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Abstract— Increasing demand for improving fuel economy
and reducing emissions has stimulated significant research and
investment in hybrid propulsion systems. In this paper, we ad-
dress the problem of optimizing online the supervisory control
in a series hybrid configuration by modeling its operation as
a controlled Markov chain using the average cost criterion.
We treat the stochastic optimal control problem as a dual
constrained optimization problem. We show that the control
policy that yields higher probability distribution to the states
with low cost and lower probability distribution to the states
with high cost is an optimal control policy, defined as an
equilibrium control policy. We demonstrate the effectiveness
of the efficiency of the proposed controller in a series hybrid
configuration and compare it with a thermostat-type controller.

I. INTRODUCTION

Widespread use of alternative hybrid powertrains is cur-
rently inevitable, and many opportunities for substantial
progress remain [1]. The necessity for environmentally con-
scious vehicle designs, in conjunction with increasing con-
cerns regarding US dependency on foreign oil and climate
change, has led to significant investment in enhancing the
propulsion portfolio with new technologies. Hybrid electric
vehicles (HEVs) and plug-in HEVs have attracted consider-
able attention due to their potential to reduce petroleum con-
sumption and greenhouse gas emissions in the transportation
sector. A typical HEV powertrain configuration consists of
the fuel converter (engine), the electric machines (motor and
generator), the energy storage system (battery), the torque
coupler, and the transmission. In series HEV configurations,
the electric motor is the only means of providing the power
demanded by the driver. The optimal split of the power
demanded by the driver constitutes a challenging control
problem defined as the supervisory control or energy man-
agement problem [2] and has been the object of intense study
for the last decade.

The objective of the control problem formulation in the
series hybrid configuration, in particular, is to operate the en-
gine efficiently while maintaining the state-of-charge (SOC)
of the energy storage system within acceptable limits. Jalil,
Kheir, and Salman [3] proposed a rule-based control strategy
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using a thermostat-type behavior to optimize the power
management control in a series HEV. Brahma, Guezennec,
and Rizzoni [4] implemented a deterministic dynamic pro-
gramming (DP) solution to address this problem. Tate and
Boyd [5] introduced the application of convex optimization
to hybrid vehicle optimization. They posed the problem of
finding optimal engine operation in a pure series hybrid
vehicle over a fixed driving cycle subject to a number of
constraints related to components, e.g., engine, battery, and
motor. In their approach, the authors formulated the problem
of optimizing fuel consumption as a nonlinear convex opti-
mization problem, which was then approximated as a linear
program. Mckain et al. [6] evaluated the emissions and fuel
economy of series hybrid electric buses and compared their
performance with that of conventional ones.

In later research efforts, Barsali, Miulli, and Possenti [7]
proposed an online control algorithm for a series HEV
relying on overall parameters characterizing the driving
schedule and being easily adaptable to sudden changes in
the driving regime. Pisu and Rizzoni [8] developed an
equivalent consumption minimization strategy (ECMS) with
the aim to optimize the energy management for a series
hybrid electric heavy duty truck with two energy storage
systems, i.e., battery and ultracapacitor. Konev, Lezhnev, and
Kolmanovsky [9] implemented a control strategy for a series
HEV that ensured gradual operation of the engine-generator
unit along the steady-state optimal operating points. In the
proposed approach, the HEV operation was modeled as a
random process. The algorithm attempts to minimize the
probability of discharging or overcharging the battery beyond
a predetermined SOC target. The probability was estimated
based on the statistics derived from the past history of the
SOC. Pérez et al. [10] following [4] used DP to minimize
fuel consumption with respect to power split between the
engine and energy storage unit in a series HEV.

Wang, Li, and Xu [11] proposed a power management
control strategy using support vector machines (SVMs).
SVM is a technique in the field of statistical learning origi-
nally developed for classification problems. In this context,
their approach includes setting up an operation database of
different load sequences, initial SOC and vehicle speed; then
applying a fast Fourier transform on load sequences to select
characteristic features and generate a new database, and,
finally, training SVM to produce the controller classifier.

Yoo et al. [12] presented another rule-based control
strategy for a series HEV with three power sources, i.e.,
battery, super capacitor, and gen-set. Serrao and Rizzoni [13]
proposed an analytical solution based on Pontryagin’s min-
imum principle for the optimal power management control
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problem in a series hybrid electric refuse collection truck.
The equivalence factors that allow for the transformation
of electrical energy into future fuel consumption must be
determined with optimization techniques and are related to
the driving cycles that the vehicle follows.

