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Abstract— This paper addresses the problem of minimizing
the long-run expected average cost of a complex system con-
sisting of subsystems that interact with each other and the
environment. We treat the stochastic control problem as a
multiobjective optimization problem of the one-stage expected
costs of the subsystems, and we show that the control policy
yielding the Pareto optimal solution is an optimal control policy
that minimizes the average cost criterion for the entire system.
For practical situations with constraints consistent to those we
study here, our results imply that the Pareto control policy
may be of value in deriving online an optimal control policy in
complex systems.

I. INTRODUCTION

Complex systems encountered in virtually many engineer-
ing applications involve many distinct physical processes.
For example, a complete computational model of a large-
scale fusion device is a complex system involving issues
of fluid dynamics, deformation of solid materials, thermal
effects, ablation, fracture, corrosion and aging of materials,
radiation, and many other phenomena. The predictability of
large-scale models of complex systems is dependent upon
correctly taking into account the uncertainty that results
from experimental errors and the random nature of the
data defining the systems. Uncertainties must be quantified
and propagated throughout the models to produce accurate
results. A complex network such as the electrical grid is
a challenging system incurring uncertainties. Modeling the
behavior of such a system, addressing issues of reliability and
security, can be onerous, e.g., a system-level model of this
complex network at scales ranging from individual power
plants to international energy distribution systems that can
be used in policy making and risk analysis.
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Stochastic optimization of complex dynamic systems is a
ubiquitous task in engineering. The problem is formulated
as sequential decision-making under uncertainty where an
intelligent system, e.g., power grid, or wind plant, is faced
with the task to select those actions in several time steps
to achieve long-term goals efficiently using the long-run ex-
pected average cost per unit time. The average cost criterion
for Markov chains with finite state and arbitrary action spaces
has been extensively reported in the literature (see, e.g.,
[1] and references therein). The problem of minimizing the
average cost in a controlled Markov chain with a finite state
and control space by solving a dual constrained optimization
problem was addressed in [2]. It was shown that the control
policy that yields higher probability distribution to the states
with low cost and lower probability distribution to the states
with the high cost is an optimal solution and it is defined
as an equilibrium control policy. The average cost criterion
in Markov chains with finite state and action spaces is well
understood and has been extensively reported in the literature
[3], [4], [5], [6], [7].

In this paper, we address the problem of controlling a
system of interacting subsystems to minimize the long-run
expected average cost per unit time. We propose an optimiza-
tion framework that can be used online to derive the optimal
control policy while the subsystems interacting with their
environment. For example, such a system could be a hybrid
electric vehicle (HEV) consisting of four main subsystems:
1) an internal combustion engine, 2) a motor, 3) a generator,
and 4) a battery. These subsystems interact with each other
to deliver the power demanded by the driver (environment)
under the imposed physical constraints. Deriving online the
control policy that distributes the power demanded by the
driver optimally to the engine, motor/generator and battery
to maximize the efficiency of the HEV has been the object
of intense study since 1998, and it still remains a challenging
control problem [8]. In the proposed approach, we treat the
stochastic control problem as a multiobjective optimization
problem of the one-stage expected costs of the subsystems,
and we show that the control policy yielding the Pareto
optimal solution for the one-stage costs is an optimal control
policy that minimizes the long-run expected average cost
criterion.

The remainder of the paper proceeds as follows. In Section
II, we introduce our notation and formulate the problem. In
Section III, we correlate the stationary probability distribu-
tion of each subsystem with the entire system. In Section
IV, we provide the solution of the stochastic control prob-
lem with the Pareto control policy. Finally, we present an
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illustrative example in Section V, and we draw concluding
remarks in Section VI.

