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Abstract— Hybrid electric vehicles (HEVs) have attracted
considerable attention due to their potential to reduce fuel
consumption and emissions. The objective of this paper is to
enhance our understanding of the associated tradeoffs among
the HEV subsystems, e.g., the engine, the motor, and the battery,
and investigate the related implications for fuel consumption and
battery capacity and lifetime. Addressing this problem can
provide insights on how to prioritize these objectives based on
consumers’ needs and preferences. The results of the proposed
optimization approach can also be used to investigate the
implications for HEV costs related to ownership and warranty.

Index Terms— Battery capacity and lifetime, hybrid electric
vehicles (HEVs), multiobjective optimization, power management
control.

I. INTRODUCTION

A. Motivation

W IDESPREAD use of various hybrid powertrains is
inevitable and many opportunities for substantial

progress remain. Hybrid electric vehicles (HEVs) and plug-in
HEVs (PHEVs) have held great intuitive appeal and have
attracted considerable attention due to their potential to reduce
petroleum consumption and greenhouse gas (GHG) emissions.
The main advantage of HEVs and PHEVs is the existence of
individual subsystems, e.g., the internal combustion engine,
the electric machines (motor and generator), and the energy
storage system (battery) that can power the vehicle either
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separately or in combination. The supervisory power manage-
ment control algorithm determines how to distribute the power
demanded by the driver to these subsystems. Traditionally,
maximizing fuel economy and minimizing GHG emissions
are the main objectives of the control development. With
the introduction of batteries, prolonging the battery life is
considered highly important during the control design from
the consumer’s perspective due to associated ownership and
warranty costs. Thus, it is necessary to develop a control
framework for vehicle power management that will be able to
balance maximum fuel economy, minimum GHG emissions,
and extended battery life based on consumer’s needs and
preferences.

B. Literature Review

A significant amount of work has been conducted on
developing online power management algorithms for parallel
HEV configurations [1]–[5]. The main aspects of these
algorithms are concerned with the self-sustainability of the
electrical path, which must be guaranteed for the entire
driving cycle, and the fact that limited knowledge of the
future driving conditions is available. Such algorithms consist
of an instantaneous optimization problem that accounts
for storage system state of charge (SoC) variation through
the equivalent fuel consumption. The latter is evaluated by
considering average energy paths leading from the fuel to the
energy storage of the electrical path.

Other research efforts have focused on benchmarking the
fuel economy in HEVs by providing the maximum theoretical
efficiency they can achieve over a given vehicle speed profile,
e.g., driving cycle, using the deterministic formulation of
dynamic programming (DP) [6], [7]. DP has also been
extended to a stochastic formulation capable of deriving an
optimal control policy for a family of driving cycles [8]–[11].
There has also been a significant amount of work using
model predictive control (MPC) [12] to address this problem
(for a complete list of references on MPC see [13] and the
references there).

Although the aforementioned work has aimed at enhancing
our understanding of power management control optimization
problem in HEVs, the battery system was considered as a
free buffer that could be used to either store or use energy
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at any time. However, the battery’s capacity and lifetime
have significant implications not only in the overall cost
of HEV/PHEV ownership but also in safety, durability, and
reliability. Recent research efforts have considered both
design and control optimization approaches that include
various battery metrics, e.g., capacity, lifetime, and safety,
in the objective function. The necessity of developing
advanced battery management systems was addressed in [14].
Wang and Cassandras [15] studied the problem of optimally
controlling the charge and discharge rate of multiple nonideal
batteries to maximize the minimum residual energy of the
batteries at the end of a given time period. It was shown the
optimal solution is a bang–bang type, with the battery always
in recharging mode during the last part of the interval [16].

Some studies have focused on the optimal design of
HEVs/PHEVs with respect to the various components.
Wang et al. [17] proposed an approach to improve the fuel
economy and battery lifetime for EVs and parallel PHEVs with
a combination of an ultracapacitor and an energy-dense lithium
ion battery. Moura et al. [18] explored the quantification of the
tradeoffs between power management algorithm design and
battery energy capacity. The implications of motor/generator
and battery size on fuel economy and GHG emissions in a
medium-duty PHEV were discussed in [19]. An optimization
framework was developed to facilitate better understanding of
the potential benefits of proper selection of motor/generator
and battery sizes. This understanding can contribute to
appropriate sizing of these components, which can have
significant impacts on overall PHEV cost.

Lee et al. [20] investigated the impact of advanced battery
control strategies on the battery size and fuel economy for
heavy-duty military HEVs. The objective of these control
strategies is to ensure safe and robust operation covering
infrequent extreme conditions. Excessive battery operation
is moderated by adjusting the battery power upper and
lower limits using the feedback of electrode-averaged lithium
ion concentration estimated by an extended Kalman filter.
Bashash et al. [21] investigated simultaneously the minimiza-
tion of battery degradation and fuel/electricity costs via a mul-
tiobjective optimization problem consisting of the total cost of
fuel and electricity and the total battery health degradation over
a 24 h naturalistic driving cycle. The result of this optimization
process is a family of optimal solutions in the form of a
Pareto frontier showing the balance between total energy cost
and battery resistance growth.

More recently, there has been an effort to develop power
management control algorithms for HEVs/PHEVs by also
including the battery’s lifetime. Serrao et al. [22] formulated
the power management control problem in HEVs by
incorporating the aging of the battery. To explicitly quantify
the battery aging, a model that correlates aging with SoC and
charge/discharge rates was used. In the objective function of
the problem formulation, fuel consumption and battery aging
were considered, and the control problem was solved using
Pontryagin’s minimum principle for three different cases:
1) including only fuel consumption; 2) assigning the weight
factor to be 65% for fuel consumption and 35% for battery
aging; and 3) assigning the weight factor to be 50% for

each objective. In this analysis, the authors found that there
is a significant tradeoff between fuel consumption and battery
aging. Ebbesen et al. [23] presented a power management
control algorithm for a parallel HEV by modifying the
equivalent consumption minimization strategy to include the
battery state of the health in addition to fuel consumption.
In this paper, a standard quasi-static backward model was
simulated over the Federal Test Procedure (FTP-72) and
common Artemis driving cycles and it was found that there
is a tradeoff between fuel economy and battery’s lifetime.
The battery end of life was considered to be when the battery
capacity had dropped by 20% from its initial value.

A survey of the supervisory power management control
algorithms that have been reported in the literature to date
can be found in [24].