More recently, Serrao, Onori, and Rizzoni [14] presented
a formal analytical derivation of ECMS for energy man-
agement in a series HEV based on Pontryagin’s minimum
principle. The Hamiltonian equation was interpreted as the
sum of the actual fuel consumption in the engine and of
a term that has the same units and is related to the use
of the battery power. This additional term represents the
virtual consumption associated with the battery use and is
related to the future fuel consumption due to the use of
the battery at the present time as explained intuitively in
the first papers on ECMS [15] and [16]. Finally, Ripaccioli
et al. [17] illustrated the use of stochastic model predictive
control (SMPC) for power management control in a series
HEV. The power demanded from the driver was modeled as a
Markov chain trained from a given family of driving cycles.
A linear model was used by SMPC to derive an optimal
control policy (engine power). Cairano et al. [18] proposed
an energy management control strategy for a series HEV.

In this paper, we address the problem of optimizing online
the supervisory control in a series HEV configuration. We
model HEV operation as a controlled Markov chain using
the average cost criterion. We treat the stochastic optimal
control problem as a dual constrained optimization problem.
We show that the control policy that yields higher probability
distribution to the states with low cost and lower probabil-
ity distribution to the states with high cost is an optimal
control policy, defined as an equilibrium control policy. The
contribution of this paper is the development of an online
supervisory controller for a series HEV that, under certain
conditions, can yield an optimal solution of the stochastic
control problem.

The remainder of the paper proceeds as follows: In Section
II, we introduce our notation and formulate the problem. In
Section III, we present the equilibrium control policy and
show that it minimizes the average cost criterion. In Section
IV, we demonstrate the effectiveness of the efficiency of
the proposed controller in a series HEV truck and compare
it with a thermostat-type controller. Finally, we present
concluding remarks in Section V.

II. PROBLEM FORMULATION
A. Series Hybrid Electric Vehicle Configuration

In the series HEV configuration considered here and illus-
trated in Fig. 1, the motor provides all the power demanded
by the driver. Thus we can operate the engine at any desired
combination of engine torque and speed. The objective of the
centralized controller is to maintain the SOC of the battery
within a given range while operating the engine efficiently.
So the optimal control policy of the centralized controller
is the engine power at each instant of time with respect
to the engine’s speed that minimizes fuel consumption. To
operate the engine under the condition designated by the

centralized controller, a PID controller regulates the engine
torque through the generator as shown in Fig. 2. The optimal
engine power is converted to electrical power through the
generator and goes to the battery.

Motor

‘ . Transmission —'
<‘ Generator

The series HEV configuration.

1

Fig. 1.

Following the framework proposed in [19], [20], engine
operation is modeled as a controlled Markov chain with a
state space S C R", and a control space YU C R™ from
which control actions are chosen. The state space S is the
entire range of the engine speed and the control space U/
is the engine power range; thus both the state space S and
control space U are compact spaces. The Markov chain is the
evolution of the engine speed and the uncertainty is related to
the power demanded by the driver through the battery SOC.
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Fig. 2. The centralized control scheme.
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B. Average Cost Criterion

A state-dependent constraint is incorporated in the formu-
lation; that is, for each state (engine speed) ¢ € S a nonempty
set C(7) C U of admissible control actions (engine power) is
given.

Definition 2.1: The set of admissible state/action pairs is
defined as

I: ={(i,u)li € S and u € C(4)},

where I' is the intersection of a closed subset of R™ x R™
with the set S x U/. That is, I" is closed with respect to the
induced topology on & x U. It follows that for each state
i€ S, C(i) is compact.

Definition 2.2: The set of Borel measurable
functions is defined as II;: = {u:'§ -
U|p; is Borel measurable and u; € C(i)},Vi € S.

1192



Let II: Hf", 1 € S, be the set of all sets of all
sequences ™ = {p1,[42,..., in}. Each sequence in II is
called a stationary control policy and operates as follows.
Associated with each state ¢ € S is the Borel measurable
function p; € C(7). If at any time the centralized controller
finds the engine in state ¢, then the controller always chooses
the action ;.