II. PROBLEM FORMULATION

A. Notation

We denote random variables with upper case letters,
their realization with lower case letters, and their space of
realizations by script letters, e.g., for a random variable
X , x denotes its realization. Subscripts denote time, and
subscripts in parenthesis denote a subsystem; for example,
Xt(i) denote the random variable of the subsystem i at time
t, and x(i) its realization. The short hand notation Xt(1:N)

denotes the vector {Xt(1), Xt(2), ..., Xt(N)}. Superscripts in
parenthesis denote the interactions among the subsystems;
for example, Z(ij)

t denotes the input to subsystem j from
the subsystem i. P(·) is the transition probability matrix and
E[·] is the corresponding expectation of a random variable.
For a control policy π, we use Pπ(·) and Eπ[·] to denote
that the transition probability matrix and expectation depend
on the choice of the control policy π. For different control
policies of a subsystem, we use πj(i) to denote the jth control
policy of the subsystem i.

B. The Model

We consider a system consisting of N subsystems. The
subsystems interact with each other and the environment.
At time t, t = 1, 2, ..., T , the state of each subsystem
i,Xt(i), takes values in a finite state space S(i), which is
a metric space and (S(i),B(S(i))) denotes the corresponding
measurable space, where B(S(i)) is the smallest σ-algebra
generated by open sets.

For each subsystem i, we also consider a finite control
space U(i) from which control actions, Ut(i), are chosen. We
assume U(i) is a metric space and we denote (U(i),B(U(i)))
the corresponding measurable space. Furthermore, we as-
sume that both S(i) and U(i) are compact spaces for each
subsystem i.

The initial state of the system X0(1:N) is a random variable
taking values in the system’s state space, S =

∏N
i=1 S(i).

The evolution of the state is imposed by the discrete-time
equation

Xt+1(1:N) = f(Xt(1:N), Ut(1:N),Wt(1:N)) (1)

where the input from the environment, Wt(1:N), is a sequence
of independent random variables, independent of the initial
state X0(1:N) and takes values in a set W . Furthermore, the
system has N observations, each for each subsystem, which
are generated according to

Yt(1:N) = h(Xt(1:N), Vt(1:N)) (2)

where the error from the sensors, Vt(1:N), is a sequence
of independent random variables, {Vt(1:N), t = 1, 2, ..., T},
independent of the initial state X0(1:N) and {Wt(1:N), t =
1, 2, ..., T}, and takes values in a set V . The state of the
system can be observed.

Each subsystem interacts with each other. The input of
the subsystem j from subsystem i, Z(ij)

t , is a function of
the subsystem i output Yt(i)

Z
(ij)
t = g(Yt(i)). (3)

For example, in a HEV, Z(ij)
t corresponds to the amount

of power transmitted from the subsystem i to subsystem j,
which is a portion of the subsystem’s i output.

In our formulation a state-depedent constraint is incor-
porated; that is, for each realization of the state of the
subsystem i, Xt(i) = x(i), there is a nonempty set C(x(i)) :={
u(i)|Xt(i) = x(i)

}
⊂ U(i) of admissible control actions.

For each subsystem i, we denote the set of admissible
state/action pairs

Γ(i) : = {(Xt(i), Ut(i))|Xt(i) ∈ S(i) and Ut(i) ∈ C(x(i))}
(4)

such that it is a measurable subset of (S(i) × U(i)). For
each subsystem i, we define the Borel measurable functions
µ(i) : S(i) → U(i) that map the state space to the control
action space defined as the control law. When the subsystem
i is at state Xt(i) = x(i), the centralized controller chooses
action Ut(i) according to the control law Ut(i) = µ(i)

(
x(i)
)
.

Each sequence of the measurable functions µ(i) is called a
stationary control policy or stationary control strategy

π(i) : =
(
µ(i)(1), µ(i)(2), ..., µ(i)(|S(i)|)

)
(5)

where |S(i)| is the cardinality of the subsystem’s i state space
S(i). Let Πi denote the set of the collection of the stationary
control policies for each subsystem i

Πi : =
{
π(i)|π(i) =

{
µ(i)(1), µ(i)(2), ..., µ(i)(|S(i)|)

}
. (6)

To ensure that the set Πi is nonempty we assume that the
set Γ(i) for each subsystem i contains the graph of all Borel
measurable functions

(
µ(i)(1), µ(i)(2), ..., µ(i)(|S(i)|)

)
.

