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Abstract— In this paper, we investigate the problem of
a last-mile delivery service that selects up to N available
vehicles to deliver M packages from a centralized depot to
M delivery locations. The objective of the last-mile delivery
service is to jointly maximize customer satisfaction (minimize
delivery time) and minimize operating cost (minimize total
travel time) by selecting the optimal number of vehicles to
perform the deliveries. We model this as an assignment (vehicles
to packages) and path planning (determining the delivery
order and route) problem, which is equivalent to the NP-hard
multiple traveling salesperson problem. We propose a scalable
heuristic algorithm, which sacrifices some optimality to achieve
a reasonable computational cost for a high number of packages.
The algorithm combines hierarchical clustering with a greedy
search. To validate our approach, we compare the results of
our simulation to experiments in a 1:25 scale robotic testbed
for future mobility systems.

I. INTRODUCTION

In a rapidly urbanizing world, we need to make fundamen-
tal transformations in how we use and access transportation
[1]. With the meteoric rise of the e-commerce industry,
last-mile delivery, especially parcel delivery, has attracted
considerable attention [2]. Last-mile delivery refers to the last
step in a supply chain, where goods or people are transported
from a centralized hub to their final destination. In general,
last-mile delivery is considered the least efficient part of the
entire logistics chain, and it has been an area of significant
research [3]–[9]. Additionally, as our energy, transportation,
and cyber networks integrate further, and interact with human
operators, we are witnessing a new level of complexity
[10] in transportation systems. In this environment, last-mile
delivery firms will need to meet ever-increasing fulfillment
demands as efficiently as possible.

This paper investigates the problem of last-mile delivery
through a centralized delivery service, which we model as a
joint assignment (assigning vehicles to packages) and path
planning (determining delivery order and route) problem
with a variable number of vehicles. These problems are
coupled, as the cost of the assignment is dependent on the
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path taken by each of the vehicles. This is similar to the
multiple traveling salesperson problem (mTSP) [11], [12], a
generalization of the NP-hard traveling salesperson problem
(TSP). As a result, there have been many approaches to
generate solutions to mTSP for vehicle routing and last-mile
delivery problems [4], [13]–[17]. Recent efforts in this area
include ant colony optimization to solve mTSP with capacity
and time window constraints for vehicle routing [13], fuzzy
logic approaches for multi-objective mTSP [18], and data-
driven graph-theoretic approaches to bus scheduling [19].
Other efforts have proposed augmenting last-mile delivery
with cargo bicycles [20] and drones [21], [22] to decrease the
number of cars and vans required and further reduce delivery
times. However, to the best of our knowledge, validation of
a last-mile delivery service in a physical experiment has not
yet been reported in the literature. We seek to fill this gap
by validating a heuristic algorithm for last-mile delivery in
a scaled physical testbed.

Our first contribution is a fast online algorithm to gen-
erate the assignment of vehicles to deliveries as well as
the routes of each vehicle. Online algorithms are critical
in many logistic applications, particularly on-demand meal
delivery. This is based on our previous work, where agents
are assigned to goals and generate trajectories to create a
desired formation [23], [24]. Our second contribution is the
experimental validation of a last-mile delivery algorithm in
a physical testing environment, which, to the best of our
knowledge, has not yet been addressed in the literature.

The remainder of the paper is organized as follows. In Sec-
tion II, we present some mathematical preliminaries on graph
theory, and in Section III, we formulate the last-mile delivery
service problem along with our modeling framework. In
Section IV, we discuss our scalable heuristic solution, and
in Section V, we present simulation results alongside the
experimental validation in our 1:25 scale testbed. Finally,
we draw concluding remarks in Section VI.

II. PRELIMINARIES

In this section, we present preliminary mathematical ma-
terial that describes how we model our urban road network
as a mathematical graph.

Definition 1. Our urban roadway network is represented by
a directed graph, denoted U =

(
V, E

)
, which consists of:

• A set of nodes, V ⊂ N, corresponding to the locations
where 1) two road segments join or separate, e.g.,
merging zones, intersections, roundabouts, entry and
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exit ramps, and 2) locations where the road network
transitions between straight-line and arc segments.

• A set of directed edges, E ⊂ V × V , which contains
pairs of nodes that are connected by a one-way road
segment.

For every edge e ∈ E there is an associated cost, c(e) ∈
R>0, which corresponds to the amount of time taken for
a vehicle to travel the length of the edge. Next, we define
the motion of vehicles through the road network in terms of
paths.