C. Contribution of This Paper

The objective of this paper and related research of the
authors [25] is to enhance our understanding of the associated
tradeoffs among the HEV subsystems, e.g., the engine, the
motor, and the battery. Addressing these tradeoffs and related
implications in fuel consumption, motor efficiency, and battery
capacity and lifetime can aid in developing power management
control algorithms that prioritize these objectives based on
consumer needs and preferences.

In our analysis, battery temperature is considered as a
critical parameter and controlled indirectly throughout the
charge/discharge process. Temperature not only plays an
important role in safety but also affects the capacity fade as
well as life of a battery [26], [27]. The side reactions that
enable the growth of solid electrolyte interface and increase
the impedance of the cell depend exponentially on temperature
through Arrhenius relationship. This leads to rapid irreversible
capacity loss and affect the lifetime of the battery. In addition,
higher operating temperatures put the battery closer to the flash
point of the electrolyte, and thus reduce the margin for safety.
For this reason, we have implicitly included temperature in
our proposed optimization framework by controlling SoC.

The contributions of this paper are: 1) the development
of a multiobjective optimization framework that includes
fuel consumption, motor efficiency, and the charge/discharge
process—to indirectly address battery use and lifetime—and
2) the implementation of a power management control
algorithm yielding the Pareto optimal solution of the
multiobjective optimization problem that minimizes the
long-run expected average cost criterion in the stochastic
control problem formulation.

D. Organization of This Paper

The remainder of this paper proceeds as follows.
In Section II, we present the battery and vehicle model
used in our analysis. In Section III, we formulate the power
management control problem formulation, and in Section IV,
we introduce the multiobjective optimization framework and
the Pareto control policy. In Section V, we present simulation
results and discuss the associated tradeoffs among the subsys-
tems. Finally, in Section VI, we present concluding remarks.
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Fig. 1. Schematic of the pretransmission parallel HEV configuration.

TABLE I

PARALLEL HEV SPECIFICATIONS

II. VEHICLE MODEL

A. Vehicle Configuration

The vehicle model used for this paper is a pretransmission
parallel HEV model, as shown in Fig. 1. In this model, the
hybrid propulsion system consists of a gasoline engine coupled
to an automatic transmission through a gear set and a clutch.
In addition, an electric machine (motor/generator) is coupled
through another gear set to the transmission input shaft. In this
paper, both gear sets have been assigned to have unity gear
ratios. The transmission output shaft is coupled to a final drive.
The electric path of the hybrid propulsion system consists
of the electric machine connected to a rechargeable battery.
Table I summarizes the specifications of the vehicle and the
propulsion system components. In this vehicle configuration,
the power demanded by the driver can be provided either by
the engine or the electric motor or both. The available control
variables are the engine and motor torques as the engine and
motor speeds are determined by the vehicle speed.

Autonomie [28] is used to model the different components
of the hybrid propulsion system except for the battery.
Autonomie is a MATLAB/Simulink simulation package for
powertrain and vehicle model development developed by
Argonne National Laboratory. Autonomie provides a variety
of existing forward-looking powertrain and vehicle models
that can support the evaluation of new control functions in a
math-based simulation environment. The battery model from
Autonomie is replaced by a model described in the following
section.

B. Battery Model

Nickel–metal hydride (NiMH) and lithium-ion (Li-ion)
batteries are widely used for electric vehicles [29]. NiMH
batteries are primarily used in the HEVs, and Li-ion batteries
are used for PHEVs and EVs. Both NiMH and Li-ion batteries
exhibit a nonlinear resistance to charge and discharge of
current, which is a complex function of the depth of
discharge (DOD), charge/discharge rate, open-circuit
potential, temperature, and so on. The NiMH cell has a
metal hydride [MHx ] anode, a nickel hydroxide [Ni(OH)2−y]
cathode, and an aqueous potassium hydroxide electrolyte.
The Li-ion cell typically has an intercalating carbon anode,
a lithium metal oxide cathode, and an organic electrolyte
with lithium salts. Detailed models describing the mass
balance, potential solutions in electrode/electrolyte, interfacial
electrochemical kinetics, and thermal balance across the
cell sandwich (current collectors, electrodes, and separator
filled with electrolyte) are available [30]–[32]. However, those
models, though more accurate, are computationally expensive,
with robustness issues for use in control simulations. For
this paper, we use a computationally efficient model that is
able to capture the charge–discharge behavior well to study
thermal response of the batteries [31]. We work with a NiMH
battery system, but the analysis can be easily extended to a
Li-ion battery system. The battery model implemented here
is derived from the experimental discharge characteristics
of the cell [33]. A sufficient number of discharge curves
at different rates (C-rates) is essential to build an accurate
model. The discharge current of the battery is normalized
against its nominal capacity and expressed as the C-rate. The
experimental discharge curves show that for a given capacity,
the cell voltage drops as the current density increases.
This relation is linearized for an electrochemical cell and
given by (1), also referred to as Newman, Tiedemann, and
Gu (NTG) model, from [34] and [35]

⎧
⎪⎨

⎪⎩

J = Y (Vp − Vn − U)

U = ∑N
i=0 aiθ i

Y = ∑M
i=0 biθ i

(1)

where J is the current density in A/m2, Y is the effective
conductance in S/m2, (Vp − Vn) is the measured cell voltage
in volts, and U is the open-circuit potential of the cell in
volts. The effective conductance Y and the open-circuit
potential U are represented as a function of the DOD θ . The
constants ai and bi are fitting parameters that are determined
from cell discharge curves for a number of different C-rates.
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Fig. 2. Variation of the internal resistance and open-circuit potential of the
cell as a function of the DOD.

Fig. 3. NiMH battery model validated against the experimental discharge
curves at different discharge rates. The 1 C, 2 C, and 0.2 C rates mean that
the discharge current will discharge the entire battery in 1, 0.5, and 5 h,
respectively.

