 0 becomes active, and the proof

of the first statement of Theorem 3.1.8 is complete.

For ai > 0, without loss of generality, we let t0i = 0. Let t̂mi be a value that umin−

ui(t) ≤ 0 becomes active at t0i , and âi, b̂i the corresponding constants of integration.

Then from (3.14) and (3.16), we can write b̂i = −3(vi(t
0
i )·t̂mi −L)

(t̂mi )2
= umin, where L =

pi(t
m
i )−pi(t0i ) = pi(t̂

m
i )−pi(t0i ), which can be reduced to umin·(t̂mi )2+3vi(t

0
i )·t̂mi −3L = 0.

The solution of the last equation yields t̂mi =
−3vi(t

0
i )±
√

9(vi(t0i ))
2+12umin·L)

2umin
, from which

we have the only admissible result t̂mi =
−3vi(t

0
i )+
√

9(vi(t0i ))
2+12umin·L)

2umin
. Hence, for any

tmi such that tmi ≥ t̂mi , umin − ui(t) ≤ 0 becomes active, and the proof of the second

statement of Theorem 3.1.8 is complete.

3.1.5.3 Interdependence of Constraint Activation Cases

We have discussed so far the conditions under which any of the state and control

constraints become active. Using these conditions, we can derive the analytical solution

of (3.1). However, the resulting solution might activate additional constrained arcs.

Therefore, we need to be able to identify beforehand under which conditions any addi-

tional constrained arcs may become active. Next, we provide a set of conditions based

on the junction point where the transition between the constrained and unconstrained

arcs occurs.

Theorem 3.1.9. For CAV i ∈ N (t), let τ ∗s ∈ (t0i , t
m
i ] be the junction point of the

state constrained arc where either vi(t)− vmax ≤ 0 or vmin − vi(t) ≤ 0 becomes active.

Then, (i) vi(t) − vmax ≤ 0 may cause ui(t) − umax ≤ 0 to become active, if τ ∗s ≤
−3vi(t

0
i )+
√

9(vi(t0i ))
2+12umax·(p∗i (τ∗s )−pi(t0i ))

2umax
, and (ii) vmin−vi(t) ≤ 0 may cause umin−ui(t) ≤

0 to become active, if τ ∗s ≥
−3vi(t

0
i )+
√

9(vi(t0i ))
2+12umin·(p∗i (τ∗s )−pi(t0i ))

2umin
.
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Proof. Suppose that vi(t)− vmax ≤ 0 becomes active at τ ∗s , where t0i < τ ∗s ≤ tmi . Then

from (2.3), u∗
i (t) = 0 in t ∈ [τ ∗s , t

m
i ] and pi(τ

∗
s ) = pi(t

m
i ) − vmax · (tmi − τ ∗s ). We will

determine whether any control constraint ui(t)−umax ≤ 0 becomes active in t ∈ [t0i , τ
∗
s ].

From Lemma 3.1.5, the control constraint becomes active at t = t0i . Let t̂
m
i be the value

that ui(t) − umax ≤ 0 becomes active at t0i , and âi, b̂i the corresponding constants of

integration. Without loss of generality, if we let t0i = 0, then from (3.14) and (3.16) we

can write, b̂i = −3(vi(t
0
i )·t̂mi −(p∗i (τ

∗
s )−pi(t

0
i ))

(t̂mi )2
= umax, where pi(τ

∗
s )− pi(t

0
i ) = pi(t̂

m
i )− pi(t

0
i ),

which can be reduced to umax · (t̂mi )2+3vi(t
0
i ) · t̂mi −3(p∗i (τ

∗
s )−pi(t

0
i )) = 0. The solution

of the last equation yields t̂mi =
−3vi(t

0
i )±
√

9(vi(t0i ))
2+12umax·(p∗i (τ∗s )−pi(t0i )))

2umax
. Since t̂mi > 0,

t̂mi =
−3vi(t

0
i )+
√

9(vi(t0i ))
2+12umax·(p∗i (τ∗s )−pi(t0i )))

2umax
. Hence, for any τ ∗s such that τ ∗s ≤ t̂mi ,

ui(t)− umax ≤ 0 becomes active, and the proof of the first statement of Theorem 3.1.9

is complete.

Suppose that vmin − vi(t) ≤ 0 becomes active at τ ∗s , where t0i < τ ∗s ≤ tmi . Then

from (2.3), u∗
i (t) = 0 in t ∈ [τ ∗s , t

m
i ] and pi(τ

∗
s ) = pi(t

m
i )− vmin · (tmi − τ ∗s ). Let t̂

m
i be the

value that umin−ui(t) ≤ 0 becomes active at t0i , and âi, b̂i the corresponding constants

of integration. Without loss of generality, if we let t0i = 0, then from (3.14) and (3.16) we

can write, b̂i = −3(vi(t
0
i )·t̂mi −(p∗i (τ

∗
s )−pi(t

0
i ))

(t̂mi )2
= umin, where pi(τ

∗
s )− pi(t

0
i ) = pi(t̂

m
i )− pi(t

0
i ),

which can be reduced to umin · (t̂mi )2 + 3vi(t
0
i ) · t̂mi − 3(p∗i (τ

∗
s ) − pi(t

0
i )) = 0. The

solution of the last equation yields t̂mi =
−3vi(t

0
i )±
√

9(vi(t0i ))
2+12umin·(p∗i (τ∗s )−pi(t0i )))

2umin
, where

t̂mi =
−3vi(t

0
i )+
√

9(vi(t0i ))
2+12umin·(p∗i (τ∗s )−pi(t0i )))

2umin
is the only admissible result. Hence, for any

τ ∗s such that τ ∗s ≥ t̂mi , umin − ui(t) ≤ 0 becomes active, and the proof of the second

statement of Theorem 3.1.9 is complete.

Theorem 3.1.10. For CAV i ∈ N (t), let τ ∗c ∈ (t0i , t
m
i ] be the junction point of the

control constrained arc where either ui(t) − umax ≤ 0 or umin − ui(t) ≤ 0 becomes

active. Then, (i) ui(t) − umax ≤ 0 may cause vi(t) − vmax ≤ 0 to become active, if

tmi ≥ τ ∗c −
2(vi(τ

∗
c )−vmax)
umax

, and (ii) umin− ui(t) ≤ 0 may cause vmin− vi(t) ≤ 0 to become

active, if tmi ≥ τ ∗c −
2(vi(τ

∗
c )−vmin)
umin

.

Proof. Suppose that ui(t) − umax ≤ 0 becomes active at t0i (Remark 3.1.6) with an
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exit time at τ ∗c ∈ (t0i , t
m
i ]. Then from (2.3), u∗

i (t) = umax in t ∈ [t0i , τ
∗
c ]. Consequently,

we have vi(τ
∗
c ) = vi(t

0
i ) + umax · τ ∗c . We will determine whether any state constraint

vi(t)− vmax ≤ 0 becomes active for the unconstrained arc within t ∈ [τ ∗c , t
m
i ]. Suppose

that there exists a time tsi ∈ (τ ∗c , t
m
i ] at which vi(t)−vmax ≤ 0 becomes active in [τ ∗c , t

m
i ].

Without loss of generality, if we let τ ∗c = 0, then the constants of integration âi, b̂i are

given by âi = −umax

t̂mi
and b̂i = umax (Remark 3.1.2), where t̂mi := tmi − τ ∗c . From (3.12)

and (3.15), we have 1
2
âi ·(tsi )2+ b̂i ·tsi +vi(τ

∗
c ) = vmax. Solving the quadratic equation for

tsi , we have tsi =
−2b̂i±

√
4b̂2i−8âi·(vi(τ∗c )−vmax)

2âi
, which yields tsi = t̂mi ±

√
4b̂2i−8âi·(vi(τ∗c )−vmax)

4â2i
.

Since we require tsi ≤ t̂mi , we need to have

√
4b̂2i − 8âi · (vi(τ ∗c )− vmax) ≥ 0 resulting in

âi ≤ 2(vi(τ
∗
c )−vmax)

(t̂mi )2
. By using the value of âi in the above equation and simplifying, the

proof of the first statement of Theorem 3.1.7 follows.

For the second statement of Theorem 3.1.10, suppose that there exists a time

tsi ∈ (τ ∗c , t
m
i ] at which vmin − vi(t) ≤ 0 becomes active in [τ ∗c , t

m
i ]. Without loss of

generality, if we let τ ∗c = 0, then the constants of integration âi, b̂i are given by âi =

−umin

t̂mi
and b̂i = umin (Remark 3.1.2), where t̂mi := tmi − τ ∗c . From (3.12) and (3.15),

we have 1
2
âi · (tsi )2 + b̂i · tsi + vi(τ

∗
c ) = vmin. Solving the quadratic equation for tsi , we

have tsi =
−2b̂i±

√
4b̂2i−8âi·(vi(τ∗c )−vmin)

2âi
, which yields tsi = t̂mi ±

√
4b̂2i−8âi·(vi(τ∗c )−vmin)

4â2i
. Since

tsi ≤ t̂mi , we need to have

√
4b̂2i − 8âi · (vi(τ ∗c )− vmin) ≥ 0 resulting in âi ≤ 2(vi(τ

∗
c )−vmin)

(t̂mi )2
.

By using the value of âi in the above equation and simplifying, the proof of the second

statement of Theorem 3.1.7 follows.

Remark 3.1.7. The conditions in Theorems 4 and 5 depend on the junction points

τ ∗s and τ ∗c of the corresponding constraint activation cases, which can be derived an-

alytically from the known boundary conditions of (3.1). Since the derivation of such

an analytical solution requires additional information, we provide the analysis in the

following section.
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3.1.6 Analytical Solution of the Constrained Optimal Control Problem

To derive the analytical solution of (3.1), we present a condition-based frame-

work consisting of the following steps. We first evaluate the condition stated in The-

orem 3.1.4 to reduce the set of possible constraint activation cases (Remark 3.1.5).

Then using the above result, we evaluate the conditions presented in Theorems 3.1.7

and 3.1.8 to determine whether any constraint has become active. If none of the con-

straints in (2.4) becomes active, we simply derive the unconstrained solution using

(3.11)-(3.13) and terminate the process. However, if the conditions in Theorems 3.1.7

and 3.1.8 indicate the activation of any constraint cases, we need to evaluate further

the conditions in Theorems 3.1.9 and 3.1.10 to determine whether any additional con-

straints may become active within the constrained solution as a result of the constraint

cases identified from Theorems 3.1.7 and 3.1.8. Once the nature of the final constraint

activation case is identified using Theorems 3.1.9 and 3.1.10, we then piece together

the relevant unconstrained and constrained arcs that yield a set of algebraic equations

which are solved simultaneously using the boundary conditions of (3.1) and interior

conditions between the arcs.

Since we piece together multiple constrained and unconstrained arcs, we de-

note the constants of integration corresponding to each arc by a
(p)
i , b

(p)
i , c

(p)
i , d

(p)
i , p =

1, 2, . . . , Narc, where Narc ∈ N is the total number of arcs pieced together in the con-

strained solution and p represents the position of the arcs in terms of their appearance

in the optimal solution starting from t0i to t
m
i . For Narc arcs, we have (Narc−1) junction

points. At any junction point τ , the states are continuous, namely,

pi(τ
−) = pi(τ

+), vi(τ
−) = vi(τ

+), (3.18)

where, τ− and τ+ represent the time instance right before and right after τ , respectively.

In what follows, we present the closed form analytical solution of different cases

of state and control constraint activation to derive the optimal input u∗
i (t), t ∈ [t0i , t

m
i ],

for each CAV i ∈ N (t).
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Case 1. 1 Only the state constraint vi(t)− vmax ≤ 0 becomes active.

In this case, we have µa
i (t) = µb

i(t) = ηdi (t) = 0. From (3.8), (3.9), and (3.10), we

have ui(t) + λv
i (t) = 0, λ̇p

i (t) = 0, and λ̇v
i (t) = −λ

p
i (t)− ηci (t). By Lemma 3.1.6, CAV

i ∈ N (t) exits the constrained arc at t = tmi which leads to a single junction point. Let

τs, t
0
i < τs < tmi , be the junction point and let τ−s and τ+s be the time instance just

before and after time τs. The optimal speed and control input on the constrained arc

are

v∗i (t) = vmax, u∗
i (t) = 0, t ∈ [τs, t

m
i ]. (3.19)

The jump conditions of the costates and the Hamiltonian at τs are

λp
i (τ

−
s ) = λp

i (τ
+
s ) + πi ·

∂

∂pi(t)

[
vi(t)− vmax

] ∣∣∣∣
t=τs

, (3.20a)

λv
i (τ

−
s ) = λv

i (τ
+
s ) + πi ·

∂

∂vi(t)

[
vi(t)− vmax

] ∣∣∣∣
t=τs

, (3.20b)

Hi(τ
−
s ) = Hi(τ

+
s )− πi ·

∂

∂t

[
vi(t)− vmax

] ∣∣∣∣
t=τs

, (3.20c)

where πi is a constant Langrange multiplier determined so that vi(t) − vmax = 0 is

satisfied. Note that, (3.20a)-(3.20c) imply possible discontinuity of the costates and

the Hamiltonian at t = τs. The state variables are continuous at t = τs. From (3.20c),

we have

1

2
u2
i (τ

−
s ) + λp

i (τ
−
s ) · vi(τ−s ) + λv

i (τ
−
s ) · ui(τ

−
s ) + ηci (τ

−
s ) · (vi(τ−s )− vmax)

=
1

2
u2
i (τ

+
s ) + λp

i (τ
+
s ) · vi(τ+s ) + λv

i (τ
+
s ) · ui(τ

+
s ) + ηci (τ

+
s ) · (vi(τ+s )− vmax).

(3.21)

From the continuity of the states and since vi(τ
+
s ) = vmax, ui(τ

+
s ) = 0, we have

λp
i (τ

−
s ) · vi(τ−s ) = λp

i (τ
+
s ) · vi(τ+s ). The Lagrange multiplier ηci (t) in (3.6), yields

ηci (τ
−
s ) · (vi(τ−s ) − vmax) = ηci (τ

+
s ) · (vi(τ+s ) − vmax) = 0. By combining the above

equations, (3.21) reduces to 1
2
u2
i (τ

−
s ) + λv

i (τ
−
s ) · ui(τ

−
s ) = 0, which implies that either
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ui(τ
−
s ) = 0 or 1

2
ui(τ

−
s ) + λv

i (τ
−
s ) = 0, or both. Since the second term contradicts

ui(t) + λv
i (t) = 0, we have ui(τ

−
s ) = 0. The Lagrange multiplier ηci (t) is

ηci (t) =

 0, if vi(t) < vmax, t ∈ [t0i , τs),

−λp
i (t), if vi(t) = vmax, t ∈ [τs, t

m
i ].

Using the Euler-Lagrange equations, interior conditions, the initial and final

boundary conditions, and the terminal condition of the costates, we can formulate a set

of equations by piecing the unconstrained and constrained arcs together at time t = τs.

This results in a total number of 9 equations that we need to solve simultaneously

to compute 4 + 4 + 1 = 9 variables corresponding to the constants of integration

of unconstrained and constrained arc, and the junction point τ ∗s respectively. From

(3.11)-(3.13) and the boundary conditions in (3.1), we receive the following 4 equations:

1
2
a
(1)
i · (t0i )2+ b

(1)
i · t0i + c

(1)
i = vi(t

0
i ),

1
6
a
(1)
i · (t0i )3+ 1

2
b
(1)
i · (t0i )2+ c

(1)
i · t0i +d

(1)
i = pi(t

0
i ), a

(2)
i ·

tmi + b
(2)
i = 0, 1

6
a
(2)
i · (tmi )3 + 1

2
b
(2)
i · (tmi )2 + c

(2)
i · tmi + d

(2)
i = pi(t

m
i ). From the state and

control continuity at the junction point τs, we receive the remaining 5 equations are,

1

2
a
(1)
i · (τs)2 + b

(1)
i · τs + c

(1)
i = vmax, (3.22a)

a
(1)
i · τs + b

(1)
i = 0, (3.22b)

1

6
a
(1)
i · (τs)3 +

1

2
b
(1)
i · (τs)2 + c

(1)
i · τs + d

(1)
i + vmax · (tmi − τs) = pi(t

m
i ), (3.22c)

1

2
a
(2)
i · (τs)2 + b

(2)
i · τs + c

(2)
i = vmax, (3.22d)

a
(2)
i · τs + b

(2)
i = 0, (3.22e)

where a
(1)
i , b

(1)
i , c

(1)
i , d

(1)
i and a

(2)
i , b

(2)
i , c

(2)
i , d

(2)
i are the constants of integration for the

unconstrained and constrained arcs, respectively. The recursive process to solve the

above set of equations cannot be computed in real time. Additionally, the compu-

tational speed and convergence of numerical methods are also sensitive to the initial

guess of the variables, which impose additional burden on the real-time computation

effort. However, if the junction point τ ∗s can be derived as an explicit function of the

initial and final boundary conditions, then the above set of equations can lead to a

closed-form solution that can be solved analytically in real time.
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Lemma 3.1.11. For CAV i ∈ N (t), let τ ∗s be the junction point between the uncon-

strained and constrained arc of the state constrained vi(t) − vmax ≤ 0 solution. Then

τ ∗s is an explicit function of pi(t
m
i ), vmax, tmi , and vi(t

0
i ), and can be expressed as

τ ∗s =
3(pi(t

m
i )−vmax·tmi )

(vi(t0i )−vmax)
.

Proof. If vi(t)−vmax ≤ 0 becomes active, we have an unconstrained arc (with constant

parameters a
(1)
i ,b

(1)
i ,c

(1)
i ,d

(1)
i ) followed by a constrained arc (with constant parameters

a
(2)
i , b

(2)
i , c

(2)
i , d

(2)
i ) pieced together at the junction point t = τ ∗s . The constrained arc

yields at t = τ ∗s and t = tmi ,

a
(2)
i · τ ∗s + b

(2)
i = 0, (3.23a)

a
(2)
i · tmi + b

(2)
i = 0, (3.23b)

1

2
a
(2)
i · (tmi )2 + b

(2)
i · (tmi ) + c

(2)
i = vmax, (3.23c)

1

6
a
(2)
i · (τ ∗s )3 +

1

2
b
(2)
i · (τ ∗s )2 + c

(2)
i · (τ ∗s ) + d

(2)
i + vmax · (tmi − τ ∗s ) = pi(t

m
i ). (3.23d)

From (3.23a) and (3.23b), we have a
(2)
i = 0 and b

(2)
i = 0. Substituting in (3.23c),

we have c
(2)
i = vmax. Finally, from (3.23d) we have d

(2)
i = (pi(t

m
i ) − vmax · tmi ).

The unconstrained arc at the initial condition t = t0i yields the following equations:

1
2
a
(1)
i · (t0i )2+ b

(1)
i · (t0i )+ c

(2)
i = vi(t

0
i ),

1
6
a
(1)
i · (t0i )3+ 1

2
b
(1)
i · (t0i )2+ c

(1)
i · (t0i )+ d

(1)
i = pi(t

0
i ).

Solving the above two equations by considering t0i = 0, without loss of generality, we

have c
(1)
i = vi(t

0
i ) and d

(1)
i = 0. At τ ∗s , we have the following set of equations for the

unconstrained arc,

a
(1)
i · τ ∗s + b

(1)
i = 0, (3.24a)

1

2
a
(1)
i · (τ ∗s )2 + b

(1)
i · τ ∗s + (vi(t

0
i )− vmax) = 0, (3.24b)

1

6
a
(1)
i · (τ ∗s )3 +

1

2
b
(1)
i · (τ ∗s )2 + (vi(t

0
i )− vmax) · τ ∗s − (pi(t

m
i )− vmax · tmi ) = 0. (3.24c)

Substituting τ ∗s = − b
(1)
i

a
(1)
i

from (3.24a) in (3.24b), we have
(b

(1)
i )2

a
(1)
i

= 2(vi(t
0
i ) − vmax).

Substituting τ ∗s = − b
(1)
i

a
(1)
i

from (3.24a) in (3.24c), we have 1
3

(b
(1)
i )3

(a
(1)
i )2

+
(b

(1)
i )

a
(1)
i

·(vmax−vi(t0i ))−

(pi(t
m
i )−vmax · tmi ) = 0. From the last two equations, we obtain τ ∗s = −3(pi(t

m
i )−vmax·tmi )

(vmax−vi(t0i ))
,
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where τ ∗s is an explicit function of the known parameters pi(t
m
i ), vmax, vi(t

0
i ) and tmi .

Case 2. Only the control constraint ui(t)− umax ≤ 0 becomes active.

In this case, we have µb
i(t) = ηci (t) = ηdi (t) = 0. From (3.8), (3.9), and (3.10),

we have ui(t) + λv
i (t) + µa

i (t) = 0, λ̇p
i (t) = 0, and λ̇v

i (t) = −λp
i (t). By Lemma 3.1.5,

CAV i ∈ N (t) enters the constrained arc at time t = t0i and has a single exit junction

point. Let τc, t0i < τc < tmi , be the junction point where the control constrained

arc transitions into the unconstrained arc, and let τ−c and τ+c be the immediate left

and the right instance of τc. The optimal control input u∗
i (t) at the junction point is

u∗
i (τc) = umax. The jump conditions are

λp
i (τ

−
c )− λp

i (τ
+
c ) = 0, (3.25)

λv
i (τ

−
c )− λv

i (τ
+
c ) = 0, (3.26)

Hi(τ
+
c )−Hi(τ

−
c ) = 0, (3.27)

which imply continuity of the costates and the Hamiltonian at the junction point

t = τc. The last jump condition leads to 1
2
u2
i (τ

−
c ) + λp

i (τ
−
c ) · vi(τ−c ) + λv

i (τ
−
c ) · ui(τ

−
c ) +

µa
i (τ

−
c ) · (ui(τ

−
c ) − umax) = 1

2
u2
i (τ

+
c ) + λp

i (τ
+
s ) · vi(τ+c ) + λv

i (τ
+
c ) · ui(τ

+
c ) + µa

i (τ
+
c ) ·

(ui(τ
+
c ) − umax). From the continuity of the state and costate λp

i at t = τc, we have

λp
i (τ

−
c ) · vi(τ−c ) = λp

i (τ
+
c ) · vi(τ+c ). Moreover, (3.4) yields µa

i (τ
−
c ) · (ui(τ

−
c ) − umax) =

µa
i (τ

+
c ) · (ui(τ

+
c )− umax) = 0, which after simplification leads to either ui(τ

+
c ) = ui(τ

−
c )

or 1
2
(ui(τ

+
c )+ui(τ

−
c ))+λv

i (τ
+
c ) = 0, or both. Both equations lead to ui(τ

+
c ) = ui(τ

−
c ) =

umax. The Lagrange multiplier µa
i (t) is µa

i (t) =

 −λv
i (t)− umax, if t ∈ [t0i , τc),

0, if t ∈ [τc, t
m
i ].

Using the Euler-Lagrange equations, jump conditions at the junction point, the initial

and final boundary conditions, and the costate condition at t = tmi , we can formulate a

set of equations by piecing the constrained and unconstrained arcs together at t = τc.

In this case, we have a constrained arc with constant parameters a
(1)
i , b

(1)
i , c

(1)
i , d

(1)
i ,

followed by an unconstrained arc with constant parameters a
(2)
i , b

(2)
i , c

(2)
i , d

(2)
i pieced
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together at junction point τc, leading to 4 + 4 + 1 = 9 variables that need to be

determined. At time t = t0i and t = τc, we have the following set of equations for the

constrained arc,

a
(1)
i · t0i + b

(1)
i = umax, (3.28a)

a
(1)
i · τc + b

(1)
i = umax, (3.28b)

1

2
a
(1)
i · (t0i )2 + b

(1)
i · t0i + c

(1)
i = vi(t

0
i ), (3.28c)

1

6
a
(1)
i · (t0i )3 +

1

2
b
(1)
i · (t0i )2 + c

(1)
i · t0i + d

(1)
i = pi(t

0
i ). (3.28d)

From (3.28a) and (3.28b), considering t0i = 0 without loss of generality, we have a
(1)
i = 0

and b
(1)
i = umax. Substituting in (3.28c), we have c

(1)
i = vi(t

0
i ). Finally, solving (3.28d),

d
(1)
i = pi(t

0
i ). The following set of equations aim to determine the remaining constants

of integration a
(2)
i , b

(2)
i , c

(2)
i , d

(2)
i of the exiting unconstrained arc and the junction point

τ ∗c .

a
(2)
i · τc + b

(2)
i = umax, (3.29a)

a
(2)
i · tmi + b

(2)
i = 0, (3.29b)

1

2
a
(2)
i · τ 2c + (b

(2)
i − umax) · τc + c

(2)
i − v0i = 0, (3.29c)

1

6
a
(2)
i · τ 3c +

1

2
(b

(2)
i − umax) · τ 2c + (c

(2)
i − v0i ) · τc + d

(2)
i − pi(t

0
i ) = 0, (3.29d)

1

6
a
(2)
i · (tmi )3 +

1

2
b
(2)
i · (tmi )2 + c

(2)
i · tmi + d

(2)
i = pi(t

m
i ). (3.29e)

Lemma 3.1.12. For CAV i ∈ N (t), let τ ∗c be the junction point between the uncon-

strained and control constraint ui(t)− umax ≤ 0 solution. Then τ ∗c can be expressed as

an explicit function of pi(t
m
i ), pi(t

0
i ), umax, tmi , and vi(t

0
i ).

Proof. If ui(t) − umax ≤ 0 becomes active, we have a constrained arc (with con-

stant parameters a
(1)
i , b

(1)
i , c

(1)
i , d

(1)
i ) followed by an unconstrained arc (with con-

stant parameters a
(2)
i , b

(2)
i , c

(2)
i , d

(2)
i ) pieced together at the junction point t = τ ∗c .

Solving (3.29a) and (3.29c)-(3.29e), we have a
(2)
i = −

√
(umax)3

3(tmi )2·umax+6tmi ·vi(t0i )−6L
, where

L = pi(t
m
i )−pi(t

0
i ). From (3.29a) and (3.29b), τ ∗c = umax

a
(2)
i

+ tmi . Finally, substituting a
(2)
i
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into the last equation, the junction point τ ∗c is given by τ ∗c = tmi − umax√
(umax)3

3(tm
i

)2·umax+6tm
i

·vi(t0i )−6L

,

and can be simplified to τ ∗c = tmi −
√

3(tmi )2·umax+6tmi ·vi(t0i )−6L

umax
, which is an explicit function

of the known boundary parameters tmi , pi(t
m
i ), pi(t

0
i ), vi(t

0
i ), and umax.

Case 3. Both state constraint vi(t)−vmax ≤ 0 and the control constraint ui(t)−umax ≤

0 become active.

If both ui(t) − umax ≤ 0 and vi(t) − vmax ≤ 0 become active, we derive the

analytical solution combining the steps described in the previous two cases. In this case,

we have µb
i(t) = ηdi (t) = 0. From (3.8), (3.9), and (3.10), we have ui(t)+λv

i (t)+µa
i (t) =

0, λ̇p
i (t) = 0, and λ̇v

i (t) = −λp
i (t) − ηci (t). Let τc be the junction point that CAV

i ∈ N (t) exits the control constrained arc and τs be the junction point that CAV i

enters the state constrained arc such that t0i < τc < τs < tmi . The optimal control

input at the control constrained arc is u∗
i (t) = umax, for all t ∈ [t0i , τc]. In the state

constrained arc, we have v∗i (t) = vmax, u∗
i (t) = 0, for all t ∈ [τs, t

m
i ]. From the jump

conditions at the junction points τc and τs, we have continuity in the state and control

input. The Lagrange multipliers µa
i (t) and ηci (t) are given by

µa
i (t) =

 0, t ∈ (τc, t
m
i ],

−λv
i (t)− umax, t ∈ [t0i , τc],

 , (3.30)

ηci (t) =

 0, t ∈ [t0i , τs),

−λp
i (t), t ∈ [τs, t

m
i ].

 . (3.31)

Solving (3.28a)-(3.28d), considering t0i = 0 without loss of generality, the con-

stants of integration a
(1)
i , b

(1)
i , c

(1)
i , d

(1)
i of the control constrained arc are a

(1)
i = 0, b

(1)
i =

umax, c
(1)
i = v0i and d

(1)
i = pi(t

0
i ). The unconstrained arc with constants of integration

106



a
(2)
i , b

(2)
i , c

(2)
i , and d

(2)
i can consists of the following set of equations,

a
(2)
i · τc + b

(2)
i = umax, (3.32a)

1

2
a
(2)
i · τ 2c + (b

(2)
i − umax) · τc + c

(2)
i − v0i = 0, (3.32b)

1

6
a
(2)
i · τ 3c +

1

2
(b

(2)
i − umax) · τ 2c + (c

(2)
i − v0i ) · τc + (d

(2)
i − pi(t

0
i )) = 0, (3.32c)

a
(2)
i · τs + b

(2)
i = 0, (3.32d)

1

2
a
(2)
i · τ 2s + b

(2)
i · τs + c

(2)
i − vmax = 0, (3.32e)

1

6
a
(2)
i · (τs)3 +

1

2
b
(2)
i · (τs)2 + c

(2)
i · τs + d

(2)
i + vmax · (tmi − τs) = pi(t

m
i ). (3.32f)

Finally, the state-constrained arc with constants of integration a
(3)
i , b

(3)
i , c

(3)
i , d

(3)
i con-

sists of the following set of equations,

a
(3)
i · tmi + b

(3)
i = 0, (3.33a)

a
(3)
i · τs + b

(3)
i = 0, (3.33b)

1

2
a
(3)
i · τ 2s − b

(3)
i · τs − c

(3)
i − vmax = 0, (3.33c)

1

6
a
(3)
i · (tmi )3 +

1

2
b
(3)
i · (tmi )2 + c

(3)
i · tmi + d

(3)
i − pi(t

m
i ) = 0. (3.33d)

From (3.33a)-(3.33d), we have a
(3)
i = 0, b

(3)
i = 0, c

(3)
i = vmax and d

(3)
i = pi(t

m
i )− vmax ·

tmi . The remaining constants of integration a
(2)
i , b

(2)
i , c

(2)
i , d

(2)
i of the unconstrained arc,

and the junction points τ ∗s and τ ∗c can be determined by solving the set of equations

(3.32a)-(3.32f).

Lemma 3.1.13. The junction point τ ∗s between the unconstrained and the constrained

arc if vi(t) − vmax ≤ 0 becomes active, and the junction point τ ∗c between the uncon-

strained and the constrained arc if ui(t) − umax ≤ 0 also becomes active are explicit

functions of pi(t
m
i ), vmax, umax, tmi , and vi(t

0
i ).

Proof. If ui(t) − umax ≤ 0 becomes active, we have a constrained arc with constants

of integration a
(1)
i , b

(1)
i , c

(1)
i , d

(1)
i followed by an unconstrained arc with constants

of integration a
(2)
i , b

(2)
i , c

(2)
i , d

(2)
i , pieced together at the junction point t = τ ∗c . If
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vi(t) − vmax ≤ 0 becomes active, we have a constrained arc with constants of inte-

gration a
(2)
i , b

(2)
i , c

(2)
i , d

(2)
i followed by a constrained arc with constants of integration

a
(3)
i , b

(3)
i , c

(3)
i , d

(3)
i pieced together at the junction point t = τ ∗s . Solving (3.28a)-

(3.28d) for the control constrained arc with t0i = 0, we have a
(1)
i = 0, b

(1)
i = umax,

c
(1)
i = vi(t

0
i ) and d

(1)
i = pi(t

0
i ). Solving (3.33a)-(3.33d) for the state constrained arc,

considering t0i = 0 without loss of generality, we have a
(3)
i = 0, b

(3)
i = 0, c

(3)
i = vmax

and d
(3)
i = pi(t

m
i ) − vmax · tmi . From (3.32a) and (3.32d), we have τ ∗c =

umax−b
(2)
i

a
(2)
i

and τ ∗s = − b
(2)
i

a
(2)
i

respectively. Substituting the latter into (3.32b), (3.32c), (3.32e) and

(3.32f), and solving the system of equations, we have a
(2)
i = −u2

max ·
√
− 1

ϕ
, and b

(2)
i =

umax(−2vi(t
0
i )
√

− 1
ϕ
+2vmax

√
− 1

ϕ
+1)

2
, where, ϕ(tmi , pi(t

m
i ), vi(t

0
i ), umax, vmax) = −24(tmi · umax ·

vmax − pi(t
m
i ) · umax + vi(t

0
i ) · vmax) + 12(v2i (t

0
i ) + v2max). Substituting the last results

into (3.32a) and (3.32d), the junction points τ ∗s and τ ∗c are given as explicit functions

of the known parameters tmi , pi(t
m
i ), vi(t

0
i ), umax and vmax.

Case 4. Only the state constraint vmin − vi(t) ≤ 0 becomes active.

In this case, we have µa
i (t) = µb

i(t) = ηci (t) = 0. From (3.8), (3.9), and (3.10),

we have ui(t) + λv
i (t) = 0, λ̇p

i (t) = 0, and λ̇v
i (t) = −λp

i (t) − ηdi (t). Let t = τs be the

junction point that vmin− vi(t) ≤ 0 becomes active. The optimal speed and control at

the junction point are v∗i (t) = vmin, u∗
i (t) = 0, for all t ∈ [τs, t

m
i ]. The jump conditions

are

λp
i (τ

−
s ) = λp

i (τ
+
s ) + πi ·

∂

∂pi(t)

[
vmin − vi(t)

] ∣∣∣∣
t=τs

, (3.34a)

λv
i (τ

−
s ) = λv

i (τ
+
s ) + πi ·

∂

∂vi(t)

[
vmin − vi(t)

] ∣∣∣∣
t=τs

, (3.34b)

Hi(τ
−
s ) = Hi(τ

+
s )− πi ·

∂

∂t

[
vmin − vi(t)

] ∣∣∣∣
t=τs

, (3.34c)

where πi is a constant Langrange multiplier determined so that vmin − vi(t) = 0 is

satisfied. Note that, (3.34a)-(3.34c) imply possible discontinuity of the costates and

the Hamiltonian at t = τs. The state variables are continuous at t = τs. From (3.34a)
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and (3.34c), the position costate and the Lagrangian of the Hamiltonian is continuous

at t = τs.

Lemma 3.1.14. If the state constraint vmin−vi(t) ≤ 0 becomes active, then the control

input ui(t) is continuous at the junction point t = τs.

Proof. From (3.34c), we have

1

2
u2
i (τ

−
s ) + λp

i (τ
−
s ) · vi(τ−s ) + λv

i (τ
−
s ) · ui(τ

−
s ) + ηdi (τ

−
s ) · (vmin − vi(τ

−
s ))

=
1

2
u2
i (τ

+
s ) + λp

i (τ
+
s ) · vi(τ+s ) + λv

i (τ
+
s ) · ui(τ

+
s ) + ηdi (τ

+
s ) · (vmin − vi(τ

+
s )). (3.35)

Since vi(τ
+
s ) = vmin and ui(τ

+
s ) = 0, and from the continuity of state (3.18) and λp

i

(3.34a), we have λp
i (τ

−
s ) · vi(τ−s ) = λp

i (τ
+
s ) · vi(τ+s ). From (3.6), we have ηdi (τ

−
s ) · (vmin−

vi(τ
−
s )) = ηdi (τ

+
s ) · (vmin − vi(τ

+
s )) = 0. Hence, (3.1.6) reduces to 1

2
u2
i (τ

−
s ) + λv

i (τ
−
s ) ·

ui(τ
−
s ) = 0, which implies that either ui(τ

−
s ) = 0 or 1

2
ui(τ

−
s ) + λv

i (τ
−
s ) = 0, or both.