Definition 2. For a graph U =
(
V, E

)
, a path of length

` ∈ N is a sequence of nodes, denoted P = (p1, . . . , p`),
where p1, . . . , p` ∈ V , and there exists a corresponding edge
(pk, pk+1) ∈ E for all k ∈ {1, . . . , `− 1}. The total cost of
a path P is equal to the sum of the costs of its edges, i.e.,
c (P) =

∑`−1
k=1 c

(
(pk, pk+1)

)
.

In the next section, we formulate our last-mile deliv-
ery service, which manages the delivery of packages to
customers from a centralized depot. The objective of our
delivery service is to jointly minimize cost and maximize
customer satisfaction, i.e., jointly minimize the total travel
time and average delivery time.

III. PROBLEM FORMULATION

Our delivery service consists of N ∈ N vehicles that can
be used to deliver M ∈ N packages to nodes located on
the urban road network U . Let N := {1, . . . , N} index
the available delivery vehicles, and let D ⊂ V denote the
set of all delivery locations. Finally, let G = {1, 2, . . . ,M}
uniquely index the delivery locations in D, i.e., there exists
a bijective mapping

m : D → G. (1)

To formulate our delivery service problem, we first parti-
tion the delivery locations into, at most, N disjoint sets that
the vehicles can be assigned to. We achieve this by defining
an assignment matrix.

Definition 3. The assignment matrix, A, is an N×M binary
matrix, where element aij ∈ {0, 1} is 1 if vehicle i ∈ N is
assigned to deliver a package to delivery location j ∈ G and
0 otherwise.

The objective of our delivery service is to determine the
number of vehicles to send on deliveries such that operating
cost and customer satisfaction are jointly optimized. We
model customer satisfaction as being inversely proportional
to package delivery time, with the cost denoted by Js, and
we denote the total travel cost by Jc, which is proportional
to the total round-trip time of all vehicles, i.e.,

Js(A) =
∑
j∈G

tj(A)

M
, (2)

Jc(A) =
∑
i∈N

Ti(A), (3)

where tj denotes the time taken for package j ∈ G to be
delivered, and Ti ∈ R≥0 is the round-trip travel time for
vehicle i to make its deliveries and return to the depot. Note
that both Ti and tj depend on the actual route taken by the
vehicles, which is a function of the assignment matrix, A.
We determine the assignment matrix, and thus the optimal
number of vehicles to deploy, by solving the following
centralized assignment problem.

Problem 1 (Delivery Assignment). Assign vehicles to de-
liver packages such that the average delivery time and round-
trip travel time are jointly minimized,

min
A

{
αJs(A) + (1− α)Jc(A)

}
(4)

subject to:∑
i∈N

aij = 1 for all j ∈ G,

aij ∈ {0, 1} for all i ∈ N , j ∈ G,

where 0 ≤ α ≤ 1 is an intrinsic parameter that balances the
tradeoff between minimizing operating cost and maximizing
customer satisfaction for a particular delivery service, and
aij , i ∈ N , j ∈ G, are the elements of the assignment matrix
A. Note that the first constraint ensures that each package
gets delivered only by one vehicle, and some vehicles may
not be assigned to deliver any packages.

In order to deliver the packages and therefore compute the
cost components of Problem 1, we need to determine the
route taken by each vehicle given the assignment matrix, A.
We define the delivery route of vehicle i ∈ N as the sequence
Si := (s1, s2, . . . , sn), where n =

∑
j∈G aij (Definition 3)

and
⋃

k∈{1,...,n} sk = {v ∈ D | j = m(v), aij = 1}, where
m maps delivery locations to indices by (1). To determine
the optimal sequence to deliver their assigned packages, each
vehicle i solves the following problem.

Problem 2. For each vehicle i ∈ N , with a given delivery
assignment matrix A, determine the path Pi that minimizes
the total travel time such that the vehicle starts and ends at
the depot and delivers all assigned packages, i.e.,

min
Pi,Si

Ti (5)

subject to:
p1 = d, p1 ∈ Pi,

p` = d, ` = |Pi|, p` ∈ Pi,

Si is a subsequence of Pi,

where Pi = (p1, p2, . . . , p`) is the path taken by vehicle i
(Definition 2), Si = (s1, s2, . . . , sn) defines the sequence of
deliveries, and d ∈ V is the node corresponding to the depot
entrance.