For different discharge capacities (i.e., DOD θ ), it is pos-
sible to plot fitted lines representing the linearized relation
between the measured cell voltage and current density. The
slope of each line represents the reciprocal of the effective
conductance Y, while the intercept at zero current density
represents the open-circuit potential U. Finally, the variation of
Y and U as a function of θ is used to fit the two polynomials
described in (1). As a result, for a given value of θ it is possible
to calculate the internal resistance (1/Y ) and the open-circuit
potential U of the cell. Considering the area of the cell, the
variation of the internal resistance in ohms and open-circuit
potential in volts as a function of the DOD, together with
the fitted polynomials are shown in Fig. 2. The model is
then validated against the experimental discharge curves at
different C-rates, as shown in Fig. 3. This model has been
widely used for Li-ion batteries [31], [36]–[38] because of
the simplicity of its implementation, its reasonable accuracy,
and its low relative computational cost. Subsequently, the
calculated internal resistance and open-circuit voltage of the
cell at a specific DOD, i.e., SoC = 1 − DOD, are used to
compute the rate of SoC change of the battery according to the
method described in [39]–[41]. The rate of SoC change of the
battery is then used to compute the charge/discharge current I.

The flow of current through the battery leads to internal
heat generation due to electrochemical reactions and resistive
heating. The amount of generated heat increases the battery
temperature, which can be determined through the battery
thermal model adopted from [42]. The model considered all
the battery internal components as a single homogeneous
material with averaged properties. Based on this model, the
average temperature increase in the battery, Tbatt, is a function
of the amount of heat generation Qgen and heat loss Qloss,
in addition to the thermal mass of the battery and the duration
of use

Tbatt =
∫ t

0

Qgen − Qloss

mbattcp,batt
dt (2)

where mbatt is the battery mass, cp,batt is its heat capacity,
and heat generation Qgen = J [U − Vp − Vn] (here, we have
ignored the heat generation due to ohmic losses in current
collector and reversible entropic losses). The combination
of heat convection (natural or forced) and heat conduction
from the battery to the surrounding air is responsible for the
determination of the amount of heat retained by the battery
(causing the battery temperature to rise). In general, the battery
is equipped with a cooling system that starts operation at a
specified temperature to prevent the battery from exceeding a
high-temperature limit.

Another battery performance characteristic that can be
estimated is the final battery range. At each time t , the
available energy stored in the battery is estimated based on
the current SoC. Considering the conversion efficiency, this
amount of stored energy is assumed to be converted to work
that moves the vehicle some distance against the total force
caused by the vehicle dynamics. The final battery range is
then found by calculating the cumulative moving average of
the traveled distances over the entire driving cycle. Thus, it
indicates the estimated distance that can be traveled based
on the driving history using only the available energy in the
battery with the engine OFF.

III. POWER MANAGEMENT CONTROL PROBLEM

In the rest of this paper, we denote random variables with
uppercase letters and their space of realizations by script
letters. Subscripts denote time, and subscripts in parenthesis
denote a subsystem; for example, Xt ( j ) denotes the random
variable of the subsystem j at time t . The shorthand notation
Xt (1:N) denotes the vector (Xt (1), Xt (2), . . . , Xt (N))T.

A. Problem Formulation

We use a parallel HEV configuration where both the
engine and electric motor can provide the power demanded
by the driver, either separately or in combination. Because
the engine and motor speeds depend on the vehicle speed,
the available controllable variables are the engine and motor
torques. We consider a state space, S ⊂ Rn , for the HEV and a
control space, U ⊂ Rm, n, m ∈ N, from which control actions
are chosen. In our formulation, the state space is the entire
range of the engine and motor speeds, S ⊂ R2, and the control
space U is the vector of engine and motor torques, U ⊂ R2.
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Fig. 4. Maximum charging power for a single cell of the battery with respect
to the SoC.

The objective of the power management controller is to
guarantee the self-sustainability of the electrical path and
distribute the power demanded by the driver optimally between
the engine and the motor to maximize HEV efficiency.
In most of the work reported in the literature and discussed in
Section I, the SoC of the battery has been used as a component
of the state. However, this may lead to a significantly large
state space with implications for increasing the computational
burden associated with solving the problem. In our approach,
SoC is correlated to an additional power demand by means
of one-on-one mapping. This mapping corresponds to the
maximum allowable charging power of the battery PSoC with
respect to the SoC. This one-on-one map can be computed as
follows:

PSoC = (Vmax − U)Vmax

R
(3)

where Vmax is the maximum operating cell voltage
(i.e., 1.5 V). The open-circuit potential U and the internal
resistance R of the cell are polynomial functions of the
DOD (i.e., 1 − SoC), as described in Section II and shown
in Fig. 2. As a result, the relation between PSoC and SoC is
highly dependent on the cell characteristics and design. Fig. 4
shows the maximum allowable charging power for a single
cell as given by the battery specifications. At unity SoC, the
maximum allowable charging power is set to zero to avoid
unnecessary charging of the cell. Thus, based on the current
SoC, the mapping indicates the maximum allowable charging
power PSoC to be provided to the battery until it reaches the
target SoC. This additional amount is added to the driver’s
power demand, Pdriver. If SoC is above the target value, then
PSoC is assigned to be equal to zero.

The controller observes the engine and motor speeds,
and then computes the optimal engine and motor torques,
T ∗

eng and T ∗
mot, which satisfies the power demanded by the

driver, Pdriver, and the additional amount of power, PSoC
that needs to be provided to the battery to stay at the
target SoC. The evolution of the state occurs at each time
t = 0, 1, . . ., and it is portrayed by the sequence of the random
variables Xt (1:2) = (Xt (1), Xt (2))

T = (Neng, Nmot)T ∈ S and
Ut (1:2) = (Ut (1), Ut (2))T = (Teng, Tmot)T ∈ U , corresponding

to the HEV state (engine and motor speeds) and control action
(engine and motor torques), respectively. A state-dependent
constraint is incorporated in our problem formulation, i.e., for
each state Xt (1:2) = i ∈ S a nonempty set C(i) ⊂ U of
admissible control actions (engine and motor torques) is given.
The latter implies that at each state i ∈ S, the control action set
C(i) ⊂ U should include only the control actions that satisfy
the physical constraints of the engine and the motor.

Definition 1: The set of admissible state/action pairs is
defined [43] as

" : = {(Xt (1:2), Ut (1:2))|Xt (1:2) = i ∈ S and Ut (1:2) ∈ C(i)}
where " is the intersection of a closed subset of R2 ×R2 with
the set S × U .

That is, " is closed with respect to the induced topology on
S × U , and thus it is compact. It follows that for each state
i ∈ S, C(i) is compact.

Definition 2: The function µ that maps the state space to
the control action space, µ : S → U , is defined [43] such that
µ(i) ∈ C(i),∀i ∈ S.

