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ABSTRACT 
Hybrid electric vehicles have shown great potential for 

enhancing fuel economy and reducing emissions. Deriving a 
power management control policy to distribute the power 
demanded by the driver optimally to the available subsystems 
(e.g., the internal combustion engine, motor, generator, and 
battery) has been a challenging control problem. One of the 
main aspects of the power management control algorithms is 
concerned with the self-sustainability of the electrical path, 
which must be guaranteed for the entire driving cycle. This 
paper considers the problem of identifying online the power 
required by the battery to maintain the state of charge within a 
range of the target value. An algorithm is presented that realizes 
how much power the engine needs to provide to the battery so 
that self-sustainability of the electrical path is maintained. 

 
1. INTRODUCTION 

Hybrid electric vehicles (HEVs) and plug- in HEVs 
(PHEVs) have attracted considerable attention due to their 
potential ability to reduce petroleum consumption and 
greenhouse gas (GHG) emissions. This capability is mainly 
attributed to: (1) the potential for downsizing the engine; (2) the 
capability of recovering energy during braking, and thus, 
recharging the energy storage unit; and (3) the ability to 
minimize engine operation at speeds and loads where fuel 
efficiency is low. In addition, hybridization, which typically 
refers to the power requirements for the electric motor or the 
degree of electrification, of conventional powertrain systems 
allows elimination of near idle engine operation, thus enabling 
direct fuel economy enhancement. 

The power management control algorithm in HEVs and 
PHEVs determines how to split the power demanded by the 
driver between the thermal and electrical subsystems so that 
maximum fuel economy and minimum pollutant emissions can 
be achieved. Developing a power management control 
algorithm constitutes a challenging control problem and has 
been the object of intense study for the last 15 years [1]. In the 
late 1990s, Zoelch and Schroeder [2] presented one of the first 
methods to optimize the power split and transmission gear ratio 
in a parallel HEV over a given driving cycle. Since then, 
significant research efforts have yet focused on optimizing the 
power management control in HEVs. Baumann et al. [3] 
proposed a method for design and development of HEVs based 
on a fuzzy- logic controller. Boyali et al. [4] presented another 
heuristic control algorithm for the power split between the IC 
engine and the motor in a parallel HEV commercial van with 
front- wheel drive and manual transmission. Sundstrom, Soltic, 
and Guzzella [5] developed a controller founded on rule- and 
mode-based optimal control strategies that optimizes the gear 
shifting in a parallel HEV while maintaining low computational 
requirements, and achieving low fuel consumption. 

A significant amount of work has been proposed on 
optimizing the power management control in HEVs using the 
deterministic formulation of dynamic programming (DP). Lin 
et al. [6] used DP to compute the optimal power split between 
the engine and motor, and the gear shifting in a parallel HEV to 
minimize fuel consumption and selected emission species over 
a given driving cycle. The derived control policy was 
implemented online through rules. Koot et al. [7] presented an 
extensive study on controlling the vehicular electric power 
system to reduce the fuel use and emissions using DP over a 
given driving cycle. The control policy was implemented online 
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using model predictive control (MPC). Sundstrom, Guzzella, 
and Soltic [8] used DP in a torque-assist parallel HEV to 
achieve an optimized hybridization ratio. 

The deterministic formulation of DP has been used to 
benchmark the fuel economy of HEVs by providing the 
theoretical efficiency that they can achieve over a given vehicle 
speed profile (driving cycle). DP has been extended to a 
stochastic formulation to derive an optimal control policy for a 
family of driving cycles. Lin, Peng, and Grizzle [9] proposed a 
stochastic DP approach using the discounted cost criterion 
where the one-stage cost was the weighted sum of fuel 
consumption, NOx, and particulate matter, with a penalty for 
state-of-charge (SOC) deviation. The control policy was 
derived offline by using the policy iteration method. Tate, 
Grizzle, and Peng [10] used a shortest path stochastic DP 
formulation to address the minimization of a weighted sum of 
fuel consumption and tailpipe emissions for an HEV equipped 
with a dual mode electrically variable transmission, and derived 
the optimal solution offline by solving a linear program. 