Thus, the cost of the optimal assignment in Problem 1 is
determined by each vehicle’s solution to Problem 2, which is
equivalent to the TSP. In the following section, we detail our
scalable solution to solve Problems 1 and 2 in simulation,
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and we verify this solution experimentally. To this end, we
impose the following assumptions.

Assumption 1. The delivery vehicles are equipped with con-
nected and automated vehicle technologies that significantly
reduces the effects of traffic bottlenecks and delays [25],
[26].

Assumption 2. The speed limits on the road network are
fixed and known a priori.

Assumptions 1 and 2 ensure that the environment is
deterministic when the vehicles plan their routes. These
assumptions can be relaxed by including a time-varying
term to the edge cost to account for traffic lights, stop
signs, and congestion. Assumption 1 can also be relaxed by
allowing different delivery modes that bypass congestion,
e.g., motorcycle, bicycle, and drone delivery. In the case
that Assumption 2 is relaxed, and the traffic information is
stochastic, a data-driven approach could be used to calculate
the expected delay at each edge.

Assumption 3. The vehicles have sufficient energy to
achieve their assigned delivery routes.

Assumption 4. The delivery locations are fixed and known
a priori and without constraints on the delivery time.

Assumptions 3 and 4 ensure that any vehicle can be
assigned to any sequence of deliveries, and that a solution
is always guaranteed to exist to Problem 1. Assumption 3
can be relaxed by including a total energy cost constraint in
Problem 2 and discarding any assignments that impose infea-
sible delivery routes. Assumption 4 is relevant for last-mile
delivery, where the delivery service knows what packages
must be shipped out before they arrive. This assumption can
be relaxed by adding a delivery time constraint to Problem
2 and discarding any assignments that don’t satisfy the
delivery constraints. If either assumption is relaxed, then it is
necessary to derive conditions for the existence of a feasible
assignment matrix.

IV. SOLUTION APPROACH

In this section, we describe a scalable method of assigning
vehicles to packages, and determining their delivery routes,
in order to minimize the joint travel and delivery time costs.
In Problem 1, the parameter α describes the structure of a
particular company and how the cost of vehicle usage and
labor is weighed against the benefits of faster delivery times.
A higher α implies that Js(A) is the dominant term, and this
will result in solutions that use more vehicles to decrease
average delivery time. In contrast, a small value of α implies
that Jc(A) dominates, and this will result in fewer delivery
vehicles being assigned to reduce the total amount of time
spent traveling across all vehicles.

First, our delivery service receives the number of pack-
ages, M , and their delivery locations. To solve the as-
signment of vehicles to packages (Problem 1), we employ
complete-linkage clustering [27]. While complete-linkage

clustering may not always yield the optimal solution to Prob-
lem 1, it is a hierarchical clustering algorithm. Therefore, it is
able to generate an approximately optimal assignment of ve-
hicles to packages for every case simultaneously, i.e., assign-
ments for using 1, 2, . . . , N vehicles, in O(n2). Complete-
linkage clustering also ensures that the maximum distance
between any two packages in the same cluster is minimized.
In contrast, to find the optimal assignment, the Hungarian
Algorithm has a computational complexity of O(n3) for a
single scenario, i.e., a fixed number of participating vehicles.
This requires significantly more evaluations of Problem 2;
thus we selected the complete-linkage clustering algorithm
to ensure scalability.

In complete-linkage clustering, the M delivery locations
are first clustered into M groups, i.e., each delivery assign-
ment is a singleton. This corresponds to the M leaf nodes
in our hierarchical clustering tree. Next, the two packages
with the shortest separating distance are combined, resulting
in M − 1 groups of packages, which adds a branch to our
hierarchical clustering tree. This process is repeated until
only a single group, containing all M packages, remains; this
corresponds to the root node of our hierarchical clustering
tree. Finally, we start at the root node and travel along
the hierarchical clustering tree to determine the assignment
of 1, 2, . . . , N vehicles to the M packages. Thus, we can
enumerate all of the resulting 1, 2, . . . , N assignments to
determine which one minimizes the total cost.

