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Abstract—In this paper we address the problem of online
optimization of the supervisory power management control in
parallel hybrid electric vehicles (HEVs). We model HEV opera-
tion as a controlled Markov chain using the long-run expected
average cost per unit time criterion, and we show that the
control policy yielding the Pareto optimal solution minimizes the
average cost criterion online. The effectiveness of the proposed
solution is validated through simulation and compared to the
solution derived with dynamic programming using the average
cost criterion.

I. INTRODUCTION

Hybrid electric vehicles (HEVs) have attracted consid-
erable attention due to their potential to reduce petroleum
consumption and greenhouse gas emissions. Implementing
online a power management control algorithm to distribute
the power demanded by the driver optimally to the available
subsystems, e.g., the internal combustion engine, motor, gen-
erator, and battery, constitutes a challenging control problem
and has been the object of intense study for the last decade.
The deterministic formulation of dynamic programming (DP)
has been widely used to benchmark the fuel economy of
HEVs by providing the maximum theoretical efficiency over a
given driving cycle [1]. DP has been extended to a stochastic
formulation to derive an optimal control policy for a family of
driving cycles. Lin, Peng, and Grizzle [2] proposed a stochastic
DP approach using the discounted cost criterion where the
one-stage cost was the weighted sum of fuel consumption,
NOy;, and particulate matter, with a penalty for state-of-charge
(SOC) deviation. The control policy was derived offline by
using the policy iteration method. Tate, Grizzle, and Peng
[3] used a shortest path stochastic DP formulation to address
the minimization of a weighted sum of fuel consumption and
tailpipe emissions for an HEV equipped with a dual mode
electrically variable transmission, and derived the optimal
solution offline by solving a linear program.

Although DP can provide the optimal solution in both
the deterministic and stochastic formulation of the power
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management control problem, the computational burden as-
sociated with deriving the optimal control policy prohibits
online implementation in vehicles, and it can grow intractable
as the size of the problem increases. To address these issues,
research efforts have been concentrated on developing online
power management algorithms. The main aspects of these
algorithms are concerned with the self-sustainability of the
electrical path, which must be guaranteed for the entire driving
cycle, and the fact that limited a priori knowledge of the future
driving conditions is available. Such algorithms consist of an
instantaneous optimization problem that accounts for storage
system SOC variation through the equivalent fuel consumption
(EFC). The latter is evaluated by considering average energy
paths leading from the fuel to the energy storage of the
electrical path.

Paganelli et al. [4] introduced the equivalent consumption
minimization strategy (ECMS) that optimizes the power split
and the gear ratio while assigning a nonlinear penalty function
for SOC deviation in a parallel HEV. Sciarretta, Back, and
Guzzella [5] proposed an ECMS algorithm in which the EFC
is evaluated under the assumption that every variation in
the SOC will be compensated in the future by the engine
running at the current operating point. Musardo, Rizzoni,
and Staccia [6] presented an adaptive ECMS algorithm that
periodically computes the equivalence factor and refreshes the
control parameters based on the current driving conditions
to maximize fuel economy for a parallel HEV. There has
been also a significant amount of work using model predictive
control (MPC) to address this problem but mainly in power
split HEVs [7] and series HEVs (see [8] and the references
therein).

Pisu and Rizzoni [9] compared three algorithms that can
be implemented in real time, i.e., a rule-based algorithm, an
adaptive ECMS (A-ECMS), and an H., control, with DP
showing that A-ECMS outperforms the other two. Ambuhl
and Guzzella [10] presented an ECMS-based algorithm using
information received from a global positioning system. Fuel
consumption for different driving styles can vary up to 30%
[11], [12]. To address different driving styles, Huang, Tan,
and He [13] developed a statistical approach to distinguish
automatically the driving styles in HEVs. A detailed survey
of the supervisory power management control algorithms that
have been reported in the literature to date can be found in
[14].

In this paper, we address the problem of optimizing the
power management control in a parallel HEV configuration.
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We model HEV operation as a controlled Markov chain and
solve the stochastic optimal control problem using the long-run
expected average cost criterion. We propose a new approach,
treating the control problem as a multiobjective optimization
problem, and we show that the control policy yielding the
Pareto optimal solution for the one-stage cost is an optimal
control policy that minimizes the average cost criterion.

The contribution of this paper is the development of an
online supervisory controller for a parallel HEV that can yield
an optimal solution to the stochastic control problem. The pro-
posed solution uses the efficiency maps of the engine and the
motor corresponding to their steady-state operation. Although
the supervisory controller in HEVs designates the nominal
set points for each subsystem for the lower-level controllers,
the implications of the solution in transient operation need
further investigation. One potential approach to address this is
to learn the transient operation of the system corresponding to
the driver’ driving style [15] and account for it as discussed
in [16]-[18].

The remainder of the paper proceeds as follows. In Section
II, we formulate the problem. In Section III, we present the
control policy that yields the Pareto optimal solution and show
that it minimizes the average cost criterion. In Section IV, we
demonstrate the effectiveness of the efficiency of the proposed
control algorithm in a parallel HEV and compare it with the DP
solution. Finally, in Section V we present concluding remarks.