Although DP can provide the optimal solution in both the 
deterministic and stochastic formulation of the power 
management control problem, the computational burden 
associated with deriving the optimal control policy prohibits 
online implementation in vehicles, and it can grow intractable 
as the size of the problem increases. To address these issues, 
research efforts have been concentrated on developing online 
power management algorithms. The main aspects of these 
algorithms are concerned with the self-sustainability of the 
electrical path, which must be guaranteed for the entire driving 
cycle, and the fact that a priori knowledge of the future driving 
conditions is available. Such algorithms consist of an 
instantaneous optimization problem that accounts for storage 
system SOC variation through the equivalent fuel consumption 
(EFC). The latter is evaluated by considering average energy 
paths leading from the fuel to the energy storage of the 
electrical path. Paganelli et al. [11]  introduced the equivalent 
consumption minimization strategy (ECMS) that optimizes the 
power split and gear ratio while assigning a nonlinear penalty 
function for SOC deviation in a parallel HEV. Sciarretta, Back, 
and Guzzella [12] proposed an ECMS algorithm in which the 
EFC is evaluated under the assumption that every variation in 
the SOC will be compensated in the future by the engine 
running at the current operating point. Musardo, Rizzoni, and 
Staccia  [13] presented an adaptive ECMS algorithm that 
periodically computes the equivalence factor and refreshes the 
control parameters based on the current driving conditions to 
maximize fuel economy for a parallel HEV. In the 
aforementioned research efforts and others considered series 
HEVs (see [14] and the references therein), the SOC of the 
battery has been used as a component of the HEV state. 
However, this leads to a significantly large state space with 
implications for increasing the computational burden associated 
with solving the power management control problem.  

The research objective here is to consider the problem of 
identifying online the power required by the battery to maintain 
its SOC within a range of the target value. The SOC is treated 

as an uncertainty rather than a component of the state and it is 
correlated to a power demand. An algorithm is presented that 
realizes how much power the engine needs to provide to the 
battery so that self-sustainability of the electrical path is 
maintained.  

The remainder of the paper proceeds as follows. Section 2 
introduces the proposed method. Section 3 presents the model 
and the algorithm that can estimate the parameters of the model 
online. An example of identifying the power in a series HEV is 
presented in Section 4. Conclusions are drawn in Section 5. 

 
 

2. PROPOSED METHOD 
For our problem formulation, we consider a heavy-duty 

series HEV (Figure 1) consisting of a diesel engine (373 kW), a 
generator (220 kW), a motor (200 kW), and a battery (40 Ah 
capacity). In series mode, the electric motor is the only means 
of providing the power to the wheels demanded by the driver. 
The motor draws electric power in combination from the 
battery and from a generator run by the engine. While the 
engine in a conventional vehicle may operate inefficiently to 
satisfy the driver’s power demand, e.g., stop- and-go driving, in 
a series HEV the engine operates only at its most efficient 
speeds and loads as it is not coupled to the wheels. Thus the 
engine is no longer subject to the driver’s widely varying power 
demands and can operate at any desired combination of torque 
and speed. The objective of the power management control 
problem in a series HEV is to guarantee the self-sustainability 
of the electrical path. Namely, the control algorithm seeks to 
maintain the SOC of the battery within its target value while 
operating the engine efficiently to minimize fuel consumption 
and emissions. Thus the control policy for the power 
management controller is the sequence of the amounts of 
engine power corresponding to the engine’s current speed and 
SOC of the battery.  

 

 
 

Figure 1. The series hybrid configuration. 
 

 

In previous research reported in the literature, the SOC of the 
battery has been used as a component of the HEV state. In our 
approach, the SOC is treated as an uncertainty (Figure 2), 
which is correlated to an additional power demand by means of 
an one-on-one mapping. Depending on the SOC value, there is 
a corresponding amount of power PSOC that needs to be 
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provided to the battery from the engine to stay at the target 
SOC. This additional amount is added to the driver’s power 
demand, Pdriver. To operate the engine under the condition 
designated by the power management controller, a PID 
controller regulates the engine torque through the generator. 
The sequence of the amount of the engine’s optimal power, 
P*

engine, is converted to electrical power through the generator 
and goes to the battery. The power management controller 
observes the engine speed and then computes the optimal 
power that the engine should provide so that to maintain the 
battery SOC closed to its target value. 

