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Abstract—Modern vehicles have sophisticated electronic 
control units, particularly to control engine operation with 
respect to a balance between fuel economy, emissions, and 
power. These control units are designed for specific driving 
conditions and testing. However, each individual driving style is 
different and rarely meets those driving conditions. In the 
research reported here we investigate those driving style 
factors that have a major impact on fuel economy. An 
optimization framework is proposed with the aim of optimizing 
driving styles with respect to these driving factors. A set of 
polynomial metamodels are constructed to reflect the responses 
produced by changes of the driving factors. Then we compare 
the optimized driving styles to the original ones and evaluate 
the efficiency and effectiveness of the optimization formulation.  

I. INTRODUCTION 
uel consumption and emission can be improved by 40% 
by altering the driver’s driving style [1, 2]. Developing a 

means of improving driver behavior to maximize fuel 
economy is a significant opportunity to reduce fuel 
consumption in existing fleets. Dam [3] conducted a survey 
about the perception of the achievable automobile fuel 
economy indicating that significant fuel economy 
enhancement can be achieved with a few driving 
adjustments. In recent research, the inverse problem was 
addressed; namely, the theoretical framework and algorithms 
[4, 5] were developed for making the engine of a vehicle 
into an autonomous intelligent system capable of learning its 
optimal operation in real time while the driver is driving the 
vehicle. Through this new approach, the engine 
progressively perceives the driver’s driving style and 
eventually learns to operate in a manner that optimizes fuel 
economy and emissions.  

A significant research effort has been focusing on 
investigating the impact of driving behavior on fuel 
consumption. Van Mierlo et al. [2] studied how driving 
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styles and traffic measures can affect fuel consumption and 
vehicle emissions. The study consisted of evaluating driver 
behavior and fuel economy over specific driving routes, 
before and after supplying the drivers with tips on fuel 
efficient driving practices, to determine whether a change in 
driver behavior had an impact on fuel economy. Ericsson [6] 
focused on independent factors to describe driving patterns 
and behaviors and to investigate their effects on fuel 
consumption. Hooker [7] conducted a study aimed at 
generating reliable advice concerning the optimal driving 
style to maximize fuel economy.  

Simulation-based models that can provide fuel 
consumption by considering driving factors have been 
another research focus. Ross [8] investigated the factors that 
affect the fuel economy of light vehicles and can be used to 
estimate the effect of driving styles and vehicle 
characteristics. Using data gathered at Oak Ridge National 
Laboratory [9], Ahn et al. [10] introduced a method for 
estimating fuel consumption based on driver-related factors 
such as instantaneous speed and acceleration. Hybridization 
of conventional powertrain systems allows elimination of the 
impact of driving styles on fuel economy because the power 
management controller separates the coupling between the 
driver and the engine. Manzie et al. [11] examined the 
possible fuel economy benefits that can be achieved with 
emerging technologies such as hybrid electric vehicles and 
intelligent vehicles that use telematics. The latter allow the 
vehicles to communicate with the road infrastructure and 
other vehicles to obtain information about their environment. 
Langari and Won [12] proposed an intelligent energy 
management system for parallel hybrid vehicles that 
incorporates driving style identification. 

This paper has two main objectives: (a) to investigate 
those driving factors that have a major impact on fuel 
economy and (b) to optimize driving styles with respect to 
these driving factors. In this context, we formulate an 
optimization framework that aims to modify driving styles 
with respect to key driving factors. A set of polynomial 
metamodels is constructed to reflect the responses produced 
by changes in these driving factors. Finally, to evaluate the 
efficiency and effectiveness of the optimization formulation, 
we compare the optimized driving style with the original 
one. The proposed optimization framework could be used in 
future research aimed at developing real-time feedback 
systems to enable drivers to alter their driving styles in 
response to actual driving conditions to be more fuel 
efficient and environmentally friendly. 

The remainder of the paper proceeds as follows. In 
Section II we develop the general framework for identifying 
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the driving factors. In Section III, we formulate a 
constrained optimization problem with respect to these 
driving factors. In Section IV, we evaluate the fuel economy 
benefits of using the optimized driving factors on a new 
driving style, and we draw concluding remarks in Section V. 