Let # be the set of all sequences π = {µ(1), µ(2), . . . ,
µ(|S|)}, where |S| is the cardinality of the system’s state
space. Each sequence in # is called a stationary control policy
and operates as follows. Associated with each state i ∈ S is
the function µ(i) ∈ C(i). If at any time the controller finds
the system in state i , then the controller always chooses the
action based on the function µ(i). A stationary policy depends
on the history of the process only through the current state,
and thus to implement it, the controller needs only to know the
current state of the system. The advantages for implementation
of a stationary policy are apparent as it requires the storage of
less information than required to implement a general policy.
Thus, a stationary policy is attractive in automotive-related
applications, where computational and storage power is limited
onboard a vehicle.

At each time t , the controller observes the engine and motor
speeds, Xt (1:2) = i ∈ S, which is a function of the vehicle
speed, and executes an action, Ut (1:2) = µ(i) (engine and
motor torques), from the feasible set of actions, Ut (1:2) ∈ C(i),
at that state. At the same time t , an uncertainty, Wt (1:2), is
incorporated in the system consisting of the power demanded
by the driver, Pdriver, and the power required by the battery
to reach its target value, PSoC. At the next time, t + 1, the
system transits to the state Xt+1(1:2) = j ∈ S and a one-stage
cost, k(Xt (1:2), Ut (1:2)), is incurred. This cost can correspond
either to a single objective or to a multiobjective optimization
criterion, e.g., engine fuel consumption, motor efficiency, and
battery capacity and lifetime.

Assumption 1: The one-stage expected cost, k(Xt (1:2),
Ut (1:2)), is continuous and bounded.

After the transition to the next state, a new action is selected
and the process is repeated. The state transition from one
state to another is imposed by a discrete-time equation that
describes the dynamics of the system (HEV) of the form

Xt+1(1:2) = ft (Xt (1:2), Ut (1:2), Wt (1:2)) (4)

where Wt (1:2) is the disturbance (driver’s power demand,
Pdriver and the power required by the battery to reach its target
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value, PSoC) of the HEV at time t . We have full observation
of the state of the system, Xt (1:2).

Assumption 2: The power demanded by the driver Pdriver
is sequences of independent random variables, independent of
the initial state X0(1:2).

Assumption 2 imposes a condition yielding that the state
Xt+1(1:2) depends only on Xt (1:2) and Ut (1:2) [44]. Namely,
the evolution of the state is a controlled Markov chain and
can be represented by a conditional probability, P(Xt+1(1:2) =
j |Xt (1:2) = i, Ut (1:2)).

The completed period of time over which the system is
observed is called the decision-making horizon and is denoted
by T . The horizon can be either finite or infinite; the infinite
decision-making horizon is considered for this problem. This
is because we are concerned with deriving an optimal control
policy, π , that will optimize the efficiency of the HEV in the
long term and not necessarily for a specific period of time. The
assumption of an infinite number of decision stages is never
satisfied in practice. However, it is a reasonable approximation
for problems involving a finite but very large number of
stages, e.g., in the HEV power management control problem,
where we are interested in optimizing HEV efficiency over the
driver’s commute.

B. Average Cost Criterion

Infinite horizon problems are interesting as their analysis
is insightful, and the implementation of optimal policies
is straightforward [45]. The optimal policies are typically
stationary as described in the previous section. However,
infinite horizon problems require a more sophisticated analysis
than finite horizon problems because limiting behavior must
be analyzed as the horizon tends to infinity. This is a nontrivial
analysis and it can often reveal significant obstacles. There
are four principal classes of infinite horizon minimization
problems [45]: 1) stochastic shortest path problems;
2) discounted problems with bounded cost per time;
3) discounted and undiscounted problems with unbounded
cost per time; and 4) average cost per time problems. For the
HEV power management control problem formulated here,
we select the average cost criterion as we wish to optimize
HEV efficiency with respect to any different commute on
average per time. Thus, we are concerned with deriving a
stationary optimal control policy π (sequence of engine and
motor torques) to minimize the long-run expected average
cost per unit time [43]

J (π) = min
π∈#

lim
T →∞

1
T + 1

Eπ

[ T∑

0

k(Xt (1:2), Ut (1:2))

]

. (5)

To guarantee that the limit in (5) exists we impose the
following assumption.

Assumption 3: For each stationary control policy
π = {µ1, µ2, . . . , µ|S|}, where |S| is the cardinality of the
system’s state space, the Markov chain {Xt (1:2)|t = 1, 2, . . .}
has a single ergodic class.

That is, for each stationary policy π ∈ # there is a unique
probability distribution. In the following section, we discuss
how we derive the control policy that minimizes the long-run
expected average cost per unit time (5).

IV. SOLUTION OF THE POWER MANAGEMENT

CONTROL PROBLEM

A. Multiobjective Optimization Framework

In the HEV configuration adopted here, the engine and the
motor are coupled together and their speed is a function of the
vehicle speed depending on the gear ratio of the transmission.
At each time t , the controller has to optimally split the torque
demanded by the driver, Tdriver, between the engine and motor,
T ∗

eng and T ∗
mot, to optimize the long-run expected average cost

per unit time. The one-stage expected cost, k(Xt (1:2), Ut (1:2)),
in (5) can be either a single objective or multiobjective cost
function.

In this section, we formulate the multiobjective optimization
framework for the one-stage expected cost that includes fuel
consumption, motor efficiency, and battery use and lifetime.
Then, we provide the implementation of a power management
control algorithm that yields the Pareto efficiency set of the
multiobjective problem at each HEV state.

1) Multiobjective Problem Formulation Without the Battery:
First, we formulate an optimization problem that considers
only the engine and the motor in the one-stage expected cost
function. The multiobjective cost consists of the engine’s brake
specific fuel consumption (BSFC), fBSFC, and the motor’s
efficiency, ηmot. Given the engine and motor speeds which
is the pair that constitutes the HEV state Xt (1:2), the objective
is to find the optimal control action Ut (1:2) (engine and
motor torques) that minimizes a multiobjective cost function
reflecting both the engine’s fuel consumption and the motor
efficiency. To avoid dominance of one objective function over
the other, each function is normalized with respect to its max-
imum value. Furthermore, since we formulate a minimization
problem, we consider the inverse of the motor efficiency.