 
 
Figure 2. The control scheme for the series hybrid electric 
vehicle. 

 
We are concerned with identifying online the mapping 

between the SOC and engine effective power, PSOC, to maintain 
the SOC of the battery close to its target value. This mapping 
yields an increasing amount of power, PSOC, as the SOC drops 
(Figure 3) up to a certain maximum value. This additional 
amount aims to provide power request from the engine, PSOC, as 
SOC drops up to a certain minimum SOC designated by 
battery’s specification. If SOC is above the target value, then 
PSOC is equal to zero as no additional power is required by the 
battery. In this process, the generator efficiency is not taken 
into account and the focus is only on operating the engine 
efficiently. 

The range of engine power request, PSOC, between a 
maximum and a minimum value are designated in conjunction 
with the optimal brake specific fuel consumption (BSFC) map 
of the engine. In particular, using the BSFC map, the engine 
torque corresponding to the minimum BSFC is computed at 
each different engine speed. Then the optimal engine power 
with respect to the engine speed can be easily derived, as 
illustrated in Figure 4. This plot can aim at identifying the 
appropriate minimum and maximum values of engine power 
for the mapping between the SOC and PSOC. However, the latter 
should be different depending on the driver’s power demand, 
Pdriver. Namely, if the driver’s power demand is moderate and 
doesn’t deplete the battery at high rate, then the mapping 
should be such demanding moderate amount of power for the 
battery (Figure 3). On the other hand, if the driver’s power 
demand is either high or low, the mapping should indicate 
higher or lower amount of power respectively intended for the 
battery, as illustrated in Figure 5 and Figure 6 respectively.  

Adjusting online the mapping between the SOC and 
required amount of battery, PSOC, in conjunction with the 
driver’s power demand can aim at operating the engine 
efficiently while keeping the SOC of the battery close to its 
target value. For example, if the driver’s power demand is high 
then SOC drops at high rate, and thus the controller needs to 
demand high PSOC from the engine to bring it back to the SOC 
target value (Figure 5). If the driver’s power demand is low, 
then there is no need for the controller to require high amount 
of power from the engine as the SOC drops at low rate. The 
mapping between the SOC and PSOC outlined in this section 
aims to facilitate a mechanism to maintain the self-
sustainability of the electrical path in a HEV. 

 

 
Figure 3. Mapping between the power provided by the engine 
and the state of charge of the battery when the driver’s power 
demand (red dot) is moderate. 
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Figure 4. Optimal engine power with respect to the engine 
speed. 
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Figure 5. Mapping between the power provided by the engine 
and the state of charge of the battery when the driver’s power 
demand (red dot) is high. 

 

 
Figure 6. Mapping between the power provided by the engine 
and the state of charge of the battery when the driver’s power 
demand (red dot) is low. 
 

Thus the objective here is to develop a model that can 
represent the mapping between the current SOC and PSOC, and 
an algorithm that will determine the parameters of the model 
online while the driver drives the vehicle in conjunction with 
the driver’s power demand. For this identification problem we 
assume that the model is linear in the parameters as described 
in the next section.  

 

3. IDENTIFICATION MODEL 
Modeling of dynamic systems incurring stochastic 

disturbances for stochastic optimization and control is a 
ubiquitous task in engineering. A challenging task in this 

process is to derive mathematical models that can adequately 
predict the responses of physical systems to all anticipated 
inputs. Modeling is an essential tool for analyzing sensitivity, 
assessing uncertainty and for developing algorithms for control 
and optimization in large complex systems [15]. Control 
involves the modeling, design, and study of a system so that it 
will accomplish a specified set of objectives or display a certain 
desired behavior [15]; the latter is known as the optimization 
criterion. A control policy is a rule of operation that assigns the 
controller which actions (decisions) to choose to control a 
system, and optimal policy is one that realizes the goal of the 
particular optimization criterion of the system.  