II. DRIVING STYLE FACTORS 

A. Engine Operation and Fuel Consumption 
To evaluate the impact of a driving style on fuel economy 

through simulation, standard dynamometer driving 
schedules (DDSs) (or simply driving cycles) were used [i.e., 
vehicle speed profiles established by the U.S. Environmental 
Protection Agency (EPA) for testing and measuring fuel 
economy and emissions]. These driving cycles provide a 
good representation of typical urban and highway commutes 
and represent a situation in which the driver desires a 
particular vehicle’s speed profile deemed characteristic of 
his/her driving style. The belief implicit here is that if the 
impact of the driving factors on fuel economy can be 
successfully captured by means of driving cycles, then it 
should also be possible to capture their impact by means of 
individual driving styles.  

Transient operation constitutes the largest segment of 
engine operation over a driving cycle compared to the 
steady-state one [13]. Fuel consumption and emissions 
during transient operation are extremely complicated, vary 
significantly with each particular driving cycle, and are 
highly dependent upon the engine calibration. State-of-the-
art engine calibration methods generate a static correlation 
between the values of the engine variables and the 
corresponding steady-state operating points. This correlation 
is incorporated into the ECU of the engine to control engine 
operation. While the engine is running, these correlations are 
being interpolated to provide values of the engine variables 
for each operating point.  

To overcome the limitations imposed by the engine 
calibration schemes, it is always preferable to operate the 
engine over steady-state operating points (e.g., highway 
driving) that are well optimized through the engine 
calibration and thus avoid transient operation (e.g., stop-and-
go driving) [14]. Furthermore, elimination of near idle 
engine operation enables direct fuel economy enhancement 
since at idle the efficiency is zero as no usable work is being 
drawn from the engine. Consequently, two factors, formally 
defined below, that have a major impact on engine operation 
and thus on fuel economy are (a) the stop factor (i.e., the 
percent of time over a driving cycle that the vehicle is 
stopped) and (b) the coefficient of power demand, which is 
directly related to transient engine operation.  

B. Stop Factor and Coefficient of Power Demand 
The stop factor is defined as the amount of time during a 

driving cycle that the vehicle is stopped (i.e., time that the 
vehicle’s velocity is zero divided by the total duration of the 
driving cycle). This factor provides a convenient indication 
of idle engine operation over a driving cycle. When a vehicle 

is stopped during a drive cycle, the engine is idling. In this 
situation, fuel is consumed but the distance traveled is zero, 
so the fuel economy is reduced to 0 MPG.  

The stop factor is calculated for several driving cycles; its 
effect on fuel consumption per meter is shown in Fig. 1. It 
seems that there is a linear correlation between the stop 
factor and fuel consumption; as the stop factor increases, the 
fuel consumption also increases. Namely, the more the 
engine is idling the higher the fuel consumption per meter. 
The Highway Fuel Economy Test (HWFET) driving cycle, 
for instance, is a representation of highway driving and 
contains the least amount of time stopped. This cycle shows 
the lowest amount of fuel consumption per meter. On the 
other hand, the Japan 10-15 and Federal Test Procedure 
(FTP) cycles have the highest percentage of time stopped 
compared to other cycles and, as a result, demonstrate higher 
fuel consumption per meter. 

The second driving factor considered here is called the 
coefficient of power demand. It provides an indication of the 
transient engine operation since it is proportional to power 
demanded by the driver. This power is the work done by the 
vehicle over time, which is equal to the total force,  
acting on the vehicle multiplied by the distance traveled,   

                             

 
 The forces acting on the vehicle in the longitudinal 
direction are shown in the free body diagram of a vehicle in 
Fig. 2. These forces consist of (a) the tractive force, Fx; (b) 
the drawbar force, Rhx; (c) the aerodynamic force, DA; (d) 
the rolling resistance force, Rx; and (e) the component of 
vehicle weight in this direction. By Newton’s second law, 
the total force, Ftotal, is equal to the inertial force, namely 

 
   ,    (2) 
 
where M is the vehicle mass,  is the vehicle acceleration in 
the longitudinal direction, and g is the gravitational constant. 

Eqs. (1) and (2) yield 
     ,                      (3) 

where  is the vehicle speed. 
Consequently, the power demanded from the driver is 
proportional to the product of the vehicle speed, , and 
acceleration, . This product is defined as the coefficient of 
power demand. 