The BSFC of the engine is a function of the engine
speed Neng, and torque, Teng. Similarly, the efficiency of the
motor is a function of the motor speed Nmot and torque,
Tmot. Hence, the normalized BSFC of the engine is
f1(Neng, Teng) = ( fBSFC(Neng, Teng)/∥ fBSFC∥∞), where
∥ fBSFC∥∞ corresponds to the maximum engine BSFC value
with respect to the entire range of engine speed, Neng,
and torque, Teng. The normalized inverse of motor efficiency
is f2(Nmot, Tmot) = ((1/ηmot(Nmot, Tmot))/∥(1/ηmot)∥∞),
where ∥ηmot∥∞ corresponds to the maximum motor efficiency
with respect to the entire range of motor speed Nmot and
torque, Tmot.

The multiobjective optimization problem for the one-stage
expected cost function is formulated as

min
Ut

k(Xt (1:2), Ut (1:2))

= min
Ut

(α · f1(Xt (1), Ut (1)) + (1 − α) · f2(Xt (2), Ut (2)))

s.t.
2∑

i=1

Ut (i) =
2∑

i=1

Wt (i) = Tdriver + TSoC (6)

where α is a scalar that takes values in [0, 1], Xt (1:2) = (Xt (1),
Xt (2))T = (Neng, Nmot)T ∈ S, Ut (1:2) = (Ut (1), Ut (2))T =
(Teng, Tmot)T ∈ U is the vector of engine and motor torques,
and TSoC is the torque corresponding to the power required
by the battery, PSoC, to reach its target value. Since PSoC is
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provided exclusively by the engine, TSoC is computed by
dividing PSoC by the engine speed Neng. The multiobjective
optimization problem in (6) yields the Pareto efficiency set
between the engine and the motor by varying α from 0 to 1
at any given state of the HEV.

2) Multiobjective Problem Formulation With the Battery:
Now, we extend the formulation in (6) to include battery
lifetime and capacity. The rate of SoC change of the battery
with time is considered as an implicit measure for both
battery lifetime and capacity. In general, the battery lifetime is
strongly affected by the operating temperature which depends
mainly on the battery charge/discharge current. On the other
hand, the expected range depends mainly on the available
energy (capacity) in the battery. Both, current and available
energy are profoundly affected by the rate of change of
the battery SoC. Hence, for a given SoC value the normal-
ized SoC change, 'SoC = SoC(t + 1) − SoC(t), of the
battery is

f3(Nmot, Tmot) = |'SoC|
∥'SoC∥∞

(7)

where ∥'SoC∥∞ is the maximum SoC change that can occur
between a time interval t and t + 1, and it is computed as
follows. The SoC change, 'SoC, is a function of the SoC and
the motor’s power at each time t . We use the battery model
described in the previous section and compute the SoC change
for all possible combinations of the SoC and motor power.
Then, ∥'SoC∥∞ is the maximum from all these values.

The multiobjective optimization problem for the one-stage
expected cost function when the engine, motor, and battery
are considered, is formulated as

min
Ut

k(Xt (1:2), Ut (1:2))

min
Ut

(α · f1(Xt (1), Ut (1)) + (1 − α) · (β · f2(Xt (2), Ut (2))

+ (1 − β) · f3(Xt (2), Ut (2))))

s.t.
2∑

i=1

Ut (i) =
2∑

i=1

Wt (i) = Tdriver + TSoC (8)

where α and β are weighting factors changing between
0 and 1. The factor α weights the thermal (e.g., engine) and
electrical (e.g., motor and battery) path in the HEV, while the
factor β weights the components of the electrical path, i.e., the
motor and battery.

B. Pareto Control Policy

The result of the multiobjective optimization problems,
(6) and (8), is called Pareto efficiency. In a Pareto efficiency
allocation among agents, no one can be made better off without
making at least one other agent worse. The following is a
formal definition.

Definition 3 [46]: A solution uo ∈ U is called Pareto optimal
if there is no u ∈ U such that k(x, u) ≤ k(x, uo). If uo is
Pareto optimal, k(x, uo) is defined as efficient. If u1, u2 ∈ U
and k(x, u1) < k(x, u2), we say u1 dominates u2 and k(x, u1)
dominates k(x, u2). The set of all Pareto optimal solutions
uo ∈ U is defined as the Pareto set, UPareto. The set of all

efficient points k(x, uo) ∈ Y , where uo ∈ UPareto, is defined as
the efficient set, Yeff .

Now, the question that arises is whether the Pareto efficiency
exists. The following known result provides the conditions for
its existence.

Proposition 1 [46]: Let " ∈ Rl be a nonempty and compact
set and each component k(Xt ( j ), Ut ( j )) : " → R be lower
semicontinuous for all j = 1, . . . , l, l ∈ N. Then, the Pareto
efficiency is not empty.

In our problem, the set of admissible state/action pairs, ",
is a nonempty compact space (Definition 1). Furthermore,
the engine’s normalized BSFC, f1(Xt (1), Ut (1)); the inverse
of the motor’s efficiency, f2(Xt (2), Ut (2)); and the normalized
SoC change of the battery, f3(Xt (3), Ut (3)), are all continuous
functions. Consequently, the Pareto efficiency exists and can
yield the tradeoffs among the engine, motor, and battery
desired for this paper.

Definition 4: The Pareto control policy πo is defined as the
policy that yields the Pareto efficient one-stage expected cost
for each subsystem at each state.

For the optimization problem (6), the Pareto control policy
is derived as follows. Based on the vehicle speed, the HEV
state i ∈ S, engine and motor speeds, is explicitly specified
depending on the gear ratio of the transmission. Thus, for each
combination of the vehicle speed and torque demand, we solve
(6) offline with α taking values from 0 to 1. The control action,
uo

(1:2) = µ(i), realized by the Pareto control policy is the one
that yields the minimum one-stage expected cost in (6) among
all values corresponding to different α, namely

uo
(1:2) = arg min

Ut∈U

{
kα1

(
i, uα1

(1:2)

)
, . . . , kαr

(
i, uαr

(1:2)

)}
, r ∈ N

(9)

where uαr
(1:2) is the solution of (6) when the scalar is

αr , and kαr (i, uαr
(1:2)) is the corresponding minimum one-stage

expected cost for the state i ∈ S for αr . Thus, for each state
of the HEV and torque demand we derive the Pareto optimal
solution that minimizes (6) and store it in a table. If there
are multiple solutions, then one of these solutions is selected
randomly.