Exact modeling of dynamic systems, however, may be 
infeasible or computationally expensive, and thus, deriving an 
optimal control policy can be impractical [16, 17]. This 
challenge has increased the need to develop computational 
models that will allow a system to learn how to improve its 
performance over time in stochastic environments [18]. Viable 
approaches have been developed enabling the online 
implementation of control policies for systems when an 
accurate model is not available [19, 20]. In this framework, the 
system interacts with its environment and obtains information 
enabling it to improve its future performance; namely, 
optimizing specific performance criteria while satisfying the 
system’s physical constraints. Recently, the theoretical 
framework and control algorithms were developed to make the 
engine of a vehicle an autonomous intelligent system capable of 
learning its optimal calibration in online while the driver is 
driving the vehicle [21]. Through this new approach, the engine 
progressively perceives the driver’s driving style and eventually 
learns to operate in a manner that optimizes fuel economy and 
emissions for that style [22]. 

For the problem considered here, it seems that the least-
squares method is a natural approach for estimating the 
mapping between the SOC and PSOC. This mapping can be 
provided through a polynomial model. We assume that the 
model we want to identify is in the form 

 
   ŷ(i) =ϕ1(i) ⋅α1 +ϕ2 (i) ⋅α2 + ... +ϕn (i) ⋅αn ,             (1) 

 
where i =1,2,...,n,n∈ℵ, indexes the number of data points, ŷ  
is the output of the model, α1,α2,...,αn  are the parameters of 
the model to be determined, and ϕ1,ϕ2,...,ϕn  are known 
functions that may depend on other known variables. The 
model in Eq. (1) can be written in the vector form as follows 
 
                ŷ(i) = ϕT (i) ⋅α ,             (2) 
 
where ϕT (i) = ϕ1(i)  ϕ2 (i) ...  ϕn (i)[ ]  and α = α1   α2  ...  αnn[ ]T . 

This is the regression model and the functions ϕi, i =1,2,...,n , 
are called the regression variables. The data points correspond 
to pairs of the measured and regression variables 
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(y(i),ϕ(i)), i =1,2,...,n,n∈ℵ{ } . The problem is formulated as 
to minimize the following least squares cost function 

 

  R(α,n) = 1
2

y(i)− ŷ(i)[ ]2
i=1

n

∑ = 1
2

y(i)− ϕT (i) ⋅α⎡⎣ ⎤⎦
2

i=1

n

∑ ,   (3) 

 
with respect to the parameters of the model α1,α2,...,αn . The 
measured variable y  is linear in parameters α i  and the cost 
function is quadratic. Consequently, the problem admits an 
analytical solution. Let Y  and Ŷ  be the vector of the 
measured variables and output of the model respectively 

 
                          Y = y(1), y(2),..., y(n)[ ]T , and            (4) 

                          Ŷ = ŷ(1), ŷ(2),..., ŷ(n)[ ]T ,             (5) 
 

and let E  be the vector of the error e(i)  between the measured 
variable and output of the model 

 
                    E = e(1),e(2),...,e(n)[ ]T ,            (6) 
  

where e(i) = y(i)− ŷ(i) = y(i)− ϕT (i) ⋅α . Substituting Eq. (6) to 
Eq. (3) the cost function can be written as    

 

                 R(α,n) = 1
2

e(i)2
i=1

n

∑ = 1
2
E 2 .                (7) 

Our objective is to derive the vector of the model parameters 
α  that make the error be equal to zero, that is 

 
      E = Y − Ŷ = Y −Φ ⋅α = 0 ,            (8) 
 

where Φ(n) = ϕT (1)  ϕT (2) ...  ϕT (n)⎡⎣ ⎤⎦
T

.  Consequently, the 
solution of the least squares problem is given by solving Eq. 
(8), namely 

 

              α = ΦT ⋅Φ( )−1 ⋅ΦT ⋅Y .                      (9) 

If the matrix ΦT ⋅Φ  is nonsingular, then the solution of Eq. (9) 
is a unique minimum for the least squares problem. In our 
problem, the data points represent the driver’s power demand 
and the functions φi represent the SOC.  