To investigate the impact of the coefficient of power 
demand on fuel consumption, it was normalized and 
compared to the normalized fuel consumption rate over a 
given driving cycle. It turns out that there is a linear 
correlation between the coefficient of power demand and 
fuel consumption. This correlation is illustrated in Fig. 3 for 
the Japan 10-15 driving cycle. To further investigate the 
relationship between this factor and fuel economy, the parts 
of the Japan 10-15 driving cycle that correspond to a high 
fuel consumption rate are identified. High fuel consumption 
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rate is defined as the values of the fuel consumption rate that 
are equal to or greater than the high fuel point, which was 
specified as two standard deviations above the mean fuel 
consumption rate. These high fuel consumption rate points 
are then mapped onto the graph of the driving cycle to find 
what parts of the driving cycle correspond to high fuel 
consumption rates. Then, the values of the coefficient of 
power demand, which are equal to or greater than the high 
fuel points, are plotted along the driving cycle as illustrated 
in Fig. 4.  
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Fig. 1. Fuel consumption versus the percent of time the vehicle is 
stopped in various driving cycles. 
 
 
 

 
 
Fig. 2. Forces acting on a vehicle. 
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Fig. 3. Normalized fuel consumption rate with respect to the 
coefficient of power demand for the Japan 10-15 driving cycle. 
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Fig. 4. High fuel rates over the normalized fuel consumption rate for 
the Japan 10-15 driving cycle. 
 

It appears that both the coefficient of power demand and the 
high fuel consumption rate are provide the same 
information; thus, the coefficient of power demand 
constitutes a suitable indicator for aspects of a driving cycle 
that have a strong influence on fuel consumption. The same 
qualitative results were observed for other standard DDSs 
established by EPA.  

Although the conjoint attributes of these two factors entail 
a comprehensive intimation of fuel consumption, the stop 
factor constitutes a commute aspect rather than a driving 
one. As such, it cannot be altered by changing driving 
behavior but only by modifying the route. However, 
hybridization of vehicles has aimed to address the stop 
factor by shutting off the engine when the vehicle is at stop 
and thus eliminating near idle engine operation. Thus in our 
optimization problem formulation the objective is to 
optimize a driving cycle with respect to the coefficient of 
power demand only. 

III. OPTIMIZATION PROBLEM FORMULATION 
Autonomie [15] was used to evaluate the various 

performance indices required for the optimization study. 
Autonomie is a Matlab/Simulink simulation package for 
powertrain and vehicle model development developed by 
Argonne National Laboratory.   

A. Polynomial Metamodel for Fuel Consumption 
To formulate the optimization problem analytically and 

reduce computation time, a set of polynomial metamodels 
are constructed to reflect the responses produced by changes 
in the coefficient of power demand. A metamodel is a 
“model of a model,” which is used to approximate a usually 
expensive analysis or simulation process; metamodeling 
refers to the techniques and procedures to construct such a 
model [16]. In this optimization framework, a set of 
polynomial metamodels is used to express the objective 
function in the problem formulation. For example, fuel 
economy is evaluated though simulation in Autonomie over 
a grid of values for vehicle speed and acceleration for a 
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particular driving cycle. Then multivariate polynomial 
functions are fit to the data using the least squares method. 

The least squares method is a fundamental approach for 
parameter estimation. If the model has the property of being 
linear in the parameters then the least squares estimate can 
be calculated analytically. It was assumed that the model to 
be identified was in the form 
 
          ,  (4) 
 
where  indexes the number of simulation 
data points; ŷ  is the output of the model;  are 
the parameters of the model to be determined; and 
ϕ1,ϕ2,...,ϕn  are known functions that may depend on other 
known variables. The simulation data points derived from 
Autonomie correspond to pairs of the measured and 
regression variables (y(i),ϕ(i)), i =1,2,...,n,n∈ℵ{ } . The 
problem is formulated so as to minimize the following least 
squares cost function with respect to the parameters of the 
model  
 

 
The measured variable y  is linear in parameters , and the 
cost function is quadratic. Consequently, the problem admits 
an analytical solution.  

For the optimization problem formulation, it is necessary 
to derive a polynomial metamodel of fuel consumption with 
respect to coefficient of power demand that will be the 
objective function. A quadratic function of the form 
 

 
             (6) 
 
provides an appropriate fitting to the discrete simulation data 
points of fuel consumption,  with respect to vehicle 
speed,  and acceleration, . A higher order polynomial 
metamodel appears to “overfit” the data, whereas a lower 
order polynomial is not adequate to estimate fuel 
consumption accurately.  