The torque demand equals to TSoC + Tdriver and it has
to be provided by the controlled engine and motor torques
Teng + Tmot. The value TSoC + Tdriver is mainly dependent on
the driving cycle. To derive the Pareto control policy, which
does not depend on a specific driving cycle, the torque demand
in the optimization algorithm is generated from all possible
combinations of Teng + Tmot, where 0 < Teng ≤ Teng,max
and 0 < Tmot ≤ Tmot,max. The Pareto control policy is
implemented using the stored table. For any combination of
vehicle speed and torque demand, the Pareto control policy
interpolates the control values of the table corresponding to
the Pareto optimal solution, uo

(1:2) = µ(i) that minimizes
one-stage expected cost (6).

For the optimization problem (8), the Pareto control policy
is derived as follows. For each combination of the vehicle
speed, SoC, and torque demand, we solve (8) offline with
α and β taking values from 0 to 1. The control action,
uo

(1:2) = µ(i), realized by the Pareto control policy is the
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one that yields the minimum one-stage expected cost in (8)
among all values corresponding to different α for a given β,
namely

uo
(1:2) = arg min

Ut∈U

{
kα1,β j

(
i, u

α1,β j
(1:2)

)
, . . . , kαm ,β j

(
i, u

αm ,β j
(1:2)

)}
,

m, j ∈ N (10)

where u
αm ,β j
(1:2) is the solution of (8) when the scalars

are αm and β j , and kαm ,β j (i, u
αm ,β j
(1:2) ) is the corresponding

minimum one-stage expected cost for the state i ∈ S for
αm and β j .

The weighing factor β is specified depending on consumer
needs and preferences. For example, assigning small values
to β, is a more conservative approach, resulting in penalizing
large deviations, and thus having the battery operating close
to the desired SoC. On the other hand, assigning large values
to β, puts more emphasis on operating the motor efficiently,
and thus significant SoC variations are not penalized. For each
state of the HEV, SoC, and torque demand we derive the Pareto
optimal solution that minimizes (8) and store it in a table.
If there are multiple solutions, then one of these solutions is
selected randomly.

As described previously, the Pareto control policy is
implemented using the stored table. For any combination of
vehicle speed, torque demand, and SoC, the Pareto control
policy interpolates the control values of the table
corresponding to the Pareto optimal solution, uo

(1:2) = µ(i)
that minimizes one-stage expected cost (8). In [47], it has been
shown that under the Assumptions 1 and 3 the Pareto control
policy minimizes the average cost criterion.

Lemma 1 [47]: The Pareto control policy πo minimizes the
one-stage expected cost both in (6) and (8).

Proof: For any realization of the state at time t ,
Xt (1:2) = i ∈ S, let kπ ′

(i, u(1:2)) and kπo
(i, uo

(1:2)) be the
one-stage expected costs at this state corresponding to any con-
trol policy π ′ and the Pareto control policy πo, respectively.
By Definition 4, at each state, the Pareto control policy, πo,
yields the Pareto optimal solution. By Definition 3, there is
no u(1:2) ∈ U such that kπ ′

(i, u(1:2)) ≤ kπo
(i, uo

(1:2)) for all
π ′ ∈ #. Thus, at each realization of the random variable
Xt (1:2), the Pareto control policy, πo, minimizes the one-stage
expected cost both in (6) and (8).

Theorem 1 [47]: The Pareto control policy πo is the optimal
control policy π∗ that minimizes the average cost criterion (5).

Proof: Let πo be the Pareto control policy. From
Lemma 1, we have that for each realization of the state
Xt (1:N) = i , kπo

(i, Ut (1:2)) ≤ kπ ′
(i, Ut (1:2)) for any control

policy π ′ ∈ #. Since the system’s one-stage cost is bounded
(Assumption 1), taking the expected average sum from t = 0
up to a finite time T ∈ N is well defined and finite. Thus

1
T + 1

Eπ

[
T∑

t=0

kπo
(Xt (1:2), Ut (1:2))

]

≤ 1
T + 1

Eπ

[
T∑

t=1

kπ ′
(Xt (1:2), Ut (1:2))

]

. (11)

Fig. 5. Pareto efficiency set corresponding to 600 rad/s transmission input
shaft speed and 192.4 N·m torque demand.

Taking the lim inf as T goes to infinity

lim inf
T →∞

1
T + 1

Eπ

[ T∑

t=0

kπo
(Xt (1:2), Ut (1:2))

]

≤ lim inf
T →∞

1
T + 1

Eπ

[
T∑

t=1

kπ ′
(Xt (1:2), Ut (1:2))

]

. (12)

Since each stationary control policy has a single ergodic class
(Assumption 3) the limit in (12) is well defined; hence

Jπo = lim
T →∞

1
T + 1

Eπ

[
T∑

t=0

kπo
(Xt (1:2), Ut (1:2))

]

≤ Jπ ′

= lim
T →∞

1
T + 1

Eπ

[
T∑

t=1

kπ ′
(Xt (1:2), Ut (1:2))

]

∀π ′ ∈#.

(13)

V. SIMULATION RESULTS

For our analysis through simulation we used
Autonomie [28] modified with the battery model described
previously. The vehicle model described in Section II,
representing a pretransmission parallel HEV configuration
(Fig. 1), was adopted. The speed of the transmission input
shaft was determined by the vehicle speed and the operating
transmission gear ratio among the five available gear ratios.
The torque transmitted through the transmission input shaft
was determined by the driver’s requested torque, limited by
the combined maximum engine and motor torques, in addition
to the operating transmission gear ratio. The transmission
gear ratio is specified with respect to the vehicle speed and
the accelerator pedal position.

To derive the control policy that is Pareto optimal, the
multiobjective optimization problem (8) was solved offline
for different combinations of SoC, vehicle speed, and torque
demand. For each of these different combinations, the Pareto
optimal solution was computed and stored in a lookup table.
Fig. 5 shows the Pareto efficiency set at 0.6 battery SoC and
600 rad/s transmission input shaft speed when the required
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Fig. 6. Pareto set corresponding to 600 rad/s transmission input shaft speed
and 192.4 N·m torque demand.

transmission input shaft torque is 192.4 N·m. Fig. 6 shows
the set of the corresponding Pareto set, i.e., the optimal
combination of engine and motor torques that satisfies the
torque demand.