C. The Average Cost Criterion

At time t, an one-stage expected cost
kπt(i)

(
Xt(1:N), Ut(1:N)

)
is incurred for each subsystem

i that depends on the state, Xt(1:N), and control action,
Ut(1:N), of the entire system. Similarly, an one-stage
expected cost kπt

(
Xt(1:N), Ut(1:N)

)
is incurred for the entire

system.
Assumption 2.1: The one-stage expected costs for each

subsystem i, kπt(i)
(
Xt(1:N), Ut(1:N)

)
and for the system

kπt
(
Xt(1:N), Ut(1:N)

)
are nonzero, positive and bounded real

numbers.
Assumption 2.2: At each state, Xt(1:N), and control ac-

tion, Ut(1:N), of the entire system the relationship be-
tween the one-stage expected cost of each subsystem
i, kπt(i)

(
Xt(1:N), Ut(1:N)

)
, and the cost of the system,

kπt
(
Xt(1:N), Ut(1:N)

)
is given by

kπt(i)
(
Xt(1:N), Ut(1:N)

)
=

λ(i) · ν
λ(i)

(i)

kπt
(
Xt(1:N), Ut(1:N)

)λ(i)
(7)

where λ(i), ν(i) are two positive real numbers.
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Similarly at each state, Xt(1:N), and control action,
Ut(1:N), of the entire system, the relationship between
the one-stage expected costs, kπt(i)

(
Xt(1:N), Ut(1:N)

)
and

kπt(j)
(
Xt(1:N), Ut(1:N)

)
, corresponding to any two subsys-

tems i and j, i 6= j, is given by

kπt(i)
(
Xt(1:N), Ut(1:N)

)
=

φ(ij) · θ
φ(ij)

(ij)

kπt(j)
(
Xt(1:N), Ut(1:N)

)φ(ij)
(8)

where φ(ij), θ(ij) are two positive real numbers.
Assumption (2.2) essentially imposes a tradeoff between

the one-stage expected costs of the subsystems as well as
a tradeoff between the expected costs of each subsystem
and the system. These tradeoffs are deemed characteristic in
many engineering applications. For example, in HEVs there
is a tradeoff between the efficiencies of the subsystems (e.g.,
engine, motor, generator, and battery) and also a tradeoff
between the efficiency of each subsystem and the efficiency
of the HEV.

We are concerned with deriving a stationary optimal con-
trol policy π =

(
π(1), π(2), ..., π(N)

)
, where π ∈

∏N
i=1 Πi, to

minimize the long-run expected average cost of the system

J(π) = lim
T→∞

1

T + 1
Eπ
[
T∑
0

kπt
(
Xt(1:N), Ut(1:N)

)]
. (9)

To guarantee that the limit in (9) exists, we impose the
following assumption.

Assumption 2.3: For each stationary control policy π, the
Markov chain

{
Xt(1:N)|t = 1, 2, ...

}
has a single ergodic

class.
Namely, for each stationary policy π ∈ Π, there

is a unique probability distribution (row vector) βπ =(
β(1)π, β(2)π, ..., β(|S|)π

)
, with

∑|S|
l=1 β(l)π = 1 [9, p.

227] where β(l)π denotes to the stationary probability of
the state Xt(1:N) = l, l ∈ N, such that βπ = βπ ·Pπ , and |S|
denotes the cardinality of the system’s state space S. Under
Assumption (2.3), it is known [10, p. 175] that

lim
T→∞

1

T + 1

T∑
t=0

[Pπ]
t

= 1 · βπ, (10)

where 1 = [1, 1, ..., 1]T . Substituting (10) into (9) shows
that the long run average cost, J(π), does not depend on the
initial state X0(1:N) and is given simply as

J(π) = βπ · kπ, (11)

where

kπ =

(
kπt
(
1, Ut(1:N)

)
, · · · , kπt

(
|S|, Ut(1:N)

))T
, (12)

is the column vector of the entire system’s one-stage ex-
pected cost and Ut(1:N) is the control action as specified by
the control law µ(1:N) of the control policy π.

Consequently, a stationary control policy is optimal if

J∗ = J(π) = inf {J(π)|π ∈ Π} . (13)

We are concerned with deriving a stationary optimal
control policy that minimizes the long-run expected average
cost of the entire system.