Let  

           
f (n) = ΦT ⋅Φ( )−1 .           (10) 

Then Eq. (9) can be written 

                  
α(n) = f (n) ⋅ ϕ(i) ⋅ y(i)

i=1

n

∑ .
           (11) 

We have 

f (n)−1 = ΦT ⋅Φ = ϕ(i) ⋅ϕ(i)T
i=1

n

∑ =
 

ϕ(i) ⋅ϕ(i)T
i=1

n−1

∑ +ϕ(n) ⋅ϕ(n)T =
 

             f (n −1)
−1 +ϕ(n) ⋅ϕ(n)T .                          (12) 

 
From Eqs. (9) and (12) we have 
 

ϕ(i) ⋅ y(i) =
i=1

n−1

∑ f (n −1)−1 ⋅α(n −1) =
 

 

              f (n)
−1 ⋅α(n −1)−ϕ(n) ⋅ϕ(n)T ⋅α(n −1).            (13) 

Combining Eqs. (11) and (13), the parameters of the model 
for  n data is given by 

α(n) =α(n −1)− f (n) ⋅ϕ(n) ⋅ϕ(n)T ⋅α(n −1)+  

                    f (n) ⋅ϕ(n) ⋅ y(n) =  

   
α(n −1)− f (n) ⋅ϕ(n) y(n)−ϕ(n)T ⋅α(n −1)( ).         (14) 

Eq. (14) has a strong intuitive appeal as it can update the 
parameters of the model online and sequentially based on the 
previous estimate of the parameters without requiring any a 
priori knowledge of the driver’s driving style. The estimate of 
the model α(n) is obtained by adding a correction to the 
previous estimate α(n-1) according to Eq. (14).  Thus, starting 
with a given model (i.e., mapping between the SOC and PSOC) 
the model is updated online in conjunction with the power 
demanded by the driver. Namely, depending on the driver’s 
power demand a set of the model’s parameters, α , is computed 
from Eq. (14) resulting in the suitable mapping between the 
SOC and PSOC. Consequently, the engine can aim to provide the 
amount of power to the battery through the generator required 
to maintain the SOC close to the desired target.  

 

4. SIMULATION RESULTS 
To validate the effectiveness of the online algorithm, we 

used Autonomie [23]. Autonomie is a Matlab/Simulink 
simulation package for powertrain and vehicle model 
development developed by Argonne National Laboratory. 
Autonomie provides a variety of existing forward-looking 
powertrain and vehicle models that can support the evaluation 
of new control functions in a math-based simulation 
environment. A vehicle model from Autonomie’s database 
representing a medium duty series HEV configuration, 
illustrated in Figure 1, was used in this study. 

In a series HEV configuration, we can operate the engine 
at any desired combination of engine torque and speed. The 
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objective of the power management control problem is to 
operate the engine efficiently to reduce fuel consumption while 
guaranteeing the self-sustainability of the electrical path, i.e., 
maintaining the SOC close to its target value, which was 70% 
in this case. The online identification algorithm that controls 
the engine is compared to a load following control algorithm, as 
it has been a popular approach for series HEVs. However, since 
both controllers yield a suboptimal solution future research 
should compare the proposed algorithm with other optimal 
approaches reported in the literature and under different driving 
cycles.  

Both HEVs, the one having the load following controller 
and the one with the online identification algorithm, were run 
over the same driving cycle and were able to follow it precisely 
as shown in Figure 7. The online identification algorithm 
computed the mapping between the SOC and the power 
required from the battery PSOC. Depending on the SOC value, 
the mapping yields the corresponding amount of power PSOC 
that needs to be provided to the battery from the engine to stay 
at the target SOC. For the model in Eq. (1) adopted here the 
vector of functions φ was selected to be of a third order as 
appropriate to capture the one-on-one correlation, namely 

 

      
ϕT (i) = x3(i)  x2 (i)  x(i)  1⎡⎣ ⎤⎦          (15) 

where x corresponds to the SOC. The use of a higher order 
polynomial found to add no additional information for this 
particular problem. On the other hand, a lower order 
polynomial found to be not suitable to capture the correlation 
between the SOC and the power required by the battery to stay 
close to its target value. The variation of the model along the 
driving cycle is illustrated in Figure 8.  

The selection of the order of the model needs to be defined 
at the beginning. However, as the SOC varies, and depending 
on the power required from the driver, the parameters of the 
model change. To operate the engine under the condition 
designated by the power management controller, a PID 
controller regulated the engine torque through the generator as 
shown in Figure 2. The sequence of the amount of the engine’s 
power, P*

engine, designated by the online identification algorithm 
was converted to electrical power through the generator and 
delivered to the battery. The mapping estimated by the 
proposed algorithm was able to maintain the SOC of the battery 
close to the target value, as illustrated in Figure 9. With the 
load following controller, however, the SOC exhibits a 
significant discrepancy from its target value deemed 
characteristic of its dependency on the driver’s power demand. 