Problem 2 is a modified TSP, which contains additional
nodes that are not associated with a package delivery. These
problems are known to be NP-hard, with a computational
cost approaching O(n!). Thus, to ensure our approach scales
with a large number of vehicles, we solve Problem 2 using
a greedy search algorithm. Each vehicle i ∈ N begins
at the depot, and it calculates the shortest path from its
current location to each of its assigned delivery locations.
The vehicle selects the nearest delivery location as the first
element of its delivery sequence Si, and the second element
is selected by comparing the distance of all remaining
packages to s1 ∈ Si. This process is repeated until Si
contains all delivery locations exactly once, and this also
yields the path Pi taken by the vehicle. In the case of ties,
the package with the lower index is arbitrarily selected. To
demonstrate the scalability of our approach, we compared the
computational time required to find a TSP solution by brute
force with our greedy algorithm. Specifically, we randomly
generated 50 scenarios for different numbers of packages,
from M = 4, 5, . . . , 20. Due to the computational cost of
TSP, we only computed its solution for up to 9 packages, and
the performance of both approaches is demonstrated in Fig.
1. Note that the poor performance of the TSP necessitates a
log scale on the computational time axis, and this shows the
significant computational benefit of using the greedy search
algorithm as the number of packages increases. Even for a
small number of packages, the TSP solution quickly becomes
intractable. This necessitates sacrificing some optimality to
guarantee the scalability of our solution.

We also conducted 50 simulations where the package
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Fig. 1. Computational cost between the TSP and greedy search approaches
for N = 1 vehicle. The computational time is plotted in a log scale due to
computational complexity of TSP.

locations were determined randomly for M = 3, 4, 5, 6
packages. Fig. 2 quantifies the optimality gap of our greedy
approach compared to TSP, and shows the percent increase
in total travel time compared to the TSP solution. For low
numbers of vehicles, the median time lost is less than 10%,
however, Fig. 2 does demonstrate a consistent growth in the
optimality gap. This gap is less relevant as the number of
packages increases, since TSP quickly becomes intractable.
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Fig. 2. The extra time spent by vehicles to complete their route using the
greedy search instead of the TSP solution.

V. SIMULATION AND EXPERIMENT

To demonstrate the effectiveness of our approach, we
performed a series of simulations based on the urban network
present in the Information and Decision Science Lab’s Scaled
Smart City (IDS3C)1. The IDS3C is a 1:25 scaled testbed
spanning over 400 square feet, and it is capable of replicating
real-world traffic scenarios using up to 50 ground and 10
aerial vehicles; for an overview of the IDS3C and its capa-
bilities see [28]. IDS3C’s road network consists of straight
lines and arc segments. To implement our algorithm, we first
constructed a graph to represent the IDS3C’s road network

1https://www.youtube.com/watch?v=4x1i3oODn7Q

using network analysis library NetworkX2 in Python 3.7. We
constructed the graph’s nodes by computing the start and end
points of each road segment. To eliminate redundant nodes,
which were generated due to rounding errors, we combined
any two points that were separated by one lane width or
less. The resulting graph of IDS3C consists of 149 nodes and
220 edges, and is displayed over a diagram of the IDS3C in
Fig. 3. For each edge in the graph, we defined the cost as
the length of the road segment divided by its speed limit.
We considered a speed limit of 50 km/h for straight roads
and 25 km/h for arc segments. Fig. 3 also shows the node
corresponding to the depot (blue) and six package locations
(orange) that we used in the physical experiment, which we
discuss in the following section.

Fig. 3. The depot (blue) and package locations (orange) for the 6 package
simulation.

A. Simulation Results

To simulate our last-mile delivery service, a user in-
puts the number of packages, M , and their corresponding
delivery locations. We allow any node except the depot
to be a delivery location, as the depot is a fixed node
that corresponds to the initial and final destination of all
vehicles. Next, we apply complete-linkage clustering based
on the position of each delivery location in R2 using Scikit-
Learn’s agglomerative hierarchical clustering package3. The
clustering yields the assignment matrix for every possible
number of vehicles. Then, we iterate through the hierarchy
of 1, 2, . . . , N clusters and determine the greedy path taken
by each vehicle using NetworkX’s A∗ path finding package2.
We used the default setting of no heuristic, thus our solution
is equivalent to Dijkstra’s algorithm. Finally, we evaluate
the N costs, corresponding to the 1, 2, . . . , N vehicles, and
select the optimal number of vehicles such that the total cost

2NetworkX website: https://networkx.org
3Scikit-Learn website: https://scikit-learn.org/stable/
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is minimized for a given value of α. We compute the cost
from the total travel time and average delivery time, which
correspond to the sum of all edge weights along a vehicle’s
path and the sum of all edge weights from the origin to the
first instant that a vehicle reaches one of its assigned delivery
nodes, respectively. Algorithm 1 shows our pseudocode.