Since the second term can not hold, we have ui(τ
−
s ) = ui(τ

+
s ) = 0.

The Lagrange multiplier ηdi (t) can be expressed as,

ηdi (t) =

{
0, if t ∈ [t0i , τs),

−λp
i (t), if t ∈ [τs, t

m
i ].

(3.36)

Using the Euler-Lagrange equations, interior conditions, initial and final boundary

conditions, and the costate condition at t = tmi , we can formulate a set of equations

similar to Case 1 to solve for 4 + 4+ 1 = 9 variables corresponding to the constants of

integration of the unconstrained and constrained arc, and the junction point τs. The

set of equations of the unconstrained arc with constants of integration a
(1)
i , b

(1)
i , c

(1)
i , d

(1)
i

are, 1
2
a
(1)
i · (t0i )2 + b

(1)
i · t0i + c

(1)
i = vi(t

0
i ),

1
6
a
(1)
i · (t0i )3 + 1

2
b
(1)
i · (t0i )2 + c

(1)
i · t0i + d

(1)
i =

pi(t
0
i ),

1
2
a
(1)
i ·(τs)2+b

(1)
i ·τs+c

(1)
i = vmin, a

(1)
i ·τs+b

(1)
i = 0, and 1

6
a
(1)
i ·(τs)3+ 1

2
b
(1)
i ·(τs)2+

c
(1)
i · τs + d

(1)
i + vmin · (tmi − τs) = pi(t

m
i ). The set of equations of the state constrained

arc with the constants of integration a
(2)
i , b

(2)
i , c

(2)
i , d

(2)
i are 1

2
a
(2)
i · (τs)2 + b

(2)
i · τs + c

(2)
i =

vmin, a
(2)
i · tmi +b

(2)
i = 0, a

(2)
i ·τs+b

(2)
i = 0, and 1

6
a
(2)
i ·(t0i )3+ 1

2
b
(2)
i ·(t0i )2+c

(2)
i · t0i +d

(2)
i =
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pi(t
m
i ), which yield a

(2)
i = 0, b

(2)
i = 0, c

(2)
i = vmin and d

(2)
i = pi(t

m
i ) − vmin · tmi . The

remaining constants of integration a
(1)
i , b

(1)
i , c

(1)
i , d

(1)
i and the junction point τ ∗s can be

determined numerically by solving simultaneously the above set of equations.

Lemma 3.1.15. For CAV i ∈ N (t), let τ ∗s be the junction point between the un-

constrained and constrained arc of the state constrained vmin − vi(t) ≤ 0 solution.

Then τ ∗s is an explicit function of pi(t
m
i ), vmin, tmi and vi(t

0
i ), and can be expressed as

τ ∗s =
3(pi(t

m
i )−vmin·tmi )

(vi(t0i )−vmin)

Proof. The proof is similar to the proof of Lemma 3.1.11, hence it is omitted.

Case 5. Only the control constraint umin − ui(t) ≤ 0 becomes active.

In this case, we have µa
i (t) = ηci (t) = ηdi (t) = 0. From (3.8), (3.9), and (3.10), we

have ui(t)+λv
i (t)−µb

i(t) = 0, λ̇p
i (t) = 0, and λ̇v

i (t) = −λ
p
i (t). Let τc > t0i be the junction

point that CAV i ∈ N (t) transitions from the constrained arc to the unconstrained

arc. The optimal control at the junction point τc is u∗
i (τc) = umin. From the jump

conditions, we have λp
i (τ

−
c ) = λp

i (τ
+
c ), λ

v
i (τ

−
c ) = λv

i (τ
+
c ), and Hi(τ

+
c ) = Hi(τ

−
c ).

Lemma 3.1.16. If the control constraint umin − ui(t) ≤ 0 becomes active, then the

control input u(t) is continuous at the junction point t = τc.

Proof. Since Hi(τ
+
c ) = Hi(τ

−
c ), we have 1

2
u2
i (τ

−
c ) + λp

i (τ
−
c ) · vi(τ−c ) + λv

i (τ
−
c ) · ui(τ

−
c ) +

µb
i(τ

−
c ) · (umin−ui(τ

−
c )) =

1
2
u2
i (τ

+
c )+λp

i (τ
+
s ) · vi(τ+c )+λv

i (τ
+
c ) ·ui(τ

+
c )+µb

i(τ
+
c ) · (umin−

ui(τ
+
c )). From the continuity of the state (3.18) and λp

i at t = τc, we have λp
i (τ

−
c ) ·

vi(τ
−
c ) = λp

i (τ
+
c ) ·vi(τ+c ). From (3.4) we have µb

i(τ
−
c ) · (umin−ui(τ

−
c )) = µb

i(τ
+
c ) · (umin−

ui(τ
+
c )) = 0. After simplifying, we have either ui(τ

+
c ) = ui(τ

−
c ) or

1
2
(ui(τ

+
c )+ui(τ

−
c ))+

λv
i (τ

+
c ) = 0. Both the equations lead to the continuity in control input ui(t) at time

t = τc, i.e., ui(τ
+
c ) = ui(τ

−
c ).
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The Lagrange multiplier µb
i(t) can be expressed as,

µb
i(t) =

{
λv
i (t) + umin, if t ∈ [t0i , τc),

0, if t ∈ [τc, t
m
i ].

(3.37)

Using the Euler-Lagrange equations, interior condition, initial and final boundary con-

ditions, and the condition of costates at t = tmi , we have a set of equations of the

constrained arc: a
(1)
i · t0i + b

(1)
i = umin, a

(1)
i · τc + b

(1)
i = umin,

1
2
a
(1)
i (t0i )

2 + b
(1)
i · t0i + c

(1)
i =

vi(t
0
i ), and 1

6
a
(1)
i (t0i )

3 + 1
2
b
(1)
i · (t0i )2 + c

(1)
i · t0i + d

(1)
i = 0., resolving which with t0i = 0

yields, a
(1)
i = 0, b

(1)
i = umin, c

(1)
i = vi(t

0
i ), d

(1)
i = pi(t

0
i ), where a

(1)
i , b

(1)
i , c

(1)
i , d

(1)
i

are the constants of integration for the constrained arc. In addition, we have a set

of equations of the unconstrained arc: a
(2)
i · τc − b

(2)
i + umin = 0, a

(2)
i · tmi + b

(2)
i =

0, 1
2
a
(2)
i · τ 2c + (b

(2)
i − umin) · τc + c

(2)
i − vi(t

0
i ) = 0,

1
6
a
(2)
i ·τ 3c + 1

2
(b

(2)
i −umin) ·τc+(c

(2)
i −vi(t

0
i ) ·τc+d

(2)
i = 0, and 1

6
a
(2)
i · (tmi )3+ 1

2
b
(2)
i · (tmi )2+

c
(2)
i · tmi + d

(2)
i − pi(t

m
i ) = 0, where a

(2)
i , b

(2)
i , c

(2)
i , d

(2)
i are the constants of integration

of the unconstrained arc.

Lemma 3.1.17. For CAV i ∈ N (t), let τ ∗s be the junction point between the uncon-

strained and constrained arc of the control constrained (umin − ui(t) ≤ 0) solution of

(3.1). Then τ ∗c can be expressed as an explicit function of pi(t
m
i ), pi(t

0
i ), umin, tmi , and

vi(t
0
i ).

Proof. The proof is similar to the proof of Lemma 3.1.12, hence it is omitted.

Case 6. Both state constraint vmin−vi(t) ≤ 0 and the control constraint umin−ui(t) ≤

0 become active.

In this case, we can derive the analytical solution following similar steps to

Case 3. A control constrained umin − ui(t) ≤ 0 arc with constants of integration

a
(1)
i , b

(1)
i , c

(1)
i , d

(1)
i is pieced together with an unconstrained arc with constants of in-

tegration a
(2)
i , b

(2)
i , c

(2)
i , d

(2)
i at the junction point τc. The unconstrained arc is pieced

together with the state constrained vmin − vi(t) ≤ 0 arc with constants of integration
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a
(3)
i , b

(3)
i , c

(3)
i , d

(3)
i at the junction point τs. The constants of integration of the con-

strained and unconstrained arcs, and the junction points τ ∗s and τ ∗c can be determined

by a set of equations similar to those derived in Case 3.

Lemma 3.1.18. The junction point τ ∗s between the unconstrained and the constrained

arc when vmin− vi(t) ≤ 0 becomes active, and the junction point τ ∗c between the uncon-

strained and the constrained arc when umin− ui(t) ≤ 0 also becomes active are explicit

functions of pi(t
m
i ), vmin, umin, tmi , and vi(t

0
i ).

Proof. The proof is similar to the proof of Lemma 3.1.13, hence it is omitted.

3.1.7 Simulation Results and Summary

We validate the analytical solution of the optimal control problem (3.1) through

numerical simulation in MATLAB. In this section, we present the results considering

tmi = 10 s, where only the state constraint vi(t) − vmax ≤ 0 and control constraint

ui(t)−umax ≤ 0 can become active (Theorem 3.1.4). Similar results to those presented

here can be also derived for the case where vmin−vi(t) ≤ 0 and umin−ui(t) ≤ 0 become

active. We consider the initial and final position of CAV i ∈ N (t) to be pi(t
0
i ) = 0 m and

pi(t
m
i ) = 200 m, and the initial speed vi(t

0
i ) = 14.3 m/s. For each CAV i ∈ N (t), we

enforce the maximum speed limit and acceleration to be vmax = 22 m/s and umax = 1.8

m/s2 respectively. The standard procedure to solve the optimal control problem (3.1)

is to identify whether any of the state or control constraints become active and derive

the constrained solution in a recursive manner until none of the constraints are active,

as shown in Fig. 3.2. The unconstrained solution (blue trajectory in Fig. 3.2) activates

the state constraint vi(t)− vmax ≤ 0 only. The acceleration corresponding to the state-

constrained (vi(t)−vmax ≤ 0) solution is shown by the red trajectory in Fig. 3.2, where

the unconstrained and constrained arcs are pieced together at the junction point at

t = 7.79 s. However, the state-constrained solution (red trajectory in Fig. 3.2) has to

be re-derived since the control constraint ui(t)−umax ≤ 0, which was not active before,

becomes active now as shown by the red trajectory in Fig. 3.2. The constrained optimal
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Figure 3.2: Optimal control trajectory for the unconstrained (blue), state constraint
vi(t)− vmax ≤ 0 only (red) and both state-control constraint (green) case.

control input is derived by piecing the state and control constrained arcs together, and

it is shown by the green trajectory in Fig. 3.2.

In our condition-based framework, we do not need to consider the intermediate

iterative steps above, i.e., the unconstrained (blue trajectory) and state constrained

solution (red trajectory) in Fig. 3.2. We can directly derive the final closed-form

analytical solution (green trajectory in Fig. 3.2) by sequentially checking the conditions

in Theorems 3.1.4-3.1.10. First, we start with Theorem 3.1.4 to reduce the possible

constraint activation set. Since the first statement of Theorem 3.1.4 holds for tmi = 10

s and the boundary conditions, we only need to consider whether vi(t) − vmax ≤ 0

or ui(t) − umax ≤ 0 become active, which reduces the possible constraint activation

cases from 15 to 3. Then, we use Theorems 3.1.7 and 3.1.8 to identify the specific

constraint activation case. In this case, part (i) of Theorem 3.1.7 holds, indicating

that vi(t) − vmax ≤ 0 becomes active in (t0i , t
m
i ]. However, part (i) of Theorem 3.1.8

does not hold indicating that ui(t)−umax ≤ 0 will not become active. Using the result

obtained above, we then check part (i) of Theorem 3.1.9 which readily indicates that an

additional and initially non-existent control constraint ui(t)−umax ≤ 0 becomes active

within the state-constrained solution, as shown by the red trajectory in Fig. 3.2. Using
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the result of Theorem 3.1.9, we apply the analysis presented in Case 3 to determine the

complete state and control constrained-optimal solution. Here, the aforementioned

condition-based framework requires 0.001107 s to solve in an Intel Core i7-6700 CPU

@ 3.40 GHz using MATLAB R2017b. Note that, if the first statement of Theorem

3.1.9 does not hold, then none of the control constraints can become active, and thus

we can use the analysis presented in Case 1 to determine the optimal solution.

Figure 3.3: Optimal speed trajectory for the unconstrained (blue), control constraint
ui(t)− umax ≤ 0 only (red) and both state-control constraint (green) case.

Next, we consider a different scenario to show the impact when the control

constraint (ui(t) − umax ≤ 0) becomes active (Fig. 3.3). In this case, we set the

maximum speed vmax and acceleration umax to be 23 m/s and 1.35 m/s2 respectively.

Following the above procedure, we check part (i) of Theorem 3.1.7 and 3.1.8. Since only

part (i) of Theorem 3.1.8 holds, we conclude that the control constraint ui(t)−umax ≤ 0

will become active. We then check part (i) of Theorem 3.1.10 to check whether any

additional state constraint will become active within the control constrained solution.

In this case, part (i) of Theorem 3.1.10 holds, as evident from the control constrained

state trajectory (red trajectory) in Fig. 3.3. Therefore, we use the analysis presented

in Case 3 to derive the complete state- and control- constrained solution as illustrated

by the green trajectory in Fig. 3.3. Note that, in Fig. 3.3, in the unconstrained
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solution (blue trajectory) none of the state constraints become active. However, the

control-constrained solution (red trajectory) activates the state constraint vi(t)−vmax ≤

0. Based on our condition-based framework, we can avoid the computation of the

intermediate solutions, i.e., the unconstrained trajectory (blue trajectory in Fig. 3.3)

and the control constrained trajectory (red trajectory in Fig. 3.3), and directly derive

the final constrained trajectory as illustrated by the green trajectory in Fig. 3.3.

In this section, I addressed the state and control constrained optimal framework

for coordinating CAVs at different traffic scenarios, and provided a condition-based

framework to determine the constrained solution without requiring to follow the stan-

dard recursive process. I mathematically characterized the activation cases of different

state and control constraint combinations and provided a set of conditions to iden-

tify the nature of constraint activation a priori. Using these conditions, I derived the

closed-form analytical solution of the constrained optimal control problem that can be

computed and implemented in real time. I validated a subset of constraint activation

cases through numerical simulation and showed how the proposed framework can iden-

tify the interdependent constraint activation based on the boundary conditions. By

eliminating the intermediate steps of solving the constrained optimal control problem,

the proposed condition-based framework improves on the standard methodology to

solve the constrained optimal control problem.

3.2 Decentralized Optimal Coordination with Safety Constraints

In this section, I address the problem of constrained optimal control with hard

safety constraints of collision avoidance while coordinating a group of CAVs through

a corridor consisting of multiple traffic scenarios to improve energy consumption and

travel time. I formulate a two-level optimization problem in which we maximize traffic

throughput in the upper-level problem, and derive a closed-form analytical solution

that yields the optimal control input for each CAV, in terms of fuel consumption, in

the low-level problem. The key contribution of this research is the formulation and
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analytical solution of an optimal control problem for coordinating CAVs in a traffic

corridor with the explicit incorporation of the rear-end safety constraint.

3.2.1 Modeling Framework: Decentralized Coordination

Let us consider a traffic corridor (Fig. 3.4) that consists of several conflict zones

(e.g., a merging area, an intersection, and a roundabout), where a potential lateral

collision of vehicles may occur. Upstream of each conflict zone, there exists a control

zone, inside of which, the vehicles can communicate with each other. The dimension of

each control zone is restricted by the communication range of an associated coordinator,

which records the vehicle queue inside the control zone. The communication range of

the coordinator can be adjustable and its length could be extended as needed. For

clarity, we illustrate the boundary of the corridor as indicated by dashed lines and

the limits of each control zone by shaded rectangles (Fig. 3.4). Note that we only

coordinate CAVs inside the control zone of each conflict zone.

Figure 3.4: Corridor with connected and automated vehicles.

Let Nz(t) = {1, 2, . . . , Nz(t)} be a queue of CAVs inside the control zone of a

conflict zone z, where Nz(t) ∈ N is the number of CAVs in the control zone of z at

time t ∈ R+. When a CAV enters the control zone, it broadcasts its route information

to the coordinator of this conflict zone. The coordinator then assigns a unique integer
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i ∈ N that serves as the identification of CAVs inside the corridor. Let t0,zi be the initial

time that CAV i enters the control zone of z ∈ Z, and tzi be the time for CAV i that

enters z. For example, for CAV #7 (Fig. 3.4), t0,17 is the time that it enters the control

zone of conflict zone #1, which is also the time that it enters the corridor, and t17 is the

time that it enters the conflict zone #1. Similarly, CAV #1 enters the control zone of

conflict zone #3 at t0,31 , and enters the conflict zone #3 at t31. The CAV index given

by the coordinator is removed from the queue Nz once the vehicle i exits the conflict

zone z.

To avoid any possible lateral collision, there are several ways to compute tzi

for each CAV i. In what follows, we present a decentralized framework in which we

formulate an upper-level optimal control problem for determining the time tzi that each

CAV i will enter the conflict zone z ∈ Z, and then address a lower-level control problem

that will yield for each CAV the optimal control input (acceleration/deceleration) to

achieve the assigned time tzi (upon arrival of CAV i) without collision.

Similar to the previous section, for each CAV i ∈ N (t), we employ the double

integrator dynamics as considered in (2.3), and impose the state and control constraints

as in (2.4). Let xi(t) = [pi(t) vi(t)]
T denote the state of each CAV i, with initial value

at the entry of the control zone of conflict zone z ∈ Z given as x0,z
i =

[
p0,zi v0,zi

]T
,

where p0,zi = pi(t
0,z
i ) and v0,zi = vi(t

0,z
i ). For each CAV i ∈ Nz(t), the lateral collision

is possible within the set Γi
∆
= {t | t ∈ [tzi , t

z
i + ρ]}, where, ρ is the safety time headway

to avoid lateral collision. Lateral collision between any two CAVs i, j ∈ Nz(t) can be

avoided if the following constraint holds,

Γi ∩ Γj = ∅, ∀t ∈ [tzi , t
z
i + ρ], i, j ∈ Nz(t). (3.38)

To ensure the absence of rear-end collision of two consecutive CAVs traveling on the

same lane, we impose the following condition

si(t) = pk(t)− pi(t) ≥ δ(t), ∀t ∈ [t0,zi , tzi ]. (3.39)
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Here, si(t) denotes the distance between CAV i and CAV k which is physically imme-

diately ahead of i. The minimum safe distance δ(t) is a function of speed vi(t). Since

we consider an urban traffic corridor, the average speed does not exhibit significant

variations. Therefore, we can consider that the safe distance δ(t) = δ is constant.

In the modeling framework described above, we consider perfect communication (As-

sumption 2.1.2), no lane changes or left/right turns (Assumption 2.1.1) and feasible

initial condition (Assumption 2.1.3).

Definition 3.2.1. Let i − 1, i ∈ Nz(t) be two CAVs inside the control zone traveling
towards the corresponding conflict zone z. Depending on the physical location and
trajectory inside the control zone with respect to CAV i, CAV i− 1 belongs to one of
the following three subsets of Nz(t) with respect to CAV i ∈ Nz(t):

1. Rz
i contains all CAVs that travel in the same lane with CAV i towards the conflict

zone z, having travel paths that can cause rear-end collision.

2. Czi contains all CAVs from different roads having travel paths that can cause
lateral collision with CAV i in conflict zone z.

3. Oz
i contains all CAVs from different roads having travel paths that cannot cause

lateral or rear-end collision with CAV i in conflict zone z.

Upon arrival at the entry of the control zone of conflict zone z ∈ Z at time t0,zi ,

CAV i ∈ Nz(t) needs to compute the time tzi . In general, a value of tzi that satisfies the

safety constraints (3.38) and (3.39) may depend on the preceding CAV in the control

zone. Next, we address the question of identifying the appropriate tzi for each CAV

through an upper-level optimization problem.

3.2.2 Throughput Maximization with Dynamic Resequencing

To fully utilize the capacity of the traffic network of CAVs, we formulate a

throughput maximization problem, in terms of minimizing the gaps between CAVs

in the conflict zones, i.e., minimizing the total time to process CAVs in the network,

subject to the constraints (2.4), (3.38) and (3.39). Note that for i = 1, the safety con-

straint is not active since there is no prior CAV in the control zone, which implies that
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tz1 is not constrained and can be determined outside the optimization framework. Thus,

for each control zone of conflict zone z ∈ Z, we formulate the following optimization

problem:

min
t(2:Nz(t))

Nz(t)∑
i=2

(tzi − tzi−1) = min
t(Nz(t))

(tzNz(t) − tz1), (3.40)

subject to : (2.3), (2.4), (3.38), (3.39),

where, t(2:Nz(t))
= [tz2, . . . , t

z
Nz(t)

]. The solution of (3.40) yields the optimal time tzi
∗, i ≥

2, z ∈ Z, which designates the entry times of each CAV in each conflict zone to maxi-

mize the throughput of the corresponding bottleneck.

In what follows, we discuss how the lateral collision safety constraint is addressed

in the solution of (3.40). We also show that the solution has an iterative structure and

depends only on the state and control constraint (2.4) as well as the safety constraint

(3.39).

To obtain the optimal solution of tzi
∗ for CAV i ∈ Nz(t) at the conflict zone

z ∈ Z, we first consider the case when Czi (t) is empty, thus the entry time for CAV i at

z depends only on some CAV k = (i−1) ∈ Rz
i , where k is physically immediately ahead

of i on the roadway segment inside the control zone. In this case, the minimum time

tzi for CAV i to enter the conflict zone z is designated by the rear-end safety constraint

(3.39), and in particular, by the safe headway, ρ, that a CAV i should maintain while

following CAV k, i.e., tzi = tzk + ρ. In this context, we need to find the bound of tzi to

ensure feasibility of the solution. Consider the maximum and minimum speeds that

CAV i could achieve. The value of tzi is then given by

tzi = max
{
min{tzk + ρ, tz,max

i }, tz,min
i

}
, (3.41)

where tz,max
i and tz,min

i is the longest and shortest possible travel time of a CAV i be-

tween the entry and exit of the control zone of the conflict zone z ∈ Z corresponding to

the minimum, vmin, and maximum, vmax, speed limit respectively. Note that condition

(3.41) ensures that the time tzi that CAV i will be entering the conflict zone z is feasible
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and can be attained based on the imposed speed limits in the corridor. From (3.41),

the safety constraint between CAVs traveling in the same lane is guaranteed at tzi .

We now turn our attention to the case where possible lateral collision might occur if

Czi (t) is non-empty. In this case, the minimum time tz∗i for CAV i to enter the conflict

zone z is constrained by both the lateral collision (3.38) and rear-end collision (3.39)

constraints.

Definition 3.2.2. We define the set Az
i ⊂ Czi , Az

i := {j ∈ Czi | tzj ≥ tzi }, that includes

any CAV j ∈ Czi whose entry time at conflict zone z is later than tzi , and the set

Lz
i ⊂ Az

i , Lz
i := {j ∈ Az

i | tzj + ρ ≤ tzj+1 − ρ}, that includes any CAV j ∈ Czi whose

entry time satisfy (3.39).

Considering possible lateral collisions at conflict zone z, for all z ∈ Z, we obtain

the following result.

Theorem 3.2.3. The solution tzi
∗,∀i ≥ 2,∀z ∈ Z, of (3.40) is recursively determined

through

tzi
∗ =



max
{
max{tzc}+ ρi, t

z
i

}
, if ∀c ∈ Czi and ∄ c ∈ Az

i ,

tzi , if ∃ a ∈ Az
i and tzi + ρ ≤ min{tza},

min{tzb}+ ρi, if ∃ b ∈ Lz
i and tzi + ρi > min{tza},

max{tza}+ ρi, if ∃ a ∈ Az
i and ∄ a ∈ Lz

i .

(3.42)

Proof. Based on Definition 3.2.1, there are three cases to consider for tzi
∗.

Case 1 : If Az
i ̸= ∅, all CAVs in Czi will be entering the conflict zone z earlier

than tzi , which, by Definition 3.2.1, implies tzi
∗ =

{
tzi ,

max{tzc}+ ρ,
∀c ∈ Czi . Hence,

we have tzi
∗ = max

{
max{tzc}+ ρ, tzi

}
,∀c ∈ Czi .

Case 2 : If Az
i ̸= ∅ and Lz

i ̸= ∅, we consider two cases: (i) if the earliest entry

time of CAVs in the set Az
i is later than tzi plus a safe headway ρ, then the minimum

entry time of CAV i is tzi , which satisfies the safety constraints to avoid both lateral
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and rear-end collisions; (ii) the optimal value of tzi is the earliest possible time slot

between the entry times of two consecutive CAVs in the set Lz
i . Hence, we have

tzi
∗ =

tzi , if tzi + ρ ≤ min{tza},

min{tzb}+ ρ, if tzi + ρ > min{tza},

∀a ∈ Az
i ,∀b ∈ Lz

i . (3.43)

Case 3 : Finally, if Lz
i ̸= ∅, this implies that there is no available time slot

between the entry times of two CAVs in Az
i . In this case, CAV i will be entering

the conflict zone after the last CAV in Az
i to avoid lateral collision, which implies

tzi
∗ = max{tza} + ρ, ∀a ∈ Az

i , if there not exist a ∈ Lz
i . Combining the above results,

we obtain tzi
∗ in (3.42), which completes the proof.

Theorem 3.2.3 yields the sequence that the CAVs will be traveling through each

control zone. Each CAV i follows the above policy to determine the time tzi
∗ that it will

be entering the conflict zone z ∈ Z upon arrival at the entry of the control zone. Once

the entry time tzi
∗ is computed, it is stored in the coordinator and it is not changed.

Thus, the next CAV i+1, upon its arrival at the entry of the control zone, will search

for feasible times to cross the conflict zone based on the available time slots. The

recursion is initialized when the first CAV enters the boundary of the corridor, i.e., it

is assigned i = 1. In this case, tz1,∀z ∈ Z, can be externally assigned as the desired

entry time of this CAV whose behavior is unconstrained.

3.2.3 Energy-Optimal Motion Primitives with Safety Constraints

When a CAV i enters the corridor, it communicates with the other CAVs (As-

sumption 1) and the coordinator broadcasts information without any errors or delays

(Assumption 3). The coordinator assigns a unique identity to each CAV and receives

back some information at the time each CAV arrives at the entry of the corridor, as

defined next.
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Definition 3.2.4. For each CAV i, we define the information set Yi(t) as

Yi(t) ≜ {pi(t), vi(t), oi, tzi
∗}, z ∈ Z, t ∈ [t0i , t

z
i ], (3.44)

where pi(t), vi(t) are the position and speed of CAV i inside the corridor, oi is the

route that CAV i travels inside the corridor, and tzi
∗ is the time for CAV i to enter the

conflict zone z given by (3.42).

As discussed in the previous section, the time tzi
∗ for CAV i is determined

recursively based on the information received from the coordinator. Therefore, once

CAV i enters each of the control zones, immediately all information in Yi(t) becomes

available for i and is stored in the coordinator accessible for the next arriving CAV

i+ 1.

In the low-level optimal control problem, the objective is to minimize the con-

trol input (acceleration/deceleration) for each CAV i ∈ Nz(t) from the time t0,zi that

i enters the control zone until the time tzi that it exits the control zone under the

hard safety constraint to avoid rear-end collision. By minimizing each CAV’s acceler-

ation/deceleration, we minimize transient engine operation. Thus, we can have direct

benefits in fuel consumption and emissions since internal combustion engines are opti-

mized over steady-state operating points (constant torque and speed). Therefore, the

optimization problem for each CAV i ∈ Nz(t) is to minimize the L2-norm of the control

input in [t0,zi , tzi ], formulated as follows:

min
ui(t)∈Ui

Ji(u(t)) = min
ui(t)∈Ui

1

2

∫ tzi

t0,zi

u2
i (t) dt, (3.45)

subject to : (2.3), (2.4), (3.39),

given t0,zi , pi(t
0,z
i ) = 0, v0,zi , tzi

∗, and pi(t
z
i
∗) = pz.

Note that we do not include the lateral collision constraint (3.38) in (3.45), since it

has been addressed in the upper-level optimization problem. On the contrary, we

explicitly include the rear-end safety constraint. The problem formulation with the

state and control constraints requires the constrained and unconstrained arcs of the
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state and control input to be pieced together to satisfy the Euler-Lagrange equations

and necessary condition of optimality. Let S(t,xi(t), ui(t)) = [vi(t)− vmax vmin(t)−

vi(t) pi(t)−pk(t)−δ]T be the vector of constraints that are not explicit functions of the

control input ui(t). We take successive total time derivatives of S(t,xi(t), ui(t)) until

we obtain an expression that is explicitly dependent on ui(t). If q time derivatives

are required for a specific constraint of Si(t,xi(t), ui(t)), we refer to that constraint

as a qth-order state variable inequality constraint [188]. Note that we have 1st-order

speed constraint and 2nd-order rear-end safety constraint in Si(t,xi(t), ui(t)). The

2nd-order rear-end safety constraint plays the role of a control variable constraint on

the constrained arc,

S
(2)
i (xi(t), ui(t), t) = ui(t)− uk(t) = 0. (3.46)

From (3.45), the CAV dynamics (2.3), state and control constraints (2.4), and the rear-

end safety constraint (3.39) for each CAV i ∈ Nz(t), we formulate the Hamiltonian

function

Hi

(
t, pi(t), vi(t), ui(t)

)
=

1

2
u(t)2i + λp

i · vi(t) + λv
i · ui(t)

+ηai · ui(t)− ηbi · ui(t) + ηci · (ui(t)− uk(t))

+µd
i · (ui(t)− umax) + µe

i · (umin − ui(t)), (3.47)

where λp
i , λv

i are the co-state components, and ηai , η
b
i , η

c
i , µ

d
iµ

e
i are the Lagrange multi-

pliers satisfying the complimentary slackness conditions based on the state and control

constraints in (2.4) and (3.39).

The Euler-Lagrange equations become

λ̇p
i (t) = −

∂Hi

∂pi
= 0, λ̇v

i (t) = −
∂Hi

∂vi
= −λp

i . (3.48)

The necessary condition for optimality is

∂Hi

∂ui

= ui(t) + λv
i + ηai − ηbi + ηci + µd

i − µe
i = 0. (3.49)
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When the inequality state and control constraints are not active, ηai = ηbi = ηci = µd
i =

µe
i = 0, applying the necessary condition (3.49), the optimal control is

ui(t) + λv
i = 0, i ∈ Nz(t). (3.50)

From (3.48) we have λp
i (t) = ai, and λv

i (t) = −(ai · t + bi). The coefficients ai, bi are

constants of integration corresponding to each CAV i. From (3.50) the optimal control

input (acceleration/deceleration), speed and position as a function of time are given

by

u∗
i (t) = (ai · t+ bi), ∀t ≥ t0,zi , (3.51)

v∗i (t) =
1

2
ai · t2 + bi · t+ ci, ∀t ≥ t0,zi , (3.52)

p∗i (t) =
1

6
ai · t3 +

1

2
bi · t2 + ci · t+ di, ∀t ≥ t0,zi , (3.53)

where ci and di are constants of integration which can be computed at each time t, t0i ≤

t ≤ tzi , using the values of the control input, speed, and position of each CAV i at t,

the position pi(t
z
i ), and λv

i (t
z
i ) = 0. The simple nature of the optimal control and states

in (3.51) through (3.53) makes the online solution of (3.45) computationally feasible,

even with the additional burden of checking for active constraints. In what follows,

we address the optimization problem (3.45) with the activation of the constrained case

corresponding to the rear-end collision only. The other constrained cases related to the

state, i.e., speed, vi, and control, ui as in (2.4), are similar to the cases presented in

Section 3.1, and thus are omitted.

Suppose a CAV starts from a feasible state and control at t = t0i and at some

time t = t1, the rear-end safety constraint (pi(t) − pk(t) + δ) ≤ 0 is activated. In this

case, ηai = ηbi = µd
i = µe

i = 0. From (3.49), the optimal control is given by

ui(t) + λv
i + µc

i(t) = 0, ∀t ≥ t1. (3.54)

The q-component vector function of tangency constraints N(xi(t), t) is

N(xi(t), t) =

 Si(xi(t), t)

S
(q−1)
i (xi(t), t)

 =

(pi(t)− pk(t) + δ

vi(t)− vk(t)

 . (3.55)
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The state trajectory entering onto the 2nd-order rear-end safety constraint

boundary must satisfy the following tangency conditions

N(xi(t), t) =

pi(t)− pk(t) + δ

vi(t)− vk(t)

 = 0, (3.56)

where, N(xi(t), t) is the q-component vector function of the 2nd order safety tangency

constraints. The tangency constraints in (3.56) also apply to the state trajectory at the

exit of the constraint arc. Since the optimal solution of the preceding CAV k ∈ Nz(t)

is known a priori, from (3.46) and (3.56), the optimal solution for CAV i ∈ Nz(t) in

the constrained arc is derived from Si(t,xi(t), ui(t)) = 0 and is

u∗
i (t) = u∗

k(t), v∗i (t) = v∗k(t), and p∗i (t) = p∗k(t)− δ. (3.57)

The equations in (3.56) form a set of interior boundary conditions where the co-states

λp
i (t) and λv

i (t), in general, have discontinuity at the junction points, i.e., entry and

exit points of the state trajectory between the constrained and the unconstrained arcs.

However, the control trajectory may or may not have discontinuities at the junction

points. Next, we address the jump conditions at the entry junction point t = t1. At

time t = t1, when the safety constraint is activated, we have a junction point between

the unconstrained and constrained arcs. Let t−1 represents the time instance just before

t1, and t+1 signifies just after t1. The state trajectories are continuous at the junction

points. Thus, we have

pi(t
−
1 ) = pi(t

+
1 ), vi(t

−
1 ) = vi(t

+
1 ). (3.58)

The jump conditions at t1 can be written as

λp
i (t

−
1 ) = λp

i (t
+
1 ) + πT · ∂N(xi(t), t)

∂pi(t)

∣∣∣∣
t=t1

, (3.59)

λv
i (t

−
1 ) = λv

i (t
+
1 ) + πT · ∂N(xi(t), t)

∂vi(t)

∣∣∣∣
t=t1

, (3.60)

H(t−1 ) = H(t+1 )− πT · ∂N(xi(t), t)

∂t

∣∣∣∣
t=t1

, (3.61)

∂H(t−1 )

ui(t)
=

∂H(t+1 )

ui(t)
. (3.62)

125



In (3.59)-(3.62), πT = [π1 π2] is a vector of constant Langrange multipliers to be

determined so that the condition in (3.56) is satisfied. From (3.61), using (3.57)-(3.62),

we obtain 1
2
(ui(t

−
1 )

2 − ui(t
+
1 )

2) + λv
i (t

+
1 ) · (ui(t

−
1 ) − ui(t

+
1 )) = 0. This yields two cases:

either (ui(t
−
1 )−ui(t

+
1 )) = 0 or 1

2
(ui(t

−
1 )+ui(t

+
1 ))+λv

i (t
+
1 ) = 0. Both conditions lead to

ui(t
−
1 ) = ui(t

+
1 ), which indicates that the control trajectory is continuous at the entry

junction point at t = t1. Finally, using the continuity in control and (3.60) in (3.62),

we obtain ηci (t
+
1 ) = π2. With two junction points at time t = t1 and t = t2, we have

a constrained arc between two unconstrained arcs. Since we have multiple arcs pieced

together at the junction points, we differentiate the constants of integration for the state

and control trajectory by adding a superscript h representing the order of appearance

of the arcs. Therefore, we represent the constants of integration as (ahi , b
h
i , c

h
i , d

h
i ),

where h = 1, 2 corresponds to the first and the last unconstrained arc respectively.