Different sets of discrete simulation data points consisting 
of a grid of vehicle speed and acceleration for three driving 
cycles, Japan 10-15, combined FTP and HWFET, and FTP, 
are derived by running the vehicle model in Autonomie. 
These sets are used to compute the polynomial fitting 
coefficients, w. To assess the polynomial fitting with the 
discrete simulation data points, the norm of residuals given 
by the following equation were evaluated: 

 
where  is the vector fuel consumption values over 
time derived from Autonomie and  is the vector 
of fuel consumption over time estimated by the polynomial 

metamodel. Table 1 lists the values of the polynomial 
coefficients of the metamodel of each driving cycle and the 
norm of residuals. The latter yields an indication of a 
satisfactory curve fitting. 

B. Optimal Acceleration Profile 
This paper poses an optimization framework to determine 

the optimal values of the coefficient of power demand to 
improve fuel economy. This framework must maintain the 
original shape of a driving cycle (i.e., vehicle speed profile). 
Consequently, the objective of the optimization problem is 
to minimize fuel consumption, (6), only with respect to the 
vehicle acceleration. Deceleration is not a concern because 
the fuel cutoff controller in modern vehicles can successfully 
handle rapid deceleration. 

Although a new acceleration profile will yield a new 
vehicle speed profile, the original driving cycle must 
somehow be preserved. To avoid the trivial solution (i.e., 
zero acceleration), a constraint is imposed on the difference 
between the resulting and the original vehicle speed profile. 
More specifically, the optimal acceleration profile is 
constrained to yield a new vehicle speed profile that is no 
more than 5 kph less than the original one. However, this 
hard constraint could result in reducing significantly the 
feasible domain of the optimal solution. To overcome this 
posterior technicality, the constraint is formulated as the 
norm of the difference between the original and the new 
speed profile. This norm should be less or equal to another 
norm formulated as the difference between the original and 
the speed profile that is 5 kph less than the original. The 
inherent modularity of the proposed constraint circumvents 
the hard limit of the derived speed profile to be no more than 
5 kph less than the original one. However, it preserves the 
average discrepancy to be within these limits, and thus, it 
enables the feasible space of the acceleration profile to 
include solutions resulting in smooth shaping of the speed 
profile. Consequently, the following nonlinear constrained 
optimization problem is formulated: 

 
TABLE 1 

POLYNOMIAL COEFFICIENTS OF FUEL CONSUMPTION METAMODELS 
FOR DIFFERENT DRIVING CYCLES 

 JAPAN 10-15 
 

COMBINED FTP 
AND HWFET  

FTP 
  

w1
 

  0.208 ⋅10-6 0.442 ⋅10-6 0.222 ⋅10-6  

w2
 

40.899 ⋅10-6 -5.670 ⋅10-6 4.332 ⋅10-6  

w3
 

-0.532⋅10-6 1.166 ⋅10-6 1.250 ⋅10-6  

w4
 

45.419 ⋅10-6 39.269 ⋅10-6 36.217 ⋅10-6  

w5
 

86.518 ⋅10-6 58.284 ⋅10-6 57.877 ⋅10-6  

w6
 

23.923 ⋅10-6 19.279 ⋅10-6 24.245 ⋅10-6  

w7
 

26.602 ⋅10-6 82.426 ⋅10-6 77.482 ⋅10-6  

w8
 

160.640 ⋅10-6 185.360 ⋅10-6 171.200 ⋅10-6  

||r|| 0.004 0.014 0.015  
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   subject to ,     (8) 

where is the vector of the original vehicle speed of the 
driving cycle;  is the optimal speed profile from the 
optimal acceleration profile, ; and is the vehicle 
speed profile, which is 5 kph less than the original one. 

The optimization problem in (8) was solved iteratively 
until convergence employing the Matlab function fmincon, 
based on sequential quadratic programming (SQP) [17]. 
SQP proceeds by computing an approximate solution of a 
sequence of quadratic programming subproblems in which a 
quadratic model of the objective function is minimized 
subject to the linearized constraints.  