III. PRELIMINARY RESULTS

In this section, we provide some preliminary results which
will be useful for our analysis later on. We begin by recalling
the Kronecker product and its properties (see [11], [12]).

Definition 3.1: If A is an m-by-n matrix and B is a p-by-q
matrix, then the Kronecker product A⊗ B is the mp-by-np

block matrix A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

.

Assumption 3.2: The stationary probability distribution of
each subsystem i depends only on its control policy π(i).

The next proposition provides an expression of the transi-
tion probability of the entire system as a Kronecker product
of the transition probabilities of each subsystem.

Proposition 3.3: Consider N evolving subsystems with
corresponding transition probability matrix P(i), i =
1, · · · , N defined by P(i)(Xt+1(i) = x′(i)|Xt(i) =
x(i), Ut(i) = u(i)). Furthermore, let consider that each
subsystem i operates under the control policy π(i). Then the
transition probability matrix of the entire system satisfies

Pπ = Pπ(1)

(1) ⊗ Pπ(2)

(2) ⊗ · · · ⊗ Pπ(N)

(N) (14)

where π = (π(1), · · · , π(N)).
Proof: The transition probability matrix of the entire

system is defined as the following conditional probability:

P(Xt+1(1:N) = (x′(1), x
′
(2), · · · , x

′
(N))|

Xt(1:N) = (x′(1), x
′
(2), · · · , xN ))

= P(Xt+1(1) = x′(1), · · · , Xt+1(N) = x′(N)|
Xt(1) = x′(1), · · · , Xt(N) = x′(N))

However, the subsystems evolve independently,
hence the transition probability matrix equals to∏N
i=1 P(Xt+1(i) = x′(i)|Xt(i) = x(i)) for any arbitrary

N-tuples (x′(1), x
′
(2), · · · , x

′
(N)) and (x(1), x(2), · · · , x(N)).

Now, let consider a control policy π = (π(1), · · · , π(N))
for the entire system and the corresponding probability
matrices Pπ(1)

(1) , · · · ,P
π(N)

(N) with respect to corresponding
policies. Following the definition of Kronecker product
(Definition 3.1) equation (14) is true for N = 2. Next,
consider Pπ(N)

(N) = Pπ(N)

(N) (Xt+1(N) = x′(N)|Xt(N) = x(N))

for any possible combination of (x(N), x
′
(N)).

Assuming that (14) holds for N − 1 such that
Pπ(1:N−1)

.
= Pπ(1)

(1) ⊗ Pπ(2)

(2) ⊗ · · · ⊗ Pπ(N−1)

(N−1) and by
Definition 3.1, we observe that Pπ = Pπ(1:N−1)

(N−1) ⊗ Pπ(N)

(N) (as
in the case for N = 2). Therefore by induction (14) holds.

Proposition 3.4: Consider a controlled Markov chain with
a single ergodic class [Assumption (2.3)] for the entire
system and a single ergodic class for each subsystem. Then
the stationary probability of the entire system, βπ , can
be expressed as the Kronecker product of each stationary
probability of each corresponding subsystem i, βπ(i), i =
1, · · · , N , i.e.,

βπ = βπ(1) ⊗ β
π
(2) ⊗ · · · ⊗ β

π
(N), (15)
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where π = (π(1), · · · , π(N)) is the control policy of the entire
system and π(i) is the corresponding one of subsystem i.

Proof: From Assumption (2.3) for each subsystem and
the entire system, we have that

βπ = βπPπ, and (16)

β
π(i)

(i) = β
π(i)

(i) Pπ(i)

(i) (17)

where Pπ and Pπ(i)

(i) are the transition probability matrices
for the entire system and for each subsystem i, respectively.
Let consider the Kronecker product of subsystems, βπ(1) ⊗
βπ(2)⊗ · · ·⊗β

π
(N). Then according to (17) and the properties

of Kronecker product [11], it can be written as[
β
π(1)

(1) Pπ(1)

(1)

]
⊗
[
β
π(2)

(2) Pπ(2)

(2)

]
⊗ · · · ⊗

[
β
π(N)

(N) Pπ(N)

(N)

]
=
[
β
π(1)

(1) ⊗ β
π(2)

(2) ⊗ · · · ⊗ β
π(N)

(N)

]
·[

Pπ(1)

(1) ⊗ Pπ(2)

(2) ⊗ · · · ⊗ Pπ(N)

(N)

]
=
[
β
π(1)

(1) ⊗ β
π(2)

(2) ⊗ · · · ⊗ β
π(N)

(N)

]
· Pπ.