The control trajectory of CAV i considering the constrained and unconstrained arcs

can be written as,

u∗
i (t) =


a1i · t+ b1i , t0,zi ≥ t ≤ t1,

u∗
k(t), t1 < t < t2,

a3i · t+ b3i , t2 ≥ t ≤ tzi .

(3.63)

The constants of integration, along with the junction points t1 and t2 can be com-

puted by solving (3.51)-(3.53) and (3.57)-(3.63) with appropriate initial, boundary and

transversality conditions.

3.2.4 Simulation Results and Summary

To validate the effectiveness of the rear-end safety constrained formulation, we

present two cases in Fig. 3.5, where a leading CAV k and a following CAV i are both

cruising with the optimal control input. In the left panel of Fig. 3.5, the following

CAV i derives its control input according to (3.51) and activates the rear-end safety

constraint with respect to the immediately preceding CAV k with two junction points.

In the right panel of Fig. 3.5, CAV i derives its control input using (3.63) subject to

safety constrained optimization.
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Figure 3.5: Unconstrained (left) and rear-end safety constrained state trajectory (right)
of CAV i with respect to its immediately preceding vehicle k.

To validate the proposed approach for multiple traffic scenarios, we use a sim-

ulation network of Mcity created in PTV VISSIM environment. We define a corridor

consisting of four conflict zones: (1) a merging roadway, (2) a speed reduction zone,

(3) a roundabout, and (4) an intersection. Vehicles enter the network on the ramp,

join the traffic on the highway with desired speed of 22 m/s, and then enter the speed

reduction zone where the speed limit drops to 11 m/s. The vehicles exit the highway

segment and travel through the roundabout, where the desired speed of 13 m/s is

imposed until the exit of the roundabout, to the intersection (conflict zone #4).

To evaluate the network performance with the proposed control framework, we

define two scenarios as follows:

Scenario 1: baseline, i.e., 0% CAV penetration rate. All vehicles in the network

are non-connected and non-automated. In this case, the Wiedemann car following

model [160] built in VISSIM is applied. 1.2 s time headway is adopted to estimate the

minimum allowable following distance.

Scenario 2: optimal control, i.e., 100% CAV penetration rate. The proposed
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Figure 3.6: The corridor in Mcity.

control framework is integrated to generate the optimal acceleration/deceleration pro-

file for each CAV in the network.

The CAV speed trajectories under 0% and 100% CAV penetration rate in the

corridor are illustrated in Fig. 3.7. In the baseline scenario with 0% CAV penetration

rate, CAVs traveling along the corridor need to yield to mainline traffic and wait in

the signalized intersection. Thus, we observe high fluctuations in their speed profiles

under the baseline scenario at the proximity of the conflict zones (see the upper panel

of Fig. 3.7). In the optimal control scenario under 100% CAV penetration rate, CAVs

travel through the corridor without stop-and-go driving (see lower panel of Fig. 3.7).

The latter enables CAVs to have a smoother speed trajectory affecting the uncontrolled

upstream and downstream area of the control zone. We observe 9% improvement in

terms of travel time and an average of 47% savings in total fuel consumption in the

optimal control scenario compared to the baseline one.

We plot the accumulated fuel consumption for all the vehicles traveling through
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Figure 3.7: Vehicle trajectories inside the corridor for (a) baseline and (b) optimal con-
trolled case. The control zone for each of the conflict zones are shown for comparison.

the corridor considered here in one simulation replication in Fig. 3.8 to show energy

consumption under both scenarios. With smooth acceleration/deceleration profiles

throughout the entire corridor, vehicles’ stop-and-go driving behavior is eliminated

under Scenario 2 with 100% CAV penetration rate. Thus, transient engine operation

is minimized, leading to direct fuel consumption savings compared to the baseline

scenario as shown in Fig. 3.8.

With vehicle trajectory data collected every 1 s, fuel consumption is estimated

by using the polynomial metamodel proposed in [190] that relates vehicle fuel consump-

tion as a function of speed v(t) and acceleration u(t). Overall, through the optimal

control algorithm, an average of 47% savings in total fuel consumption for vehicles trav-

eling along the corridor is obtained. The reasons are mainly twofold: 1) while CAVs

are immediately preparing for the speed reduction zone/roundabout/intersection with

smooth maneuver, human-driven vehicles keep accelerating or cruising at a much higher

speed until they are aware of downstream conflict zones. We observe that in Fig. 3.7

deceleration is the major behavior around the conflict zones in the baseline scenario; 2)
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Figure 3.8: Accumulated fuel consumption over time for the baseline and optimal
controlled vehicles.

CAVs are coordinated with each other to create enough gaps for merging and crossing

the intersection, whereas human-driven vehicles need to stop and accelerate again to

cross these conflict zones.

To summarize, in this chapter, the problem related to the optimal control and

coordination of CAVs is addressed for traffic scenarios with state, control, and safety

constraints. Specifically, the theorems and results have been detailed that would enable

us to compute the state and control constrained optimal control policy for the CAVs

with a real-time implementable closed-form analytic solution. I have also extended

the optimal coordination approach in a traffic network of multiple scenarios, where

the CAVs can dynamically re-sequence their optimal coordination queue, and cross the

traffic scenarios without any rear-end and lateral safety collision. In the next chapter,

we delve into the domain of a mixed traffic environment.
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Chapter 4

OPTIMAL CONTROL IN A MIXED TRAFFIC ENVIRONMENT

In the previous chapters, we explored in detail the problem of optimal control
and coordination of CAVs through traffic scenarios with system constraints. However,
we have considered 100% CAV penetration which enabled us to have full control of all
the agents present within the traffic network. In reality, such an idealized framework is
not implementable in the current transportation condition due to the presence of HDVs.
Therefore, consideration of a mixed traffic environment, where CAVs and HDVs can
safely co-exist, is necessary. In general, a mixed traffic environment poses significant
modeling and control challenges regarding the following aspects.

1. State Estimation Problem: HDVs do not transmit their state information to any
external agents. Therefore, the CAVs need to estimate the neighboring HDVs’
state either using their onboard sensors or from an appropriate infrastructure
such as roadside units, coordinators, loop detectors, etc.

2. Dynamics Prediction Problem: Although several car-following models exist in
the literature [101, 160, 191] to model the HV dynamics, no car-following model
can capture fully the human driving behavior. This leads to the problem of
predicting the HV dynamics properly which is required for the CAVs to derive a
closed-form analytic solution. The uncertainty arising out of such unpredictable
HV dynamics also needs to be considered by the CAVs.

3. Vehicle Control Problem: The HDVs we consider in our modeling framework do
not have any driving automation (Level 0 automation), and are controlled only
by the human input, which prevents the implementation of a distributed control
framework in a centralized or decentralized way.

In this chapter, I address the problem of controlling CAVs in a mixed traffic environ-

ment and investigate the implication regarding vehicle- and network-level performance.

4.1 Safety-Aware Control at a Mixed Traffic Signalized Junction

A typical urban signalized intersection poses significant modeling and control

challenges in a mixed traffic environment with connected automated vehicles (CAVs)

131



HDV

CAV

𝑝ଶ 𝑡
𝑣ଶ 𝑡

𝑝ଵ 𝑡
𝑣ଵ(𝑡)

𝑝଴
𝑝ଷ 𝑡
𝑣ଷ 𝑡

(a)

(b)

Figure 4.1: A connected and automated vehicle (CAV) and human-driven vehicles
(HDV) approaching a signalized intersection at red-light signal phase.

and human-driven vehicles (HDVs). Furthermore, the use of conventional traffic lights

is still the most prevalent way of traffic control at urban intersections that adds an extra

layer of complexity in modeling the HDV behavior due to the presence of the zone of

the yellow light dilemma [192]. Thus, it is essential to develop an efficient control

framework considering the inclusion and interaction of CAVs with HDVs approaching

the signalized intersections to provide safety assurance under unknown HDV behavior.

In this section, we address the problem of deriving safe trajectories for CAVs

in a mixed traffic environment that prioritize rear-end collision avoidance when the

preceding HDVs approach the yellow- and red signal phases of the intersection. We

present a predictive control framework for the CAVs that employs a recursive least

squares algorithm to approximate in real time the driving behavior of the preceding

HDVs and then use this approximation to derive its safety-aware trajectory in a finite

horizon. We validate the effectiveness of our proposed framework through numerical

simulation and analyze the robustness of the control framework.
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4.1.1 Optimal Control at a Signalized Intersection

We consider a group of vehicles consisting of multiple HDVs traveling on a single-

lane road and followed by a CAV while approaching an urban signalized intersection

with a red (or yellow then red) traffic phase (Fig. 4.1). Note that, the general idea

of our formulation can be extended to different cases such as yield/stop traffic signs,

downstream traffic congestion, and pedestrian crossing, where the preceding HDVs’

motion can change abruptly to come to a full stop. To facilitate our exposition, we

provide the following definitions.

Definition 4.1.1. Suppose that the red signal phase is active at some time instant

t = t0. The set N of the vehicles approaching the intersection at t = t0 is N =

{N,N − 1, . . . , 1}, where N ∈ N is the total number of vehicles under consideration.

Here, the vehicles are assigned integer indices by the order of their respective distances

from some fixed stopping position p0 located downstream near the signal head. The

indices N,N − 1, . . . , 2 represent the HDVs followed by the CAV denoted by the index

1.

Definition 4.1.2. The set of HDVs at time instant t = t0 is NHDV = N \ {1}.

When the red signal phase is active at some time instant t = t0, the HDV-N

in N must stop behind the position p0. The objective of the CAV-1 is to derive an

optimal trajectory to stop behind HDV-2 such that no rear-end collision takes place.

Remark 4.1.1. In our formulation, we require that the set of HDVs NHDV is non-

empty at time instant t = t0 when the red signal phase of the intersection is active. If

NHDV is empty, then the problem of avoiding rear-end collision becomes redundant.

4.1.1.1 Communication Structure

The CAV-1 is retrofitted with appropriate sensors and communication devices

to estimate in real time the state information of the preceding HDVs in NHDV through
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vehicle-to-everything communication protocol and intelligent roadside units [193]. We

refer to the unidirectional flow of information from the preceding HDVs in NHDV to

the trailing CAV-1 as the multi-predecessor communication topology. In contrast, the

trajectory of each HDV i in NHDV is solely dictated by the perception of the state

information of the immediate preceding vehicle i+ 1 in NHDV. For the leading vehicle

HDV-N that does not have a preceding vehicle, its driving actions depend on the

relative distance to the stopping point.

4.1.1.2 Vehicle Dynamics and Constraints at Mixed Traffic

We consider a discrete-time double integrator model, similar to (2.3), with a

sampling time τ ∈ R+ to represent the dynamics of each vehicle i ∈ N as follows

pi(t+ 1) = pi(t) + vi(t)τ +
1

2
ui(t)τ

2, (4.1a)

vi(t+ 1) = vi(t) + ui(t)τ, (4.1b)

where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the position, speed and acceleration

of each vehicle i in N . The sets Pi, Vi, and Ui, i ∈ N (t), are complete and totally

bounded subsets of R. Note that in the discrete-time dynamics model (4.1), we assume

that the acceleration ui(t) of each vehicle i in N remains constant in the time period

of length τ between time instants t and t + 1, which is different to some previous

approaches that assume constant speed between time instants t and t + 1 [148, 194].

To ensure that the control input and vehicle speed are within a given admissible range,

we impose the state and control constraints as in (2.4).

The control input ui(t) of each vehicle i ∈ N in (4.1) can take different forms

based on the consideration of connectivity and automation. For CAV-1 in N , we

consider a switching control framework based on the following cases: if at time instant

t = t0 (Remark 4.1.1) (a) NHDV is empty, then CAV-1 derives its control input by using

its default adaptive cruise controller (see [164]), (b) if NHDV is not empty, then CAV-1
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derives and implements the control input u1(t) using the proposed control framework

discussed in Section 4.1.2.

For each HDV i ∈ NHDV, however, we consider a car-following model to represent

the predecessor-follower coupled dynamics (Fig. 4.1) with its preceding vehicle i + 1

that has the following generic structure

ui(t) = fi(∆pi(t), vi(t),∆vi(t)), (4.2)

where fi(·) represents the behavioral function of the car-following model of vehicle

i ∈ NHDV, and ∆pi(t) := pi+1(t) − pi(t) − lc and ∆vi(t) := vi+1(t) − vi(t) denote the

headway and approach rate of vehicle i with respect to its preceding vehicle i + 1,

respectively. We consider two edge cases that may arise from the above definitions: (a)

if there is no vehicle i+ 1 preceding vehicle i within a certain look-ahead distance df ,

then we consider ∆pi(t) = df and ∆vi(t) = vi(t), and (b) if there is an obstruction/red

signal phase immediately ahead of vehicle i at a distance ds, then ∆pi(t) = ds and

∆vi(t) = −vi(t). There are several car-following models reported in the literature that

can emulate a varied class of human driving behavior [195].

The parameters of a car-following model can be recovered from historical data

using offline identification methods [161]. However, since the historical data might not

be available and the human driving behavior usually changes over time, offline identi-

fication methods do not work well in practice. As a result, in our proposed framework,

we consider that the CAV does not have full prior knowledge of the behavioral function

fi(·) of the preceding HDVs. Instead, the CAV assumes a specific type of car-following

model for the HDV, then estimates the model parameters for each HDV online using

real-time collected data.

To capture the car-following characteristics of the preceding HDV-2’s dynamics

from the CAV-1’s control point of view, we define the states associated with tracking
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the position error ep(t) and speed error ev(t) as

ep(t) = p2(t)− p1(t)− lc, (4.3a)

ev(t) = v2(t)− v1(t). (4.3b)

We consider the dynamic safe following headway si(t) between two consecutive

vehicles i and (i+1) ∈ N as si(t) = ρivi(t)+ s0, where ρi ∈ R+ denotes a desired time

headway that each vehicle i ∈ N maintains while following the preceding vehicle, and

s0 ∈ R+ is the standstill distance denoting the minimum bumper-to-bumper gap at

stop. The rear-end collision avoidance constraint between CAV-1 and its immediately

preceding HDV-2 can thus be written as

ep(t) ≥ s1(t). (4.4)

We now formalize the main objective of the CAV-1 control framework.

Problem 4.1.1. Given the multi-predecessor communication topology (Section 4.1.1.1),

the main objective of CAV-1 is to derive its optimal control input u∗
1(t) such that CAV-1

drives the states ep(t), ev(t) to respective reference states, and the control input u1(t)

is minimized with online estimation of the car-following parameters in (4.2) subject to

the state, control and safety constraints in (2.4)-(4.4).

4.1.2 Data-Driven Predictive Control Framework

In our approach, we adopt a receding horizon predictive control framework with
multi-predecessor communication topology and data-driven estimation of HDVs’ car-
following parameters for state prediction to address Problem 4.1.1, as shown in Figure
4.2. In the receding horizon control, the optimal control input at the current time step
is obtained by solving a predictive control problem with a horizon Tp while only the
first element of the obtained control input sequence is implemented. Afterward, the
horizon moves forward one step, and the above process is repeated until a final horizon
is reached. The essential steps of the proposed framework are outlined as follows.

1. Data-driven parameter estimation: At each time instant t, the current states
pi(t), vi(t) of each preceding HDV i in NHDV is communicated to CAV-1. Since
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Figure 4.2: The structure of the proposed control framework to address Problem 4.1.1.

the exact car-following model fi of each HDV i in NHDV is unknown to CAV-1, it
considers a specific type of car-following model to represent the driving behavior
of each HDV, and estimates the parameters of the car-following model for each
HDV online.

2. Predictive control problem: CAV-1 then uses the estimated car-following
model from Step 1 to predict the future state trajectories of the immediately
preceding HDV-2 and derives its own optimal control input sequence U∗

1 (t) :=
[u∗

1(t), u
∗
1(t+1), . . . , u∗

1(t+Tp−1)]T using the receding horizon control framework
discussed above. Finally, CAV-1 implements only the first control input u∗

1(t).

In what follows, we provide a detailed exposition of the steps of the proposed control

framework discussed above.

4.1.2.1 Online Car-following Model Parameter Estimation

In this section, we use a recursive least-squared formulation [196] to estimate

the parameters of the internal car-following model residing in CAV-1’s mainframe to
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represent the driving behavior of each of the preceding HDVs. To this end, we consider

the CTH-RV model [197]

vi(t+ 1) = vi(t) + ηi(∆pi(t)− ρivi(t))τ + νi(v1(t)− vi(t))τ, (4.5)

where the model parameters ηi and νi are the control gains on the constant time

headway and the approach rate, and ρi is the desired safe time headway for each HDV

i in NHDV, respectively. We employ the linear CTH-RV model instead of other complex

nonlinear models so that the resulting control problem presented in the next section

is thus convex and can be solved efficiently in real-time. Moreover, it is also observed

that CTH-RV model is highly comparable to other nonlinear car-following models in

terms of data fitting [198].

Suppose that we measure the speed vi(t), headway gap ∆pi(t) and approach

rate ∆vi(t) for each preceding HDV i in NHDV with sampling rate τ . We recast (4.5)

as

vi(t+ 1) = γi,1vi(t) + γi,2∆pi(t) + γi,3v1(t), (4.6)

where γi,1 := (1− (ηiρi + νi)τ), γi,2 := ηiτ and γi,3 := νiτ are the parameters that can

be estimated using the RLS algorithm [196]. The original model parameters ηi, νi and

ρi are then uniquely determined from γi,1, γi,2, γi,3 as long as γi,2 ̸= 0. Next, we can

write (4.6) in matrix form as

vi(t+ 1) = γT
i ϕi(t), (4.7)

where ϕi(t) := [vi(t), ∆pi(t), v1(t)]
T is the regressor vector and γi := [γi,1, γi,2, γi,3]

T

is the parameter vector. We can estimate γi using the following recursive least squares
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algorithm as follows [196]

γ̂i(t) = γ̂i(t− 1) + Li(t)[vi(t)− v̂i(t)], (4.8a)

v̂i(t) = γ̂i
T (t− 1)ϕi(t), (4.8b)

Li(t) =
Pi(t− 1)ϕi(t)

ξ + ϕT
i (t)Pi(t− 1)ϕi(t)

, (4.8c)

Pi(t) =
1

ξ

[
Pi(t− 1)− Pi(t− 1)ϕi(t)ϕ

T
i (t)Pi(t− 1)

ξ + ϕT
i (t)Pi(t− 1)ϕi(t)

]
. (4.8d)

Here, ξ ∈ [0, 1] is the forgetting factor that assigns a higher weight to the recently

collected data points and discounts older measurements, and γ̂i(t) denotes the estimate

of the parameter vector γi at time instant t, which is updated recursively as new data

becomes available. In what follows, we introduce the predictive control problem that

is needed to be solved.

4.1.2.2 Predictive Control Problem

The main objective of the predictive controller of the CAV is to (a) drive the

position tracking state ep(t) to a reference ep,r(t), (b) drive the speed tracking state ev(t)

to zero, and (c) minimize CAV-1’s control input u1(t). To this end, the receding horizon

controller generates the predictive states ep(t+n|t), ev(t+n|t) for n = 1, . . . , Tp at each

time instant t for a predictive horizon Tp using the state definitions in (4.3), vehicle

dynamics in (4.1) and internal car-following models of the HDVs in (4.5) approximated

in the previous section. Then the control input sequence U1(t) := [u1(t), u1(t +

1), . . . , u1(t + Tp − 1)]T is derived such that the predictive states are driven to their
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respective reference states. The predictive control problem thus can be written as

min
U1(t)

1

2

Tp∑
n=1

[
wep(ep(t+ n|t)− ep,r(t+ n|t))2 (4.9)

+ wevev(t+ n|t)2 + wu(u1(t+ n− 1))2
]
,

subject to :

model: (4.1), (4.2), (4.3),

constraints: (2.4), (4.4),

reference state: ep,r(t) := s1(t),

where the predictive reference state ep,r(t + n|t) can be computed using the relation

ep,r(t) = s1(t) and the dynamics model in (4.1) and (4.3), and wep , wev , wu ∈ R+ are

the weights on the reference tracking of the position error state ep(t), speed error state

ev(t) and the CAV-1’s control input u1(t), respectively.

The predictive control problem in (4.9) can be transformed into a standard

constrained quadratic programming problem and solved using commercially available

solvers [199]. At each discrete time instant t, the optimal control sequence U∗
1 (t) is

computed by solving (4.9) and only the first control input u∗
1(t) is applied. Then the

system moves to the next time instant t + 1 and the process is repeated until a final

time horizon is reached.

Remark 4.1.2. While implementing the above control framework, if any of the pre-

ceding HDVs leaves the current lane or passes the intersection at any time instant t,

then we simply update the sets N and NHDV starting from the next time instant t+1,

where the control problem (4.9) is again solved with the updated information.

4.1.3 Numerical Validation

This section validates the performance of the proposed safety-aware data-driven

predictive control by numerical simulations at a mixed-traffic signalized intersection.
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Table 4.1: Parameters of the controller

Parameters Value Parameters Value

τ 0.1 s Tp 50
vmax 15m/s vmin 0m/s
umax 3m/s2 umin −5m/s2

ρ 2.0 s s0 3.0m
wep 1 wev 0.1
wu 1

In the simulations, we utilize a nonlinear car-following model namely the optimal

velocity model (OVM) to generate driving actions of simulated human drivers [200].

The car-following OVM is given as

ui(t) = α
(
Vi(t)− vi(t)

)
+ β∆vi(t),

Vi(t) =
vmax

2

(
tanh

(
∆pi(t)− si(t)) + tanh(si(t)

))
.

(4.10)

The parameters of the OVM for each HDV include the driver’s sensitivity coefficients

α and β, and the desired speed vd.. These parameters for the simulated HDVs are

assumed to be different to each other and chosen by random perturbations up to 20%

around the following nominal values: α = 0.8, β = 0.6, vd = 15.0m/s, ρ = 2.0 s,

s0 = 5.0m. The parameters and weights in the predictive control framework used for

the simulations are given in Table 4.1. The RLS-based estimators are initialized with

the following values: γi(0) = [0.67, 0.1, 0.18]T and Pi(0) = 0.01 I3 where I3 is the 3× 3

identity matrix, while the forgeting factor is chosen as ξ = 1.0. Python is used in the

simulations in which the constrained optimal control problem is formulated by CasADi

framework [201] and solved by a built-in qpOASES solver.

4.1.4 Results and Discussions

The results for a numerical simulation involving a CAV and 2 preceding HDVs

are illustrated in Fig. 4.3, in which the speeds and headway of all vehicles are given

in Figures 4.3a and 4.3b, respectively. As can be seen from Fig. 4.3b, the simulated

HDVs slow down and then stop while approaching the signalized intersection. Given
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Figure 4.3: Speed and headway of the three vehicles considered in the simulation.
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Figure 4.4: Longitudinal trajectories in the simulations with different numbers of ve-
hicles approaching the intersection.

the behavior of the HDVs, the proposed control framework is able to perform safe and

comfortable braking for the CAV without violating any of the state, input, and safety

constraints.

Moreover, to assess the scalability of the proposed control framework to the

number of preceding vehicles, we conduct three other simulations for the scenarios with

5 and 6 vehicles (4 and 5 HDVs, respectively) and demonstrate the vehicle trajectories

in Fig. 4.4. These results verify that the proposed control framework works effectively

with different numbers of preceding vehicles.

Finally, the estimated parameters in the CTH-RV car-following model for the

HDV-2 are depicted in Fig. 4.5. Overall, as more real-time data is added to update
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the estimations, the car-following parameters converge to the set of values that best

describe the driving behavior of the HDVs. Therefore, using the linear CTH-RV model

and online RLS technique, we can approximate a nonlinear car-following model and

use this to predict the future states of the HDVs.

In this section, we addressed the problem of a CAV traveling in a mixed traffic

environment and approaching a signalized intersection. A data-driven predictive con-

trol framework was developed in which the car-following behavior of HDVs ahead of

the CAV is modeled by the CTH-RV model with online estimated parameters through

the RLS algorithm. In the proposed framework, by utilizing data-driven car-following

models, the CAVs can predict the future behavior of the HDVs and then derive their

optimal safety-aware trajectory in a finite horizon. The proposed control framework

was validated by numerical simulations with multiple preceding HDVs showing that

the generated control actions can ensure safe braking for the CAVs. A direction for

future research should focus on extending this framework to consider multi-lane traffic

intersections with lane changing behavior of the HDVs.

4.2 Coordination at a Mixed Traffic Corridor

One of the research directions towards controlling the CAVs in a mixed traffic

environment has been the development of adaptive cruise control [132, 135, 147] where

a CAV, preceded by a single or a group of HDVs, applies cruise control to optimize
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a given objective, e.g., improvement of fuel economy [136], minimization of backward

propagating wave [137, 140], etc. Although these research efforts [97] aim at enhanc-

ing our understanding of improving the efficiency through coordination of CAVs in a

mixed traffic environment, deriving a tractable solution to the problem of CAV coor-

dination at merging or roundabout scenario remains challenging. Several approaches

reported in the literature implemented well-known car-following models, which emulate

the human-driving behavior [101, 160], to derive a deterministic quantification of the

vehicle trajectory [100, 156]. Other approaches have used car-following models [73] or

learning algorithms [105, 106] for CAV coordination in a mixed traffic environment.

There have been also some research efforts that have investigated the effects of CAV

penetration on a mixed traffic network through microscopic [14] or meso/macroscopic

simulation [98, 99] environments.

In this section, we analyze the impact of optimally coordinating CAVs traveling

through a mixed traffic corridor including three different scenarios: on-ramp merging,

speed reduction zone, and roundabout. In this context, CAVs interact with HDVs at

varying penetration rates and different traffic volumes. We study the impact of different

penetration rates of CAVs and traffic volumes on the efficiency of the corridor, provide

extensive simulation results and report on the benefits in terms of total travel time and

fuel economy.

The main features of this section are the (i) development of a simulation envi-

ronment of an optimal CAV coordination framework at a corridor in a mixed traffic

network, and (ii) a detailed analysis of the impact of CAV penetration on the vehicle-

and network-level performance, in terms of fuel economy and travel time, under differ-

ent traffic volumes.

We consider the University of Michigan’s Mcity where CAVs and HDVs are

traveling through a particular test route as illustrated by the black trajectory in Fig.

2.7. The route consists of three traffic scenarios, indexed by z = 1, 2, 3, representing

a highway on-ramp, a speed reduction zone, and a roundabout, respectively. Note
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that to create traffic congestion in the test route, we consider additional traffic flow at

the adjacent roads. Upstream of each traffic scenario, we have the control zone where

CAVs coordinate with each other to avoid any rear-end or lateral collision. The length

of the control zone is Lz ∈ R+ for each traffic scenario z. Since the HDVs do not share

their state information, we consider the presence of intelligent coordinators, which

can be loop-detectors, roadside units, or comparable sensory devices, that collect the

state information of the HDVs traveling within each control zone. The coordinators

transmit the HDVs’ state information to each CAV within each control zone using

standard vehicle-to-infrastructure communication protocols. We define the area of

potential lateral collision to be the merging zone of length Sz specific to traffic scenario

z, as illustrated by the red marked area numbers 1, 2, and 3 in Fig. 2.7. The objective

of each CAV is to derive its optimal control input (acceleration/deceleration) to cross

the traffic scenarios without any rear-end or lateral collision with the other CAVs and

HDVs.

Let t0,zi be the time when each vehicle i enters the control zone towards traffic

scenario z, tm,z
i be the time when the each vehicle enters the merging zone of the traffic

scenario z, and tf,zi be the time when vehicle i exits the corresponding merging zone.

Let Nz = {1, . . . , N(t)}, t ∈ R+, be a queue of vehicles to be analyzed for traffic

scenario z, where N(t) is the total number of CAVs within the control zone of the

specific traffic scenario z at time t ∈ R+. We denote Ncav and Nhdv to be the set of

CAVs and HDVs such that Ncav∪Nhdv = Nz. The dynamics of each vehicle i ∈ Nz are

modeled as (2.3), where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the position, speed,

and acceleration/deceleration (control input) of each vehicle i. Let xi(t) = [pi(t) vi(t)]
T

denote the state of each vehicle i, with initial value xi(t
0,z
i ) = [pi(t

0,z
i ) vi(t

0,z
i )]T . We

impose the state, control and safety constraints as in (2.4), (2.7) and (2.5), respectively.

For the CAV i ∈ Ncav, the control input ui(t) in (2.3) can be derived within

the control zone, the structure of which we discuss in Section 4.2.1. In contrast, we

consider a generic car-following model of the following form to derive the control input
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of each HDV i ∈ Nhdv. In this work, we employ the Wiedemann car-following model

proposed in [160]. In the modeling framework described above, we consider perfect

communication (Assumption 2.1.2), no lane changes or left/right turns (Assumption

2.1.1), and feasible initial conditions (Assumption 2.1.3).

4.2.1 Hierarchical Control Framework

For each CAV i ∈ Ncav, we adopt the optimal control problem presented in

Section 2.1, i.e.,

min
ui

1

2

∫ tm,z
i

t0,zi

u2
i (t)dt, ∀i ∈ Nz, ∀z = 1, 2, 3, (4.11)

subject to : (2.3), (2.4),

pi(t
0,z
i ) = p0,zi , vi(t

0,z
i ) = v0,zi , pi(t

m,z
i ) = pz,

and given t0,zi , tm,z
i ,

where pz is the location (i.e., entry position) of merging zone z; p0,zi , v0,zi are the initial

position and speed of vehicle i when it enters the control zone of traffic scenario z,

respectively. The merging time tm,z
i can be obtained by solving an upper-level control

problem including the safety constraints (2.5), (2.7) in an iterative manner, as detailed

in Chapter 3. Suppose that, each CAV i ∈ Nz is aware of the information of the sets

Lz
i and Czi , which contain the unique id of the preceding vehicles traveling on the same

lane, or on a conflict lane relative to CAV i, respectively. Then, each CAV i determines

the time tm,z
i that will be entering the traffic zone z = 1, 2, 3, upon arrival at the entry

of the corridor as follows (see [177]). If vehicle (i− 1) ∈ Lz
i and (i− 1) ∈ Ncav, we have

tm,z
i = max

{
min

{
tm,z
i−1 +

δ(vi(t))

vi−1(t
m,z
i−1)

, t0,zi +
Lz

vmin

}
, t0,zi +

Lz

v0(t
0,z
i )

, t0,zi +
Lz

vmax

}
, (4.12)

while, if vehicle (i− 1) ∈ Czi and (i− 1) ∈ Ncav, then

tm,z
i = max

{
min

{
tm,z
i−1 +

Sz

vi−1(t
m,z
i−1)

, t0,zi +
Lz

vmin

}
, t0,zi +

Lz

v0(t
0,z
i )

, t0,zi +
Lz

vmax

}
, (4.13)

where Lz and Sz are the length of the control zone and the length of the area of

potential lateral collision, respectively.

146



Note that, if the vehicle preceding CAV i is an HDV, i.e., (i− 1) ∈ Nhdv, then

we apply tm,z
i−1 = t0,zi−1 +

Lz

vi−1(t
0,z
i−1)

to estimate the merging time tm,z
i−1 of HDV i − 1. We

then use tm,z
i−1 in (4.12)-(4.13) to derive the merging time tm,z

i of CAV i. The recursion

of the above computation is initialized when the first vehicle enters the control zone.

Using Hamiltonian analysis [188], the unconstrained optimal control input u∗
i (t)

of CAV i ∈ Nz and the corresponding state trajectories at time t ∈ [t0,zi , tm,z
i ] are [165]

u∗
i (t) = ai · t+ bi, (4.14)

where ai, bi are the constants of integration and can be computed using the analysis

presented in Section 3.1.2.

For the control of CAVs in a mixed environment, if the physically leading vehicle

of a CAV is HDV, the CAV will probe the safety constraint continuously to make an

adjustment to its travel behavior. A switching mechanism is applied in the study: the

control algorithm for a CAV would always be switched on until the safety constraint

(2.5) is activated in terms of the distance between itself and its preceding HDV.

4.2.2 Analysis of the Penetration Impact

To implement the control framework presented in the previous section, we use

the microscopic multi-modal commercial traffic simulation software PTV VISSIM [184,

202] by creating a simulation environment replicating Mcity, as shown in Fig. 2.7. The

corridor through which the vehicle travels has a length of 1,300 m within the Mcity.

The maximum and minimum accelerations considered for each vehicle are 1.5 m/s2

and -3.0 m/s2, respectively. The speed limit on the on-ramp merging, speed reduction

zone, and roundabout are 40 m/s, 18.6 m/s, and 25 m/s, respectively. The control

zone length is 150 m and the safe headway time considered is 1.2 s. The traffic flow

for each volume is 300 [vph/lane], 400 [vph/lane], and 500 [vph/lane]. We employ

the desired traffic congestion by modifying the vehicle flow per hour per lane in the

considered route and its adjacent roadways.
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In this study, we consider the following three different cases:

Baseline: We construct the baseline case considering all the vehicles to be

HDVs and without any communication capability. The vehicles subscribe to the VIS-

SIM built-in Wiedemann car following model [160] to emulate the driving behavior of

real human-driven vehicles. We adopt priority-based (yield/stop) traffic movement at

the roundabout and on-ramp merging scenarios.

Optimal Coordination: In this case, all the vehicles are CAVs and communi-

cate with each other inside the control zone. Therefore, they can optimize their travel

time and fuel efficiency, and plan their optimal trajectories. We consider three isolated

coordinators for each traffic scenario. For the uncontrolled paths in-between the con-

trol zones, the CAVs revert to the Wiedemann car following model [160] to traverse

their respective routes. To apply the optimal control framework, we override VISSIM’s

built-in car following module and associated attributes using the DriverModel API.

Partial Penetration: To simulate the partial penetration case, we consider

both of the above cases as the two extremes and traverse the cases in between with

different percentages of CAV inclusion. We adopt a priority-based (yield/stop) traf-

fic movement at the roundabout and on-ramp merging scenarios only for the HDVs,

whereas the CAVs are allowed to ignore the traffic signs while exiting a traffic scenario

when it is safe to do so.

In our simulation study, we consider high, medium, and low traffic volumes for

the test route as 500, 400 and 300 vehicles per hour, and for the adjacent roads as 800,

600 and 400 vehicles per hour, respectively.

We analyzed the impact of 11 different penetration rates of CAVs ranging from

0% to 100% that may have on fuel economy, travel time improvement as well as the

mean speed changes, and driving behavior. For the fuel consumption analysis, we

used the polynomial metamodel presented in [67]. Using different penetration rates of

CAVs, the simulation results allow several observations. First, for all traffic volumes,
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fuel economy increases when the penetration rate of CAVs increases, as shown in Fig.

4.6. It is observed that the fuel economy is improved within increasing penetration rate

for all traffic volumes. Similarly, the average travel time decreases with the increase in

penetration rate, which represents an improvement in the traffic flow of the network

(Fig. 4.7). Note that, the average speed of the vehicles increases with decreasing traffic

volume, as shown in Fig. 4.7. This is an expected phenomenon, as lower traffic volume

results in fewer braking events. On the other hand, the effect of penetration has a

significant effect on the average speed of the vehicles, as shown in Fig. 4.8 for a high

traffic volume. For 0% penetration rate (top panel of Fig. 4.8), congestion at the traffic

scenarios are prevalent. However, with the increase in CAV penetration, the stop-and-

go driving behavior decreases (middle panel of Fig. 4.8) and at 100% penetration rate

(bottom panel of Fig. 4.8), congestion is completely eliminated. It is also interesting to

note that, the low traffic volume case does not have significant variation with different

CAV penetration rate, as shown in the travel time and average speed distribution in

Fig. 4.7. This is due to the fact that, at low traffic volume, vehicles encounter less

congestion events at the conflict points and traverse the traffic corridor in an almost

“coordinate” way.