Algorithm 1: Generate delivery routes for all possi-
ble number of vehicles.

Input: Delivery locations of M Packages, Number
of available vehicles N

numVehicles← 0 ;
while numVehicles ≤ N do

Group packages into numVehicles clusters;
Assign all packages in each cluster to a vehicle;
for each vehicle do

while unvisited assigned packages > 0 do
Calculate cost of paths to each assigned

package delivery point;
Add lowest cost path to the vehicle’s path;

end
end
numVehicles← numVehicles + 1 ;

end

To analyze the performance of our last-mile delivery
service, we performed 30 simulations by randomly initial-
izing M = 6 delivery locations on the network. The cost
components, i.e., total travel time and average delivery time,
are presented in Figs. 4 and 5, respectively. As expected
for one depot in the network, Fig. 4 shows that total travel
time increases with the number of vehicles, while Fig. 5
demonstrates that the average delivery time decreases as the
number of vehicles increases. These competing objectives
present a trade-off between the cost of delivering packages
and customer satisfaction.

Fig. 4. The total time spent by vehicles to complete their route, from 30
tests with 6 packages.

B. Experimental Results

To validate our simulated solution for the optimal number
of vehicles, we performed a small-scale experiment in the

Fig. 5. The average delivery time of each package, from 30 tests with 6
packages.

IDS3C using the M = 6 package locations presented in Fig.
3. While the number of packages was limited by the space
available in the city, we expect the results to scale with Fig. 1
for a larger city—both in terms of networks size and number
of packages. We applied Algorithm 1 to solve Problems 1
and 2, and used the resulting paths as input for the vehicles
in the IDS3C. Finally, relaxing Assumption 1, we determined
the control input of each vehicle i ∈ N using the Intelligent
Driver Model with standard parameters [29]. In addition, the
vehicles each stop for 3 seconds at each delivery node along
their route.

We performed six experiments, one for each number of
vehicles, and computed the customer satisfaction cost (2)
and total travel time (3) for each case. In order to compare
the simulation and experimental results, we normalized the
resulting costs by their maximum value, i.e., we divided
each component of the cost by the maximum value that
it took in all cases. The resulting comparison is presented
in Fig. 6 for α = 0.5. This shows that while the cost of
the simulation and experiment differs by at most 10%, the
simulation correctly predicts N = 3 as the optimal num-
ber of vehicles for this particular scenario. The simulation
consistently under-predicts the total cost of the experiment
for N < 6, and this is due to the fact that each vehicle
stops for 3 seconds to make a delivery, which increases both
the total travel time and subsequent delivery times. Another
reason for this discrepancy is that the simulation considers
the constant speed over the trip, while the vehicle’s speed in
the experiment varies to make deliveries. Additionally, the
vehicles may need to adjust their speed in the experiment
to satisfy the safety constraint with other vehicles in the
network. In cases where N = 1, 2, 3, a single vehicle
delivers at least 3 packages, and this results in an average
increase of 3 seconds (10%) per package for that vehicle.
Similarly, when N = 5, the vehicle that delivers 2 packages
is also assigned to the longest path, which further increases
the delivery time. Finally, for N = 4, the packages are
distributed more evenly between all available vehicles, and in
the 6 vehicle case, the delay caused by delivering packages
does not affect customer satisfaction. Experimental results
and other supplementary material are available on the paper’s
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website: https://sites.google.com/view/ud-ids-lab/lmds.
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Fig. 6. The simulated and actual cost incurred for different numbers of
vehicles in the 6 package delivery scenario with α = 0.5.

VI. CONCLUSION

In this paper, we proposed and experimentally validated a
heuristic clustering and greedy search algorithm to solve the
last-mile delivery problem. Our approach trades optimality
for computational tractability, and we quantified the optimal-
ity gap in our approach through random sampling. Finally,
we demonstrated the performance of our delivery service
in a scaled testbed using 6 different experiments. Future
work includes capturing the effect of delays and disturbances
in the testbed and simulation, embedding total energy and
delivery time constraints in the path generation problem,
and enhancing our clustering approach to account for the
underlying directed graph that represents the transportation
network. Including constraints on the number of packages
per vehicle and handling vehicle failure is another interesting
direction of future work.
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