However, the stationary probability is unique and thus the
result follows.

IV. PARETO OPTIMAL CONTROL POLICY

Various methods can be used to solve (9) offline and
derive the optimal control policy that minimizes the long-
run expected average cost J . In this paper, we seek the
theoretical framework that will yield the optimal control
policy online while the subsystems interact with each other.
In our proposed approach, a centralized controller attempts
to establish an equilibrium among the subsystems, which is
the Pareto optimal solution of the one-stage expected costs
of the subsystems, that minimizes the long-run average cost
of the entire system.

Let consider the function f : X → Rn, f =(
f1(x), f2(x)), ..., fN (x)

)
and the following multiobjective

optimization problem

min
x

(
f1(x), f2(x), ..., fN (x)

)
(18)

s.t. x ∈ X .

The result of the optimization problem (18) is called Pareto
efficiency. In a Pareto efficiency allocation among agents, no
one can be made better without making at least one other
agent worse.

Definition 4.1: [13] A solution xo∈ X is called Pareto
optimal if there is no x ∈ X such that f(x) ≤ f(xo). If
xo is Pareto optimal f(xo) is called efficient. If x1, x2 ∈ X
and f(x1) < f(x2), we say x1 dominates x2 and f(x1)
dominates f(x2). The set of all Pareto optimal solutions xo∈
X is the Pareto set, XP . The set of all efficient points y =
f(x∗) ∈ Y where x∗ ∈ XP , is Ye the efficient set.

Definition 4.2: Let ρ : X 7→ R+ be the map defined as

ρ(x) = ‖f(x)− f I(x)‖ (19)

where f I(x) = (minx∈X f1(x), · · · ,minx∈X fp(x)). If
there exists x∗ ∈ X such that ρ(x∗) = minx∈X ρ(x)

.
= ρ∗,

then x∗ is said to be the strong Pareto optimal solution.

Theorem 4.3: The control policy πo that at each time,t,
yields the dominant Pareto optimal solution of the one-stage
expected cost, kπ

o

t(i)

(
Xt(1:N), Ut(1:N)

)
, of the subsystems

yields also the minimum one-stage expected cost of the entire
system, kπ

o

t

(
Xt(1:N), Ut(1:N)

)
.

Proof: Let kπs be the column vector of the one-stage
expected costs of the subsystems,

kπs =

(
kπt(1)

(
Xt(1:N), Ut(1:N)

)
, kπt(2)

(
Xt(1:N), Ut(1:N)

)
..., kπt(N)

(
Xt(1:N), Ut(1:N)

))T
.

Let πo be the Pareto control policy that yields the dominant
Pareto optimal solution among the subsystems. Namely, for
each time t the Pareto control policy is the result of the
following multiobjective optimization problem

max
π

kπs (20)

Then by Definition (4.1) there is no other control pol-
icy π′ ∈ Π such that kπ

′

s > kπ
o

s , and thus from
(7), there is no other control policy π′ ∈ Π such that
kπ
′

t

(
Xt(1:N), Ut(1:N)

)
< kπ

o

t

(
Xt(1:N), Ut(1:N)

)
.