Table 4.2: Fuel economy improvement for HDVs.

CAV penetration rate [%] Fuel economy improvement [%]
High Medium Low

10 2.3 -1 0
20 0.3 0.7 5.4
30 -0.3 1.7 2.9
40 1.2 -0.7 3.1
50 2.7 2 4.1
60 2.6 7.4 7.2
70 0.5 5.2 9
80 -1.2 7.5 14.3
90 9.8 18.7 23.4

The fuel economy of the HDVs are summarized in Table 4.2. For all the traffic

volume cases, the HDVs exhibit fuel economy improvement as shown in Table 4.2.
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Figure 4.6: Impact of CAV penetration rate on the fuel economy under low, medium,
and high traffic volumes.

Figure 4.7: Effect of different penetration rates of CAVs on average speed and travel
time.

However, the best penetration rate in terms of the HDVs fuel economy is 90%. This
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Figure 4.8: High traffic volume speed profile at the baseline, 50% penetration rate and
100% scenario. Stop-and-go driving behavior decreases for 50% and is avoided at 100%
penetration case.

significant improvement in HDV fuel economy is due to the fact that, at 90% penetra-

tion rate, the CAVs have higher coordination at the traffic junction, which results in a

congestion-free environment for the rest of the HDVs.

In this section, the impact of different penetration rates of CAVs and their

interaction with HDVs time is analyzed from a network-level perspective. The results

indicate that for higher penetration rates, the improvement in fuel economy, travel

time and average speed is significant. The analysis also shows similar trend across

different traffic volume cases, which indicates that the improvement due to increased

CAV penetration scales well with the traffic demand of the network.
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Chapter 5

PLATOON FORMATION IN A MIXED TRAFFIC ENVIRONMENT

In this chapter, I address the problem of deriving the optimal trajectory of a

CAV in a mixed traffic environment that considers the interaction of HDVs. Since

HDVs cannot be controlled directly, and any prediction of their future trajectories

suffers from stochastic human driving behavior, it is challenging to establish any coop-

eration between the CAVs and HDVs. The hypothesis is that the motion trajectory of

the CAVs can be controlled directly to restrict the motion of its trailing HDVs, thus

imparting indirect control on the HDVs. One natural solution to validate the above

hypothesis is to leverage the concept of vehicle platooning, where a CAV within the

network can be controlled to force the trailing HDVs to form a platoon. In this chapter,

I propose a constrained multi-objective receding horizon control framework that con-

siders linear, non-linear, and data-driven prediction models, and enables mixed platoon

formation by directly controlling the CAVs with enhanced rear-end collision safety. The

optimization objectives of the CAV are (a) to form a platoon with the trailing HDVs,

and (b) to minimize its control effort. The proposed platoon formation framework

employs a receding horizon controller that uses a multi-successor safety constraint to

enforce rear-end collision avoidance constraints for multiple trailing HDVs while de-

riving and implementing the optimal control input of the CAV. I propose two variants

of the receding horizon control, namely, a model-dependent and a model-independent

framework that employs different prediction models for estimating the HDV trajecto-

ries: (a) a naive linear constant speed model, (b) a nonlinear car-following model with

nominal parameters and (c) a data-driven model that estimates the driving behavior

of the HDVs in real time using recursive least squares algorithm to better predict the
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futures trajectories. In short, the approach proposed in this contribution will guarantee

the indirect control of the HDVs by forming mixed platoons.

The structure of this chapter is organized as follows. In Section 5.1, I formulate

the problem of platoon formation in a mixed traffic environment and derive an analyti-

cal solution with feasibility analysis. Then, I present a model-agnostic optimal platoon

formation framework in Section 5.2. Continuing further, in Section 5.3 I develop a

safety-prioritized framework for creating a mixed platoon of vehicles by proposing a

constrained multi-objective receding horizon control approach that considers linear,

non-linear, and data-driven prediction models with enhanced safety guarantee.

5.1 A Condition-based Control Framework for Platoon Formation

In this section, I address the problem of vehicle platoon formation in a traffic net-

work with partial CAV penetration rates. We investigate the interaction between CAV

and human-driven vehicle (HDV) dynamics and provide a rigorous control framework

that enables platoon formation with the HDVs by only controlling the CAVs within

the network. We present a complete analytical solution of the CAV control input and

the conditions under which a platoon formation is feasible. We evaluate the solution

and demonstrate the efficacy of the proposed framework using simulation. The specific

contributions of this research are: (i) the development of a comprehensive framework

that can aim at creating platoon formations of HDVs led by a CAV in a mixed traffic

environment, and (ii) an analytical solution for the control input of CAVs (Theorems

5.1.9 and 5.1.14), along with the conditions under which the solution is feasible (The-

orems 3.1.7 and 5.1.15). In our exposition, we seek to establish a rigorous control

framework that enables the platoon formation in a mixed environment with associated

boundary conditions.
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5.1.1 Problem Formulation

We consider a CAV followed by one or multiple HDVs traveling in a single-lane

roadway of length L ∈ R+. We subdivide the roadway into a buffer zone of length

Lb ∈ R+, inside of which the HDVs’ state information is estimated (Fig. 5.1) (top),

and a control zone of length Lc ∈ R+ such that L = Lb + Lc, where the CAV is

controlled to form a platoon with the trailing HDVs, as shown in Fig. 5.1 (bottom).

The time that a CAV enters the buffer zone, the control zone, and exits the control

zone is tb, tc, tf ∈ R+, respectively.

Let N = {1, . . . , N}, where N ∈ N is the total number of vehicles traveling

within the buffer zone at time t = tc, be the set of vehicles considered to form a

platoon. Here, the leading vehicle indexed by 1 is the CAV, and the rest of the trailing

vehicles in N \{1} are HDVs. We denote the set of the HDVs following the CAV to be

NHDV = {2, . . . , N}. Since the HDVs do not share their local state information with

any external agents, we consider the presence of a coordinator that gathers the state

information of the trailing HDVs traveling within the buffer zone. The coordinator,

which can be a group of loop-detectors or comparable sensory devices, then transmits

the HDV state information to the CAV at each time instance t ∈ [tb, tc] using a standard

vehicle-to-infrastructure communication protocol.

The objective of the CAV 1 is to derive and implement a control input (ac-

celeration/deceleration) at time tc ∈ R+ so that the platoon formation with trailing

HDVs in NHDV is completed within the control zone at a given time tp ∈ (tc, tf ].

In our framework, we model the longitudinal dynamics of each vehicle i ∈ N as a

double-integrator,

ṗi(t) = vi(t), v̇i(t) = ui(t), t ∈ R+, (5.1)

where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui are the position of the front bumper, speed,

and control input (acceleration/deceleration) of vehicle i ∈ N . The sets Pi, Vi, and

Ui, i ∈ N , are complete and totally bounded subsets of R. Let xi(t) = [pi(t) vi(t)]
T
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denote the state vector of each vehicle i ∈ N , taking values in Xi = Pi × Vi.

The speed vi(t) and control input ui(t) of each vehicle i ∈ N are subject to the

following constraints,

0 < vmin ≤ vi(t) ≤ vmax, t ∈ R+,

umin ≤ ui(t) ≤ umax, t ∈ R+, (5.2)

where vmin and vmax are the minimum and maximum allowable speed of the considered

roadway, respectively, and umin and umax are the minimum and maximum control input

of all vehicles i ∈ N , respectively.

The dynamics (5.1) of each vehicle i ∈ N can take different forms based on

the consideration of connectivity and automation. For the CAV 1 ∈ N , the control

input u1(t) can be derived and implemented within the control zone. We introduce

and discuss the structure of the control policy in detail in Section 5.1.2. To model the

HDV dynamics, we need the following definitions.

Definition 5.1.1. The dynamic following spacing si(t) between two consecutive vehi-

cles i and (i− 1) ∈ N is,

si(t) = ρi · vi(t) + s0, (5.3)

Figure 5.1: A CAV (red) traveling with two trailing HDVs (yellow), where the HDVs’
state information is estimated (top scenario) by the coordinator within the buffer zone,
and the platoon is formed (bottom scenario) by controlling the CAV inside the control
zone.
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Figure 5.2: Predecessor-follower coupled car-following dynamic.

where ρi denotes a desired time gap that each HDV i ∈ NHDV maintains while following

the preceding vehicle, and s0 is the standstill distance denoting the minimum bumper-

to-bumper gap at stop.

Definition 5.1.2. The headway ∆pi(t) (see Fig. 5.2) and the approach rate ∆vi(t) of

vehicle i ∈ N between two consecutive vehicles i, (i − 1) ∈ N are ∆pi(t) = pi−1(t) −

pi(t)− lc and ∆vi(t) = vi−1(t)− vi(t), respectively, where lc ∈ R+ is the length of each

vehicle i ∈ N .

Definition 5.1.3. The platoon gap δi(t) is the difference between the bumper-to-

bumper inter-vehicle spacing and the dynamic following spacing si(t) (see Fig. 5.2)

between two consecutive vehicles i and (i− 1) ∈ N , i.e.,

δi(t) = pi−1(t)− pi(t)− si(t)− lc, (5.4)

where lc is the length of each vehicle i ∈ N .

In our approach, we adopt the optimal velocity car-following model [200], to

define the predecessor-follower coupled dynamics (see Fig. 5.2) of each HDV i ∈ NHDV

as follows,

ui(t) = α(Vi(δi(t− ηi), si(t− ηi))− vi(t− ηi)), (5.5)

where α denotes the control gain representing the driver’s sensitivity coefficient, ηi is

the driver’s perception delay with a known upper bound η̄, and Vi(δi(t), si(t)) denotes

the equilibrium speed-spacing function,

Vi(δi(t), si(t)) = vmax

2
(tanh(δi(t))+ tanh(si(t))). (5.6)
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Remark 5.1.1. Based on (5.6), the driving behavior of each HDV i ∈ NHDV depends

on two different modes; (a) decoupled free-flow mode: when δi(t) > 0, each HDV

converges to the maximum allowable speed vmax, and cruises through the roadway

decoupled from the state of the preceding vehicle, and (b) coupled following mode:

when δi(t) ≤ 0, the HDV dynamics becomes coupled with the state of the preceding

vehicle (i− 1) ∈ N , and vi(t) converges to vi−1(t). Note that, if there is no preceding

vehicle, we set δi(t) =∞ that activates the decoupled free-flow mode, which results in

vi(t) converging to vmax.

Remark 5.1.2. The car-following model (5.5) is platoon-stable, i.e., bounded speed

fluctuation between two consecutive vehicles in coupled following mode decays expo-

nentially as time progresses [200].

We now provide the following definitions that are necessary for the formulation

of our proposed platoon formation framework.

Definition 5.1.4. The information set I1(t) of the CAV 1 ∈ N has the following

structure,

I1(t) = {x1(t),x2:N(t)}, t ∈ [tb, tc], (5.7)

where x2:N(t) = [x2(t), . . . ,xN(t)]
T .

Definition 5.1.5. The steady-state traffic flow between two consecutive vehicles i and (i−

1) ∈ N are established if the platoon gap δi(t) does not vary with time, and approach

rate ∆vi(t) := vi(t)− vi−1(t) is zero [203], i.e.,

δi(t) = ci, ci ∈ R, and ∆vi(t) = 0. (5.8)

We now formalize the problem of platoon formation in a mixed environment

addressed in this section as follows.

Problem 5.1.1. Given the information set I1(t) at time t = tc, the objective of the

CAV 1 ∈ N is to derive the control input u1(t) so that the HDVs in NHDV are forced
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to form a platoon at some time tp ∈ (tc, tf ] within the control zone while the following

conditions hold,

vi(t) = veq, δi(t) = ci, ci ≤ 0, ∀t ≥ tp, ∀i ∈ N ,

subject to: (5.2), p1(t
p) ≤ Lc, (5.9)

where, veq denotes the equilibrium platoon speed.

Remark 5.1.3. In our problem formulation, we impose the restriction that at t =

tc, there exists at least one HDV i ∈ NHDV such that δi(t
c) > 0. To simplify the

formulation and without loss of generality, we consider that δN(t
c) > 0. This ensures

that we do not have the trivial case where the group of vehicles in N has already

formed a platoon at t = tc.

In the modeling framework presented above, we impose the following assump-

tion.

Assumption 5.1.1. The CAV is on a decoupled free-flow mode (Remark 5.1.1) while

all vehicles have reached steady-state traffic flow (Definition 5.1.5) within [tb, tc].

Remark 5.1.4. We restrict the control of the CAV 1 only within the control zone

so that we have a finite control horizon [tc, tf ]. Outside the control zone, the CAV

dynamics follows the car-following model in (5.5).

Lemma 5.1.6. For each vehicle i ∈ N , vi(t
c) = vmax.

Proof. Since the control input u1(t) of the uncontrolled CAV 1 ∈ N is determined by

(5.5) outside the control zone (Remark 5.1.4), and due to the fact that any vehicle

following the dynamics in (5.5) converges to the maximum speed vmax without the

presence of a preceding vehicle (Remark 5.1.1), v1(t) converges to vmax.

For a HDV i ∈ NHDV traveling under the steady-state traffic flow condition

(Assumption 5.1.1), δi(t) does not vary with time. This implies that each HDV i either

travels with decoupled free-flow mode with vi(t) = vmax, or with coupled following

mode with vi(t) = vi−1(t) = vmax.
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In what follows, first, we address Problem 5.1.1 considering only two vehicles,

i.e., N = 2, and then generalize the analysis for multiple HDVs, i.e., N > 2.

5.1.2 Control Framework for Platoon Formation

For N = 2, CAV 1 ∈ N is trailed by HDV 2 ∈ NHDV. The information set

I1(tc) includes v1(t
c) = v2(t

c) = vmax (Lemma 5.1.6), and δ2(t
c) > 0 (Remark 5.1.3).

The following result characterizes the control structure of CAV 1 ∈ N for the platoon

formation framework.

Lemma 5.1.7. For a CAV 1 ∈ N travelling with a trailing HDV 2 ∈ NHDV, (i) a

platoon formation does not occur when u1(t) ≥ 0 for all t ∈ [tc, tf ], and (ii) a platoon

formation occurs with an appropriate control zone of length Lc when u1(t) < 0 for all

t ∈ [tc, ta], tc < ta < tf .

Proof. Part (i): For u1(t) ≥ 0 for all t ≥ tc, we have δ2(t) > 0 for all t ≥ tc, which

implies that according to (5.9), no platoon formation will occur.

Part (ii): For u1(t) < 0 within an arbitrary time horizon [tc, ta], tc < ta < tf ,

we have v1(t
a) < v1(t

c). Since v1(t
c) = v2(t

c) = vmax (Lemma 5.1.6), we have v2(t
a) >

v1(t
a). This implies that δ2(t) decreases for all t ≥ ta. As time t progresses, given an

appropriate control zone of length Lc, we have δ2(t)→ 0, which guarantees a platoon

formation.

When the CAV 1 ∈ N applies a control input u1(t), t ∈ [tc, tp] based on Lemma

5.1.7 to form a platoon with the HDV 2 ∈ NHDV at time t = tp, two sequential steps

take place, namely, (i) the platoon transition step, where the HDV 2 transitions from

the decoupled free-flow mode to the coupled following mode at time t = ts, tc < ts < tp

such that δ2(t
s) = 0, and (ii) the platoon stabilization step, where v2(t) converges to

v1(t) at time t = tp such that (5.9) is satisfied, and the platoon becomes stable.

Definition 5.1.8. The platoon transition duration τ t is the time required for the

completion of the platoon transition step, i.e., τ t = ts−tc, and the platoon stabilization
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duration τ s is the time required for the completion of the platoon stabilization step,

i.e., τ s = tp − ts. Hence, we have tp = tc + τ t + τ s.

Remark 5.1.5. The platoon stabilization duration is τ s = ηi + τ r, where ηi is the

perception delay of HDV i ∈ NHDV, and τ r is the response time of (5.5) which de-

pends on the driver’s sensitivity coefficient α, maximum allowable speed fluctuation,

and the choice of equilibrium speed-spacing function in (5.6), and can be computed

using stability analysis presented in [200, 204, 205]. Note that, for N ≥ 2, additional

nonlinearities may impact the computation of τ s. In our formulation, we incorporate

the upper bound of the perception delay η̄ to achieve robustness such that τ s = η̄+ τ r,

and consider that τ r is given a priori. Thus we focus only on the analysis of the platoon

transition time τ t.

Using Lemma 5.1.7, we construct the structure of the control input u1(t) for the

CAV 1 ∈ N for generating a platoon with the trailing HDV 2 ∈ N at time tp ∈ (tc, tf ],

u1(t) =

 up, up ∈ [umin, 0), t ∈ [tc, ts],

0, t ∈ (ts, tf ].
(5.10)

According to (5.10), the realization of the control input u1(t) of the CAV 1 ∈ N , which

is up ∈ (0, umin] in t ∈ [tc, ts], yields a linearly decreasing v1(t) in t ∈ [tc, ts].

The following result provides the unconstrained relation between the platoon

transition duration τ t and CAV control input parameter up.

Theorem 5.1.9. For a CAV 1 ∈ N and a trailing HDV 2 ∈ NHDV, there exists an

unconstrained control input parameter up in (5.10) such that a vehicle platoon can be

formed with HDV 2 ∈ N at time t = tp according to the following condition,

2δ2(t
c) + up · (τ t)2 = 0. (5.11)

Proof. At ts = tc + τ t, we require δ2(t
s) = 0 implying p1(t

s) − p2(t
s) = s2(t

s) + lc,

which we expand as follows. Using (5.1) at time ts = tc + τ t, we have p1(t
c + τ t) =
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p1(t
c)+v1(t

c)·τ t+ 1
2
up·(τ t)2. Based on Lemma 5.1.6, v1(t

c) = vmax. For HDV 2 ∈ NHDV,

δ2(t) > 0 (Remark 5.1.3) until the platoon transition step at time t = ts. This implies,

that HDV 2 travels with decoupled free-flow mode as in (5.5), and v2(t) = vmax for

all t ∈ [tc, ts] (Lemma 5.1.6). Using (5.5) for HDV 2 at time ts = tc + τ t, we have,

v2(t
c + τ t) = v2(t

c) = vmax and p2(t
c + τ t) = p2(t

c) + v2(t
c) · τ t. Substituting the last

equation into (5.3), we have s2(t
s) = s2(t

c), and hence p1(t
c) + v1(t

c) · τ t + 1
2
up · (τ t)2−

p2(t
c)− v2(t

c) · τ t = s2(t
c) + lc. Simplifying using (5.4), the result follows.

Remark 5.1.6. From (5.11), as up → 0, we have τ t →∞, which implies that platoon

formation will never occur. If up > 0, then (5.11) yields an infeasible τ t. Therefore, up

has to be strictly negative for platoon formation. Note, from (5.11), for δ2(t) > 0 and

t ∈ R+, we have up < 0.

5.1.2.1 Feasibility of Platoon Formation

In Theorem 5.1.9, we do not explicitly incorporate the state and control con-

straints in (5.2), and the terminal constraint in (5.9). For a given platoon formation

time tp, the corresponding control input derived from (5.11) can violate constraints in

(5.2). In what follows, we present Lemmas 5.1.10 and 5.1.11 that provide a feasible

region of τ t that yields an admissible control input parameter up in (5.11).

Lemma 5.1.10. For CAV 1 ∈ N , the platoon transition duration τ t subject to the

state and control constraints in (5.2) is feasible if the following condition holds,

τ t ≥ max

{(
−2δ2(tc)
umin

) 1
2

,
2δ2(t

c)

v1(tc)− vmin

}
. (5.12)

Proof. Suppose that, for CAV 1 ∈ N , up = umin yields a corresponding platoon tran-

sition duration τ t1 . From (5.11), we have (τ t1)2 = −2δ2(t)
umin

. Therefore, for any τ t to be

feasible such that up ∈ [umin, 0), we require τ t ≥ τ t1 , which yields the inequality with

the first term in (5.12).

Now, suppose that for CAV 1 ∈ N , a platoon transition duration τ t has

associated control input parameter up derived from (5.11). Using (5.1), we have,
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v1(t
c + τ t) = v1(t

c) + up · τ t. Since up ∈ [umin, 0), we require that v1(t
c + τ t) ≥ vmin to

satisfy the state constraint in (5.2). Substituting v1(t
c+ τ t) in the above inequality, we

get up · τ t ≥ vmin − v1(t
c). Finally, substituting up from (5.11) in the above equation

yields the inequality with the second term in (5.12).

Finally, since both above inequalities yield lower bounds on τ t, we simply take

their maximum and get (5.12).

Remark 5.1.7. The minimum speed value vmin in (5.12) indicates the allowable speed

perturbation during the platoon stabilization step. Hence, vmin should be selected

appropriately to ensure local stability of the platoon [204, 205].

Lemma 5.1.11. For the CAV 1 ∈ N subject to the control input (5.10), the following

condition must hold in order to complete platoon formation at time t = tp within the

control zone of length Lc,

τ t ≤ ϕ1

2
+

√
ϕ2
1 + 4ϕ2

2
, (5.13)

where, ϕ1 :=
Lc+δ2(tc)−v1(tc)·(τr+η̄)

v1(tc)
, and ϕ2 :=

2δ2(tc)·(τr+η̄)
v1(tc)

.

Proof. Suppose that, for CAV 1 ∈ N , p1(t
p) − p1(t

c) ≤ Lc. Using (5.10), p1(t
p) =

p1(t
c + τ t) + v1(t

s) · τ s, which yields

p1(t
c + τ t)− p1(t

c) + v1(t
s) · τ s ≤ Lc. (5.14)

From (5.1) and (5.10), we have, p1(t
c+ τ t) = p1(t

c)+ v1(t
c) · τ t+ 1

2
up(τ

t)2, and v1(t
s) =

v1(t
c) + upτ

t. Substituting p1(t
c + τ t), v1(t

s) into (5.14), τ s = τ r + η̄ from Remark

5.1.5, and using (5.10)-(5.11), we have, τ t − 2δ2(tc)·τs
v1(tc)·τ t ≤

Lc+δ2(tc)−v1(tc)·τs
v1(tc)

. Simplifying

and letting ϕ1 =
Lc+δ2(tc)−v1(tc)·(τr+η̄)

v1(tc)
, and ϕ2 =

2δ2(tc)·(τr+η̄)
v1(tc)

, the above equation yields

a quadratic inequality (τ t)2 − ϕ1τ
t − ϕ2 ≤ 0, solving which yields (5.13).

The following result provides the condition under which for a given platoon

formation time tp and platoon stabilization duration τ s, the corresponding platoon

transition duration τ t is feasible.
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Theorem 5.1.12. For a CAV 1 ∈ N to complete the platoon transition step with its

following HDV 2 ∈ NHDV with control input u1(t) = up, t ∈ [tc, ts] within the control

zone of length Lc, a platoon transition duration τ t is feasible if

max

{(
−2δ2(tc)
umin

) 1
2

,
2δ2(t

c)

v1(tc)− vmin

}
≤ τ t ≤ ϕ1 +

√
ϕ2
1 + 4ϕ2

2
, (5.15)

holds.

Proof. The proof follows directly from Lemmas 5.1.10 and 5.1.11.

5.1.2.2 Scalability of the Control Framework

For N > 2, the CAV 1 ∈ N trailed by multiple HDVs j ∈ NHDV and given

I1(tc), we have the following conditions, v1(t
c) = vj(t

c) = vmax for all j ∈ NHDV

(Lemma 5.1.6), and there exists j ∈ NHDV such that δj(t
c) > 0 (Remark 5.1.3).

Definition 5.1.13. For a CAV 1 ∈ N followed by N ∈ NHDV HDVs, the cumulative

platoon gap ∆(t) at time t ∈ [tc, tf ] is,

∆(t) = p1(t)− pN(t)−
N∑
j=2

(sj(t) + lc). (5.16)

In what follows, we extend the analysis presented in Theorems 5.1.9 and 5.1.12,

and derive results that enables platoon formation considering multiple trailing HDVs,

i.e., N > 2. The following theorem provides the unconstrained relation between the

platoon transition duration τ t and CAV control input parameter up for N > 2.

Theorem 5.1.14. For a CAV 1 ∈ N followed by N HDVs j ∈ NHDV, there exists an

unconstrained control input parameter up in (5.10) such that a vehicle platoon can be

formed with HDVs j ∈ N at time t = tp according to the following relation,

2∆(tc) + up · (τ t)2 − 2upτ
t

N−1∑
j=2

ρj = 0. (5.17)

163



Proof. At ts = tc + τ t, we require p1(t
s) − pN(t

s) =
∑N−1

j=2 sj(t
s) + sN(t

s) +
∑N

j=2 lc.

Using (5.1), we have p1(t
c + τ t) = p1(t

c) + v1(t
c) · τ t + 1

2
up · (τ t)2, and pN(t

c + τ t) =

pN(t
c) + vN(t

c) · τ t. Substituting p1(t
c + τ t) and pN(t

c + τ t) into the last equation and

simplifying, we have,

p1(t
c)− pN(t

c)−
N−1∑
j=2

sj(t
s)− sN(t

s)−
N∑
j=2

lc = −
1

2
up · (τ t)2. (5.18)

At t = ts, we have sN(t
s) = sN(t

c), sj(t
s) = ρjv1(t

s) + s0 and sj(t
c) = ρjvj(t

c) +

s0 for j = 2, . . . , N − 1. With v1(t
s) = v1(t

c) + upτ
t, we have sj(t

s) = sj(t
c) +

ρjupτ
t, j = 2, . . . , N − 1. Using the last equations in (5.18), we have p1(t

c)− pN(t
c)−∑N

j=2 sj(t
c) −

∑N−1
j=2 ρjupτ

t −
∑N

j=2 lc = −
1
2
up · (τ t)2, and using Definition 5.1.13, the

results follows.

For N > 2, the following result provides the condition under which for a given

platoon formation time tp and platoon stabilization duration τ s, the corresponding

platoon transition duration τ t in Theorem 5.1.14 is feasible.

Theorem 5.1.15. For a CAV 1 ∈ N to complete the platoon transition step with its

following N HDVs j ∈ NHDV with control input u1(t) = up, t ∈ [tc, ts] within the

control zone of length Lc, a platoon transition duration τ t is feasible if,

max

{(
C1 +

√
C2

1 −
2∆(tc)

umin

)
, 2C1 +

2∆(tc)

v1(tc)− vmin

}
≤ τ t ≤ ϕ3 +

√
ϕ2
3 + 4ϕ4

2
, (5.19)

holds, where C1 :=
∑N−1

j=2 ρj, C2 := Lc − v1(t
c) · τ s, ϕ3 := 2C1v1(tc)+∆(tc)+C2

v1(tc)
, and

ϕ4 :=
2∆(tc)·τs−2C1C2

v1(tc)
.

Proof. Suppose that, for CAV 1 ∈ N , up = umin yields a corresponding platoon

transition duration τ t1 . From (5.17), we have (τ t1) = C1 +
√

C2
1 −

2∆(tc)
umin

, where

C1 :=
∑N−1

j=2 ρj. Therefore, for any τ t to be feasible such that up ∈ [umin, 0), we

require τ t ≥ τ t1 , which yields the inequality with the first term in (5.19).

Now for the second inequality term, since up ∈ [umin, 0), we require that v1(t
c + τ t) ≥
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vmin to satisfy the state constraint in (5.2). Using (5.1), we have, v1(t
c + τ t) =

v1(t
c)+up·τ t. Substituting v1(tc+τ t) in the above inequality, we get up·τ t ≥ vmin−v1(tc).

Substituting up from (5.17) and simplifying, we have the inequality with the second

term in (5.19). Since both left-hand side inequalities mentioned above give lower

bounds on τ t, we simply take their maximum and get the left inequality of (5.19).

Finally, using the result of Theorem 5.1.14 and following similar steps to those in the

proofs of Lemma 5.1.11, we derive the right inequality of (5.19).

5.1.3 Numerical Validation: Highway Platooning

To demonstrate the performance of the proposed platoon formation framework,

we present the simulation considering N = {1, 2, 3} consisting of a CAV 1 followed by

two HDVs 2 and 3, using numerical simulation in MATLAB R2020b. For a desired

platoon formation time tp = 47.2 s and a given platoon stabilization duration τ s = 5

s, τ t = 42.2 s is feasible according to Theorem 5.1.15, and we use Theorem 5.1.14

to compute the corresponding control input up for CAV 1. The headway trajectories

of HDVs 2 and 3 converge to the equilibrium value and remain time invariant for all

t > tp, as shown in Fig. 5.3 (bottom). Since the conditions in (5.9) are satisfied for all

t ≥ tp, the platoon formation is completed at time t = tp s as indicated by the position

trajectories shown in Fig. 5.3 (top).

In Fig. 5.4, we show the robustness of the proposed framework in terms of

platoon formation deviation representing the percentage deviation of the actual platoon

formation time tap from the desired platoon formation time tp, i.e., tap−tp

tp
× 100[%],

for N = 2, 3 and 4. Here, positive platoon formation deviation indicates delayed

platoon formation in actual simulation, and conversely, negative deviation indicates

platoon formation before tp. Figure 5.4(a) shows that the platoon is formed within 2.5%

deviation for all admissible τ t, where the higher τ t values minimizes delayed platoon

formation instances. The robustness of the framework under different perception delay

ηi ∈ [0, 1] is showed in Fig. 5.4(b). Since the platoon formation deviations are mostly
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Figure 5.3: Platoon formation for N = 3, where the position (top) and headway
(bottom) of the vehicles are illustrated.

non-positive, the conservative consideration of η̄ guarantees platoon formation within

the desired platoon formation time tp.

Finally, we consider the variation of two car-following parameters, namely the

desired time gap ρi ∈ [0.5, 1.5] and driver’s sensitivity coefficient α ∈ [1, 2], to in-

vestigate the performance of the proposed framework under random human driving

behavior based on (5.5), as shown in Fig. 5.4(c) and (d), respectively. The proposed

framework is robust against variation of ρi, and shows delayed platoon formation only

near the maximum value of ρi. In contrast, the proposed framework shows delayed

platoon formation with < 3% deviation for variation of α. Note that, since τ s is de-

pendent on α, the appropriate computation of τ s can minimize the platoon formation

deviation with varying α.

Supplementary videos of the simulation and experimental results of the proposed

framework as well as the parameters used for the simulation results can be found at:

https://sites.google.com/udel.edu/platoonformation. To summarize, we presented a

framework for platoon formation under a mixed traffic environment, where a leading

CAV derives and implements its control input to force the following HDVs to form a
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Figure 5.4: Percentage deviation of actual platoon formation time vs. desired platoon
formation time for N = 2, 3 and 4 under the consideration of different platoon transi-
tion duration τ t (subfigure (a)), perception delay ηi (subfigure (b)), and car-following
model parameters ρi and α (subfigure (c)-(d)), respectively.

platoon. Using a predefined car-following model, we provided a complete, analytical

solution of the CAV control input intended for the platoon formation. We also pro-

vided a detailed analysis of the platoon formation framework and provided conditions

under which a feasible platoon formation time exists. Finally, we presented numerical

examples to validate the robustness of our proposed framework.

In the following section, we extend the approach by introducing a model-agnostic

multi-objective optimal control framework subject to the system constraints.

5.2 A Model-Agnostic Optimal Platoon Formation Framework

In this section, we present a multi-objective optimal control framework for each

CAV within the traffic network subject to its state and control constraints. The opti-

mization objectives of each CAV are (a) to form a platoon with the trailing HDVs, and
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(b) to improve its fuel economy while achieving (a). Our proposed control framework

is model-agnostic, i.e., it does not require the explicit knowledge of the HDVs’ car-

following model, and employs a receding horizon controller that uses a multi-successor

communication topology, i.e., reception of instantaneous motion information from mul-

tiple trailing HDVs, to enforce safety while deriving and implementing the optimal

control input of the CAV.

We consider the same setup as shown in Fig. 5.1, where a CAV followed by

one or multiple HDVs is traveling in a single-lane roadway of length L ∈ R+, which

is subdivided into a buffer zone and a control zone. The CAV enters and leaves the

control zone at times tc, tf ∈ R+, respectively. Similar to Section 5.1, we assume the

presence of a coordinator, which can be a loop-detector or comparable intelligent device

that transmits the HDV state information to the CAV at each time instance t ∈ [tc, tf ]

using the standard vehicle-to-infrastructure communication protocol.

Let N = {1, . . . , N}, where N ∈ N is the total number of vehicles traveling

within the buffer zone, be the set of vehicles considered to form a platoon. Here,

the leading vehicle indexed by 1 is the CAV, and the rest of the trailing vehicles in

NHDV := N \ {1} are HDVs. The objective of CAV 1 ∈ N is to derive and implement

the optimal control input (acceleration/deceleration) such that a platoon formation

with the trailing HDVs in NHDV is completed within the control zone of length Lc.

The dynamics of each vehicle i ∈ Nz are modeled as (5.1), where pi(t) ∈

Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the position, speed, and acceleration/deceleration

(control input) of each vehicle i. The sets Pi, Vi, and Ui, i ∈ N , are complete and

totally bounded subsets of R. We impose the state and control constraints as in (5.2).

Using Definitions 5.1.1 and 5.1.2, we impose the following rear-end collision avoidance

constraint

∆pi(t) ≥ si(t), ∀t ∈ [tc, tf ]. (5.20)

In the modeling framework described above, we consider perfect communication
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(Assumption 2.1.2), no lane changes or left/right turns (Assumption 2.1.1), and feasible

initial conditions (Assumption 2.1.3).

The control input ui(t) of each vehicle i ∈ N in (5.1) can take different forms

based on the consideration of connectivity and automation. For CAV 1 ∈ N , we

derive and implement the control input u1(t) using the optimal control framework

discussed in Section 5.2.1. For each HDV i ∈ NHDV, however, we consider a car-

following model to represent the predecessor-follower coupled dynamics (see Fig. 5.2),

which has the generic structure ui(t) = f(∆pi(t),∆vi(t), vi(t)). Here, f(·) represents

the behavioral function of the car-following model. In this section, we consider that

the HDVs’ behavioral function f is unknown to CAV 1.

Remark 5.2.1. We restrict the control of the CAV only within the control zone so

that we only have a finite optimization horizon [tc, tf ] to consider. Outside the control

zone, the CAV dynamics follows the car-following model in (5.5).

Definition 5.2.1. The information set I1(t) of CAV 1 ∈ N at time t ∈ [tc, tf ] is I1(t) =

{p1:N(t), v1:N(t)}, where p1:N(t) = [p1(t), . . . , pN(t)]
T and v1:N(t) = [v1(t), . . . , vN(t)]

T .