In this particular case, the Pareto optimal solution is
Teng = 178.6 and Tmot = 13.8 N·m, which yields the
normalized engine BSFC, f1(x) = 0.6013, and the normalized
combined motor-battery system efficiency when β = 0.5,
e.g., [0.5 f2(x) + 0.5 f3(x)] = 0.6744. The Pareto control
policy can be implemented easily online by interpolating the
table of the Pareto optimal solutions with respect to the
SoC, vehicle speed, and torque demand. In our analysis,
we used thee driving cycles: 1) the urban dynamometer driving
schedule (UDDS); 2) the FTP; and 3) the New York, and
we compared the Pareto control policy corresponding to the
problem formulations (6) and (8), i.e., with and without the
battery, to investigate the associated tradeoffs.

A. Driving Cycle Simulation Results

The simulation results using the UDDS driving cycle are
presented in this section. Similar trends discussed here were
observed in the FTP and New York driving cycles. For both
problem formulations the battery was set to operate at a
0.6 target SoC, while subjected to the same cooling rate.
For this paper, the cooling system onset temperature was set at
35 °C with a constant air flow rate per module of 20 ft3/min.
The combined power consumed by the cooling system in
addition to other accessory systems was estimated to be 200 W.

Fig. 7 shows a comparison of the simulated battery
SoC profiles for the two problems, i.e., with and without
the battery. It is apparent that considering the battery in the
problem formulation in addition to the engine and the motor
has a clear impact on the SoC profile. As shown in Fig. 7,
the SoC is preserved close to the target value, while the rapid
changes in the SoC profile are eliminated. The elimination
of the rapid changes in the SoC profile, which is equivalent
to the elimination of rapid charging and discharging, directly
affects the battery average temperature, as shown in Fig. 8.
At the end of the driving cycle, the battery temperature is
improved by about 39.3%. Operating the battery close to the

Fig. 7. Comparison of the battery SoC for the problem formulation with
and without the battery under the UDDS.

Fig. 8. Comparison of the battery temperature for the problem formulation
with and without the battery under the UDDS.

Fig. 9. Comparison of the cumulative fuel consumption for the problem
formulation with and without the battery under the UDDS.

onset temperature of the cooling system (35 °C) during the
driving cycle, implies the extension of its service life without
incurring safety concerns. However, the improvements in the
battery performance characteristics comes at the expense of
cumulative fuel consumption, as shown in Fig. 9. The cumu-
lative fuel consumption can be found by integrating of the fuel
mass consumed at each time t . At the end of the driving cycle,
cumulative fuel consumption has increased by about 8.3%.
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Fig. 10. Power consumption of the cooling system as a function of the
battery cooling rate (air flow rate).

For the problem formulation with the battery, the weighting
factor β in (8) can be used to balance the tradeoffs of fuel con-
sumption and battery performance. On the other hand, if we do
not consider the battery in the problem formulation, increasing
the battery cooling rate is the direct method to reduce its
temperature at the expense of sacrificing significantly fuel
consumption. Increasing the battery cooling rate mainly leads
to an increase in power consumption. The increase in power
consumption by the cooling system as a function of increasing
the battery cooling rate can be estimated based on the exper-
imental results provided in [48]. This relationship is shown
graphically in Fig. 10, where the hollow circles represent the
experimental data points and the solid line represents a fitted
cubic polynomial. A detailed investigation and analysis for the
tradeoffs between fuel consumption and battery performance
is presented in the following sections.

B. Tradeoff Analysis Between the Battery Performance
Characteristics and the Cumulative Fuel Consumption

In the analysis presented in the previous section, the β
weighting factor in (8) was equal to 0.5, thus weighting the
normalized motor efficiency and the normalized SoC change
equally. Increasing the β weighting factor will reduce the sig-
nificance of the normalized SoC rate term in the multiobjective
cost function. Consequently, an improvement in the cumulative
fuel consumption is expected in the problem formulation with
the battery. A slight drop in the SoC profile can be noticed
in Fig. 11 when increasing β from 0.5 to 0.9 for the UDDS
driving cycle. Relaxing the SoC profile away from the target
value leads to a noticeable increase in the battery temperature
before the onset of cooling system operation (Fig. 12), as was
expected, cumulative fuel consumption drops (by 4.8%), as
shown in Fig. 13.

For the problem formulation without the battery, increasing
the battery cooling rate mainly leads to an increase in power
consumption. In this case, 70 ft3/min was selected for the
cooling rate so that the maximum battery temperature would
be as close as possible to that of the problem formulation with
the battery. Consequently, it is possible to compare the effect
of implementing both problem formulations on the cumulative

Fig. 11. Effect of increasing the β weighting factor (problem formulation
with battery) and applying a higher cooling rate (problem formulation without
battery) on the SoC profile for the UDDS.

Fig. 12. Effect of increasing the β weighting factor (problem formulation
with battery) and applying a higher cooling rate (problem formulation without
battery) on the temperature profile for the urban UDDS.

Fig. 13. Effect of increasing the β weighting factor (problem formulation
with battery) and applying a higher cooling rate (problem formulation without
battery) on the cumulative fuel consumption for the UDDS.

fuel consumption and the battery estimated range at nearly
the same battery temperature. Based on Fig. 10, the increase
in power consumption due to increasing the air flow rate from
20 to 70 ft3/min can be estimated to be about 150 W. As a
result, accessory power consumption increased to be 350 W
and the SoC profile dropped slightly, as shown in Fig. 11.
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TABLE II

RESULTS OF THE TRADEOFF ANALYSIS BETWEEN THE BATTERY

PERFORMANCE CHARACTERISTICS AND THE CUMULATIVE

FUEL CONSUMPTION AT 60% TARGET SoC

Apparently, increasing the battery cooling rate leads to a
significant drop in the temperature (Fig. 12). At the end of the
driving cycle, cumulative fuel consumption increases slightly
(about 2.1%), as shown in Fig. 13. Table II summarizes the
results of the tradeoff analysis for the different cases.

Some conclusions can be drawn when comparing the results
of the problem formulations with the battery at β = 0.9 and
without the battery with higher cooling rate. In both cases,
we have nearly the same maximum battery temperature and
cumulative fuel consumption. However, the final battery range
in the case of the problem formulation with the battery at
β = 0.9 is higher by 11.4% than the other case. Another set
of conclusions can be drawn when comparing the results of
the problem formulation with the battery at β = 0.9 and the
one without the battery. For the former, the final battery range
and the maximum battery temperature are improved by 10.7%
and 35.1%, respectively, compared to the latter. However,
the improvement of the battery range and temperature has a
tradeoff in cumulative fuel consumption of about 3%.