Suppose that there is a control policy π′ such that
for the one-stage expected cost of the system we have
kπ
′

t

(
Xt(1:N), Ut(1:N)

)
< kπ

o

t

(
Xt(1:N), Ut(1:N)

)
. Then from

(7) there is a subsystem i that the control policy π′ yields

kπ
′

t(i)

(
Xt(1:N), Ut(1:N)

)
=

λ(i) · ν
λ(i)

(i)

kπ
′
t

(
Xt(1:N), Ut(1:N)

)λ(i)
>

kπ
o

t(i)

(
Xt(1:N), Ut(1:N)

)
=

λ(i) · ν
λ(i)

(i)

kπ
o

t

(
Xt(1:N), Ut(1:N)

)λ(i)
,

and a subsystem j such that from (8) we have

kπ
′

t(i)

(
Xt(1:N), Ut(1:N)

)
=

φ(ij) · θ
φ(ij)

(ij)

kπ
′

t(j)

(
Xt(1:N), Ut(1:N)

)φ(ij)
>

φ(ij) · θ
φ(ij)

(ij)

kπ
o

t(j)

(
Xt(1:N), Ut(1:N)

)φ(ij)
= kπ

o

t(i)

(
Xt(1:N), Ut(1:N)

)
,

(21)
where λ(i), ν(i), φ(ij), and θ(ij) are all positive real numbers.
Hence kπ

′

t(j)

(
Xt(1:N), Ut(1:N)

)
< kπ

o

t(j)

(
Xt(1:N), Ut(1:N)

)
,

and from (7) we have

kπ
′

t(j)

(
Xt(1:N), Ut(1:N)

)
=

λ(j) · ν
λ(j)

(j)

kπ
′
t

(
Xt(1:N), Ut(1:N)

)λ(j)
<

λ(j) · ν
λ(j)

(j)

kπ
o

t

(
Xt(1:N), Ut(1:N)

)λ(j)
= kπ

o

t(j)

(
Xt(1:N), Ut(1:N)

)
. (22)

However, the last equation implies
kπ
′

t

(
Xt(1:N), Ut(1:N)

)
> kπ

o

t

(
Xt(1:N), Ut(1:N)

)
, which

contradicts the hypothesis.
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Theorem 4.4: The control policy πo that yields the Pareto
optimal solution of the one-stage expected cost between the
subsystems is the optimal control policy π∗ that minimizes
the long-run expected average cost criterion.

Proof: Let πo be the Pareto control policy that yields
the Pareto optimal solution among the subsystems. From
Theorem (4.3) we have that for each realization of the state
Xt(1:N) = x(1:N)

kπ
o

t

(
x(1:N), Ut(1:N)

)
< kπ

′

t

(
x(1:N), Ut(1:N)

)
,∀t

for any other control policy π′ ∈ Π. Since the system’s
one-stage cost is bounded by Assumption (2.1), taking the
expected average sum from t = 0 up to a finite time T ∈ N
is well-defined. Thus

1

T + 1
Eπ
[
T∑
t=0

kπ
o

t

(
Xt(1:N), Ut(1:N)

)]

<
1

T + 1
Eπ
[
T∑
t=1

kπ
′

t

(
Xt(1:N), Ut(1:N)

)]
. (23)

Taking the liminf as T goes to infinity

lim inf
T→∞

1

T + 1
Eπ
[
T∑
t=0

kπ
o

t

(
Xt(1:N), Ut(1:N)

)]

< lim inf
T→∞

1

T + 1
Eπ
[
T∑
t=1

kπ
′

t

(
Xt(1:N), Ut(1:N)

)]
. (24)

From Assumption (2.3) the limit in (24) is well defined,
hence for all control policies π′ ∈ Π

J(πo) = lim
T→∞

1

T + 1
Eπ
[
T∑
t=0

kπ
o

t

(
Xt(1:N), Ut(1:N)

)]

< J(π′) = lim
T→∞

1

T + 1
Eπ
[
T∑
t=1

kπ
′

t

(
Xt(1:N), Ut(1:N)

)]
.