Definition 5.2.2. A platoon formation is established at some time tp ∈ (tc, tf ) if for

each vehicle i ∈ N , the headway ∆pi(t) converges to an equilibrium headway ∆peq,

and the approach rate ∆vi(t) converges to zero, i.e.,

∆pi(t) = ∆peq, ∆peq ∈ R+, ∀t ≥ tp, (5.21)

∆vi(t) = 0, ∀t ≥ tp. (5.22)

Remark 5.2.2. The conditions in (5.21)-(5.22) might be too restrictive to establish

a platoon formation in a practical setting. Therefore, we relax these conditions and

introduce the following root-mean-squared error based conditions to establish a platoon

formation at some time tp ∈ (tc, tf ),√√√√ 1

N − 1

N∑
i=2

(∆pi(t)− µ∆p(t))2 ≤ ϵ∆p, ∀t ≥ tp, (5.23a)

√√√√ 1

N

N∑
i=1

(vi(t)− µv(t))2 ≤ ϵv, ∀t ≥ tp, (5.23b)
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where µ∆p(t) :=
∑N

i=2 ∆pi(t)

N
and µv(t) :=

∑N
i=1 vi(t)

N
are the mean headway and mean

speed of N vehicles, respectively, and ϵ∆p, ϵv ∈ R+ are the allowable deviation of

∆pi(t) and vi(t) from the equilibrium values ∆peq and veq, respectively.

Next, we formally state the platoon formation problem in a mixed environment

as follows.

Problem 5.2.1. Given the information set I1(t) for each time t ∈ [tc, tf ], the objective

of the CAV 1 ∈ N is to derive its optimal control input u∗
1(t) so that the each vehicle

i ∈ N achieves a platoon formation (Definition 5.2.2) within the control zone.

Remark 5.2.3. In our framework, CAV 1 derives its optimal control input u∗
1(t) by

solving an optimal control problem with the following objectives: (a) formation of

platoon with the trailing HDVs (Definition 5.2.2), and (b) improvement of its fuel

economy while achieving (a).

In this approach, we adopt a receding horizon control framework with a multi-

successor communication topology to address Problem 5.2.1. In what follows, we pro-

vide a detailed exposition of the receding horizon control framework that leads to an

optimal platoon formation (Remark 5.2.3).

5.2.1 Receding Horizon Control Framework

The basic principle of a receding horizon control is that the optimal control

input sequence at the current time instance is obtained by solving an optimal control

problem online with the prediction horizon Tp, and only implementing the first element

of the solved optimal control input sequence. Then the horizon moves forward one step,

and the above process is repeated until the optimization horizon Th is reached.

Remark 5.2.4. The exit time tf of CAV 1 from the control zone depends on the nature

of the optimal control input of CAV 1, and thus, it is not known a priori. Let te be the

time that the CAV exits the control zone when cruising with a constant speed inside
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the control zone. Then, te = tc + Lc

v1(tc)
. In our previous work [169], we have shown

that a platoon formation with trailing HDVs can be achieved by a non-positive control

trajectory of the CAV. Consequently, if we aim at forming the platoon by considering

the optimization horizon to be Th = te − tc, then we can ensure that the platoon is

formed within the control zone.

For CAV 1, we aim to achieve the optimization objectives outlined in Remark

5.2.3 while enforcing rear-end collision avoidance constraint with its trailing HDV. To

this end, the adoption of the CAV dynamics in (5.1) is not sufficient; our proposed

control framework requires the consideration of an augmented CAV dynamics model.

5.2.1.1 Augmented CAV dynamics

To capture the additional characteristics of the platoon formation dynamics from

the CAV’s control point of view, our proposed control framework uses instantaneous

motion information from multiple successive HDVs. Hence, we define two additional

states as follows.

Definition 5.2.3. The head-to-tail gap of the platoon, e1,1(t) and the leader-follower

gap, e1,2(t) are e1,1(t) = p1(t) − pN(t) − (N − 1)lc and e1,2(t) = p1(t) − p2(t) − lc,

respectively.

The additional states e1,1(t) and e1,2(t) enables the augmentation of the CAV

dynamics (5.1) with the following set of equations,

ė1,1(t) = v1(t)− vN (t), (5.24)

ė1,2(t) = v1(t)− v2(t). (5.25)

Remark 5.2.5. The consideration of the head-to-tail gap e1,1(t) of the platoon enables

the formulation of the objective function for the platoon formation problem whereas

the leader-follower gap e1,2(t) enables the enforcement of rear-end collision avoidance

constraint in (5.20), leading to a safe platoon formation.
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To enable the application of discrete time receding horizon control, we formulate

the optimal control problem in discrete time. Suppose, the optimization horizon Th is

discretized by a sampling time interval τ leading to discrete time instance k. Assuming

constant value of control input u1(k) during each time step [k, (k + 1)], we recast the

augmented CAV dynamics (5.1) and (5.24)-(5.25) as linear discrete-time state equations

p1(k + 1) = p1(k) + v1(k)τ +
1

2
u1(k)τ

2, (5.26)

v1(k + 1) = v1(k) + u1(k)τ, (5.27)

e1,1(k + 1) = e1,1(k) + (v1(k)− vN (k))τ +
1

2
u1τ

2, (5.28)

e1,2(k + 1) = e1,2(k) + (v1(k)− v2(k))τ +
1

2
u1τ

2. (5.29)

We define the current state vector x1(k), measured output vector y1(k) and the mea-

sured disturbance vector w1(k) as

x1(k) :=


p1(k)

v1(k)

e1,1(k)

e1,2(k)

 , y1(k) :=


v1(k)

e1,1(k)

e1,2(k)

 , w1(k) :=

vN (k)

v2(k)

 .

The state-space representation of the discrete dynamic in (5.26)-(5.29) is thus

x1(k + 1) = Ax1(k) +Buu1(k) +Bww1(k), (5.30)

y1(k) = Cx1(k), (5.31)

where, the corresponding state matrix A, control matrix Bu, disturbance matrix Bw

and output matrix C can be computed using (5.26)-(5.31). For the remainder of this

section, we drop the subscript 1 denoting the CAV from the discrete state-space model

where it does not introduce ambiguity.

5.2.1.2 Prediction Model

To solve an online optimization within the prediction horizon Tp, the receding

horizon controller requires a prediction model to take into account the future possible
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states. In general, the future system states are predicted based on the model (5.30)-

(5.31) and the current state information x(k). Let us define the predicted state, pre-

dicted output, control and disturbance vector given the prediction horizon Tp and con-

trol horizon Tc as X̃(k+Tp|k) = [x̃(k+1|k), x̃(k+2|k), . . . , x̃(k+Tp|k)]T , Ỹ (k+Tp|k) =

[ỹ(k+1|k), ỹ(k+2|k), . . . , ỹ(k+Tp|k)]T , U(k+Tc) = [u(k), u(k+1), . . . , u(k+Tc−1)]T

and W (k + Tp) = [w(k), w(k + 1), . . . , w(k + Tp − 1)]T , respectively. Here x̃(k + n|k),

ỹ(k + n|k), and w(k + n − 1), n = 1, . . . , Tp, denote the predicted state, output and

disturbance values within the prediction horizon Tp based on their value at the discrete

instance k, respectively.

The predictive state and associated performance vectors of the receding horizon

controller can subsequently be represented as

X̃(k + Tp|k) = Ãx(k) + B̃uU(k + Tc) + B̃dW (k + Tp), (5.32)

Ỹ (k + Tp|k) = C̃x(k) + D̃uU(k + Tc) + D̃dW (k + Tp), (5.33)

where the predictive system matrices Ã, B̃u, B̃d, C̃ and D̃ can be computed using the

definitions above.

In our formulation, we consider that the measured disturbance w(k) in (5.32)-

(5.33) remains constant within the prediction horizon Tp. Therefore, we have w(k +

n|k) = w(k), n = 1, . . . , Tp. Consequently, the disturbance vector can be computed as

W (k+Tp) = [w(k), · · · , w(k)]T . The inaccuracy in modeling the predicted disturbance

vector W (k + Tp) can be compensated by incorporating a feedback scheme into the

receding horizon optimization [206].

5.2.1.3 Formulation of the Optimal Control Problem

Let us define ∥z∥M to be theM weighted norm of an arbitrary vector z such that

∥z∥M := (zTMz)
1
2 . In order to drive each HDV’s state towards the equilibrium platoon

state, the primary aim of the CAV controller is to minimize the squared error between
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the predicted output ỹ(k + n|k), n = 1, 2, . . . , Tp, and the corresponding reference

output. The first objective function thus takes the form

J1 :=
1

2

Tp∑
n=1

∥ỹ(k + n|k))− yr(k + n)∥2Q , (5.34)

where the reference output yr(k) := [0, (N − 1)(s0 + ρ
[
1 0

]
w(k)), 0]T and the

positive semi-definite output weight matrix Q := diag(qv, qe1 , qe2) with the diagonal

weight parameters qv, qe1 , qe2 corresponding to the speed v1(k), head-to-tail gap e1,1(k)

and leader-follower gap e1,2(k), respectively. Since the measured disturbance w(k)

remains constant within the prediction horizon Tp, and the reference output yr(k) is

an explicit function of the measured disturbance w(k), the predictive reference output

yr(k + n|k), n = 1, . . . , Tp remains constant within the prediction horizon Tp as well.

Thus we have yr(k + n|k) = yr(k), n = 1, . . . , Tp.

The second objective of the controller is to improve the fuel economy of the CAV

by minimizing the L2-norm of the CAV’s control input. Hence, we have the second

objective function J2 := 1
2

∑Nc

m=1 ∥u(k +m− 1)∥2R, where R := [wr] is the positive

definite weight matrix on the control input with positive weight parameter wr.

Finally, combining the above objective functions and using the compact nota-

tions from (5.32)-(5.33), we have the final objective function as follows

J =
1

2

∥∥∥Ỹ (k + Tp|k)− Yr

∥∥∥2
Q̄
+

1

2
∥U(k + Tc)∥2R̄ , (5.35)

where Yr = [yr(k), · · · , yr(k)]T , and Q̄ and R̄ are weight matrices. In our formulation,

we consider the constraints on the control input in (5.2), safety in (5.20), and CAV

speed in (5.2) associated with the physical limitation of the CAV dynamics, passenger

safety, and speed limit of the roadway, respectively. The constraints in the context of
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the proposed receding horizon control framework are thus given as

umin ≤ u(k +m− 1) ≤ umax, m = 1, . . . , Tc, (5.36a)

e1,1(k + n) ≥ (N − 1)s0, n = 1, . . . , Tp, (5.36b)

e1,2(k + n) ≥ s0, n = 1, . . . , Tp, (5.36c)

vmin ≤ v(k + n) ≤ vmax, n = 1, . . . , Tp. (5.36d)

With the objective function (5.35), constraints (5.36), dynamics model (5.26)-(5.29),

and the information set I1(k), k = 0, . . . , Th at hand, the optimal control problem can

finally be written as

min
U(k+Tc)

J, (5.37)

subject to : (5.26)− (5.29), (5.36) and given I1(k).

The optimal control problem in (5.37) can be transformed into a standard quadratic

programming problem and solved using the active-set algorithm, see [206, 207]. It

is possible to soften the state constraints in (5.36) to facilitate the feasibility of the

solution of (5.37). However, a significantly large penalty should be incorporated into

the objective function in (5.37) using a dimensionless, non-negative slack variable to

handle the soft constraint violation, the exposition of which is outside the scope of this

section and can be found in [207].

5.2.2 Sensitivity, Scalability and Robustness Analysis

To evaluate the performance of the proposed control framework, we adopt the

optimal velocity model (OVM) [200] and the intelligent driver model (IDM) [161] to

represent the predecessor-follower coupled dynamics of each HDV i ∈ NHDV. One of

the simplest forms of the OVM car-following model [200] is given as

ui(t) = α(Vi(δi(t), si(t))− vi(t)), (5.38)

Vi(δi(t), si(t)) = vd
2 (tanh(δi(t))+ tanh(si(t))),

where δi(t) := ∆pi(t) − si(t), and α, Vi(δi(t), si(t)) and vd denote the control gain

representing the driver’s sensitivity coefficient, the equilibrium speed-headway function
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and the desired speed of the roadway, respectively. The IDM car-following model [161]

for HDV i ∈ NHDV has the following structure

ui(t) = a

(
1−

(
vi(t)

vd

)γ

−
(
∆p̄i(t)

∆pi(t)

)2)
, (5.39)

∆p̄i(t) = si(t) +
vi(t)∆vi(t)

2ab
,

where, a, b and γ are the desired acceleration, comfortable braking and acceleration

exponent, respectively. The parameters for the car-following models and the receding

horizon controller considered in our numerical study can be found in

https://sites.google.com/view/ud-ids-lab/model-agnostic-platoon.

Table 5.1: Simulation parameters considered.

Parameters Values

Minimum speed, vmin 10.0 [m/s]
Maximum speed, vmax 30.0 [m/s]
Maximum deceleration, umin -3.0 [m/s2]
Maximum acceleration, umax 2.0 [m/s2]
Safe time headway, ρ 1.5 [s]
Vehicle length, lc 5 [m]
Buffer zone length, Lb 500 [m]
Control zone length, Lc 1500 [m]

Optimal velocity model (5.38)
Driver’s sensitivity coefficient, α 1.0
Desired speed, vd 30.0 [m/s]

Intelligent driver model (5.39)
Acceleration exponent, γ 4.0
Comfortable braking, b 3.0 [m/s2]
Desired acceleration, a 2.0 [m/s2]

Table 5.2: Receding horizon controller parameters

Parameters Values
Optimization horizon, Th 65.0 [s]
Prediction horizon, Tp 10.0 [s]
Control horizon, Tc 2.0 [s]
Sample time, τ 0.1 [s]
Input weight, wr 5.0
Output weight, Q diag(0, 0.2, 0)
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Figure 5.5: Platoon formation with OVM car-following model (5.38) for N = 4, where
the (a) position trajectory, (b) vehicle headway, (c) speed trajectory and (d) the CAV
control trajectory are shown.

We conduct the simulation studies using MATLAB R2020b/Simulink with the

configuration of Intel Core i7-6700 CPU @ 3.40 GHz. For the first case study, a platoon

formation for N = 4 vehicles is shown Fig. 5.5, where the OVM model in (5.38) is

considered for the trailing HDVs. The leading CAV and trailing HDVs have randomly

selected initial position (Fig. 5.5(a)) and initial speed (Fig. 5.5(c)), respectively.

The lead CAV implements the proposed controller to complete the platoon formation

operation near 50 s (according to Remark 5.2.2), and the vehicle headway (Fig. 5.5(b))

and speed (Fig. 5.5(c)) converge to some equilibrium value. Additionally, none of

the constraints in (5.36) were violated as evident from the headway profile in Fig.

5.5(b), speed profile in Fig. 5.5(c), and CAV’s control input trajectory in Fig. 5.5(d),

respectively. To validate the model-agnostic nature of the proposed controller, we

present a second case study using the IDM model (5.39) (see Fig. 5.6) considering

the same initial conditions as in the previous case, which yields similar result without

violating any constraints in (5.36), as shown in Figs. 5.6(a)-(d). It is interesting to
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Figure 5.6: Platoon formation with IDM car-following model (5.39) for N = 4, where
the (a) position trajectory and (b) vehicle headway, (c) speed trajectory and (d) the
CAV control trajectory are shown.

note that, we have monotonically increasing non-positive linear optimal control input

trajectory of the CAV in both of the above cases (see Figs. 5.5(d) and 5.6(d)), which

resembles a typical energy-optimal control input trajectory derived using standard

Hamiltonian analysis [159, 165]. Note that, we can consider a mixture of OVM and

IDM car-following model for the HDVs by appropriately selecting ϵ∆p and ϵv in (5.23).

Figure 5.7 shows the sensitivity analysis of the proposed control framework for

N = 4 subject to varying controller parameters Tp, Tc, and τ , and IDM car-following

parameter ρ. Here, we use (5.23) to compute the platoon formation time. Increasing

Tp and τ decrease the platoon formation time, as shown in Figs. 5.7(a) and 5.7(c),

respectively, whereas the variation of Tc does not affect the platoon formation time,

as shown in Fig. 5.7(b). However, choosing appropriate Tc is essential to enforce the

constraints in (5.36). Note that, the parameters Tp and τ can be tuned using Figs.
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Figure 5.7: Platoon formation with IDM car-following model (5.39) for N = 4, where
the sensitivity of the platoon formation time under varying (a) prediction horizon Tp,
(b) control horizon Tc, (c) sample time τ and (d) desired time headway ρ are illustrated.

Figure 5.8: Safe platoon formation with IDM car-following model (5.39) for 6, 7, 8 and
9 vehicles.
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5.7(a) and 5.7(c) to form a platoon within the desired optimization horizon. The

platoon formation time under varying ρ, which represents different driving behavior

of the IDM model, is shown in Fig. 5.7(d). Here, the proposed framework is robust

enough to form a platoon within the optimization horizon Th = 65 s. In all of the

cases presented in Figs. 5.7(a)-(d), the proposed controller enables platoon formation

without violating any constraints in (5.36). Finally, we investigate the robustness of

the proposed framework under different platoon size N = 6, 7, 8 and 9 as shown in

Fig. 5.8. The position trajectories in Fig. 5.8 indicates that the CAV controller is

able to form platoon within the optimization horizon Th = 65 s without violating any

safety constraint in (5.20).

5.3 A Safety-Prioritized Predictive Framework for Platoon Formation

Platoon formation with connected and automated vehicles (CAVs) in a mixed

traffic environment poses significant challenges due to the presence of human-driven ve-

hicles (HDVs) with unknown dynamics and control action. In this section, we develop

a safety-prioritized multi-objective control framework for creating a mixed platoon of

vehicles. The optimization objectives of the CAV are (a) to form a platoon with the

trailing HDVs, and (b) to minimize its control effort while achieving (a). Our pro-

posed platoon formation framework employs a receding horizon controller that uses a

multi-successor safety constraint to enforce rear-end collision avoidance constraints for

multiple trailing HDVs while deriving and implementing the optimal control input of

the CAV. Our proposed control framework ensures indirect control of the trailing HDVs

by directly controlling the leading CAV without explicit knowledge of the HDVs’ dy-

namic model, and subject to the system constraints and random initial conditions. We

present a model-dependent and a model-independent receding horizon framework that

employs different prediction models for estimating the HDV trajectories: (a) a naive

constant speed model, (b) a nonlinear car-following model with nominal parameters,

and (c) a data-driven model that estimates the driving behavior of the HDVs in real
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time using recursive least squares algorithm to better predict the future trajectories.

To demonstrate the efficacy of the proposed control framework, we conduct numerical

validation and provide the associated sensitivity, robustness, and performance analyses.

The contributions of this section are the induction of: (1) a comprehensive multi-

objective platoon formation framework to control the target CAV that aims at forming

a platoon with trailing HDVs in a mixed traffic environment given the rear-end safety

and system constraints (Section 5.3.2) along with a feasibility analysis (Lemmas 5.3.6

and 5.3.7), (2) a model-independent linear receding horizon control approach (Section

5.3.4) and a model-dependent nonlinear receding horizon control approach (Section

5.3.5.1) to generate the optimal control input for the target CAV to form a platoon,

and (3) the development of a data-driven receding horizon control approach (Section

5.3.5.2) for platoon formation, where the driving behavior of the HDVs is estimated

with the constant time headway relative velocity (CTH-RV) model and a recursive

least squares algorithm. We provide numerical validation of the proposed approaches

along with associated sensitivity, robustness, and performance analyses.

5.3.1 Comparison with Related Work

The exposition in this section advances the state of the art in the following

ways. First, in contrast to the platoon formation and control approaches that have

been developed using a distributed MPC framework [123, 132–134], which applies only

to a network with 100% CAV penetration, we address the problem of platoon formation

considering a mixed traffic environment that includes the interaction of CAVs and

HDVs.

Second, compared to the platoon formation approach proposed in [116], where

vehicle merging is done by accelerating the trailing vehicles to catch up with the leading

ones, we consider a challenging problem of indirectly enforcing the platoon formation

since the trailing HDVs cannot be directly controlled. Furthermore, platoon forma-

tion in a mixed traffic environment has been discussed in [208], which proposed simple
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heuristics to form platoons. In our approach, we optimize the control input of the

target CAV subjected to performance objectives and form the platoon with the im-

plementation of receding horizon control with added safety guarantees by imposing

multi-successor safety constraints.

Third, cooperative connected cruise control with nonlinear dynamics and com-

munication delays for a mixed connected platoon has been presented in [137, 140],

where the CAV controller can only form and maintain a platoon with the preceding

vehicle. In contrast, we consider platoon formation with multiple trailing HDVs with

unknown vehicle dynamics.

Finally, in contrast to the MPC-based ACC controller that employs predictive

model without considering the complex car-following dynamics of the human driver

[148, 209], we present a model-dependent approach that considers a nonlinear car-

following model with nominal parameters and a linear car-following model with real-

time estimated parameters for predicting the HDV behavior during the platoon forma-

tion process.

5.3.2 Problem Formulation

We consider a scenario where a group of vehicles, consisting of CAVs and HDVs,

are traveling on a roadway as shown in Fig. 5.9. We assign unique integer identities

to the vehicles considered for the platoon formation problem as follows: (a) the target

CAV, which has the objective to form a platoon with its trailing HDVs, is indexed by

1, (b) the preceding vehicle (PV) of CAV-1 is index by 0, and (c) the HDVs trailing

CAV-1 are indexed by the order of their distance from the target CAV as 2, . . . , N ,

N ∈ N (see Fig. 5.9). The objective of CAV-1 is to derive and implement an optimal

control trajectory (acceleration/deceleration) such that a platoon formation with the

trailing HDVs is completed satisfying the system constraints and ensuring safety in

terms of rear-end collision with the preceding and trailing vehicles.

Next, we define the following sets to represent different groups of vehicles using
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the unique identities considered above.

Definition 5.3.1. The set of all vehicles considered in our problem formulation is

N = {0, 1, . . . , N}. The set of HDVs trailing CAV-1 is NHDV = {2, . . . , N} ⊂ N . The

set of vehicles to form the platoon is Np = {1} ∪ NHDV.

Remark 5.3.1. We generalize our exposition considering the existence of PV-0 which

can be either CAV or HDV. In the case where PV-0 does not exist within a user-defined

look-ahead distance, we construct the set N without the element {0} without loss of

generality.

Remark 5.3.2. For formulating a valid platoon formation problem for the vehicles in

N , the set NHDV must be non-empty.

In our formulation, we allow lane changes for HDVs in NHDV during the platoon

formation process. If any HDV in NHDV decides to move to a different lane, or an HDV

from an adjacent lane moves into the current lane, then we recompute the set NHDV

with updated vehicles identities. For example, given NHDV = {2, 3, 4}, let us consider

two cases: (a) if HDV-3 moves to a different lane, then HDV-4 is updated to become

HDV-3, resulting in NHDV = {2, 3}, and (b) if an HDV from an adjacent lane moves in

between HDV-3 and HDV-4, then the added HDV is assigned an ID of 4, and previously

known HDV-4 is updated to become HDV-5 resulting in NHDV = {2, 3, 4, 5}. We model

the longitudinal dynamics of each vehicle i ∈ N as

ṗi(t) = vi(t), (5.40a)

v̇i(t) = ui(t), (5.40b)

where pi(t) ∈ Pi, vi(t) ∈ Vi and ui(t) ∈ Ui are the position of the front bumper,

speed and control input (acceleration/deceleration command) of each vehicle i ∈ N ,

respectively. The sets Pi, Vi, and Ui, i ∈ N , are complete and totally bounded subsets

of R.
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Figure 5.9: The target CAV (green) is traveling with N trailing HDVs (blue) and a
PV (orange). The communication structure is shown according to Section 5.3.2.2.

The speed vi(t) and control input ui(t) of each vehicle i ∈ N are subjected to

the following constraints

0 ≤ vmin ≤ vi(t) ≤ vmax, (5.41a)

ui,min ≤ ui(t) ≤ ui,max, (5.41b)

where vmin and vmax are the minimum and maximum allowable speed of the considered

roadway, respectively, and ui,min and ui,max are the minimum and maximum control

input of each vehicle i ∈ N , respectively. To simplify the exposition in the section

and without loss of generality, we consider the group of vehicles to be homogeneous,

i.e., all the vehicles have the same automotive attributes. Thus, we can consider the

same minimum and maximum control input umin and umax for all the vehicles such that

ui,min = umin and ui,max = umax for all i ∈ N in (5.41b).

To formulate the rear-end collision constraint between two consecutive vehicles

i, (i− 1) ∈ N , we use the following definitions.

Definition 5.3.2. The safe following gap si(t) between two consecutive vehicles i and (i−

1) ∈ N is

si(t) = ρivi(t) + s0, (5.42)

184



where ρi ∈ R>0 denotes a safe time headway that each vehicle i ∈ N maintains while

following its immediate preceding vehicle i − 1 ∈ N , and s0 ∈ R>0 is the standstill

distance denoting the minimum bumper-to-bumper gap at stop.

Definition 5.3.3. The headway ∆pi(t) and approach rate ∆vi(t) of vehicle i ∈ N

denote the bumper-to-bumper inter-vehicle spacing and speed difference, respectively,

between the two consecutive vehicles i, (i− 1) ∈ N , i.e.,

∆pi(t) = pi−1(t)− pi(t)− lc, (5.43a)

∆vi(t) = vi−1(t)− vi(t), (5.43b)

where lc ∈ R>0 is the length of each vehicle. Since all vehicles under consideration

belong to a homogeneous group, they have the same length lc.

The rear-end collision avoidance constraint between two consecutive vehicles

i, i− 1 ∈ N can thus be written as

∆pi(t) ≥ si(t). (5.44)

5.3.2.1 Vehicle Control Model

The dynamics (5.40) of each vehicle i ∈ N can take different forms based on

the consideration of connectivity and automation. For CAV-1, the control input u1(t)

is derived by solving a multi-objective optimal control problem, the structure of which

we introduce and discuss in detail in Sections 5.3.4 and 5.3.5.

In contrast to the CAV, we consider a generic car-following model based control

policy of the following form to define the predecessor-follower coupled dynamics (see

Fig. 5.9) of each HDV i in NHDV,

ui(t) = fi(∆pi(t),∆vi(t), vi(t)), (5.45)

where fi(·) represents the behavioral model of the car-following dynamics of each HDV

i. There are several car-following models reported in the literature [101, 160, 161, 200]
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that can emulate a varied class of human driving behavior. However, to ensure that any

car-following model considered in our modeling framework emulates realistic human

driving behavior, we impose the following eligibility criteria (see [204] for details).

First, a realistic car-following model with behavioral function f(·) should represent

rational driving behavior, i.e., the following inequalities should hold,

∂f

∂∆pi(t)
> 0,

∂f

∂∆vi(t)
> 0,

∂f

∂vi(t)
< 0, (5.46)

The three inequalities in (5.46) essentially mean that a larger headway ∆pi(t) should

result in less acceleration (or more braking), a larger approach rate ∆vi(t) should result

in more acceleration (or less braking), and the tendency to accelerate (or brake) should

be less dependent on the vehicles current speed vi(t). Second, a realistic car-following

model should be locally stable, i.e., any initial perturbation of a vehicle’s state should

decay exponentially as time progresses so that the vehicle can get back to its steady-

state driving behavior in finite time. A car-following model is locally stable if roots of

the following characteristic equation has both negative real part,

λ2 +

(
∂f

∂∆vi(t)
− ∂f

∂vi(t)

)
λ+

∂f

∂∆pi(t)
= 0. (5.47)

Here, the characteristic equation is parameterized by an arbitrary variable λ. Finally,

a suitable car-following model should be string stable such that any perturbation intro-

duced on a vehicle does not grow in magnitude for the rest of the vehicles in a platoon.

To ensure that a car-following model is string stable, the following condition should

hold

∂f
∂∆pi(t)

( ∂f
∂vi(t)

))3

[( ∂f
∂vi(t)

)2

2
− ∂f

∂vi(t)
· ∂f

∂∆vi(t)
− ∂f

∂∆pi(t)

]
< 0. (5.48)

Note that, since we cannot control the HDV’s driving behavior, it is imperative that any

choice of car-following model to represent the HDV’s behavior abides by the conditions

described in (5.46)-(5.48) to ensure rational driving behavior, local stability, and string

stability. For the HDVs considered in this section, we adopt a widely used car-following
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model, namely, the optimal velocity model (OVM) [200] to define the predecessor-

follower coupled dynamics (see Fig. 5.9) of each HDV i in NHDV. One of the simplest

forms of the OVM car-following model [200] is given as

ui(k) = αi(Vi(δi(k), si(k))− vi(k)) + βi∆vi(t), (5.49)

where αi, βi ∈ R>0, i ∈ NHDV denote the control gain representing the driver’s sensitiv-

ity coefficient and the speed-dependent coefficient, respectively, δi(t) := ∆pi(t)− si(t),

and Vi(δi(t), si(t)) denotes the equilibrium speed-spacing function

Vi(δi(t), si(t)) = vd
2
(tanh(δi(t))+ tanh(si(t))), (5.50)

where vd is the desired speed of the roadway. To ensure the eligibility of the OVM

model based on (5.46)-(5.48), the car-following parameters αi, βi, and ρi for each HDV

i have to be selected from feasible sets, as detailed in [204]. Note that, if there is

no preceding vehicle, we set ∆pi(t) = ∞ that results in vi(t) approaching the desired

speed vd with the progression of time. The car-following model and model predictive

controller parameters considered in our numerical study are provided in Section 5.3.6.

Finally, PV-0, if it exists, can be considered to be either a CAV or HDV. CAV-1

does not know the control structure of PV-0 and has to form a platoon without any

rear-end safety implication. In this section, we impose an arbitrary control trajectory

to PV-0 subjected to the state and control constraints in (5.41) in order to challenge

the platoon formation process.

5.3.2.2 Communication Structure

CAV-1 is retrofitted with appropriate sensors and communication devices to

estimate in real-time the state information of the vehicles in N \ {1}. For example,

the state information of PV-0 can be directly measured by the front sensors of CAV-1,

whereas the real-time estimation of the state information of the trailing HDVs in NHDV

can be done using a vehicle-to-everything communication protocol and/or intelligent
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roadside units [193]. Consequently, we can define the structure of the information

available to CAV-1 as follows.

Definition 5.3.4. The information set I(t) available to CAV-1 at time t is

I(t) = {p0:N(t),v0:N(t)}, (5.51)

where p0:N(t) = [p0(t), . . . , pN(t)]
T and v0:N(t) = [v0(t), . . . , vN(t)]

T .

Remark 5.3.3. The information set I(t) only contains the state information of each

vehicle in N at time instant t. The exact structure of the behavioral function fi(·) for

each vehicle i ∈ N \ {1} is unknown to CAV-1.

In contrast, the human driver of each HDV i in N can only perceive the state

information of the directly preceding vehicle i − 1. The delay and inaccuracy of such

perception and the corresponding driver’s action are usually incorporated into the car-

following models used for emulating the driving behavior of HDVs.

In our modeling framework, we impose the following assumption about the

communication protocol.

Assumption 5.3.1. The estimation and transmission of the HDVs’ state information

to the CAV occur without any delay and error.

Assumption 5.3.1 might be too restrictive. However, it can be relaxed as long as

the noise in the measurements and/or delays is bounded. For example, we can deter-

mine upper bounds on the state uncertainties as a result of sensing or communication

errors and delays, and incorporate these into more conservative safety constraints.

In what follows, we introduce the platoon formation problem.

5.3.2.3 Platoon Formation Problem: Mixed Environment

Conventionally, a platoon is defined as a closely-spaced group of vehicles, where

each vehicle in the group is traveling with equal headway ∆pi(t) and speed vi(t). This
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means that, a platoon is said to be formed for a vehicle group Np at some time t = tp

if for each vehicle i ∈ Np,

∆pi(t) = ∆peq, t ≥ tp, (5.52a)

vi(t) = veq, t ≥ tp, (5.52b)

where, ∆peq, veq ∈ R>0 are the equilibrium platoon headway and speed, respectively.

However, the conventional definition of platoon formation does not hold for a group

of heterogeneous vehicles having different driving behavior as we would expect from a

real-world scenario. In the problem we are addressing, each HDV i in NHDV can have

different safe time headway ρi (Definition 5.3.3) and behavioral function fi(·). As a

result, ∆pi(t) for each HDV i in NHDV will converge to different equilibrium values as

time t progresses, violating the conditions of platoon formation in (5.52a). Hence, we

need to revise the definition of platoon formation in the context of a heterogeneous

vehicle group, as we have in our problem formulation.

Definition 5.3.5. For a heterogeneous vehicle group Np with different safe time head-

way ρi and behavioral function fi(·) for each vehicle i ∈ Np, a platoon is formed at

some time t = tp if for each vehicle i ∈ Np the following conditions hold

lim
t→tp
∥∆pi(t)− si(t)∥ = 0, (5.53)

lim
t→tp
∥∆vi(t)∥ = 0. (5.54)

Remark 5.3.4. To determine the platoon formation time tp, the conditions in Defi-

nition 5.3.5 might be too restrictive in practice. Therefore, we introduce the following

root-mean-squared-error based conditions to relax the conditions in Definition 5.3.5.√√√√ N∑
i=2

(
∆pi(t)− si(t)

)2

≤ ϵ∆p, ∀t ≥ tp, (5.55)√√√√ N∑
i=1

(
vi(t)−

∑N
i=1 vi(t)

N

)2

≤ ϵv, ∀t ≥ tp, (5.56)

where ϵ∆p, ϵv ∈ R>0 are some user-defined small deviation.

189



Next, we formalize the problem of platoon formation in a mixed traffic environ-

ment addressed in the section as follows.

Problem 5.3.1. The objective of CAV-1 in N is to derive its control input u1(t) given

the information set I(t) so that the each vehicle i ∈ Np forms a platoon according to

the Definition 5.3.5 satisfying the state, control, and safety constraints in (5.41) and

(5.44), respectively.

Remark 5.3.5. In our framework, CAV-1 derives its optimal control input u∗
1(t) by

solving an optimal control problem with the following objectives: (a) formation of a

platoon with the trailing HDVs (Definition 5.3.5), and (b) minimization of its control

effort while achieving (a).

In this section, we adopt a receding horizon control framework using the com-

munication structure described in Section 5.3.2.2 to address Problem 5.3.1. The basic

principle of a receding horizon control framework is that the current control action

sequence is obtained by solving an optimization problem (Remark 5.3.5) with a pre-

diction horizon Tp, and only the first input of the solved control sequence is applied.

Then the horizon moves forward a step and the process is repeated until a final horizon

Th is reached. The choice of the prediction horizon Tp can influence the performance

of the receding horizon framework [206] and consequently, the platoon formation time

tp [170]. Therefore, Tp can be considered as a design parameter that needs to be cali-

brated so that the receding horizon framework can solve Problem 5.3.1 within the given

final horizon Th.

Assumption 5.3.2. For each vehicle i ∈ N , none of the state, control (5.41) and safety

constraint in (5.44) are violated at the initial time of the receding horizon control.

Assumption 5.3.2 ensures that the receding horizon control starts with a feasible

initial state and control input of each vehicle i ∈ N . Although we have not yet

introduced the receding horizon control framework, we can consider the state and
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control constraints (5.41) to determine a priori whether Problem 5.3.1 is feasible in the

context of the receding horizon control.

5.3.3 Feasibility of Platoon Formation

If there exists a roadway of finite length L ∈ R>0 to form the platoon, then we

need to check whether a feasible choice of final horizon Th leads to a feasible Problem

5.3.1.

In our previous work [169, 170], we showed that a platoon formation with trailing

HDVs are achieved by non-positive control input of the lead CAV, i.e., u1(t) ∈ [umin, 0].

Therefore, we can consider the extremes of [umin, 0] to check whether Th is feasible. The

following result provides the feasibility check of the final horizon Th.