IV. OPTIMIZED DRIVING CYCLE 

A. Construction of Optimized Driving Cycle 
The acceleration profile,  yields a vehicle speed 

profile, . This speed profile will be used in the constraint 
of the optimization problem iteratively until convergence to 
the optimal acceleration,  and speed,  is 
achieved. In this iterative process, the construction of the 
vehicle speed profile needs to preserve the total distance that 
the vehicle travels as well as the instances where the vehicle 
has to stop. In other words, the desired route of the driver 
and the speed limits must be preserved. Integrating the 
acceleration is not enough to accurately obtain a new driving 
cycle, as some route-related information is not described by 
the acceleration profile (e.g., when the vehicle is stopped 
and duration of time that the vehicle is stopped). This 
information is available, however, from the original drive 
cycle. Therefore to preserve the total distance,  should 
remain constant and can be computed as follows. The total 
distance that the vehicle travels is given by 

      
                                  (9) 

The time interval,  is not constant, 
however, and depends on the acceleration  at time  The 
time interval,  is computed by (9) using each interval of 
distance,  of the original driving cycle. For each  
covered, both initial velocity and initial time are known, so 
the time  to travel the distance  is computed by (9). The 
optimal speed profile, is derived at each time through 
the following equation: 

 
This process is repeated over all of the distance intervals, 
and new velocity and time vectors are constructed.  

B. Simulation Results and Discussion 
The optimization framework described above was applied to 
three driving cycles, Japan 10-15, combined FTP and 
HWFET, and FTP. The Japan 10-15 was selected as suitable 
for this analysis because of its inherent engineering shape. 

The other two are well known standard DDSs established by 
EPA for testing and measuring fuel economy and emissions. 
In the case of the Japan 10-15 driving cycle, a new 
optimized driving cycle was obtained depicted in Fig. 5.  The 
optimal driving cycle is 28% longer than the original one as 
the new acceleration profile aims to smooth out the vehicle 
speed, and thus resulting in minimizing the overall average 
speed. The speeds for both the original and optimized 
driving cycles versus distance are illustrated in Fig. 6. 
Although the optimized speed profile in some instances falls 
below the bound of the speed profile, which is 5 kph less 
than the original Japan 10-15 driving cycle, the optimal 
solution is bounded by the active constraint in (8). For the 
optimized cycle, it should be noted that the total distance 
traveled and intermediate stops have been preserved (i.e., the 
route has been preserved). Smoothing out the speed profile 
to eliminate transient engine operation results in significant 
fuel economy enhancement, as shown in Fig. 7. A more 
conservative driving style that delays destination arrival time 
has a major impact on fuel economy; in this particular case, 
a 22.3% improvement in fuel consumption was observed.  
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Fig. 5. Optimized vehicle speed profile of the Japan 10-15 driving cycle 
with respect to time. 
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Fig. 6. Optimized vehicle speed profile of the Japan 10-15 driving cycle 
with respect to distance. 
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Fig. 7. Cumulative fuel consumption of the original and optimized 
Japan 10-15 driving cycle. 

Similar qualitative results are observed for the combined 
FTP and HWFET, and FTP driving cycles. Table 2 provides 
a summary of the results for the three driving cycles. It is 
important to note the significant fuel consumption savings 
that can be achieved if a more conservative driving is 
employed.  

The problem could be modified by attempting to maintain 
the same average speed of both the original and the resulting 
driving cycles. In this case, however, it would be over-
constrained ending up with no feasible solution, unless the 
constraint initially imposed of preserving the route was 
relaxed. In the alternative formulation, the optimized driving 
cycle would just simply imply change the route. In this 
paper, however, the requirement is that the original route 
needs to be preserved (e.g., traffic lights, stop signs) and we 
are interested in investigating the impact of a more 
conservative driving style on fuel economy. 

V. CONCLUSION 
In the research reported here we investigated those driving 

style factors that have a major impact on fuel economy. An 
optimization framework was proposed with the aim of 
optimizing driving styles with respect to these driving 
factors. Individual driving styles are different and rarely 
meet the driving conditions posited in testing (e.g., engine 
optimization with respect to steady state operating points or 

vehicle speed profiles for particular highway and city 
driving). The optimization framework adopted here 
facilitates better understanding of the potential benefits from 
employing a more conservative driving. Future research 
should investigate the use of the proposed optimization 
framework in developing real-time feedback systems to 
enable drivers to alter their driving styles in response to 
actual driving conditions to be more fuel efficient and 
environmentally friendly. 
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TABLE 2 
SUMMARY OF OPTIMIZATION RESULTS 

DRIVING 
CYCLE  

ADDITIONAL 
TRAVEL TIME 

[%] 

 
FUEL CONSUMPTION 

IMPROVEMENT 
[%] 

 

 

JAPAN 10-15  28.0 22.3  

COMBINED 
FTP AND 
HWFET 

 9.8 15.9  

FTP  14.1 23.2  
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