The evolution of the engine occurs at each of a sequence
of stages t = 0,1,..., and it is portrayed by the sequence
of the random variables X; and U; corresponding to the
system’s state (engine speed) and control action (engine
power). At each stage, the controller observes the system’s
state X; = ¢ € S, and executes an action U; = p;, from the
feasible set of actions u; € C(i) at that state. At the next stage
t, the system transits to the state X;; = j € S imposed by
the conditional probability P(X:11 = j|X; = 4, U = u;),
and a cost k(X; = i,U; = p;) = k(i,p;) is incurred
corresponding to fuel consumption. After the transition to
the next state has occurred, a new action is selected and
the process is repeated. We are concerned with deriving
a stationary optimal control policy (sequence of engine
power) to minimize the long-run average cost (average fuel
consumption) per unit time, that is

min lim 7E
rell T—oo T +

J(m) = Xﬁxam

For each policy m € II, P(w) is the transition probability
matrix, the elements of which represent the conditional
probability of moving from one state to another under
the policy =, that is, P(X:y1 = j|X: = 4, U = ;).
To guarantee that the limit in (1) exists, we assume that
for each stationary control policy m = {1, o, .os fin}s
the Markov chain {X;|t =1,2,...} has a single ergodic
class. That is, for each stationary policy m € II, there
is a unique probability distribution (row vector) B(w) =
[B1(m), Ba(7), ..., Bi(m), ...Bn ()], Vi € S, such that 5(7w) =
B(m) - P(mr), with >, Bi(m) = 1. Under our assumption,
it is known that

(D

M’ﬂ

lim

Jim B(x), @)

=O

where 1 = [1,1,...,1]7 is the column vector whose elements
are all unity. Substituting (2) into (1) shows that the long run
average cost, J(7), does not depend on the initial state and
is given more simply as

J(m) = B(m) - k(m), 3)

where k(m) = [k(1, 1), k(2, p2), s k(i i)y k(0 pin)]T
is the column vector of the cost function. Since P(w) is
assumed to be continuous, it follows from (2) that 3(7) is
continuous. Thus, since the Borel measurable cost function
k: T — R is continuous, so is J(m). Hence by compactness
of § x U an optimal stationary control policy exists.

III. OpPTIMAL CONTROL POLICY
A. Equilibrium Control Policy

In this section, we formulate the problem of deriving
an optimal control policy that minimizes the average cost
as a dual constrained optimization problem. The motiva-
tion behind this new formulation is the structure of the
average cost as expressed in (3). In particular, the average
cost depends on two vectors, i.e., the stationary probability
distribution and the vector of the cost function. The Markov
chain has a single ergodic class and since we permit the
single ergodic class to depend on 7, different control policies
will yield different probability distributions for each state
i € §. Consequently, we seek a solution ensuring that the
control policy endows a stationary probability distribution
that yields higher probability at the states with low cost, and
lower probability at the states with high cost. Thus, we can
formulate the problem as the following dual optimization
problem:

minsup () - k(7),or maxinf B(x) - k() 4)
kg Bk

Definition 4.1: A  control policy 7 =
{p1, b2y ooy iy oy piv } 18 an equilibrium control policy
if it yields a solution for the above optimization problem
corresponding to the following pair of vectors S* and k*

k‘*(l,ul) < k*(2,u2) <. < k*(’i,ui) <. < k‘*<N7/LN>
(&)
pi(@) > B2 (7) > ... > Bi (W) > .. > By (7), Vi € S, (6)

where N € N is the cardinality of S.

Thus if an equilibrium control policy exists, it yields
higher probability distribution to the states with low cost and
lower probability distribution to the states with high cost.

Proposition 4.1 [21]: If the average cost J: (S xU) = R
is a linear functional such that J is convex with respect to
the measurable cost function k and its epigraph is closed for
each 3, then an equilibrium control policy exists.

B. Optimality Equation

Now, we formulate the optimality equation for the average
cost criterion.

Theorem 4.1 [22]: Suppose the Markov chain has a single
ergodic class and that the cost function, k: I' — R, belongs
to the set of all bounded, continuous, real-valued functions
on 8. If m € II is a control policy, then (C, J) is the solution
of the following equation:

C+1-J=P(x)-C+k(r), 7

where C' is a column vector the elements of which belong
to R, 1 =[1,1,...,1]7 is the column vector whose elements
are all unity, J is the average cost, P is the stochastic kernel,
and k is the cost function.