Lemma 5.3.6. Let t = tc be the initial time when CAV-1 starts deriving and imple-

menting its control input u1(t), t ≥ tc, to form a platoon with the trailing HDVs. The

final horizon Th of the receding horizon control framework that CAV-1 has available to

solve Problem 5.3.1 on a given roadway of length L ∈ R>0 is bounded by the following

relation,

L

v1(tc)
≤ Th ≤ 1L≤Lsτ1 + (1− 1L≤Ls)τ2, (5.57)

where 1L≤Ls is an indicator function, Ls :=
v2min−v21(t

c)

2umin
, τ1 :=

−v1(tc)+
√

v21(t
c)+2uminL

umin
and

τ2 :=
vmin−v1(tc)

umin
− v2min−v21(t

c)

2uminvmin
.

Proof. Let te be the time that the CAV reaches the end of the available roadway of

length L when cruising with a constant speed v1(t
c). Then, te = tc + L

v1(tc)
. Conse-

quently, the minimum time that CAV-1 can take to traverse the distance L is te − tc,

which is then the lower bound of the horizon Th in (5.57).
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The maximum time that CAV-1 can take to travel distance L can be computed

by considering the following piecewise control input of CAV-1 constructed using the

constraints in (5.41),

u1(t) =

umin, if v1(t) > vmin,

0, if v1(t) = vmin.

(5.58)

Let us consider the time t = ts where the control input u1(t) switches from

u1(t) = umin to u1(t) = 0 in (5.58). Using (5.40), we have vmin = v1(t
c) + umin(t

s − tc),

which yields ts = tc + vmin−v1(tc)
umin

. Furthermore, using (5.40), we can compute that the

control switch in (5.58) occurs after traveling the distance Ls =
v2min−v21(t

c)

2umin
. We need to

consider the following two cases:

(a) If L ≤ Ls, then the upper bound of Th can be computed by solving 1
2
umin(τ1)

2+

v1(t
c)τ1 − L = 0 for τ1, which yields τ1 =

−v1(tc)+
√

v21(t
c)+2uminL

umin
. Here, τ1 is the upper-

bound of Th.

(b) If L > Ls, then CAV-1 travels the distance Ls with control input u1(t) = umin

and time duration ts − tc, and the remaining distance L − Ls with cruising speed

vmin and time duration L−Ls

vmin
. The maximum time duration τ2 to traverse distance

L can be computed using τ2 = (ts − tc) + L−Ls

vmin
. Using the values of ts, Ls, we get,

τ2 =
vmin−v1(tc)

umin
− v2min−v21(t

c)

2uminvmin
.

Combining the above cases, we can derive the upper-bound on the final horizon

as 1L≤Lsτ1+(1−1L≤Ls)τ2, which is the right-hand term of the inequality in (5.57).

The conditions in (5.57) only provide a formal way to select an appropriate final

horizon Th. The infeasibility of the final horizon Th does not necessarily render Problem

5.3.1 infeasible. Conversely, the feasibility of Th does not imply that Problem 5.3.1 will

be feasible as well, i.e., a platoon formation is guaranteed. In what follows, given that

the final horizon Th is feasible according to Lemma 5.3.6, we provide conditions to
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investigate whether Problem 5.3.1 is feasible given the constraints (5.41), and a finite

roadway of length L for platoon formation.

Since platoon formation with trailing HDVs is achieved by a non-positive control

trajectory of CAV-1, we can check the feasibility of Problem 5.3.1 considering the

most aggressively decelerating control structure in (5.58) as discussed in the following

Lemma.

Lemma 5.3.7. Suppose that CAV-1 starts deriving and implementing its control input

u1(t) at time t = tc to form a platoon with the trailing HDVs at some time tp ∈ (tc, tc+

Th) within a given roadway of length L, where Th is a feasible final horizon bounded by

the lower- and upper-values τ1 and τ2 according to Lemma 5.3.6, respectively. Suppose

that CAV-1 has the control structure as in (5.58), and Ls is the length where control

input u1(t) switches from umin to 0.

(a) If Ls > L, then Problem 5.3.1 is feasible if

0 <
(vN (tc)− v1(t

c))−
√
(vN (tc)− v1(tc))2 − 2umin∆ps
umin

≤ τ1 (5.59)

holds and, (b) if Ls ≤ L, then Problem 5.3.1 is feasible if

0 <
∆ps + vminτs − Ls

(vmin − vN(tc))
≤ τ2 (5.60)

holds, where ∆ps :=
∑N

2 (∆pi(t
c)− si(t

c)).

Proof. Let us consider that CAV-1 takes the time duration τp to form a platoon.

Case (a): If Ls > L, we check whether a platoon can be formed with the

control structure (5.58). Suppose that ∆ps :=
∑N

2 (∆pi(t
c) − si(t

c)) is the additional

spacing between CAV-1 and HDV-N beyond the dynamic following spacing si(t
c).

Hence, to form a platoon with time duration τp according to Definition 5.3.5, we

require v1(t
c)τp +

1
2
umin(τp)

2 − vN(t
c)τp = ∆ps. Solving this equation for τp, we get

τp =
(vN (tc)−v1(tc))−

√
(vN (tc)−v1(tc))2−2umin∆ps

umin
. The value of τp is lower-bounded by 0 to

ensure positive value and upper-bounded by τ1 so that platoon is not formed beyond

L, which yields (5.59).
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Case (b): If Ls ≥ L, then to form a platoon with time duration τp, we require

Ls + vmin(τp − τs)− vN(t
c)τp = ∆ps. Solving for τp, we get τp =

∆ps+vminτs−Ls

(vmin−vN (tc))
, which is

lower- and upper-bounded by 0 and τ2 to ensure platoon formation within L.

Remark 5.3.6. We use the conditions in Lemma 5.3.7 only to investigate the feasibility

of Problem 5.3.1 constrained by a limited road space of length L for the case where

platoon formation is not possible even with the most aggressive braking maneuver of

CAV-1 (see control structure (5.58)). Satisfaction of the conditions in Lemma 5.3.7,

in general, does not guarantee the existence of a solution to Problem 5.3.1 given the

optimization criteria discussed in Remark 5.3.5.

In what follows, we provide a detailed exposition of a model-independent re-

ceding horizon control framework that aims at solving Problem 5.3.1 with the given

objectives (Remark 5.3.5).

5.3.4 Model-Independent Control Framework

Since CAV-1 does not have explicit knowledge of the driving behavior of the

HDVs (Remark 5.3.3), CAV-1 employs an internal model to predict the HDV trajecto-

ries within the prediction horizon Tp. We first consider the following model-independent

internal model.

Internal Model 1. The speed of each HDV in N \ {1} remains constant within the

prediction horizon Tp.

The native state prediction with the assumption of constant speed enables the

formulation of a linear receding horizon framework. Before formulating the optimal

control problem, we need to consider an augmented CAV dynamics model to incorpo-

rate additional features pertaining to a vehicle platoon.
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5.3.4.1 Augmented CAV Dynamics for Multi-successor Safety

String stability in the context of a vehicular platoon signifies whether the am-

plitude of any disturbance introduced by the lead vehicle gets amplified downstream,

leading to safety implications for the trailing vehicles. In our formulation, the control

input u1(t) of CAV-1 of a platoon can introduce such instability for the trailing HDVs

in NHDV. Since the HDVs cannot be controlled directly, and their driving behavior is

unknown, we cannot guarantee string stability. However, to ensure rear-end collision

avoidance, we can incorporate safety constraints directly into the optimal control prob-

lem, and then solve it using the receding horizon framework which derives the feasible

control input sequence for CAV-1 subjected to the added safety constraints within the

prediction horizon Tp.

To capture additional characteristics of the platoon formation dynamics from

the CAV’s control point of view, we need to define two additional states.

Definition 5.3.8. The leader-follower gap, e1,j(t), j ∈ NHDV, is the bumper-to-

bumper gap between the CAV and the successive trailing HDVs (see Fig. 5.9),

e1,2(t) = p1(t)− p2(t)− lc, (5.61a)

...

e1,N(t) = p1(t)− pN(t)− (N − 1)lc. (5.61b)

In the case where PV-0 exists immediately preceding CAV-1, then we define an

additional state.

Definition 5.3.9. The leader-predecessor gap, e1,0(t), is the bumper-to-bumper gap

between the CAV and the immediate predecessor vehicle (see Fig. 5.9),

e1,0(t) = p0(t)− p1(t)− lc, (5.62)

The definition of the leader-follower gap e1,j(t), j ∈ NHDV and the leader-

predecessor gap, e1,0(t) can be used to formulate enhanced safety constraints from the
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CAV-1’s perspective. We refer to these set of constraints as the multi-successor safety

constraints that can guarantee a safe platoon formation.

Lemma 5.3.10. Given the leader-follower gap e1,j(t), j ∈ NHDV and the leader-

predecessor gap, e1,0(t), the rear-end safety constraint in (5.44) is satisfied if the fol-

lowing set of conditions hold

e1,0(t) ≥ s1(t), (5.63a)

e1,2(t) ≥ s2(t), (5.63b)

e1,3(t) ≥ e1,2(t) + s3(t), (5.63c)

...

e1,N(t) ≥ e1,N−1(t) + sN(t). (5.63d)

Proof. We first consider the immediately preceding and following vehicles of CAV-1.

According to (5.43a) and (5.62), we have ∆p1(t) = p0(t)−p1(t)−lc = e1,0(t). Therefore,

e1,0(t) ≥ s1(t) implies ∆p1(t) ≥ s1(t), which is the safety constraint for CAV-1 in (5.44).

Similar steps can be taken to proof that e1,2(t) ≥ s2(t) satisfies the constraint in (5.44)

for HDV-2.

For the state e1,3(t), we expand it using (5.61b) as e1,3(t) = p1(t)− p3(t)− 2lc =

(p1(t)− p2(t)− lc) + (p2(t)− p3(t)− lc) = ∆p2(t) + ∆p3(t). Since ∆p2(t) = e1,2(t), we

have e1,3(t) = e1,2(t) + ∆p3(t). This implies that e1,3(t) − e1,2(t) ≥ s3(t) satisfies the

condition ∆p3(t) ≥ s3(t) in (5.44). Following the similar procedure, it can be shown

that for a platoon of size N , the condition e1,N(t) − e1,N−1(t) ≥ sN(t) satisfies the

rear-end safety constraint ∆pN(t) ≥ sN(t) in (5.44). This concludes the proof.

Remark 5.3.7. While controlling CAV-1, the constraint in (5.44) cannot be employed

directly to enforce rear-end safety guarantee. However, the constructed multi-successor

safety constraints in (5.63) can guarantee the enforcement of (5.44), thus ensuring a

safe platoon formation.
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Finally, the definition of the additional states e1,0(t), e1,2(t), . . . , e1,N(t) enables

the augmentation of the CAV-1 dynamics (5.40) with the following set of equations

ṗ1(t) = v1(t), (5.64a)

v̇1(t) = u1(t), (5.64b)

ė1,0(t) = v0(t)− v1(t), (5.64c)

ė1,2(t) = v1(t)− v2(t), (5.64d)

...

ė1,N(t) = v1(t)− vN(t). (5.64e)

5.3.4.2 Linear Receding Horizon Formulation

To enable the application of a discrete linear receding horizon control frame-

work, we formulate the optimal control problem in discrete time. Let us consider a

sampling time interval of τ to discretize the optimization horizon into k discrete in-

stances. The augmented CAV dynamics in (5.64) can be recast into linear discrete time

state equations with the following consideration: During each time step [k, (k + 1)],

(a) the control input of the CAV u1(k) is constant, and (b) the control input of the

vehicles ui(k), i ∈ N \{1} is zero (see Internal Model 1). The linear discrete-time state

equations of the augmented CAV dynamics in (5.64) are

p1(k + 1) = p1(k) + v1(k)τ +
τ2

2
u1(k), (5.65a)

v1(k + 1) = v1(k) + u1(k)τ, (5.65b)

e1,0(k + 1) = e1,0(k) + (v0(k)− v1(k))τ +
τ2

2
u1(k), (5.65c)

e1,2(k + 1) = e1,2(k) + (v1(k)− v2(k))τ +
τ2

2
u1(k), (5.65d)

...

e1,N (k + 1) = e1,N (k) + (v1(k)− vN (k))τ +
τ2

2
u1(k). (5.65e)
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We define the current state vector x1(k) ∈ R(N+2)×1, measured output vector y1(k) ∈
R(N+2)×1 and the measured disturbance vector w1(k) ∈ RN×1 as

x1(k) :=



p1(k)

v1(k)

e1,0(k)

e1,2(k)
...

e1,N (k)


, y1(k) :=



p1(k)

v1(k)

e1,0(k)

e1,2(k)
...

e1,N (k)


, w1(k) :=


v0(k)

v2(k)
...

vN (k)

 .

The state-space representation of the discrete dynamic in (5.65a)-(5.65e) can be written

as

x1(k + 1) = Ax1(k) +Buu1(k) +Bww1(k), (5.66)

y1(k) = Cx1(k), (5.67)

where the corresponding state matrixA ∈ R(N+2)×(N+2), control matrixBu ∈ R(N+2)×1,

disturbance matrix Bw ∈ R(N+2)×N and output matrix C ∈ R(N+2)×(N+2) can be com-

puted using (5.65). For the remainder of this section, we drop the subscript denoting

the CAV from the discrete state-space model where it does not introduce any ambiguity.

In order to solve an online optimization within the prediction horizon Tp, the

receding horizon controller requires a prediction model to take into account the future

possible states. Let us denote x(k+n|k), y(k+n|k), and w(k+n− 1), n = 1, . . . , Tp,

to be the predicted state, output and disturbance vectors within the prediction horizon

Tp based on their value at the discrete instance k, respectively. In this case, the future

system trajectories of x(k+n|k), y(k+n|k), and w(k+n− 1) are predicted based on

the model (5.65) and the current information x(k),y(k),w(k).

In our formulation, we consider that the measured disturbance w(k) in (5.66)

remains constant within the prediction horizon Tp (Internal Model 1). Therefore, we

have

w(k + n|k) = w(k), n = 1, . . . , Tp. (5.68)
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5.3.4.3 Optimal Control Problem

Let us define ∥z∥M to be the M weighted norm of an arbitrary vector z such

that ∥z∥M := (zTMz)
1
2 . In order to drive each HDV’s state towards the equilibrium

platoon state, the term ∆pi(t) − si(t) for each vehicle i ∈ Np should converge to zero

according to Definition 5.3.5. Therefore, the primary aim of the CAV controller is to

minimize the squared error between the leader-follower gap e1,N(k) and the reference

er(k) =
∑N

i=2 si(k). To this end, we formulate the first objective function J1 which

represents a reference tracking problem and takes the form

J1 :=
1

2

Tp∑
n=1

∥y(k + n|k))− yr(k + n|k)∥2Q , (5.69)

where the positive semi-definite output weight matrixQ is defined asQ = diag(0, . . . , we1,N ),

with we1,N ∈ R>0 corresponding to the leader-follower gap e1,N(k), and the reference

output yr(k) ∈ R(N+2)×1 is considered as

yr(k) =

[
0, · · · ,

N∑
i=2

si(k))

]T
. (5.70)

Note that, only the last element of the reference output yr(k) is non-zero. Using (5.42),

this term can be written as

N∑
i=2

si(k)) = (N − 1)s0 + ρ̂T ŵ(k), (5.71)

where ρ̂ := [ρ2, ρ3, . . . , ρN ]
T and ŵ(k) := [v2(k), . . . , vN(k)]

T . Recall that, the mea-

sured disturbancew(k) remains time-invariant within the prediction horizon Tp. There-

fore, ŵ(k) also remains constant within the prediction horizon Tp. Since the ref-

erence output yr(k) is an explicit function of ŵ(k), the predictive reference output

yr(k + n|k), n = 1, . . . , Tp remains constant within the prediction horizon Tp as well.

Thus we have

yr(k + n|k) = yr(k), n = 1, . . . , Tp. (5.72)
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The second objective of the controller is to minimize the control effort of CAV-1

while forming the platoon. Thus, we have the second objective function as

J2 :=
1

2

Tp∑
m=1

∥u1(k +m− 1)∥2R , (5.73)

where R := [wu] is the positive-definite weight matrix on the control input with a

weight parameter wu ∈ R>0.

Our objective is to derive the control input sequence U1(k) := [u1(k), u1(k +

1), . . . , u1(k + Tp − 1)]T such that the predictive states are driven to their respective

reference states. The optimal control problem can thus be written as

min
U1(k)

J1 + J2, (5.74)

subject to :

model: (5.65),

constraints: (5.41a), (5.41b), (5.63), (5.70).

The above optimal control problem can be cast into a standard constrained

quadratic programming problem and solved using commercially available mathematical

programming solvers [206]. At each sampling time, the CAV measures the current

inter-vehicle gap, target HDV’s speed, and self speed. Using these measurements, the

control sequence U1(k) at time instant k is computed by solving the optimal control

problem (5.74) and only the first control input is applied. Then the system moves to

the next time instant k + 1, and the process is repeated.

5.3.5 Model-dependent Control Framework

In Section 5.3.4, we have not considered any intrinsic behavioral model of the

HDVs in NHDV while formulating the control problem in (5.74). In this section, we

present two examples of platoon formation where we consider (a) non-linear HDV

models for non-linear receding horizon control and (b) a surrogate linear model for

data-driven predictive control.
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5.3.5.1 Nonlinear Receding Horizon Control

Since we do not consider a behavioral model for the HDVs in Section 5.3.4, we

assumed a constant speed prediction model (Internal Model 1) that enables the imple-

mentation of linear receding horizon control. However, such assumption can introduce

errors in HDVs’ state estimation within the prediction horizon Tp. In this section, we

improve the construct of the Internal Model 1 and enable the state trajectory prediction

with a non-linear car-following model with fixed nominal parameters.

Internal Model 2. The speed of each HDV in NHDV is updated within the prediction

horizon Tp using a nonlinear car-following model with fixed, calibrated parameters. The

speed of PV-0 remains constant within the prediction horizon Tp, as in the Internal

Model 1.

For the Internal Model 2, we consider the OVM car-following model (5.49),

which is nonlinear in nature. The consideration of the non-linear car-following model

makes the discrete dynamics in (5.75) nonlinear, which we solve with a non-linear

receding horizon control framework. Note that, we consider the prediction of PV-0

trajectory with the Internal Model 1. This is due to the fact that, the CAV-1 has no

knowledge of PV-0’s interaction with any of its preceding vehicle. Thus, we cannot

implement a car-following model to predict the future trajectory of PV-0 within the

prediction horizon, and our only option is to use the Internal Model 1.

The augmented CAV dynamics in (5.64) can be recast into linear discrete time

state equations with the following consideration: During each time step [k, (k+1)], the

control input u1(k) of the CAV-1 and ui(k) of each HDV i in NHDV are constant (see

Internal Model 2). Then, the set of discretized augmented CAV dynamics in (5.64) are
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p1(k + 1) = p1(k) + v1(k)τ +
τ2

2
u1(k), (5.75a)

v1(k + 1) = v1(k) + u1(k)τ, (5.75b)

e1,0(k + 1) = e1,0(k) + ∆v1(k)τ −
τ2

2
u1(k), (5.75c)

e1,2(k + 1) = e1,2(k) + ∆v2(k)τ +
τ2

2
(u1(k)− fnom(k)), (5.75d)

...

e1,N (k + 1) = e1,N (k) + ∆vN (k)τ +
τ2

2
(u1(k)− fnom(k)), (5.75e)

where fnom(k) is the nominal car-following model considered for the Internal Model 2.

The nonlinear receding horizon controller generates the predictive states e1,N(k+ n|k)

for n = 1, . . . , Tp at each time instant k for a prediction horizon Tp using the state

definitions in (5.61), (5.62), vehicle dynamics in (5.75) and internal car-following models

of the HDVs in (5.49). The optimal control problem can be written as follows

min
U1(k)

J1 + J2, (5.76)

subject to :

model: (5.75),

constraints: (5.41a), (5.41b), (5.63), (5.70).

5.3.5.2 Data-Driven Receding Horizon Control

In this model-dependent approach, we present a data-driven receding horizon

control framework to address Problem 5.3.1 with the following internal model.

Internal Model 3. The speed trajectory of each HDV i in NHDV is updated using a

linear car-following model within the prediction horizon Tp, the parameters of which are

estimated online. The speed of PV-0 remains constant within the prediction horizon

Tp, as in Internal Model 1.
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Figure 5.10: The structure of the proposed control framework to address Problem 5.3.1.

We use recursive least squares (RLS) method [196, 197] to estimate the HDVs’

car-following parameters for state prediction to address Problem 5.3.1, as shown in

Fig. 5.10. The essential steps of the proposed framework are outlined as follows.

1. Data-driven parameter estimation: At each time instant k, the current
states pi(k), vi(k) of each following HDV i in NHDV are communicated to CAV-1.
Since the exact car-following model fi of each HDV i in NHDV is unknown to
CAV-1, it considers a known linear car-following model to represent the driving
behavior of each HDV, and estimates the parameters of the car-following model
for each HDV online.

2. Data-driven control problem: CAV-1 then uses the estimated car-following
model from Step 1 to predict the future state trajectories of the following HDVs,
uses a constant speed model to predict the trajectory of PV-0. It then derives its
own optimal control input sequenceU ∗

1 (k) := [u∗
1(k), u

∗
1(k+1), . . . , u∗

1(k+Tp−1)]T
by solving the optimal control problem in (5.76) using the receding horizon control
framework. Finally, CAV-1 implements only the first control input u∗

1(k).

In what follows, we provide a detailed exposition of the car-following model parameter

estimation discussed above.
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5.3.5.3 Online Car-following Model Parameter Estimation

In this section, we use a recursive least-squared formulation [196] to estimate

the parameters of the internal car-following model residing in CAV-1’s mainframe to

represent the driving behavior of each of the following HDVs. To this end, we consider

the constant time headway relative velocity (CTH-RV) model [197, 198]

vi(k + 1) = vi(k) + ηi(∆pi(k)− ρivi(k))τ+

νi(vi−1(k)− vi(k))τ,
(5.77)

where the model parameters ηi and νi are the control gains on the constant time

headway and the approach rate, and ρi is the desired safe time headway for each HDV

i in NHDV, respectively. We employ the linear CTH-RV model instead of other complex

nonlinear models so that the resulting control problem presented in the next section

is thus convex and can be solved efficiently in real-time. Moreover, it is also observed

that CTH-RV model is highly comparable to other nonlinear car-following models in

terms of data fitting [198].

Suppose that, we measure the speed vi(t), headway ∆pi(t) and approach rate

∆vi(t) data at a frequency corresponding to the sampling time τ . Then we can rewrite

the CTH-RV model (5.77) for each HDV i in NHDV in discrete time as vi(k + 1) =

vi(k) + ηi(∆pi(k)− ρivi(k))τ + νi(vi−1(k)− vi(k))τ , which can be recast as

vi(k + 1) = γi,1vi(k) + γi,2∆pi(k) + γi,3vi−1(k), (5.78)

where γ1 := (1 − (ηiρi + νi)τ), γ2 := ηiτ and γ3 := νiτ are the parameters we aim at

estimating online. Then we can write the measurements in matrix form as

vi(k + 1) = γT
i ϕi(k), (5.79)

where ϕi(k) := [vi(k), ∆pi(k), vi−1(k)]
T is the regressor vector and γi := [γi,1, γi,2, γi,3]

T

is the parameter vector. If we have Nk uniformly sampled measurements for k =

{1, . . . , Th}, then we can estimate the γ by solving the following minimization problem

min
γi

1

2

Th∑
k=1

ξ(Th−k)[vi(k)− v̂i(k|γi)]
2, (5.80)
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where, v̂i(k|γi) := γT
i ϕi(k) is a prediction of vi(k) based on the parameter vector γ,

and ξ ∈ [0, 1] is the forgetting factor that assigns higher weight to the recently collected

data points and discounts older measurements. Note that, the objective function in

(5.80) is quadratic in γi, thus can be minimized analytically that yields

γi =

[ Th∑
k=1

ϕi(k)ϕ
T
i (k)

]−1 Th∑
k=1

ϕi(k)vi(k). (5.81)

However, the above estimation procedure requires the storage of ϕi(k) and vi(k)

for all k = 0, . . . , Th, and yields the final estimated parameter vector γi for time Th.

Since we are interested in online parameter estimation, it is computationally more

efficient to update the intermediate time-dependent parameter vector γ̂i in (5.81) re-

cursively at each time step k = 1, . . . , Th as new data becomes available. Therefore,

we employ the following recursive form of (5.81) known as the recursive least squares

algorithm [196]

γ̂i(k) = γ̂i(k − 1) +Li(k)[vi(k)− v̂i(k)], (5.82a)

v̂i(k) = γ̂i
T (k − 1)ϕi(k), (5.82b)

Li(k) =
Pi(k − 1)ϕi(k)

ξ + ϕT
i (k)Pi(k − 1)ϕi(k)

, (5.82c)

Pi(k) =
1

ξ

[
Pi(k − 1)− Pi(k − 1)ϕi(k)ϕ

T
i (k)Pi(k − 1)

ξ + ϕT
i (k)Pi(k − 1)ϕi(k)

]
. (5.82d)

The recursion of the RLS algorithm in (5.82a) can be initiated at the time

instant k = 0 by considering an invertible matrix Pi(0) and the vector γ̂i(0) with some

initial values.

5.3.6 Simulation Results and Discussion

To validate the effectiveness of the control frameworks presented in the previous

sections and evaluate their performance, we conduct extensive numerical simulations.

For the sake of concise exposition, we refer to the model-independent linear RHC

framework as L-RHC, the model-dependent nonlinear RHC framework as N-RHC, and

the data-driven linear RHC framework as DD-RHC. In our analysis, we only consider
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Table 5.3: Nominal values of the car-following model

Optimal velocity model

Driver’s sensitivity coefficient, α 0.4
Speed difference coefficient, β 0.2
Desired speed, vd 30 m/s
Safe time headway, ρ 1.8 s

feasible platoon formation problem, i.e., Problem 5.3.1 satisfies the feasibility require-

ments according to Lemmas 5.3.6 and 5.3.7. Next, we discuss the configuration of the

simulation environment and present an in-depth analysis of the simulation results.

5.3.6.1 Simulation Setup

We conducted several simulations with different numbers of trailing HDVs, and

with or without a preceding vehicle. All three control approaches presented in this sec-

tion, namely, the L-RHC with constant HDV speed, the N-RHC with nonlinear CFM,

and the DD-RHC with recursive least squares estimation of CTH-RV parameters, are

evaluated through the simulations. To create a mixed traffic environment with dif-

ferent human driving styles, we employed the non-linear OVM [200] to simulate the

driving behavior of the human drivers. The parameters for each human driver’s CFM

were considered to be different from each other and chosen during the simulation by

random perturbation of up to 30% around nominal values. The nominal values for the

OVM car-following model are given in Table 5.3. We imposed a specific speed profile

to be followed by the preceding vehicle so that we can analyze the robustness of the

platoon formation framework under varying driving behavior. For example, in the sim-

ulation, we considered a speed profile of the preceding vehicle that decelerates sharply

to the minimum allowable speed and then sharply accelerates back to a higher speed.

With the consideration of such an abrupt speed profile of the preceding vehicle, we

investigated whether the CAV can avoid rear-end collision with the preceding vehicle.

The parameters and weights in the control framework used for the simulations
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Table 5.4: Parameters of the receding horizon control framework

Parameters Value Parameters Value

τ 0.1 s Tp 20
vmax 35m/s vmin 0m/s
umax 3m/s2 umin −5m/s2

ρ 1.5 s s0 3.0m
we1,N 1 wu 1

are given in Table 5.4. We use Python for developing the simulation environment

where the receding horizon control problems are formulated by CasADi [199]. We use

the qpOASES solver [210] to solve the linear RHC and data-driven RHC, while the

nonlinear RHC is solved by the IPOPT solver [211]. In the nonlinear RHC problem, we

utilize the nominal values of the OVM as shown in Table 5.3 in the prediction models

for all the HDVs. The RLS-based estimators in the data-driven RHC are initialized

with the following values: γ̂i(0) = [0.67, 0.1, 0.18]T and Pi(0) = 0.01 I3 where I3 is the

3 × 3 identity matrix, while the forgeting factor is chosen as ξ = 1.0. Note that all

simulations in this work are performed on a Macbook Pro computer with a 2.7 GHz

Quad-Core Intel Core i7 CPU and 16Gb RAM.

Although we conducted extensive numerical simulations using the proposed

L-RHC, N-RHC and DD-RHC approaches, we mainly focus on the results of the

DD-RHC approach to analyze the platoon formation process, as shown in Figs 5.11

and 5.12. The vehicle trajectories with the L-RHC and N-RHC approaches are rel-

atively similar and can be found in https://sites.google.com/view/ud-ids-lab/

RHC-based-Platoon-Formation. We provide a detailed comparative analysis of these

three approaches later in the analysis.

5.3.6.2 Platoon Formation and Safety

We first show the results of the platoon formation process using the proposed

DD-RHC framework considering 4 trailing HDVs, i.e., N = 5. We consider two different
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scenarios: (a) no preceding vehicle and (b) presence of a preceding vehicle with a

predefined speed trajectory. The trajectories of all vehicles without and with the

preceding vehicle are illustrated in Figs. 5.11 and 5.12, respectively. The trajectories

of the vehicles shown in each figure include their positions, speeds, headways, and

speed gaps. In the case where no preceding vehicle is considered, Fig. 5.11(c) shows

that the headways of the vehicles become time invariant around 20 s, and Fig. 5.11(b)

shows that the speeds of the vehicles converge to the same value. This implies that,

in both scenarios, the CAV is able to form a platoon with the trailing HDVs. In

addition, to challenge the safety guarantee of the CAV during the platoon formation

process, we consider the presence of a preceding vehicle with an abrupt decelerating

speed profile. As illustrated in Fig. 5.12, even in the presence of a preceding vehicle

with aggressive speed profile, the CAV is able to form a platoon with the trailing HDVs

while maintaining a safe distance from the preceding vehicle.

Note that, in both of the above scenarios, none of the safety constraints in (5.44)

and speed constraint in (5.41a) are violated during the platoon formation process, as

evident from Figs. 5.11(c) and 5.12(c), and Figs. 5.11(b) and 5.12(b), respectively.

The rear-end safety guarantee can also be visualized by observing the non-intersecting

position trajectories of the vehicles in Figs. 5.11(a) and 5.12(a). This indicates the

fidelity of the proposed DD-RHC framework in satisfying all the constraints during the

platoon formation process.

5.3.6.3 Online Parameter Estimation

For the simulation with DD-RHC framework, the estimated parameters in the

CTH-RV car-following model for all trailing HDVs are shown in Fig. 5.13. Recall that,

CAV-1 characterizes in real time the driving behaviors of the four trailing HDVs with

individual set of estimated parameters η, ν, and ρ. Initially, the estimated values of

the car-following parameters show abrupt changes due to the lack of state information

transmitted from the HDVs. However, as time progresses, more data points become
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Figure 5.11: Longitudinal trajectories, speed, headways and speed gaps of the vehicles
for DD-RHC in the simulation without a preceding vehicle.

available from the HDVs, and the estimation of the car-following parameters stabi-

lizes towards the set of values that best describe the driving behavior of the HDVs.

This is consistent with the observation in [197], where parameters estimated using

RLS algorithm have been demonstrated to show near-convergence to the actual val-

ues. Therefore, we can utilize the linear CTH-RV model and online RLS technique to

approximate a nonlinear car-following model such as the OVM so that the resulting

RHC problem is convex and thus, can be solved efficiently in real time.

Next, we provide the robustness, scalability, and sensitivity analysis to quantify

the performance of the proposed approaches.
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Figure 5.12: Longitudinal trajectories, speed, headways and speed gaps of the vehicles
for DD-RHC in the simulation with a preceding vehicle (PV).

5.3.6.4 Scalability

For the scalability analysis, we show the position trajectories for all the vehi-

cles in Fig. 5.14 considering different number of following HDVs. Figure 5.14 verifies

that the proposed control framework is able to create and maintain platoons of dif-

ferent sizes. We also analyze the scalability of the proposed RHC approaches from

a computational perspective considering platoon sizes from N = 3 to 8, as shown in

Table 5.5. The N-RHC framework is less scalable with the platoon length N , as ev-

ident by the higher solving time, compared to the L-RHC and DD-RHC approaches.

Therefore, the N-RHC framework might not be suitable for real-time control in dense

traffic environments that might require the consideration of higher platoon size.
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5.3.6.5 Robustness

To investigate the robustness of the proposed RHC approaches, we consider the

platoon formation time as a metric, which is computed using Remark 5.3.4. The pla-

toon formation time considering different sizes of platoon (N=3 to N=8) is summarized

in Table 5.5. Note that we only change the number of trailing HDVs in each simulation

while the other setups are identical for a fair comparison. Overall, all three approaches

are able to form a platoon with higher platoon lengths, which implies the robustness

of the approaches subjected to varying platoon lengths. However, we observe that

the N-RHC and DD-RHC approaches can form a platoon with the HDVs faster than

the L-RHC approach. We further investigated the robustness of the RHC approaches

against human driving behavior. Figure 5.16 shows that the proposed RHC approaches

are able to form platoons with the trailing HDVs with different types of human driving

behavior represented by a wide range of car-following parameters α, β, ρ and vd.

5.3.6.6 Computational Efficiency

For a comprehensive comparison between the proposed RHC approaches, we

report the solution time of the three methods in several simulations with different

numbers of trailing HDVs in Table 5.5. From the standpoint of computational effi-

ciency, N-RHC takes a significantly longer time for solving the optimization problems

compared to the L-RHC and DD-RHC approaches. Therefore, N-RHC might not be

suitable for real-time control. Meanwhile, the solving time for the L-RHC and DD-

RHC approaches are highly reasonable and are less scaled by increasing the number of

trailing HDVs.

5.3.6.7 Prediction Accuracy

In Fig. 5.15, we compare the prediction accuracy of three presented internal

prediction models. To this end, we consider the trajectory of the last HDV of the

platoon. For each model, we collect the root mean square errors of the speed prediction
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Figure 5.13: Estimates of the car-following parameters for all HDVs.

Table 5.5: Platoon formation time and solving time for L-RHC, N-RHC and DD-RHC
in simulations with different number of following HDVs.

Platoon formation time (s) Solving time (ms)
N L-RHC N-RHC DD-RHC L-RHC N-RHC DD-RHC

3 16.1 14.4 12.4 5.48 52.32 8.37
4 18.1 17.5 15.3 6.52 48.24 6.19
5 20.3 20.1 18.9 4.51 51.50 7.89
6 23.4 27.1 23.4 4.55 87.45 13.31
7 31.9 25.1 32.5 5.54 107.41 8.42
8 31.6 28.4 31.6 6.02 121.99 10.32

over the current horizon at each time step, which are computed from the differences

between predicted speeds using the internal prediction models and the real car-following
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Figure 5.14: Longitudinal trajectories of the vehicles in the simulations with different
number of following HDVs.
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Figure 5.15: Comparison on prediction accuracy of three internal prediction models
using root mean square errors (RMSEs).
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models of the HDV. The results show that the internal model 1, i.e., the constant-

speed model and the internal model 3, i.e., the data-driven model, converges to zero

prediction error as time progresses. On the other hand, the internal model 2, which is

a nonlinear car-following model with fixed nominal parameters, generally shows very

high prediction errors that never converges to zero. This is due to the fact that, the

internal model 2 cannot update the nominal values of the car-following parameters to

predict the HDV’s behavior. Therefore, internal model 2 has the worst performance of

all the prediction models considered.