(25)

V. EXAMPLE

A. Case with Two Subsystems

We consider a system with two subsystems. Each sub-
system has two states, i.e., Si = {1, 2}, and two control
actions Ui = {a, b}. Thus there are four control policies
for each subsystem. For example, for the subsystem 1, we
have π1

(1) = {a, a}, π2
(1) = {a, b}, π3

(1) = {b, a}, and
π4
(1) = {b, b}. The transition probability matrices associated

with each control policy πj(1) for the first subsystem are

: P
π1
(1)

(1) =

[
0.7 0.3
0.4 0.6

]
, P

π2
(1)

(1) =

[
0.7 0.3
0.2 0.8

]
, P

π3
(1)

(1) =[
0.9 0.1
0.4 0.6

]
, and P

π4
(1)

(1) =

[
0.9 0.1
0.2 0.8

]
. Similarly, the

transition probability matrices associated for the second sub-

system are: P
π1
(2)

(2) =

[
0.5 0.5
0.45 0.55

]
, P

π2
(2)

(2) =

[
0.5 0.5
0.3 0.7

]
,

P
π3
(2)

(2) =

[
0.6 0.4
0.45 0.55

]
, and P

π4
(2)

(2) =

[
0.6 0.4
0.3 0.7

]
.

The output for each subsystem is given by four 2 × 2
matrices as we have two states and two actions for each
subsystem. For the fist subsystem corresponding to each
control policy the output is given (we use the superscript πj(i)
in the output to emphasize the dependency on the control

policy: Y
π1
(1)

t(1) =

[
4.8 4.0
5.6 9.6

]
, Y

π2
(1)

t(1) =

[
4.8 4.0
11.2 10.4

]
,

Y
π3
(1)

t(1) =

[
8.0 6.4
5.6 9.6

]
, and Y

π4
(1)

t(1) =

[
8.0 6.4
11.2 10.4

]
. The

output of the second subsystem is: Y
π1
(2)

t(2) =

[
4.9 4.2
6.3 7.0

]
,

Y
π2
(2)

t(2) =

[
4.9 4.2
7.7 9.8

]
, Y

π3
(2)

t(2) =

[
6.3 8.4
6.3 7.0

]
, and Y

π4
(2)

t(2) =[
6.3 8.4
7.7 9.8

]
. We assume that 25% of the subsystem’s

output goes to subsystem 2, i.e., Z(12)
t = 0.25·Yt(1); and also

43% percent of the subsystem’s output goes to subsystem 1,
i.e., Z(21)

t = 0.43 · Yt(2). The input for each subsystem is
Wt(1) = 15 and Wt(2) = 16 respectively. Furthermore, we
assume that the transition cost for each subsystem is given
by

ct(1)
(
Xt(1)|Xt−1(1), Ut−1(1)

)
=
Wt−1(1) + Z

(21)
t−1

Yt−1(1) + Z
(12)
t−1

, (26)

and

ct(2)
(
Xt(2)|Xt−1(2), Ut−1(2)

)
=
Wt−1(2) + Z

(12)
t−1

Yt−1(2) + Z
(12)
t−1

(27)

respectively. The transition cost for the entire system is given
by

ct
(
Xt(1:2)|Xt−1(1:2), Ut−1(1:2)

)
=
Wt−1(1) +Wt−1(2)

Yt−1(1) + Yt−1(2)
.

(28)

The transition cost matrix for each subsystem and for
entire system is a 4 × 4 since we have 4 states in total
(two for each subsystem) and the cost depends on each
other state and control action. Similar to the cost matrix,
the transition probability matrix is also a 4× 4 for the four
states. When the subsystem 1 follows the control policy
π1
(1) and the subsystem 2 follows the control policy π1

(2) the
transition probability matrix is given from Proposition 3.3,
i.e., P(π1

(1),π
1
(2)) = Pπ

1
(1) ⊗ Pπ

1
(2) .

Therefore,

P(π1
(1),π

1
(2)) =


0.35 0.35 0.15 0.15
0.315 0.385 0.135 0.165
0.2 0.2 0.3 0.3
0.18 0.22 0.27 0.33

.