The principle of optimality suggests that the minimum
average cost J* = min,cr J(7) would be given by the
solution to
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C+1-J" = meig[P(w) -C + k(m)). (8)
Theorem 4.2 [22]: Let w € II. If there exist (C, J*) such
that

C+1~J*:£rn€ilr11[P(7r)~C+k(7r)], 9
then 7 is the optimal control policy.
Theorem 4.3 : The equilibrium control policy is an optimal
control policy.
Proof: Let w* be the optimal control policy that
minimizes the average cost J* = minger(J). Then from
Theorem 4.2 there exists (C, J*) such that

C+1-J* = min[P(m) - C + k()]
= P(n*) - C + k* (%),

(10)

where J* = () - k*(7*) is the minimum average cost.
Let © be the equilibrium control policy. The optimal
control policy 7* and the equilibrium control policy 7
yield the same cost-per-stage, k*(7) = k*(n*) since the
equilibrium control policy minimizes the average cost over
cost-per-stage as shown in (4). The average cost for the
equilibrium control policy is equal to J(7) = 8*(7) - k* (7).
Suppose the equilibrium control policy is not optimal. Then

C+1-J* = P(r*)-C+k*(r*) < P(#)-C+k*(7). (11)

Premultiplying (11) by the stationary probability distribution
vector 3*(7) corresponding to the equilibrium control policy
gives
p*(m)-C+J* < p*(w)-C+ B (7) - k*(7), (12)
since B*(7) -1 =1, ), B (7) =1, and B*(7) = B*(7) -
P(7).
Finally,
J* < B (w) - kH(T), (13)

or

Bi(m*) - kT + Bo(m*) - kS + ...+ Bn(7%) - Ky

SPUT) - ki + B5(7) - Kz + o+ By (7) - By
The last equation implies that there will be some ¢ € S such
that §8;(7*) < 57 (7). However, since the equilibrium control
policy yields the maximum possible probability to each state,
(6), and since ) ;s Bi(7*) = 1, there will be some j € S
such that §3;(7*) > B;(7), which is a contradiction since
f; () is the maximum probability at state j € S. Hence

J* =B (x7) - k¥ (7). (15)

(14)

|

Conceptually, a solution is sought that ensures the control
policy endows a stationary probability distribution yielding
higher probability at the states with low cost and lower
probability at the states with high cost. The equilibrium
control policy yields the saddle point solution of the opti-
mization problem (4), and it is an optimal control policy
that minimizes the average cost J. The equilibrium control

policy exists if the average cost J is a linear functional such
that .J is convex with respect to the measurable cost function
k and its epigraph is closed for each .

The equilibrium control policy is essentially a characteri-
zation of the optimal solution of the average cost criterion.
For practical situations with constraints consistent with those
we study here, our results imply that recognition of the equi-
librium control policy may be of value in deriving an optimal
control policy in real time. Solving the original stochastic
control problem, (3), for the series HEV configuration is
computationally expensive and real-time implementation is
not feasible; alternatively, the centralized controller can be
designed to operate the engine under the equilibrium control
policy, that is, operating the engine with a higher probability
on the speed range corresponding to low fuel consumption,
and with lower probability on the speed range corresponding
to high fuel consumption.

IV. SUPERVISORY POWER MANAGEMENT CONTROL
USING THE EQUILIBRIUM CONTROL POLICY

To validate the effectiveness of the centralized controller
using the equilibrium control policy, we employed Au-
tonomie [23]. A vehicle model from Autonomie’s database
representing a medium duty series HEV truck was used
in this study. To identify the column vector of the cost
function that is minimum for each state (engine speed)
we plot the minimum brake specific fuel consumption
(bsfc) of the engine for each engine speed as illustrated
in Fig. 3. From this plot, we can choose the set of ad-
missible state/action pairs I': = {(i,u)|i € Sandu €
C(i)}. The criterion of selecting the set I' is to be
able to have a structure of the vector of the cost func-
tion, k*(7) = [k(1, p1), k(2, 12), s k(iy p13), - (n, )] T
as designated by the equilibrium control policy 7 =
{11, 42y ooy fiy ooy pov 35 mamely, &*(1,p1) < k*(2,p2) <
< k*(i,ui) < ... < k*(N, ,U,N).
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Fig. 3. The minimum brake specific fuel consumption values corresponding
to the cost function with respect to engine speed.

The equilibrium control policy can be achieved by the
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centralized controller, if the engine is operated at the speed
range ensuring higher probability to the engine speed with
lower bsfc values and lower probability to the engine speed
with higher bsfc values G5 (7) > B5(7) > ... > B (7) >

. > BN(T),¥i € S. However, the centralized controller
needs to maintain the battery’s SOC close to the target value
(65% in this case). To achieve both objectives, we establish
an one-on-one correlation, illustrated in Fig. 4, between SOC
and a portion of the optimal engine power corresponding to
red dashed line in Fig. 3. In previous research adopting the
stochastic optimization framework described here, the SOC
of the battery has been used as a component of the state.
However, this may lead to a significantly large state space
with implications for increasing the computational burden
associated with the problem. In our approach, the SOC is
treated as an additional uncertainty which is correlated to an
additional power demand by means of one-on-one mapping.
Depending on the SOC value, there is a corresponding
amount of power Pgoc that needs to be provided to the
battery to stay at the target SOC. This additional amount
is added to the driver’s power demand. The one-on-one
mapping is a heuristic mapping that aims to provide an
increasing power request, Psoc as the SOC drops up to a
certain maximum value. If the SOC is above the target value,
then Psoc is zero. Future research should investigate the
optimal one-on-one correlation in conjunction of the battery’s
characteristics and properties.