The inherent algorithm in Autonomie, called dichotomy, 
was used to compare the simulation results. The algorithm runs 
the HEV model over the same driving cycle for multiple times 
and then yields the results corresponding to the same initial and 
final SOC. Thus the fuel consumption results of the controllers 
can be comparable. Both HEV models, with the load following 
controller and the one using the online identification algorithm, 

run over the same driving cycle multiple times until the initial 
and final SOC becomes the same. 

 

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

40

45

time [sec]

Ve
hi

cl
e 

Sp
ee

d 
[m

ph
]

 

 

Load Following Control
Online Identification Algorithm

 
Figure 7. The driving cycle used to simulate the series hybrid 
electric vehicle model with the two different power 
management control algorithms. 

 

 
Figure 8. Mapping between the power should be provided by 
the engine and the state of charge of the battery. 

 
The HEV model with the load following controller ended 

up with initial and final SOCs of 72.2%, whereas the HEV 
model using the online identification algorithm ended up with 
initial and final SOCs of 70.9%. The engine power for both 
controllers over the driving cycle is illustrated in Figure 10 and 
Figure 11 (zoom-in). The online identification algorithm is set 
up to operate the engine up to a certain maximum value based 
on the optimal engine power with respect to current speed 
(Figure 4). The maximum value in the mapping was assigned to 
be 250 kW. As the SOC drops below the target value, the 
controller increases the engine power as specified by the 
mapping.  
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Figure 9. State of charge of the battery variation over the 
driving cycle with the load following controller and the battery 
identification algorithm. 
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Figure 10. Engine power over the driving cycle with the load 
following controller and the battery identification algorithm. 

 
 
With the load following controller, the engine operates at 

higher power rates directly analogous to the driver’s power 
demand. The online identification algorithm, on the other hand, 
operates the engine with respect to the current SOC using the 
mapping between SOC and the optimal engine power with 
respect to the engine speed (Figure 4). The algorithm can aim at 
operating the engine efficiently while keeping the SOC of the 
battery close to its target value. The load following controller, 
on the other hand, requires an amount of power from the engine 
corresponding to the power demanded by the driver 
independently of the current SOC. As a result, it operates the 
engine under higher power, and thus higher fuel consumption, 

while SOC exhibits higher deviations from the target value 
(Figure 9), 70% in this case. As a result, the online 
identification algorithm operates the engine at lower BSFC 
values (Figure 12) resulting in a 3.6% cumulative fuel 
consumption improvement compared to the load following 
controller, as illustrated in Figure 13. This improvement is 
attributed due to adjusting online the mapping between the 
SOC and PSOC in conjunction with the driver’s power demand.  
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Figure 11. Engine power over the driving cycle with the load 
following controller and the battery identification algorithm 
(zoom-in). 
 
 
 
 

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

Engine Speed [RPM]

BS
FC

 [g
/k

W
h]

 

 

Load Following Control
Online Identification Algorithm

 
Figure 12. Brake specific fuel consumption (BSFC) values over 
the driving cycle with the load following controller and the 
battery identification algorithm. 
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Figure 13. Cumulative fuel consumption over the driving cycle 
with the load following controller and the battery identification 
algorithm. 

 
 

5. CONCLUDING REMARKS 
The research reported here aims to facilitate a mechanism 

to maintain the self-sustainability of the electrical path in a 
HEV. The paper addressed the problem of identifying online 
the power required by the battery to maintain the SOC within a 
range of the target value in a HEV. Although in previous 
research reported in the literature the SOC has been used as a 
component of the HEV state, in our approach, it was treated as 
an uncertainty correlated to an additional power demand by 
means of one-on-one mapping.  

In an example using a series HEV, the algorithm was able 
to maintain the SOC close to the target value with implications 
in fuel consumption improvement. The algorithm was 
compared to the load following control algorithm, as it has been 
a popular approach for series HEVs. However, since both 
controllers yield a suboptimal solution future research should 
compare the proposed algorithm with other optimal approaches 
reported in the literature and under different driving cycles. 
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