Although, both the errors associated with the internal model 1 and 3 converge

to zero, they differ in terms of how quickly they are converging towards accurate predic-

tion. During the platoon formation process, the internal model 1 shows high prediction

error, as shown in Fig. 5.15. It can only predict well during the steady-state when the

platoon is formed and the vehicles move at constant speeds. This is understandable,

since the internal model 1 uses constant speed assumption for prediction, and therefore,

cannot capture the transient driving behavior. In contrast, the internal model 3 can

update its car-following parameters online from the beginning of the platoon forma-

tion process, and predict the HDV’s behavior with higher accuracy as time progresses.

Overall, the results show that the internal model 3, i.e., the data-driven model, has

better accuracy compared to the other two models.

5.3.6.8 Sensitivity Analysis

For sensitivity analysis, we consider variations of the HDV’s car-following pa-

rameters, including the human driver’s sensitivity coefficient α, speed difference coeffi-

cient β, desired speed vd, and safe time headway ρ, in the simulations with DD-RHC.

Particularly, we conduct several sets of simulations where, in each set, we consider 10

different nominal values for each OVM parameter, while keeping the other parameters

constant. Note that, the parameters for each HDV are still randomly perturbed around

the nominal values. We collect the platoon formation time for those simulations and
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Figure 5.16: Platoon formation time under varying parameters of the OVM car-
following models.

show it in Fig. 5.16. The results suggest that with different human driving styles of

the following HDVs, the control framework can guarantee the formation of a platoon.

However, platoon formation process gets delayed with increasing values β and vd, and

is expedited with increasing values of α and ρ.

In this section, a safety-prioritized multi-objective control framework for creat-

ing a mixed platoon of vehicles is proposed, that ensures indirect control of the trailing

HDVs by directly controlling the leading CAV, while considering the system constraints

and initial conditions. A detailed analysis of the platoon formation framework for a

model-dependent and a model-independent receding horizon framework is presented

that employs different prediction models for estimating the HDV trajectories: (a) a

naive constant speed model, (b) a nonlinear car-following model with nominal param-

eters and (c) a data-driven model that estimates the driving behavior of the HDVs

in real time using recursive least squares algorithm to better predict the future tra-

jectories. Finally, the efficacy of the platoon formation approaches is evaluated by

conducting extensive numerical simulations. Under feasible boundary conditions, all
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the approaches were able to form a platoon. We provided a comparative analysis of

the different prediction models along with the associated sensitivity, scalability, robust-

ness, and performance analyses. We conclude that the proposed DD-RHC framework

outperforms the L-RHC and N-RHC approaches in terms of prediction accuracy and

computational efficiency.
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Chapter 6

OPTIMAL PLATOON COORDINATION IN A MIXED TRAFFIC
ENVIRONMENT

In this chapter, I address the problem of coordinating CAV platoons at a high-

way on-ramp merging. The main objective is to leverage the key concepts of CAV

coordination and platooning and establish a control framework for platoon coordi-

nation aimed at improving network performance while guaranteeing safety. To this

end, I present a single-level constrained optimal control framework based on the in-

sight of Section 3.1, and the seminal of Malikopoulos et al. [88], that optimizes the

fuel economy and travel time of the platoons while satisfying the state, control, and

safety constraints. I also explore the effect of delayed communication among the CAV

platoons and propose a robust coordination framework to enforce lateral and rear-end

collision avoidance constraints in the presence of bounded delays. The proposed frame-

work provides a closed-form analytical solution to the optimal control problem with

safety guarantees that can be implemented in real time. In Section 6.1, I develop the

platoon coordination framework for 100% CAV penetration case, and then extend the

framework to incorporate a mixed traffic environment in Section 6.2 for an on-ramp

merging scenario.

6.1 Cooperative Merging of Platoons with Delayed Communication

The key contributions of this section are (i) the development of a mathematically

rigorous optimal control framework for platoon coordination that eliminates stop-and-

go driving behavior, and improves fuel economy and traffic throughput of the network,

(ii) the derivation and implementation of the optimal control input in real time that
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satisfies the state, control, and safety constraints subject to bounded delayed commu-

nication, and (iii) the validation of the proposed control framework using a commercial

traffic simulator by evaluating its performance compared to a baseline scenario.

To the best of our knowledge, the proposed approach is the first attempt to

establish a rigorous constrained optimal control framework for the coordination of

vehicular platoons at a highway on-ramp merging in the presence of bounded inter-

platoon delays. This research advances the state of the art as follows. First, in contrast

to other efforts that neglected state/control constraints [120, 121, 212], our framework

guarantees satisfaction of all of the state, control, and safety constraints in the system.

Second, our framework unlike the several efforts in the literature at highway on-ramp

merging scenario [27, 76, 213, 214] does not impose a strict first-in-first-out queuing

policy to ensure lateral safety. Third, in this section, we consider the bounded delay

in the inter-platoon communication, which most of the studies in the coordination

of vehicular platoons neglect [120, 215, 216]. Finally, our framework yields a closed-

form analytical solution while satisfying all of the system constraints, and thus it is

appropriate for real-time implementation on board the CAVs [177].

6.1.1 Modeling Framework: Platoon Coordination

We consider the problem of coordinating platoons of CAVs in a scenario of

highway on-ramp merging (Fig. 6.1). Although our analysis can be applied to any

traffic scenario, e.g., signal-free intersections, roundabouts, and speed reduction zones,

we use a highway on-ramp as a reference to present the fundamental ideas and results

of this section.

The on-ramp merging includes a control zone, inside of which platoons of CAVs

communicate with the coordinator. The coordinator does not make any decisions for

the CAVs and only acts as a database for the CAVs. The paths of the main road and

the ramp road intersect at a point called conflict point, indexed by n ∈ N, at which

lateral collision may occur. We consider that CAVs have formed platoons upstream
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Figure 6.1: On-ramp merging with a single merging point for platoons of CAVs. The
control zone is highlighted in light blue color, the entry time and exit time to the control
zone are depicted with circles, and example sets of platoon leaders and followers are
shown.

of the control zone in a region called platooning zone. We refer interested readers to

[169, 170, 217] for further details on platoon formation.

6.1.1.1 Network Topology and Communication

In our modeling framework, we impose the following communication topology
based on the standard V2V and V2I communication protocol as shown in Fig. 6.2.

1. Bidirectional inter-platoon communication: The leaders of each platoon
can exchange information with each other via the coordinator through a V2I
communication protocol. The flow of information is bidirectional.

2. Unidirectional intra-platoon communication: The following CAVs of each
platoon can subscribe to the platoon leader’s state and control information. The
flow of information is unidirectional from the platoon leader to the following
CAVs within that platoon.

When a platoon leader enters the control zone, it subscribes to the bidirectional inter-

platoon communication protocol to connect with the coordinator and access the infor-

mation of platoons that are already in the control zone. After obtaining this informa-

tion, the leader derives its optimal control input (acceleration/deceleration) to cross the
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Figure 6.2: Network topology for information flow: (i) bidirectional inter-platoon com-
munication (dashed double-headed arrow) between the platoon leaders via the coordi-
nator, and (ii) unidirectional intra-platoon communication (solid single-headed arrow)
from platoon leader to the platoon followers.

control zone without any lateral or rear-end collision with the other CAVs, and without

violating any of the state and control constraints. The leader then communicates its de-

rived control input and trajectory information to its followers using the unidirectional

intra-platoon communication protocol so that the following CAVs can compute their

control input. Finally, the platoon leader transmits its information to the coordinator

so that the subsequent platoon leaders can plan their trajectories accordingly. In this

section, we enhance our framework to consider delayed transmission during the inter-

platoon communication protocol due to the physical distance among the platoons. On

the other hand, since the CAVs within each platoon are closely spaced, we consider that

there is an instantaneous flow of information within the intra-platoon communication

protocol. In our modeling framework, we make the following assumption regarding the

nature of delay during the inter-platoon communication protocol.

Assumption 6.1.1. The communication delay during the bidirectional inter-platoon

communication between each platoon leader and the coordinator is bounded and known

a priori.
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Assumption 6.1.1 enables the determination of upper bounds on the state un-

certainties as a result of sensing or communication errors and delays, and incorporates

these into more conservative safety constraints, the exposition of which we provide in

Section 6.1.4.

6.1.1.2 Dynamics and Constraints

Next, we provide some definitions that are necessary for our exposition.

Definition 6.1.1. The queue that designates the order in which each platoon leader

entered the control zone is given by L(t) = {1, . . . , L(t)}, where L(t) ∈ N is the total

number of platoons that are inside the control zone at time t ∈ R≥0. When a platoon

exits the control zone, its index is removed from L(t).

Definition 6.1.2. CAVs within platoon i ∈ L(t) are indexed with setNi = {0, 1, . . . ,mi},

where 0 and mi ∈ N denote the leader and last CAV of the platoon i, respectively.

The size of each platoon i ∈ L(t) is thus the cardinality of set Ni, and denoted by

Mi := mi + 1.

In our analysis, we consider that the dynamics of each CAV j ∈ Ni in platoon

i ∈ L(t) is governed by a double integrator,

ṗi,j(t) = vi,j(t),

v̇i,j(t) = ui,j(t), (6.1)

where pi,j(t) ∈ P , vi,j(t) ∈ V , and ui,j(t) ∈ U denote position, speed, and control input

at t ∈ R≥0, respectively. The sets P ,V , and U , are compact subsets of R.

Remark 6.1.1. In what follows, to simplify notation, we use subscript i instead of i, 0

to denote the leader of platoon i ∈ L(t).

Let t0i,0 = t0i ∈ R≥0 be the time that leader of platoon i ∈ N (t) enters the control

zone, and tfi,0 = tfi > t0i ∈ R≥0 be the time that leader of platoon i exits the control
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zone. Since each CAV j ∈ Ni, i ∈ L(t), has already formed a platoon in the platooning

zone, when the leader enters the control zone at time t0i , we have vi,j−1(t
0
i )−vi,j(t

0
i ) = 0

and pi,j−1(t
0
i )− pi,j(t

0
i )− lc = ∆i, where lc denote the length of each CAV j, and ∆i is

the safe bumper-to-bumper inter-vehicle gap between CAVs j, j − 1 ∈ Ni within each

platoon i ∈ L(t). This bumper-to-bumper inter-vehicle gap is imposed by the platoon

forming control in platooning zone upstream of the control zone. After exiting the

control zone at tfi , the leader of platoon i cruises with constant speed vi(t
f
i ) until the

last follower in the platoon exits the control zone. Afterwards, each platoon member

j ∈ Ni, i ∈ L(t) is controlled by a suitable car-following model [160] which ensures

satisfying rear-end safety constraint.

For each CAV j ∈ Ni in platoon i ∈ L(t) the control input and speed are

bounded by

umin ≤ ui,j(t) ≤ umax, (6.2)

0 < vmin ≤ vi,j(t) ≤ vmax, (6.3)

where umin, umax are the minimum and maximum control inputs and vmin, vmax are the

minimum and maximum speed limit, respectively.

To ensure rear-end safety between platoon i ∈ L(t) and preceding platoon k ∈

L(t), we have

pk,mk
(t)− pi(t) ≥ δi(t) = γ + φ · vi(t), (6.4)

where mk is the last follower in the platoon k physically located in front of platoon i

and δi(t) is the safe speed-dependent distance, while γ and φ ∈ R>0 are the standstill

distance and reaction time, respectively.

Similarly, to guarantee rear-end safety within CAVs inside each platoon i ∈ L(t),

we enforce

pi,j−1(t)− pi,j(t) ≥ ∆i + lc, ∀j ∈ {1, . . . ,mi}. (6.5)
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Finally, let k ∈ L(t) correspond to another platoon that has already entered the

control zone and may have a lateral collision with platoon i ∈ L(t) at conflict point n.

For the first case in which platoon i reaches the conflict point after platoon k,

we have

tfi − tfk,mk
≥ th, (6.6)

where th ∈ R>0 is the minimum time headway between any two CAVs entering node

n that guarantees safety, tfi is the time that leader of platoon i exits the control zone

(recall that the conflict point n is at the exit of control zone), and tfk,mk
is time that

the last CAV in the platoon k exits the control zone. Likewise, for the second case in

which platoon i reaches the conflict point n before platoon k, we have

tfk − tfi,mi
≥ th. (6.7)

Remark 6.1.2. Given the time tfi that the platoon leader of platoon i ∈ L(t) exits the

control zone, we compute the time tfi,mi
that the last platoon member mi ∈ Ni exits

the control zone as

tfi,mi
= tfi +

(Mi − 1)(∆i + lc)

vi(t
f
i )

. (6.8)

To guarantee lateral safety between platoon i and platoon k at a conflict point

n, either (6.6) or (6.7) must be satisfied. Therefore, we impose the following lateral

safety constraint on platoon i,

min

{
th − (tfi − tfk,mk

), th − (tfk − tfi,mi
)

}
≤ 0. (6.9)

With the state, control and safety constraints defined above, we now impose the

following assumption:

Assumption 6.1.2. Upon entering the control zone, the initial state of each CAV

j ∈ Ni(t), i ∈ L(t), is feasible, that is, none of the speed or safety constraints are

violated.
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This is a reasonable assumption since CAVs are automated; therefore, there is

no compelling reason for them to violate any of the constraints by the time they enter

the control zone.

6.1.1.3 Information Structure

In this section, we formalize the information structure that is communicated

between the CAV leaders and the coordinator inside the control zone.

Definition 6.1.3. Let ϕi be the vector containing the parameters of the optimal

control policy (formally defined in Section 6.1.2) of the leader of platoon i ∈ L(t0i ).

Then, the platoon information set Ii that the leader of platoon i can obtain from the

coordinator after entering the control zone at time t = t0i is

Ii = {ϕ1:L(t0i )−1, M1:L(t0i )
, t01:L(t0i )

, tf
1:L(t0i )−1

}, (6.10)

where ϕ1:L(t0i )
:= [ϕ1, . . . ,ϕL(t0i )−1]

T , M1:L(t0i )
:= [M1, . . . ,ML(t0i )

]T ,

tf
1:L(t0i )

:= [t01, . . . , t
0
L(t0i )

]T and tf
1:L(t0i )−1

:= [tf1 , . . . , t
f

L(t0i )−1
]T .

Remark 6.1.3. The information structure Ii for each platoon i ∈ L(t0i ) indicates that

the control policy, entry time to the control zone t0j , exit time of the control zone tfj ,

and the platoon size Mj of each platoon j ∈ L(t0i ) \ {i} already existing within the

control zone is available to the leader of platoon i through the coordinator. Note that,

although the leader of platoon i knows the endogenous information t0i and Mi, it needs

to compute the vector of its own optimal control input parameters ϕi and the merging

time tfi , which we discuss in section 6.2.2.

Definition 6.1.4. The member information set Ii,j(t) that each platoon member j ∈

Ni \ {0} belonging to each platoon i ∈ L(t) at time t ∈ [t0i , t
f
i ] can obtain is

Ii,j = {pi,0(t), vi,0(t), ui,0(t)}. (6.11)

Remark 6.1.4. The unidirectional intra-platoon communication protocol allows each

platoon member j ∈ Ni \ {0} belonging to platoon i ∈ L(t) to access the state and
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control input information of its platoon leader in the form of Ii,j at each time t ∈ [t0i , t
f
i ].

The set Ii,j is subsequently used to derive the optimal control input u∗
i,j(t) of each

platoon member j, which we discuss in detail in Section 6.1.3.

In what follows, we introduce our coordination framework which consists of two

optimal control problems. The first problem is to develop an energy-optimal control

strategy for the platoon leaders to minimize their travel time while guaranteeing that

none of their state, control, and safety constraints becomes active. The second problem

is concerned with the optimal control of followers within each platoon in order to

maintain the platoon formation while ensuring safety and string stability.

6.1.2 Optimal Control of Platoon Leaders

In this section, we extend the single-level optimization framework we developed

earlier for coordination of CAVs in [159] to establish a framework for coordinating

platoons of CAVs. Upon entrance to the control zone, the leader of platoon i ∈ L(t)

must determine the exit time tfi (recall that based on Remark 6.1.1, this is the time

that the leader of platoon i exits the control zone). The exit time tfi corresponds to

the unconstrained energy optimal trajectory for the platoon leader ensuring that the

resulting trajectory does not activate any of (6.1) - (6.4) and (6.9). The unconstrained

solution of the leader of platoon i is given by [159]

ui(t) = 6ait+ 2bi,

vi(t) = 3ait
2 + 2bit+ ci, (6.12)

pi(t) = ait
3 + bit

2 + cit+ di,

where ai, bi, ci, di are constants of integration. The leader of platoon i must also satisfy

the boundary conditions
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pi(t
0
i ) = p0i , vi(t

0
i ) = v0i , (6.13)

pi(t
f
i ) = pfi , ui(t

f
i ) = 0, (6.14)

where pi is known at t0i and tfi by the geometry of the road, and v0i is the speed at

which the leaders of platoon i enters the control zone. The final boundary condition,

ui(t
f
i ) = 0, results from vi(t

f
i ) being left unspecified [188]. There are five unknown

variables that determine the optimal trajectory of the leader of the platoon i, four

constants of integration from (6.12), and the unknown exit time tfi . The value of tfi

guarantees that the unconstrained trajectories in (6.12) satisfy all the state, control,

and safety constraints in (6.2), (6.3) and (6.4), respectively, and the boundary condi-

tions in (6.14). In practice, for the leader of each platoon i ∈ L(t), the coordinator

stores the optimal exit time tfi and the corresponding coefficients ai, bi, ci, di. We de-

note the coefficients of the optimal control policy for leader of platoon i ∈ L(t) by

vector ϕi = [ai, bi, ci, di]
T , which is an element of platoon information set for the leader

of platoon i ∈ L(t) (Definition 6.1.3). We formally define our single-level optimization

framework for platoon leaders as follows.

Problem 6.1.1. Upon entering the control zone, each leader of platoon i ∈ L(t) ac-

cesses the information set Ii and solves the following optimization problem at t0i

min
tfi ∈Ti(t0i )

tfi (6.15)

subject to:

(6.4), (6.9), (6.12),

where the compact set Ti(t0i ) = [tfi , t
f
i ] is the set of feasible solution of leader of pla-

toon i ∈ N (t) for the exit time that satisfy the boundary conditions without activating

the constraints, while tfi and t
f
i denote the minimum and maximum feasible exit time

computed at t0i .
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Remark 6.1.5. We can derive the optimal control input of the platoon leaders using

the solution of Problem 6.1.1, tfi , the boundary conditions (6.13)-(6.14) and (6.12).

In what follows, we continue our exposition by briefly reviewing the process to

compute the compact set Ti(t0i ) at time t0i using the speed and control input constraints

(6.2)-(6.3), initial condition (6.13), and final condition (6.14). Details regarding the

derivation of the compact set Ti(t0i ) can be found in [218].

The lower-bound tfi of Ti(t0i ) can be computed by considering the state and

control constraints and boundary conditions as

tfi = min
{
tfi,umax

, tfi,vmax

}
, (6.16)

where,

tfi,vmax
=

3(pi(t
f
i )− pi(t

0
i ))

vi(t0i ) + 2vmax

,

tfi,umax
=

√
9vi(t0i )

2
+ 12(pi(t

f
i )− pi(t0i ))umax − 3vi(t

0
i )

2umax

.

Here, tfi,vmax
and tfi,umax

are the times which leader of platoon i ∈ L(t) achieves its

maximum speed at the end of control zone and its maximum control input at the entry

of the control zone, respectively. Similarly, we derive the upper-bound t
f
i as

t
f
i =

tfi,vmin
, if 9vi(t

0
i )

2
+ 12(pi(t

f
i )− pi(t

0
i ))umin < 0,

max{tfi,umin
, tfi,vmin

}, otherwise,

(6.17)

where

tfi,vmin
=

3(pi(t
f
i )− pi(t

0
i ))

vi(t0i ) + 2vmin

,

tfi,umin
=

√
9vi(t0i )

2
+ 12(pi(t

f
i )− pi(t0i ))umin − 3vi(t

0
i )

2umin

.

Similar to the previous case, tfi,vmin
and tfi,umin

are the times at which the leader of

the platoon i ∈ L(t) achieves its minimum speed at the end of control zone and its

minimum control input at the entry of the control zone, respectively.
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Note that, the solution to the optimal control problem 6.1.1 yields the optimal

control input u∗
i (t) for each platoon leader i ∈ L(t) for t ∈ [t0i , t

f
i ]. However, the solution

to this problem does not consider the stability criteria of the platoon [219], which is

essential to guarantee safety within the platooning CAVs. In the following section, we

first introduce the notion of stability during platoon coordination, and then propose a

control structure ui,j(t) for each platoon member j ∈ Ni \ {0}, i ∈ L(t) that is optimal

subject to constraints, and satisfies the stability properties.

6.1.3 Optimal Control of Followers Within Each Platoon

Stability properties of the platoon system are well discussed in the literature

[129, 219, 220]. In general, there are two types of stability: (a) local stability, which

describes the ability of each platoon member to converge to a given trajectory, and

(b) string stability, where any bounded disturbance introduced into the platoon is not

amplified while propagating downstream along the vehicle string. In this section, we

adopt the following definition of platoon stability that encompasses the above stability

notions [220].

Definition 6.1.5. A platoon i ∈ L(t) is stable if, for any bounded initial disturbances

to all the CAVs j ∈ Ni, the position fluctuations of all the CAVs remain bounded

(string stability) and approach zero as time goes to infinity (local stability).

With the stability properties Definition 6.1.5, we introduce the control problem

of each platoon member j ∈ Ni \ {i}, i ∈ L(t).

Problem 6.1.2. Each platoon member j ∈ Ni\{0}, i ∈ L(t) needs to derive its control
input ui,j(t) for all t ∈ [t0i , t

f
i ] that

1. is energy and time-optimal subject to the state and control constraints in (6.2)-
(6.3), and rear-end collision avoidance constraint in (6.5), and

2. satisfying the stability properties according to Definition 6.1.5.

We provide the following proposition that addresses the Problem 6.1.2.
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Proposition 6.1.1. For each platoon member j ∈ Ni \{0} in the platoon i ∈ L(t), the

optimal control input ui,j(t) = u∗
i,0(t), where u∗

i,0(t) is the solution to Problem 6.1.1, is

an optimal solution to Problem 6.1.2.

Next, we provide the proof of Proposition 6.1.1 using the following Lemmas.

Lemma 6.1.6. For each platoon member j ∈ Ni \ {0} in each platoon i ∈ L(t), the

control input ui,j(t) = u∗
i,0(t) for all t ∈ [t0i , t

f
i ] is energy- and time-optimal subject to

the control (6.2), state (6.3) and safety constraint (6.5).

Proof. (a) Optimality: We derive the control input u∗
i,0(t) of the leading CAV i ∈ L(t)

by solving Problem 6.1.1. The optimal trajectory of the leader of platoon i ∈ L(t) is

given by (6.12) for all t ∈ [t0i , t
f
i ]. Thus, for each platoon member j ∈ Ni \ {0}, the

control input ui,j(t) such that ui,j(t) = u∗
i,0(t) also generates optimal linear control,

quadratic speed and cubic position trajectories as in (6.12).

(b) Constraint satisfaction: Since ui,j(t) = u∗
i,0(t), for each platoon member

j ∈ Ni \{0}, i ∈ L(t), we have vi,j(t) = v∗i,0(t) for all t ∈ [t0i , t
f
i ]. The trajectories v

∗
i,0(t)

and u∗
i,0(t) do not violate any constraints in (6.2)-(6.3) since they are derived by solving

Problem 6.1.1. Therefore, the trajectories vi,j(t) and ui,j(t) of each platoon member

j are ensured to satisfy constraints in (6.2)-(6.3). Additionally, if ui,j(t) = u∗
i,0(t),

the inter-vehicle gap pi,j−1(t) − pi,j(t) − lc between two consecutive platoon members

j, j − 1 ∈ Ni, i ∈ L(t) is time invariant, and equal to ∆i. Thus, the rear-end safety

within CAVs within the platoon i in (6.5) is guaranteed to be satisfied.

Lemma 6.1.7. Each platoon member j ∈ Ni \ {0} for each platoon i ∈ L(t) with the

control input ui,j(t) = u∗
i,0(t) for all t ∈ [t0i , t

f
i ] is locally stable, and the resulting platoon

i is string stable.

Proof. (a) Local stability: Since ui,j(t) = u∗
i,0(t), for each platoon member j ∈ Ni\{0},

i ∈ L(t), we have vi,j(t) = v∗i,0(t) for all t ∈ [t0i , t
f
i ]. Since there is no communication

delay within the unidirectional intra-platoon communication protocol, the speed of
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each platoon member j converges instantaneously to the speed of the platoon leader

v∗i,0(t), which implies local stability.

(b) String stability: A sufficient condition for the string stability of a platoon

i ∈ L(t) containing CAVs j ∈ Ni is ∥ ui,j(s)

ui,j−1(s)
∥∞ ≤ 1 [129], where ui,j(s) is the Laplace

transform of the control input ui,j(t). Since ui,j(t) = u∗
i,0(t) for all t ∈ [t0i , t

f
i ], we have

ui,j(s) = u∗
i,0(s) for all j ∈ Ni \ {0}, which yields ∥ ui,j(s)

ui,j−1(s)
∥∞ = 1. Thus, each platoon

i ∈ L(t) is string stable.

6.1.4 Delay in Platoon Communication

In this section, we enhance our framework to include delay in the bi-directional

inter-platoon communication. From Assumption 6.1.1, we know that delay is bounded

and this bound is known a priori. In particular, suppose the delay in bi-direction

communication of platoon leaders takes values in [τmin, τmax], where τmin ∈ R≥0 and

τmax ∈ R≥0 correspond to the minimum and maximum communication delay, respec-

tively. To account for the effects of communication delays in our framework, we consider

the worst-case scenario. Namely, we consider that it takes 0.5 τmax until the coordi-

nator receives the request from the platoon leader, and it takes an extra 0.5 τmax for

the leader of platoon i ∈ L(t) to receive the platoon information Ii. Thus, the leader

needs to cruise with the constant speed that it entered the control zone for τmax until it

receives the platoon information Ii to plan its optimal trajectory. After receiving this

information, the platoon leader computes the compact set of the feasible solution Ti at

time t0i + τmax with initial condition vi(t
0
i + τmax) and pi(t

0
i + τmax). Using the compact

set Ti(t0i + τmax) of the feasible solution, the leader derives its optimal control policy by

solving Problem 6.1.1. Then, it sends the computed trajectory at time t0i + τmax to the

coordinator. In the worst-case scenario, the coordinator receives this information after

0.5τmax at t0i +1.5τmax. To ensure that new arriving platoons have access to this infor-

mation, we need to have the following constraint on the initial conditions of platoons

upon entrance the control zone.
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Proposition 6.1.2. Let platoons i and j, i, j ∈ L(t), enter the control zone at time

t0i and t0j > t0i , respectively. In the presence of a bi-directional inter-platoon commu-

nication delay, which takes value in [τmin, τmax], the optimal trajectory of platoon i is

accessible to platoon j, if t0j − t0i ≥ τmax.

Proof. Platoon i computes its optimal trajectory at t0i + τmax, but in the worst-case

scenario, due to delay in communication, this information becomes available to the

coordinator at t0i+1.5 τmax. On the other hand, upon entrance the control zone, platoon

j sends a request to the coordinator to receive platoon information Ij. However, the

coordinator receives this request at t0j+0.5 τmax. In order to have the optimal trajectory

of platoon i accessible to platoon j we need to have t0j + 0.5 τmax ≥ t0i + 1.5 τmax, and

the result follows.

Remark 6.1.6. We can ensure that the condition in Proposition 6.1.2 holds by using

an appropriate controller in the platooning zone upstream of the control zone.

6.1.5 Implementation of the Optimal Coordination Framework

In Sections 6.1.2, 6.1.3 and 6.1.4, we provided the exposition of the intricacies

of our proposed control framework for optimal platoon coordination. In this section,

we introduce the approach that can be applied to implement this framework in real

time.

While entering the control zone at time t0i , platoon leader i ∈ L(t) obtains

the platoon information Ii from the coordinator and solves the optimization problem

(6.1.1) by constructing the feasible set Ti(t) and iteratively checking the safety con-

straint. The resulting optimal exit time tfi is then used along with the initial (6.13)

and boundary (6.14) conditions to derive the vector of control input coefficients ϕi

using (6.12). Subsequently, each CAV j ∈ Ni in platoon i ∈ L(t) computes its optimal

control input ui,j(t) at each time instance t ∈ [t0i , t
f
i ] using ϕi. In what follows, we
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provide an algorithm that delineates the step-by-step implementation of the proposed

optimal platoon coordination framework.

Algorithm 1 Vehicular Platoons Coordination Algorithm

1: for i ∈ L(t) do
2: for j ∈ Ni do
3: if j=0 then ▷ Platoon leader
4: ui,j = 0 ∀t ∈ [t0i , t

0
i + τmax) ▷ Cruise with constant speed

5: Compute Ti(t0i + τmax) ▷ Based on (6.16)-(6.17)
6: tfi ,ϕi ← Platoon Leader Control() ▷ Algorithm 2
7: [ai, bi, ci, di]← ϕi

8: ui,j(t)← 6ait+ 2bi ▷ ∀t ∈ [t0i + τmax, t
f
i ]

9: else ▷ Platoon followers
10: ui,j(t) = ui,0(t)
11: end if
12: end for
13: end for

6.1.6 Simulation Example

To evaluate and validate the performance of our proposed optimal platoon co-

ordination framework, we employ the microscopic traffic simulation software VISSIM

v11.0 [202]. We create a simulation environment with a highway on-ramp merging,

which has a control zone of length 560 m. In our simulation framework, we use VIS-

SIM’s component object model (COM) interface with Python 2.7 to generate platoons

of CAVs on the main road and the on-ramp at different time intervals. The time

interval between two consecutive platoon generations is randomized with a uniform

probability distribution, and the bounds can be controlled to increase or decrease the

traffic volume in each roadway. The length of each platoon is also randomly selected

from a set of 2 to 4 vehicles with equal probability. The speed limit of each roadway

is set to be 16.67 m/s, and the maximum and minimum acceleration limit is 3 m/s2

and -3 m/s2, respectively. Vehicles enter the main road and the on-ramp with a traffic

volume of 700 and 650 vehicle per hour per lane with random initial speed uniformly
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Algorithm 2 Platoon Leader Control

Input: Platoon Information set Ii, Compact feasible set Ti(t0i + τi) = [tfi , t
f
i ]

Output: Exit time tfi , Coefficients of the optimal control policy ϕi

1: tfi ← tfi
2: k ← platoon physically located in front of platoon i
3: pk,mk

(t)← pk(t)− (Mk − 1)(∆k + lc) ▷ Position of the last follower
4: while pk,mk

(t)− pi(t) < δi(t) do ▷ Rear-end safety

5: tfi ← tfi + dt
6: end while
7: lateral ← list of all platoons j < i from the other road
8: for j ∈ lateral do
9: Compute tfj,mj

and tfi,mi
from (6.8)

10: while tfi − tfj,mj
< th AND tfj − tfi,mi

< th do ▷ Lateral safety

11: tfi ← tfi + dt
12: end while
13: end for
14: Compute ϕi ▷ From (6.12)-(6.14)

chosen from a set of 13.89 to 16.67 m/s. Videos of the experiment can be found at the

supplemental site, https://sites.google.com/view/ud-ids-lab/CAVPLT.

To evaluate the performance of the proposed optimal control framework, we

simulate the following control cases.

(a) Baseline 1: All vehicles in the network are human-driven vehicles. In this

scenario, the Wiedemann car-following model built-in VISSIM [202] is applied. The

conflict point of the on-ramp merging scenario has a priority mechanism, where the

vehicles on the ramp road are required to yield to the vehicle on the main road within

a certain look-ahead distance. Vehicles enter the network individually without forming

any platoons.

(b) Baseline 2: Similar to the above case, all the vehicles are human-driven

vehicles integrated with the Wiedemann car-following model and follow the priority

mechanism set at the conflict point of the on-ramp merging scenario. The difference

is that, when vehicles enter the network, they have already formed platoons. Note, we
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Figure 6.3: The position trajectories of the optimally coordinated CAV platoons at the
(a) main road and (b) ramp road are shown.

consider this case to simulate the same initial condition of the optimal coordination

case, which we discuss next.

(c) Optimal Coordination: All the vehicles present in the network are connected

and automated. They enter the network forming platoons of different sizes and optimize

their trajectories based on the optimal coordination framework presented in Section

6.2.2.

We use COM application programming interface to interact with the VISSIM

simulator externally and implement the proposed optimal coordination framework. At

each simulation time step, we use the VISSIM-COM interface to collect the required

vehicle attributes from the simulation environment and pass them to the external

python script. The external python script implements the proposed single-level optimal

control algorithm (Section 6.1.5) to compute the optimal control input of each CAV
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Figure 6.4: Speed profiles of 400 vehicles traveling through the on-ramp merging sce-
nario for three cases: (a) baseline without platooning, (b) baseline with platooning and
(c) optimal platoon coordination.

within the control zone. Finally, the speed of each platooning CAV is updated in

VISSIM traffic simulator in real-time using the COM interface.

In Fig. 6.4, the position trajectories of the optimal coordinated CAV platoons

traveling through the main road and the ramp road of the considered on-ramp merging

scenario are shown. The spatial gaps between the trajectory paths indicate that our

framework satisfies the rear-end collision avoidance constraint without any violation.

To visualize the performance of the proposed coordination framework in com-

parison with the baseline cases, we focus on Figs. 6.4 and 6.5. In Fig. 6.4, the speed

trajectories of all the vehicles in the network are shown. In Figs. 6.4 (a)-(b), both base-

line cases show stop-and-go driving behavior close to the conflict point of the on-ramp
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Figure 6.5: Comparison of performance metrics: (a) cumulative fuel consumption of
optimal coordination (black) vs. baseline with platooning (red), and (b) total travel
time distribution of optimal coordination (blue) vs. baseline with coordination (ma-
roon).

merging scenario. In contrast, with the optimal coordination framework, we are able

to eliminate stop-and-go driving behavior, as shown in Fig. 6.4(c). The elimination of

the stop-and-go driving behavior has associated benefits, namely, the minimization of

transient engine operation and travel time, as shown in Fig. 6.5. In Fig. 6.5 (a), the

baseline case with vehicle platoons (red) shows a sudden increase in fuel consumption

near the conflict point due to the transient engine operation induced by the stop-and-

go driving behavior. In contrast, the cumulative fuel consumption trajectories of the

optimally coordinated CAVs (black) remain steady throughout their path. Note that,

we use the polynomial metamodel proposed in [67] to compute the fuel consumption

of each vehicle. In Fig. 6.5 (b), we illustrate the distribution of total travel time of
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the vehicles for the baseline (maroon) and the optimal coordination (blue) framework.

The high variance of the travel time for the baseline case compared to the optimal

coordination approach indicates increased traffic throughput of the network.

Finally, we provide the summary of the performance metrics in Table 6.1. Based

on the simulation, the optimal coordination framework shows significant improvement

over the baseline cases in terms of average travel time and fuel consumption.