A

max valueq

Engine Power, Psoc

min value

min target max

soc
Fig. 4. Engine power with respect to the state of charge of the battery.

The controller is set up to command the engine to provide
the power corresponding to around 1,000 RPM, i.e., the
minimum allowable value in the range of the engine power,
whenever SOC is equal to 65% (target SOC) and gradually
increase as SOC drops below 65% all the way down to the
minimum allowable value (60% in this case), as illustrated
in Fig. 4. Whenever the battery SOC is at 65%, the engine
operates at its minimum possible bsfc value and gradually
increases to the value corresponding to the maximum value
in the set I

To ensure that the probability distribution of the engine
speed is correlated to the values specified by the equilibrium

control policy, we imposed condition so that the engine is
operated as specified by the probability distribution of the
equilibrium control policy. In particular, we assign a given
probability to each state (engine speed) belonging to the set
I', such that

BiI(T) > B3(T) > ... > B (™) > ... > By (7),Vi €S,

(16)
with » . Bi(7) = 1. Then we correlate the engine power
to this stationary probability distribution. The transition
probability matrix of the state space is computed from a
computational learning model presented earlier [19] that
converges to the stationary probability distribution of the
Markov chain [20]. Although the centralized controller needs
to maintain the battery’s SOC within the target value as
indicated by Psoc, the engine should be operated optimally
and the probability distribution of the engine speed should
be constrained by (16).

To validate the effectiveness of the equilibrium control
policy, we compared it to a thermostat-type controller as the
latter has been a popular controller for series HEVs in the
literature [7]. However, future research should investigate the
benefits of the proposed controller by comparing it with other
supervisory controllers proposed in the literature and under
different driving cycles to be able to draw solid conclusions.

The thermostat-type controller was also set up to operate
the engine within the maximum and minimum value of the
engine power corresponding to red dashed line in Fig. 3.
Both HEVs, the one having the thermostat-type controller
and the one with centralized controller using the equilibrium
control policy, were simulated over the CSHVR driving
cycle, deemed characteristic for medium- and heavy-duty
trucks, in Autonomie. An inherent algorithm in Autonomie
run both HEV models over the same driving cycle multiple
times until the initial and final SOC becomes the same. As a
result the models ended up with different initial SOC values.
The SOC plots for both models are shown in Fig. 5.

¢
59 ! 1
= = = Thermostat Control

—— Optimal Control

58

I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800

time (s)

Fig. 5. State of charge of the battery for the series hybrid electric truck
with the thermostat-type controller and the centralized controller employing
the equilibrium control policy.
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The HEV model with the thermostat-type supervisory
controller ended up with initial and final SOCs of 63.5%,
whereas the HEV model with the supervisory controller
using the equilibrium control policy ended up with initial and
final SOCs of 65%. As the SOC drops below the target value,
the controller increases the engine power taking values from
the feasible set, I', with the intention to yield the stationary
probability distribution and cost function corresponding to
the equilibrium control policy, (5) and (6). As a result, a
6.6% fuel consumption improvement was achieved, as shown
in Fig. 6.
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Fig. 6. Cumulative fuel consumption for the series hybrid electric truck
with the thermostat-type controller and the centralized controller using the
equilibrium control policy.

V. CONCLUDING REMARKS

The results presented here address the problem of online
optimization of the supervisory control in a series HEV
configuration. We modeled HEV operation as a controlled
Markov chain using the average cost criterion, and we treated
the stochastic optimal control problem as a dual constrained
optimization problem. We showed that the equilibrium con-
trol policy is an optimal control policy operating the engine
with a higher probability on the speed range corresponding
to low fuel consumption and with lower probability on
the speed range corresponding to high fuel consumption.
The effectiveness of the centralized controller was validated
through simulation in a series HEV truck. The supervisory
controller yielded a 6.6% improvement in fuel consumption
compared to a thermostat-type controller. Future research
should compare the proposed supervisory controller with
other supervisory controllers proposed in the literature and
under different driving cycles. Future research should also
investigate the optimal one-on-one correlation between the
SOC and the engine power in conjunction of the battery’s
characteristics and properties.
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