In general, the β weighting factor in the problem formula-
tion with the battery enhances the flexibility of the controller
to achieve results comparable with the problem without the
battery. In addition, the problem formulation with the battery
does not need any additional physical modifications, such as
increasing the cooling rate. The effectiveness of this case can
be further enhanced through operating the battery at a higher
target SoC, as will be discussed in the following section.

C. Operating the Battery at a Higher Target SoC

Considering the battery in the problem formulation (8)
allows for controlling battery performance characteristics, such
as temperature and range. Consequently, it is possible to
operate the battery at a higher target SoC without incurring
safety concerns. To show this, the UDDS simulation results
using a 0.7 target SoC are shown in Figs. 14–16, which consist
of the same four cases described in the previous section.
For the problem formulation without the battery, the cooling
rate is increased to 80 ft3/min so that the maximum battery
temperature is as close as possible to that of the problem

Fig. 14. Effect of increasing the β weighting factor (problem formulation
with battery) and applying a higher cooling rate (problem formulation without
battery) on the SoC profile for the UDDS at a 70% target SoC.

Fig. 15. Effect of increasing the β weighting factor (problem formulation
with battery) and applying a higher cooling rate (problem formulation without
battery) on the temperature profile for the UDDS at a 70% target SoC.

Fig. 16. Effect of increasing the β weighting factor (problem formulation
with battery) and applying a higher cooling rate (problem formulation without
battery) on the cumulative fuel consumption for the UDDS at a 70%
target SoC.

formulation with the battery. Based on Fig. 10, the increase
in power consumption resulting from increasing the air mass
flow rate from 20 to 80 ft3/min can be estimated to be about
200 W. As a result, the total accessory power consumption
increased to be 400 W.
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TABLE III

RESULTS OF THE TRADEOFF ANALYSIS BETWEEN THE BATTERY

PERFORMANCE CHARACTERISTICS AND THE CUMULATIVE

FUEL CONSUMPTION AT 70% TARGET SoC

Increasing the β weighting factor from 0.5 to 0.9 in the
problem formulation with the battery yields a slight drop in the
SoC profile (Fig. 14). Similarly, increasing the cooling rate for
the problem formulation without the battery leads to a slight
drop in the SoC profile. Apparently, operating at a higher target
SoC will lead to an increase in the available energy inside the
battery, thus improving the range. For the problem formulation
with the battery, increasing the β weighting factor leads to
a 2.1% drop in the final battery range. On the other hand,
the final battery range is negligibly affected by increasing the
cooling rate in the problem without the battery. Increasing
the β weighting factor for the problem formulation with the
battery leads to a noticeable increase in the battery temperature
before the onset of cooling system operation, as shown in
Fig. 15. On the other hand, increasing the battery cooling
rate for the problem formulation without the battery leads to
a significant drop in the temperature, as shown in Fig. 15.
Finally, cumulative fuel consumption dropped by 4.4%, as
shown in Fig. 16, when the β weighting factor was increased
for the problem formulation with the battery. Increasing the
battery cooling rate for the problem without the battery leads
to a 3.2% increase in cumulative fuel consumption, as shown
in Fig. 16.

Table III summarizes the results of the tradeoff analysis for
the different cases at a higher target SoC. Some conclusions
can be drawn from Table III by comparing the results of the
problem formulation with the battery at β = 0.9 and the
problem formulation without the battery with a higher cooling
rate. Both cases have nearly the same maximum battery
temperature. However, the final battery range and final cumula-
tive fuel consumption in the case of the problem formulation
with battery at β = 0.9 are improved by 18.5% and 1.7%,
respectively, than the other case in comparison. Another set of
conclusions can be drawn when comparing the results of the
problem formulation with battery at β = 0.9 and the problem
formulation without battery. For the problem formulation with
battery at β = 0.9, the final battery range and the maximum
battery temperature are improved by 17.3% and 36.2%,
respectively, when compared with the problem formulation

Fig. 17. Tradeoff analysis between the battery performance and cumulative
fuel consumption at 60% and 70% target SoC.

without battery. However, the improvement in the battery range
and temperature has a tradeoff in cumulative fuel consumption
of about 1.5%.

The tradeoff analysis between the battery performance char-
acteristics and cumulative fuel consumption for the different
solutions of the problem formulation is shown in Fig. 17. As β
increases and eventually reaches 1, battery SoC variations are
not penalized in the optimization problem formulation (8) with
significant implications in battery temperature. However, by
decreasing β below 1 or increasing the cooling rate we can still
maintain a low battery temperature, and thus improve battery
life, with a very small penalty in fuel consumption.

The effect on the simulation results of increasing the
target SoC from 60% to 70% can be analyzed by comparing
Tables II and III in conjunction with Fig. 17. For the problem
formulation with the battery at β = 0.5 and β = 0.9, the final
battery range increases by 25% and 24.3%, respectively, with
negligible change in the maximum battery temperature and
cumulative fuel consumption. For the problem formulation
without the battery, the final battery range increases by 17.4%.
However, the improvement of the battery range has a tradeoff
in cumulative fuel consumption of about 1.5% and 1.8%,
respectively. For the problem formulation without the battery
but at a higher cooling rate, the final battery range increases by
16.8% with negligible change in the maximum battery temper-
ature. Being able to control battery temperature with a penalty
in fuel consumption that we feel comfortable with allows
us to operate the battery at a higher target SoC without the
typical safety concerns associated with temperature increases.

VI. CONCLUSION

The framework proposed in this paper addresses overall
HEV optimization, including fuel consumption, motor
efficiency, and battery capacity and lifetime. The approach
adopted here enhances our understanding of the associated
tradeoffs among the HEV subsystems. For instance, the
performance of these subsystems can be tailored according
to consumer preferences, such as reducing fuel consumption
or extending battery life. In addition, the ability to control
battery performance indices, such as temperature enables
operating the battery at a higher target SoC without incurring
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safety concerns. Consequently, the results of such analyses
can have significant implications for the related HEV and
PHEV ownership and warranty costs.

Ultimately, the proposed optimization framework estab-
lishes the foundation for addressing overall HEV optimization,
including additional performance characteristics. Thus, paving
many pathways for future research work. For instance,
reducing the engine emissions can be considered in the mul-
tiobjective cost function, thus adding another element to the
aforementioned set of consumer preferences. In addition, the
proposed framework allows for augmenting the control inputs
to include the transmission gearshift schedule as a separate
control input, thus enhances the HEV optimal control problem.
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