Table 6.1: Summary of performance metrics

Performance Metrics Avg. travel time [s] Avg. fuel consump-
tion [gallon]

Baseline 1 57.33 0.042
Baseline 2 52.79 0.05
Optimal Coordination 46.1 0.022

Improvement (baseline 1) [%] 19.6 46.9
Improvement (baseline 2) [%] 12.7 38.2

6.2 Coordination of Mixed Platoons at On-Ramp Merging

In this section, we address the problem of optimal coordination of mixed pla-

toons consisting of CAVs and human-driven vehicles (HDVs) at a highway on-ramp

merging. The main objective is to leverage the key concepts of vehicle coordination

and platooning and establish a control framework for platoon coordination aimed at

improving network performance while guaranteeing safety. To this end, I present a

single-level constrained optimal control framework that optimizes the fuel economy

and travel time of the mixed platoons while satisfying the state, control, and safety

constraints. I also explore the effect of delayed communication among the vehicles

within the platoons and propose a robust coordination framework to enforce lateral and

rear-end collision avoidance constraints in the presence of bounded delays. I provide a

closed-form analytical solution to the optimal control problem with safety guarantees

that can be implemented in real time.
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Figure 6.6: (a) On-ramp merging scenario for platoons of mixed vehicles, where the
leader of each platoon is the CAV (red vehicles) and the rest of the platoon members
are HDVs (gray vehicles). The control zone is highlighted in green color, the entry time
t0i,0 and exit time tfi,0 to the control zone for each platoon i are depicted with circles,
and example of sets L(t) and Ni according to the Definitions 6.2.1 and 6.2.2 are shown.
(b) Communication structure for information flow: (i) V2V-enabled bidirectional flow
of information between the CAVs (double-headed dashed red arrow), (ii) V2V-enabled
unidirectional flow of information from the HDVs to the CAVs (single-headed dashed
red arrow), and (iii) unidirectional driver perception from preceding vehicle to the
following HDVs (single-headed solid black arrow).

6.2.1 Modeling Framework: Mixed Platoon

We consider the problem of coordinating mixed platoons at a highway on-ramp

merging scenario, where the leaders of each platoon are CAVs and the rest of the

platoon members are HDVs, as shown by the red and gray colored vehicles in Fig.

6.6, respectively. Although our proposed framework and analysis for mixed platoon

coordination can be extended to any traffic scenario, e.g., signal-free intersections,

roundabouts, and speed reduction zones, we use a highway on-ramp as a reference to

present the fundamental ideas and results of this work.

The on-ramp merging scenario includes a control zone (green road section in
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Fig. 6.6), within which the CAVs are controlled to coordinate the platoons. The paths

of the main road and the ramp road intersect at a point called conflict point, indexed

by n ∈ N, at which lateral collision may occur. We consider that CAVs have already

formed platoons with the HDVs of the network upstream of the control zone in a region

called the platooning zone. We refer interested readers to [169, 170, 217] for further

details on platoon formation.

We provide the following definitions that are required to formulate the problem.

Definition 6.2.1. The queue that designates the order in which each platoon leader

enters the control zone is given by L(t) = {1, . . . , L(t)}, where L(t) ∈ N is the total

number of platoons that are inside the control zone at time t ∈ R≥0. When a platoon

exits the control zone, its index is removed from L(t).

Definition 6.2.2. CAVs and HDVs within platoon i ∈ L(t) are indexed with set

Ni = {0, 1, . . . ,mi}, where 0 and mi ∈ N denote the leader CAV and last HDV of the

platoon i, respectively. The size of each platoon i ∈ L(t) is thus the cardinality of set

Ni, and denoted by Mi := mi + 1.

Let t0i,j ∈ R≥0 and tfi,j > t0i,0 ∈ R≥0 be the times that each vehicle j ∈ Ni of

platoon i ∈ L(t) enters and exits the control zone, respectively.

In our modeling framework, we consider the following structure to model the
flow of information, as shown in Fig. 6.6.

1. Bidirectional CAV communication: Each CAV is retrofitted with a V2V-enabled
receiver and transmitter that enables a bidirectional flow of information. Each
CAV can transmit its state information to other CAVs and receive incoming
information from other vehicles within the network.

2. Unidirectional HDV communication: Each HDV is retrofitted with V2V-enabled
transmission device that it uses to share its state information in real time with
the CAVs. It is estimated that 90 % of all cars to be sold in the US within the
next couple of years will have connectivity [221].

3. Direct driver perception: The human driver in each HDV can only perceive
the immediately preceding vehicle’s state information. The flow of information
for direct driver perception is unidirectional from the preceding vehicle to the
immediately following HDV.
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When a platoon leader enters the control zone, it subscribes to the bidirectional CAV

communication protocol to connect with other vehicles and access the information of

platoons that are already in the control zone. After obtaining this information, the

leader CAV derives its optimal control input (acceleration/deceleration) to cross the

control zone without any lateral or rear-end collision with the other CAVs, and without

violating any of the state and control constraints. For the rest of the platoon members,

which are HDVs, the human drivers take control action based on the state information

of the directly preceding vehicle received through direct driver perception. Finally, the

platoon leader and members transmit their information so that the subsequent platoon

leaders can plan their trajectories accordingly. We make the following assumptions

regarding the nature of the communication structure.

Assumption 6.2.1. No delay and error takes place during the V2V-enabled commu-

nication.

Assumption 6.2.2. The perception delay for each HDV is bounded, which is known

as a priori.

Assumption 6.2.1 may be strong, but it is relatively straightforward to relax as

long as the noise in the measurements and/or delays is bounded. For example, we can

determine upper bounds on the state uncertainties as a result of sensing or communica-

tion errors and delays, and incorporate these into more conservative safety constraints.

Assumption 6.2.2 enables the determination of upper bounds on the state uncertainties

as a result of sensing or communication errors and delays, and incorporates these into

more conservative safety constraints.
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6.2.1.1 Vehicle Dynamics

In our analysis, we consider that the dynamics of each vehicle j ∈ Ni in platoon

i ∈ L(t) is governed by a double integrator,

ṗi,j(t) = vi,j(t),

v̇i,j(t) = ui,j(t− τi,j), (6.18)

where pi,j(t) ∈ P , vi,j(t) ∈ V , and ui,j(t) ∈ U denote position, speed, and control input

at t ∈ R≥0, respectively, and τi,j is the execution delay of the control input ui,j(t). The

sets P ,V , and U are compact subsets of R.

Next, we provide the following definitions that are necessary for our exposition.

Definition 6.2.3. The headway ∆pi,j(t) and approach rate ∆vi,j(t) of vehicle j with

respect to its preceding vehicle j − 1, where j, j − 1 ∈ Ni, i ∈ L(t), are

∆pi,j(t) = pi,j−1(t)− pi,j(t)− lc, (6.19)

∆vi,j(t) = vi,j−1(t)− vi,j(t), (6.20)

where lc denote the length of each vehicle j.

Definition 6.2.4. For each vehicle j ∈ Ni in platoon i ∈ L(t), si,j(t) is the safe

speed-dependent headway,

si,j(t) := dmin + ρi,j · vi,j(t), (6.21)

where, dmin and ρi,j ∈ R>0 are the minimum distance at standstill and safe time

headway of each vehicle, respectively.

Since each HDV j ∈ Ni, i ∈ L(t), has already formed a platoon in the platooning

zone, when the leader CAV enters the control zone at time t0i,0, we have ∆vi,j(t
0
i,0) =

0 and ∆pi,j(t
0
i,0) = ∆i, where ∆i is the initial bumper-to-bumper inter-vehicle gap

between vehicles j, j − 1 ∈ Ni within each platoon i ∈ L(t). This bumper-to-bumper

inter-vehicle gap is imposed by the platoon forming control in platooning zone upstream
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of the control zone. After exiting the control zone at tfi,0, the leader of platoon i cruises

with constant speed vi(t
f
i,0) until the last follower in the platoon exits the control zone.

The control input ui,j(t) of each vehicle j ∈ Ni, i ∈ L(t) in (6.18) can take

different forms based on the consideration of connectivity and automation. For each

CAV in the platoon i ∈ L(t), we derive and implement the control input ui,0(t) using

the optimal control framework discussed in Section 6.2.2. Furthermore, due to the

assumption of perfect communication (Assumption 6.2.1), we consider τi,0 = 0 for each

CAV in i ∈ L(t).

On the other hand, the driver perception delay τi,j of each HDV j ∈ Ni of

platoon i ∈ L(t) is bounded according to Assumption 6.2.2. Let us consider τ ∈ R>0 to

be the upper-bound of τi,j. To ensure the robustness of our proposed framework, we use

the upper-bound τ of the HDV perception delay, which essentially represents the worst

case of perception and reaction delay for a human driver, to model the driving behavior

of the HDVs. We consider a car-following model to represent the predecessor-follower

coupled dynamics, which has the generic structure ui,j(t) = f(∆pi,j(t),∆vi,j(t), vi,j(t)).

Here, f(·) represents the behavioral function of the car-following model.

Remark 6.2.1. Although the HDVs share their state information with the CAVs via

unidirectional HDV communication, their behavioral function f is unknown to the

CAVs.

In this work, we consider a variation of the optimal velocity model to represent

the HDVs’ driving behavior as in [137]

u̇i,j(t) = α(V (t)− vi,j(t) + β(W (t)− vi,j(t)), (6.22)
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where,

V (t) :=


0, if ∆pi,j(t) ≤ dmin,

κ(∆pi,j(t)−∆pst), if dmin ≤ ∆pi,j(t) ≤ dmax,

vmax, if ∆pi,j(t) ≥ dmax,

W (t) :=


vi,j−1(t), if vi,j−1(t) < vmax,

vmax, if vi,j−1(t) ≥ vmax.

Here, κ = vmax/(dmax− dmin), where dmax the maximum look-ahead distance for safety

consideration. The nominal values of the parameters considered here are α = 0.6,

β = 0.5, τ = 0.6 s, κ = 0.6, vmax = 30 m/s.

6.2.1.2 System Constraints

For each vehicle j ∈ Ni in platoon i ∈ L(t) the control input and speed are

bounded by

umin ≤ ui,j(t) ≤ umax, (6.23a)

0 < vmin ≤ vi,j(t) ≤ vmax, (6.23b)

where umin, umax are the minimum and maximum control inputs related to the phys-

ical acceleration/deceleration limits of the vehicles, and vmin, vmax are the minimum

and maximum speed limit of the road, respectively. Although the control constraint in

(6.23a) applies to all vehicles in the network, we need to take into account the notion of

formation control and string stability of the platoons and revisit the control constraint

for CAV. To this end, we consider the following cases:

(i) Formation control during acceleration: For a strictly positive control input ui,0 > 0

for each CAV in L(t), the CAV’s information is relayed with a delay of (Mi − 1)τ to

the last HDV j ∈ Ni, i ∈ L(t). For a positive control input ui,0 > 0 of the CAV, this

implies that the vehicles within the platoon may break the initial formation, which has

serious safety implications for solving the platoon coordination problem. Therefore,
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to ensure that the vehicles within the platoon are closely spaced, we only allow non-

positive control input for each CAV, i.e., u0,i ≤ 0.

(ii) String instability during deceleration: The delay in information flow towards the

trailing HDVs j ∈ Ni, i ∈ L(t) also has safety implications due to string stability. Dur-

ing the maximum braking event of the CAV, i.e., ui,0 = umin, the headway fluctuation

will get amplified for the trailing HDVs, and passenger safety may be compromised.

Let us consider ûmin to be a minimum deceleration value for which the CAV can avoid

string instability. We provide the explicit formulation and derivation of ûmin in Section

6.2.2.3. The CAV control input is thus lower-bounded as ui,j ≥ max(ûmin, umin).

With the above information, we can now formulate a control constraint exclu-

sively applicable to the CAVs in the network

max(ũmin, umin) ≤ ui,j(t) ≤ 0 (6.24)

To ensure rear-end safety between platoon i ∈ L(t) and preceding platoon k ∈ L(t),

we have

pk,mk
(t)− pi,0(t) ≥ si,0(t), (6.25)

where mk is the last follower in the platoon k physically located in front of platoon i

and si(t) is the safe speed-dependent headway of the leader CAV of platoon i.

Similarly, to guarantee rear-end safety between two consecutive vehicles j, j− 1

inside each platoon i ∈ L(t), we enforce

∆pi,j(t) ≥ dmin, ∀j ∈ {1, . . . ,mi}. (6.26)

Finally, let k ∈ L(t) correspond to another platoon that has already entered the

control zone, which implies that i ∈ L(t) may have a lateral collision with platoon k

at conflict point n.
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In this work, we enforce a first-in-first-out queuing policy, i.e., platoon i must

cross the conflict point after platoon k, which is ahead in the queue. For each platoon

i ∈ L(t), lateral collision is possible at the conflict point n within the set Γi,

Γi := {t | t ∈ [tfi,0, t
f
i,mi

]}. (6.27)

To guarantee lateral safety between platoon i and platoon k at the conflict point n,

the following condition must be satisfied,

Γi ∩ Γk = ∅, i, k ∈ L(t). (6.28)

Therefore, we impose the following lateral safety constraint on platoon i to satisfy

(6.28)

tfi,0 − tfk,mk
≥ th, (6.29)

where th ∈ R>0 is the minimum time headway between any two CAVs entering node

n that guarantees safety, tfi,0 is the time that leader of platoon i exits the control zone

(recall that the conflict point n is at the exit of control zone), and tfk,mk
is time that

the last HDV in the platoon k exits the control zone.

A conservative estimation of tfk,mk
can be formulated by assuming a worst-case

braking scenario after the platoon leader of the platoon k ∈ L(t) exits the conflict

zone. Therefore, one may calculate tfk,mk
by considering the behavior limits of the last

HDV in the platoon under typical highway driving scenarios, i.e., the last HDV travels

to the conflict point with uk,mk
(t) ≡ umin.

tfk,mk
=


−

vk,mk
−
√

v2k,mk
+2uminrk,mk

umin
, if rk,mk

≤−
v2k,mk

−v2min

2umin
,

−vk,mk
−vmin

umin
+

rk,mk
+

v2k,mk
−v2min

2umin

vmin
, otherwise,

(6.30)

where vk,mk
and rk,mk

represent the current velocity of the last HDV and its current

distance from the conflict point. Note that although (6.30) gives a conservative estima-

tion of tfk,mk
, this calculation can be done at each time the current status of the HDV

is available via V2X. Later in the simulation we will demonstrate that the estimation
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becomes less conservative with frequent status update as the HDV approaches conflict

zone. However, the conservative approach presented in (6.30) needs to be computed

real-time for each time step, which can be computationally taxing. Furthermore, the

worst-case scenario considered in this formulation does not incorporate the platoon

leader’s state information in its formulation. In what follows, we present an alterna-

tive formulation based on the platoon leader’s state information that can be used to

compute the tentative merging time tfk,mk
of the last HDV of the platoon.

Lemma 6.2.5. If the leader of the preceding platoon k ∈ L(t) exits the control zone at

time tfk,0 and maintains the exit speed vk,0(t
f
k,0) until the all the platoon members exit

the control zone, then the time tfk,mk
such that the last platoon member mk ∈ Ni exits

the control zone is

tfk,mk
= tfk,0 +

(Mk − 1)(∆k + lc)

vk,0(t
f
k,0)

. (6.31)

Proof. Suppose that, the leader of the preceding platoon k ∈ L(t) exits the control zone

at time tfk,0 and maintains the exit speed vk,0(t
f
k,0) until the all the platoon members exit

the control zone. Since the leader CAV’s control input is non-positive according to the

constraint in (6.24), the total length of the platoon at time tfk,0 can be upper-bounded

by the initial platoon length of the platoon (Mk − 1)∆k. Therefore, the last HDV of

platoon k needs to travel the distance (Mk − 1)(∆k + lc) with a speed vk,mk
(tfk,0) that

is also upper-bounded by the leader CAV’s speed vk,0(t
f
k,0). Therefore, considering a

conservative estimation of the platoon length and HDV’s speed at time tfk,0, the time

duration that last HDV of the platoon needs to travel to reach the exit of the control

zone is (Mk−1)(∆k+lc)

vk,0(t
f
k,0)

, which yields the equation in (6.31) .

With the state, control and safety constraints defined above, we now impose the

following assumption:

Assumption 6.2.3. Upon entering the control zone, the initial state of each CAV

j ∈ Ni(t), i ∈ L(t), is feasible, that is, none of the speed or safety constraints are

violated.
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This is a reasonable assumption since CAVs are automated; therefore, there is

no compelling reason for them to violate any of the constraints by the time they enter

the control zone.

6.2.1.3 Information Structure

In this section, we formalize the information structure that is communicated

between the CAV leaders and the connected HDVs inside the control zone.

Definition 6.2.6. Let ϕi be the vector containing the parameters of the optimal

control policy (formally defined in Section 6.2.2.1) of the leader of platoon i ∈ L(t0i,0).

Then, the platoon information set Ii,0 that the leader of platoon i can obtain from

other vehicles after entering the control zone at time t = t0i,0 is

Ii,0 = {ϕ1:L(t0i,0)
, M1:L(t0i,0)

, t01:L(t0i,0)
, tf

1:L(t0i,0)
}, (6.32)

where ϕ1:L(t0i,0)
:= [ϕ1, . . . ,ϕL(t0i,0)

]T ,M1:L(t0i,0)
:= [M1, . . . ,ML(t0i,0)

]T ,

t0
1:L(t0i,0)

:= [t00,1, . . . , t
0
0,L(t0i,0)

]T , and tf
1:L(t0i,0)

:= [tf0,1, . . . , t
f

0,L(t0i,0)
]T .

Remark 6.2.2. The information structure Ii,0 for the leader CAV of each platoon

i ∈ L(t0i,0) indicates that the control policy, entry time to the control zone t0j , exit time

of the control zone tfj , and the platoon size Mj of each platoon j ∈ L(t0i,0) \ {i} already

existing within the control zone is available to the leader of platoon i through V2X

communication. Note that, although the leader of platoon i knows the endogenous

information t0i,0 and Mi, it needs to compute the vector of its own optimal control

input parameters ϕi and the merging time tfi,0, which we discuss in section 6.2.2.

Definition 6.2.7. The member information set Ii,j(t) that each platoon member j ∈

Ni \ {0} belonging to each platoon i ∈ L(t) at time t ∈ [t0i,0, t
f
i,0] can obtain is

Ii,j = {pi,j−1(t), vi,j−1(t)}. (6.33)

Remark 6.2.3. The unidirectional driver perception allows each platoon member j ∈

Ni\{0} belonging to platoon i ∈ L(t) to access the state and control input information

of its immediate preceding vehicle j − 1 in the form of Ii,j at each time t ∈ [t0i,0, t
f
i,0].
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6.2.2 Coordination Framework for Mixed Platoons

In what follows, we introduce a single-level optimal coordination framework that

consists of two objectives. The first objective is to develop a control strategy for the

platoon leaders to minimize their control efforts. The second objective is concerned

with minimizing their travel time while guaranteeing that none of their state, control,

and safety constraints becomes active.

6.2.2.1 Optimal Control of Problem for Platoon Leaders

To establish a framework for coordinating the mixed platoons, we adopt the

single-level optimization framework to control the CAVs, which are the platoon leaders,

as presented in Section 6.1. We formally define our single-level optimization framework

for platoon leaders as follows.

Problem 6.2.1. Upon entering the control zone, each leader of platoon i ∈ L(t) ac-

cesses the information set Ii and solves the following optimization problem at t0i,0

min
tfi,0∈Ti(t0i,0)

tfi,0 (6.34)

subject to:

(6.25), (6.29), (6.12),

where the compact set Ti(t0i,0) = [tfi , t
f
i ] is the set of feasible solution of leader of pla-

toon i ∈ N (t) for the exit time that satisfy the boundary conditions without activating

the constraints, while tfi and t
f
i denote the minimum and maximum feasible exit time

computed at t0i,0.

Remark 6.2.4. We can derive the optimal control input of the platoon leaders using

the solution of Problem 6.2.1, tfi,0, the boundary conditions (6.13)-(6.14) and (6.12).
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6.2.2.2 Feasibility and Existence

We continue our exposition by briefly reviewing the process to compute the com-

pact set Ti(t0i,0) at time t0i,0 using the speed and control input constraints (6.23a)-(6.23b),

initial condition (6.13), and final condition (6.14). Details regarding the derivation of

the compact set Ti(t0i,0) can be found in [218].

The lower-bound tfi of Ti(t0i,0) can be computed by considering the state and

control constraints and boundary conditions as

tfi = max

{
t̂fi,cruise,min{tfi,umax

, tfi,vmax
}
}
, (6.35)

where,

tfi,vmax
=

3(pi(t
f
i,0)− pi(t

0
i,0))

vi(t0i,0) + 2vmax

,

tfi,umax
=

√
9vi(t0i,0)

2
+ 12(pi(t

f
i,0)− pi(t0i,0))umax − 3vi(t

0
i,0)

2umax

,

t̂fi,cruise =
(pi(t

f
i,0)− pi(t

0
i,0)

vi(t0i,0)
.

Here, t̂fi,cruise is the time that the CAV requires to cruise the control zone with its initial

speed vi(t
0
i,0), and tfi,vmax

and tfi,umax
are the times which leader of platoon i ∈ L(t)

achieves its maximum speed at the end of control zone and its maximum control input

at the entry of the control zone, respectively. Similarly, we derive the upper-bound t
f
i

as

t
f
i =

tfi,vmin
, if 9vi(t

0
i,0)

2
+ 12(pi(t

f
i,0)− pi(t

0
i,0))umin < 0,

max{tfi,umin
, tfi,vmin

}, otherwise,

(6.36)

where

tfi,vmin
=

3(pi(t
f
i,0)− pi(t

0
i,0))

vi(t0i,0) + 2vmin

,

tfi,umin
=

√
9vi(t0i,0)

2
+ 12(pi(t

f
i,0)− pi(t0i,0))ûmin − 3vi(t

0
i,0)

2ûmin

,

ûmin = max(umin, ũmin).
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Similar to the previous case, tfi,vmin
and tfi,umin

are the times at which the leader of

the platoon i ∈ L(t) achieves its minimum speed at the end of control zone and its

minimum control input at the entry of the control zone, respectively.

The existence of an optimal solution to Problem 6.2.1 may not guaranteed given

the state, control and safety constraints in (6.24), (6.23b), (6.29) and (6.25). The

following lemma provides the condition to check whether Problem 6.2.1 is infeasible

and a solution does not exist.

Lemma 6.2.8. Suppose that Ti(t0i,0) is the compact set of a platoon i ∈ L(t) that

intends to exit the control with lateral safety constraint (6.29) after the last HDV of

the preceding platoon k ∈ L(t) exits the control zone at time tfk,mk
. A solution to

Problem 6.2.1 does not exist if the compact set Ti(t0i,0) is empty, and tfk,mk
+ th > t

f
i .

Proof. It is trivial to show that, if the compact set Ti(t0i,0) is empty, then there does

not exist any solution of Problem 6.2.1.

For the second condition, consider the scenario where platoon i needs to yield to

platoon k. A conservative prediction of the time when the last HDV in platoon k exits

the conflict zone is given by tfk,mk
in Lemma (6.2.5), and the leader CAV of platoon i

needs to enter the conflict point after tfk,mk
+th in the worst case to ensure safety. Thus,

the optimal problem need to be solved on the time domain [max(tfi , t
f
k,mk

+ th), t
f
i ]. To

ensure the possibility of a solution of Problem 6.2.1, we need

tfk,mk
+ th ≤ t

f
i , (6.37)

for the tfk,mk
given in (6.31). This yields a necessary condition between the states of the

last HDV in platoon k and the leader CAV in platoon i for a conflict-free coordination

of mixed platoons.

Note that, the solution to the optimal control problem 6.2.1 yields the optimal

control input u∗
i (t) for each platoon leader i ∈ L(t) for t ∈ [t0i,0, t

f
i,0]. However, the

solution to this problem does not consider the stability criteria of the platoon [219],
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which is essential to guarantee safety within the platooning CAVs. In the following

section, we first introduce the notion of stability during platoon coordination, and then

propose a control structure ui,j(t) for each platoon member j ∈ Ni \ {0}, i ∈ L(t) that

is optimal subject to constraints, and satisfies the stability properties.

6.2.2.3 Safety Guaranteed Control Bound Within Each Platoon

To ensure that the HDV followers in each platoon do not have rear-end collisions,

we provide a necessary condition regarding the maximal deceleration that the leader

CAV in the same platoon may apply. Let us first consider the scenario involving only

the leading CAV 0 and the following HDV 1. At time t0i,0 when CAV 0 enters the control

zone, it starts to apply a constant deceleration ui,0(t) = ũmin(< 0). Considering the

human reaction time delay τ and deceleration capability umin for HDV 1, for the given

initial velocities vi,0 := vi,0(t
0
i,0) and vi,1 := vi,1(t

0
i,0), and headway hi,1 := hi,1(t

0
i,0), the

CAV’s deceleration must satisfy the following condition to ensure hi,1(t) ≥ 0, ∀t ≥ t0i,0,

i.e., a rear-end collision never occurs between CAV 0 and HDV 1.

ũmin ≥ f(vi,0(t
0
i,0), vi,1(t

0
i,0), hi,1(t

0
i,0), τ, umin), (6.38)

where

f(vi,0, vi,1, hi,1, τ, umin) = (6.39)
max

(
umin,

(vmin−vi,0)
2

2hi,1+2(vmin−vi,1)τ+
(vmin−vi,1)

2

umin

)
, hi,1 ∈ [h∗

i,1,∞)

(vi,1−vi,0−uminτ)
2

2hi,1−uminτ2
+ umin, otherwise,

h∗
i,1 = −

1

2
τ(vmin + vi,0 − 2vi,1) +

(vi,1 − vi,0)(vmin − vi,1)

2umin

. (6.40)

The condition (6.38) is derived by considering that the following HDV 1 applies its

maximal deceleration u1(t) = umin on t ≥ t0i,0 + τ , i.e., τ time after the leader CAV

starts to apply constant input ũmin. Such condition of ũmin guarantees h1(t) ≥ 0,

∀t ≥ t0i,0. Therefore, if (6.38) is violated, a rear-end collision between CAV 0 and
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HDV 1 is inevitable under human reaction delay τ . We remark that at time t0i,0, with

the assumption that the platoon is already formed and vehicles are travelling with the

same steady-state velocity, i.e., vi,0 = vi,1, we have umin ≤ f(vi,0, v1, h1, τ, umin) ≤ 0.

That is, the necessary condition (6.38) is always feasible for the CAV to satisfy.

For more general scenario, where there are mi HDVs following the CAV 0, the

corresponding necessary condition to avoid rear-end collision is given by

ũmin ≥ (f1 ◦ f2 ◦ f3 ◦ · · · ◦ fmi
)(umin), (6.41)

where ◦ denotes function composition, and fj := f(vj−1, vj, hj, τ, umin) for j ∈ 1, 2, . . . ,mi.

Note that (6.41) is derived similar to (6.38) by considering the deceleration limit of

the last HDV mi to satisfy the condition hi,1(t) ≥ 0 ∧ hi,2(t) ≥ 0 ∧ · · · ∧ hi,mi
(t) ≥ 0,

∀t ≥ t0i,0. This guarantees that rear-end collisions never happen between any following

vehicles in the platoon.

So far, we provided the exposition of the intricacies of our proposed control

framework for optimal coordination of mixed platoons. The algorithm that can be

applied to implement this framework in real time is similar to the one presented in

Section 6.1.5 with a slight modification.

Algorithm 3 Vehicular Platoons Coordination Algorithm

1: for i ∈ L(t) do
2: for j ∈ Ni do
3: if j=0 then ▷ Platoon leader
4: ui,j = 0 ∀t ∈ [t0i,0, t

0
i,0) ▷ Cruise with constant speed

5: Compute Ti(t0i,0) ▷ Based on (6.35)-(6.36)

6: tfi ,ϕi ← Platoon Leader Control() ▷ Algorithm 2
7: [ai, bi, ci, di]← ϕi

8: ui,j(t)← 6ait+ 2bi ▷ ∀t ∈ [t0i,0, t
f
i,0]

9: else ▷ Platoon followers
10: ui,j(t) = fCFM

11: end if
12: end for
13: end for
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In this section, the key concepts of CAV coordination and platooning were

leveraged to establish a rigorous optimal platoon coordination framework for CAVs

that improves fuel efficiency and traffic throughput of the network. A single-level op-

timal control framework is presented that simultaneously optimizes both fuel economy

and travel time of the platoons while satisfying the state, control, and safety con-

straints. The coordination framework was made robust by considering the effect of

delayed inter-platoon communication and HDV perception delay to derive a closed-

form analytical solution of the optimal control problem using standard Hamiltonian

analysis that can be implemented in real time using leader-follower unidirectional com-

munication topology. Finally, the proposed control framework was validated using a

commercial simulation environment by evaluating its performance. The proposed op-

timal coordination framework shows significant benefits in terms of fuel consumption

and travel time compared to the baseline cases.
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Chapter 7

CONCLUSION

7.1 Summary

The contributions in this dissertation provide a rigorous mathematical solution
to the problem of optimal control and coordination of CAVs in a mixed traffic en-
vironment. First, I have addressed the problem related to the optimal control and
coordination of CAVs through traffic scenarios considering state, control, and safety
constraints. The key outcomes of this contribution are as follows.

1. The activation cases of different state and control constraint combinations are
mathematically characterized and a set of conditions are provided to identify the
activation of system constraints as a priori.

2. The interdependence of constraint activation cases can be identified based on the
initial boundary conditions.

3. The standard recursive methodology of solving the constrained optimal control
problem is improved computationally by the elimination of the intermediate steps
of iteration.

4. The junction points between the constrained and unconstrained arcs can be ex-
plicitly derived that enable the computation of the constrained optimal control
policy with a real-time implementable closed-form analytical solution.

The condition-based framework can increase the computational efficiency of

solving a constrained optimal control problem and derive control actions for the CAVs

in real time.

Second, I have addressed the problem of deriving the optimal trajectory of a
CAV in a mixed traffic environment that considers the interaction of HDVs. The key
outcomes of this contribution are as follows.

1. A predictive control approach was developed for deriving safe trajectories for the
CAVs in a mixed traffic environment by predicting the future trajectories of the
HDVs to ensure collision safety.
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2. An indirect approach was developed to control the HDVs by leveraging the con-
cept of vehicle platooning.

3. The platoon formation is formulated as a constrained multi-objective control
problem that enables optimal platoon formation by directly controlling the CAVs.

4. The platoon formation framework employs a receding horizon controller that can
handle system uncertainties, and enforce enhanced rear-end collision safety.

5. The framework can form platoons by employing different prediction models for
estimating the HDV trajectories: (a) a naive linear constant speed model, (b)
a nonlinear car-following model with nominal parameters, and (c) a data-driven
model that estimates the driving behavior of the HDVs in real time using recursive
least squares algorithm to better predict the futures trajectories.

The presented control framework guarantees the indirect control of the HDVs

by safely and optimally forming mixed platoons.

Third, I have addressed the problem of vehicle coordination in a mixed traffic
environment at traffic scenarios such as signal-free intersections, automated on-ramp
merging, etc.

1. The concepts of CAV coordination and platooning were leveraged to establish a
rigorous optimal platoon coordination framework in a mixed traffic environment.

2. The vehicle coordination is achieved by employing a single-level optimal control
framework that can simultaneously optimize both fuel economy and travel time
of the platoons while satisfying the state, control, and safety constraints.

3. The coordination framework is robust against the effect of delayed inter-platoon
communication and HDV perception delay.

The presented control framework can establish an automated on-ramp merging

scenario in a mixed traffic environment and coordinate the trajectories of the CAVs

and HDVs to eliminate congestion.

The research efforts pursued in this dissertation bridge the gap between the

two extremes of the mixed traffic environment spectrum, and thus, have a significant

impact on the future of mobility. The outcome of the research efforts presented in

this dissertation not only provides a vehicle-level performance improvement but also

realizes the automated coordination and merging concept, which increases the traffic
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performance from a macroscopic viewpoint. Compared to the utopian scenario of

100% CAV penetration, the developed control framework will be implementable online

in a real-world mixed traffic network with a variety of scenarios. By adopting the

computationally efficient and real-time implementable control framework proposed in

this dissertation, CAVs can derive optimal motion primitives that can ensure safe and

improved mobility in a mixed traffic environment.

7.2 Future Direction

Several avenues can be considered as potential directions for future research. In

this dissertation, a double integrator model was considered to model the CAV dynam-

ics. One of the future directions thus can be the inclusion of a more complex form

of vehicle dynamics that can accommodate the implications of the optimal control of

CAVs. For example, the vehicle dynamics with aerodynamic drag [89], lateral motion

[31], road grade [190] or delayed control action [137] can be considered to increase the

accuracy in deriving the optimal motion primitives.

The platoon formation and coordination framework presented in this disserta-

tion is developed from a microscopic point of view using vehicle-level control. Investi-

gation of the impact of platoon formation and control in a network-level analysis can

yield interesting results, especially considering different platoon characteristics similar

to the work of Lioris et al. [16].

Although delay in CAV communication and HDV perception has been consid-

ered to some extent in this dissertation, a rigorous mathematical formulation is yet to

be developed. Therefore, potential direction for future research can also include the re-

laxation of the assumption of perfect communication among the CAVs and considering

system uncertainty. Several research efforts have explored the effect of system uncer-

tainty by considering dynamic resequencing [91, 92], reinforcement learning [90, 93]

and control barrier functions [89, 94].

Finally, different approaches for the estimation and prediction of the HDV state
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can be explored to improve the accuracy of the feedback controller. Application of

improved recursive least squares algorithm [197], Kalman filter [196], linear-quadratic

Gaussian estimator [222] and deep learning approaches [223, 224] can be considered

for future development.
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Appendix A

Table A.1: Traffic volume at different routes within Mcity network.

High Medium Low
Main Route [vph/lane] 500 400 300
Highway [vph/lane] 800 600 400
SRZ [vph/lane] 1400 1100 800
Roundabout [vph/lane] 700 550 400

Table A.2: Simulation Parameters

Vehicle Parameters
Maximum Acceleration [m/s2] 1.5
Maximum Deceleration [m/s2] 3.0
Safe Time Headway [s] 1.2
Traffic Network
Corridor Length [m] 1500
Control Zone Length [m] 100
SRZ Length [m] 125
Speed Limit
On-Ramp Merging [mph] 40
Speed Reduction Zone [mph] 18.6
Roundabout [mph] 25
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Table A.3: VESIM parameters calibrated with Audi A3 specification.

Vehicle Parameters
Tire Model Michelline 225/60 r16
Weight (No driver) [lb] 3616
Rolling Resistance Coeff. 0.010
Frontal Area [in x in] 56.1 x 60
Traction Torque Loss [%] 0.95
Aerodynamic Drag Coeff. 0.32
Tire Traction Efficiency 0.96
Maximum Braking Force [N ] 12000
Transmission
Gear Ratio [1-6] 3.50, 2.77, 1.85, 1.02, 1.02, 0.84
Gear Efficiency [1-6] 0.98, 0.98, 0.98, 0.98, 0.98, 0.98
Gear Intertia [1-6] 0.0023, 0.0009, 0.0023, 0.0009,

0.0023, 0.0009
Forward Drive Ratio 3.75
Forward Drive Efficiency 0.966
Engine (TFSI) Parameters
Cylinder Volume [cc] 1395
Maximum Engine Power [kW ] 110
Maximum Engine Torque [Nm] 250
Engine Speed at Peak Torque [rpm] 1750 4000
Engine Inertia [kg/m2] 0.15
Battery Pack
Capacity [kWh] 8.8
Number of Cell/Module 12
Number of Modules 8
Maximum Voltage/Cell [volt] 4.2
Minimum Voltage/Cell [volt] 2.1
Maximum Battery Power [kW] 75
IMG Unit
Maximum Motor Power [kW ] 100
Maximum Motor Torque [Nm] 300
Maximum Generator Torque [Nm] -300
Motor Speed at Peak Torque [rpm] 2000
Rotor’s Rotational Inertia [kg/m2] 0.1
Energy Conversion (MPGe)
Gallon to Equivalent CO2 8.887e-3
kWh to Equivalent CO2 7.44e-4
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