The one-stage expected cost, k
(πj

(1)
,πl

(2))

(1)

(
Xt(1:2), Ut(1:2)

)
,

of each subsystem i is a 4 × 1 vector, and the value of its
element is computed as follows

k
(πj

(1)
,πl

(2))

t(i)

(
Xt(1:2), Ut(1:2)

)
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=

4∑
k=1

[
[P(πj

(1)
,πl

(2))]1k · [C
(πj

(1)
,πl

(2))

(i) ]1k

]
. (29)

For example, to compute the one-stage expected cost for
subsystem 1 following the control policy π1

(1) when the
subsystem 2 follows the control policy π1

(2) we have

k
(π1

(1),π
2
(2))

(1)

(
Xt(1:2), Ut(1:2)

)

=



∑4
k=1 [P(π1

(1),π
1
(2))]1k[C

(π1
(1),π

1
(2))

(1) ]1k∑4
k=1 [P(π1

(1),π
1
(2))]2k[C

(π1
(1),π

1
(2))

(1) ]2k∑4
k=1 [P(π1

(1),π
1
(2))]3k[C

(π1
(1),π

1
(2))

(1) ]3k∑4
k=1 [P(π1

(1),π
1
(2))]4k[C

(π1
(1),π

1
(2))

(1) ]4k

 =


2.9945
3.1562
1.8170
1.9154

 .
(30)

Thus the correlations between the one-stage costs

of the subsystems, k
(πj

(1)
,πl

(2))

(1)

(
Xt(1:2), Ut(1:2)

)
and

k
(πj

(1)
,πl

(2))

(2)

(
Xt(1:2), Ut(1:2)

)
, and between these costs and the

cost of the entire system, k(πj
(1)
,πl

(2))
(
Xt(1:2), Ut(1:2)

)
, are

given by functions of the form of (7) and (8) (Assumption
2.2).

The stationary probability distribution is given by (15).
For example, the stationary distribution imposed by the
control policy π =

(
π1
(1), π

1
(2)

)
, is βπ = β

π(1)

(1) ⊗ β
π(2)

(2) =

[ 0.2707 0.3008 0.2030 0.2256 ]. Hence the average
cost of subsystem 1 with respect to policy (π1

(1), π
1
(2)) is

given by (11), J(π) = β(π) · k
(π1

(1),π
1
(2))

(1) = 2.5602. In a
similar way we can compute the corresponding one-stage
cost vectors and probability distributions for the subsystems
1, 2, and the entire system for all 16 control policies.

We note that the subsystem 1 reaches its minimum av-
erage cost J1 when the policy (π4

(1), π
1
(2)) is used. For the

subsystem 2, the optimal cost is attained with the policy
(π1

(1), π
4
(2)). Finally, for the entire system, optimality occurs

when policy (π4
(1), π

4
(2)) is imposed. Therefore, both sub-

systems and the entire system attain optimal average costs
at different combinations of policies. Thus to determine the
trade-offs of average costs J(1), J(2) of two subsystems we
incorporate the Pareto optimal theory [14]. We note that
JI(1) = J(1)(π

4
(1), π

1
(2)) = 1.6317 and JI(2)(π

1
(1), π

4
(2)) =

1.5235. The strong Pareto optimal control policy is πo =
(π4

(1), π
4
(2)) and minimizes the long-run expected average

cost of the system system.

B. Automotive Control Application

HEVs have attracted considerable attention due to their
potential to reduce petroleum consumption and greenhouse
gas emissions [15]. The theoretical results presented here
has been used in the problem of optimizing online the
power management control in HEVs. The effectiveness of
the efficiency of the Pareto control policy was validated
through simulation and it was compared with the control
policy derived offline using dynamic programming for the

long-run expected average cost criterion. Both control poli-
cies achieved the same cumulative fuel consumption [16],
demonstrating that the Pareto control policy minimizes the
average cost criterion. This framework has been extended
and considered the battery in the problem formulation [17]
aiming at enhancing our understanding of the associated
tradeoffs among the HEV subsystems, e.g., the engine, the
motor, and the battery.

VI. CONCLUDING REMARKS

The results presented here addressed the problem of con-
trolling a system of interacting subsystems to minimize the
long-run expected average cost per unit time. We showed that
the control policy yielding the Pareto optimal solution for
the one-stage expected costs of the subsystems is an optimal
control policy that minimizes the average cost criterion of
the entire system. For practical situations with constraints
consistent to those we studied here, our results imply that
the Pareto control policy may be of value in deriving online
an optimal control policy, e.g., online optimization of the
power management control of HEVs.
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