II. PROBLEM FORMULATION

In our analysis, we denote random variables with upper-
case letters and their space of realizations by script letters.
Subscripts denote time, and subscripts in parenthesis denote a
subsystem; for example, Xt(q) denotes the random variable of
the subsystem ¢ at time ¢. For NV subsystems, the shorthand
notation X(;. ) denotes the vector (X (1), X¢(2), .-, X))t

A. Modeling HEV Operation as a Controlled Markov Chain

For this study, we used a parallel HEV with a diesel
engine and automatic transmission. In this configuration both
the engine and electric motor can provide the power demanded
by the driver, either separately or in combination. Because
the engine and motor speed depend on the vehicle speed,
the available controllable variables are the engine and motor
torque. The objective of the power management controller is
to guarantee the self-sustainability of the electrical path and
distribute the power demanded by the driver optimally between
the engine and the motor to maximize HEV efficiency. The
controller observes the SOC of the battery, the engine and
motor speed, and then computes the optimal engine and motor
torque, 17, and T}, based on the power demanded by the
driver, Pyriver-

We consider the HEV as a system with a finite state space,
S C R"”, and a finite control space, Y C R™ ,n,m € N,
from which the power management controller selects control
actions. In our formulation the state space is the entire range
of the engine and motor speed, S C R?, and the control space
U is the vector of engine and motor torque, &/ C R2. The
control space can be expanded and include also gear selection
depending on the HEV configuration.
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In most of the work reported in the literature and discussed
in the previous section, the SOC of the battery has been used
as a component of the state. However, this may lead to a
significantly large state space with implications for increasing
the computational burden associated with solving the problem.
In our approach, SOC is correlated to an additional power
demand by means of one-on-one mapping (Fig. 1). This
mapping corresponds to the maximum charging rate of the
battery at the current SOC. Depending on the SOC value,
there is a corresponding amount of power Pgsoc that needs
to be provided to the battery to stay at the target SOC. This
additional amount is added to the driver’s power demand.
It aims to provide an increasing power request, Psoc as
SOC drops up to a certain value designated by the maximum
charging rate of the battery as a function of SOC. If SOC
is above the target value, then Pspc is zero as no power is
required to be added to the battery.

max{

[kW]

Power, Psoc

tar‘get 100

SOC [%]

Fig. 1.
(SOC).

Power required from the battery with respect to the state of charge

The evolution of the state occurs at each of a sequence
of stages t = 0,1,..., and it is portrayed by the sequence
of the random variables X(1.2) = (Xt(l),Xt(g)))T =
(Neng7Nmot)T € S and Ut(1:2) = (Ut(1)7Ut(2)))T
(Teng,Tmot)T € U, corresponding to the HEV state (engine
and motor speed) and control action (engine torque and
motor torque) respectively. A state-dependent constraint is
incorporated in our problem formulation, i.e., for each state
X2y = @ € S a nonempty set C(i) C U of admissible
control actions (engine and motor torque) is given. The latter
implies that at each state i € S, the control action set C(i) C U
should include only the control actions that satisfy the physical
constraints of the engine and the motor.

Definition 2.1: The set of admissible state/action pairs is
defined as

I = {(Xe:2), Ura:2)) | Xe(1i2) = 7 € S, Uy(ri2y € C(0) },

where I is the intersection of a closed subset of R? x R? with
the set S x U. That is, I is closed with respect to the induced
topology on & x U, and thus it is compact. It follows that for
each state ¢ € S, C(i) is compact.

Definition 2.2: The function y is defined that map the state
space to the control action space, p: S — U such that u(i) €
C(i),vi € S.

Let II be the set of all sequences
{p(1), u(2),...,u(|S|)}. Each sequence in II is called a



stationary control policy and operates as follows. Associated
with each state ¢ € S is the function (i) € C(7). If at any
time the centralized controller finds the system in state i,
then the controller always chooses the action based on the
function p(é). A stationary policy depends on the history
of the process only through the current state, and thus to
implement a stationary policy, the controller needs only to
know the current state of the system; past states and control
actions are irrelevant. The advantages for implementation of
a stationary policy are apparent as it uses the storage of less
information than required to implement a general policy.

At each stage ¢, the controller observes the engine and
motor speed, Xy1.2) = 4 € S, which is a function of the
vehicle speed, and executes an action, Uy(1.9) = p(X¢(1:2))
(engine and motor torque), from the feasible set of actions,
U120 €C (i), at that state. At the same stage ¢, an uncertainty,
Wiy(1:2), 1s incorporated in the system consisting of the power
demanded by the driver, Py, iyer, and the power required by
the battery to reach its target value, Psoc. At the next stage,
t + 1, the system transits to the state X; 1.0y = j € S
and a one-stage cost, k(X¢(1:2), Us(1:2)), corresponding to the
engine’s fuel consumption and motor’s efficiency is incurred.

Assumption  2.3: The one-stage expected
k(X4(1:2), Us(1:2)), is continuous and bounded.

cost,

After the transition to the next state, a new action is selected
and the process is repeated. The state transition from one state
to another is imposed by a discrete-time equation that describes
the dynamics of the system (HEV) of the form

Xt+1(1:2) = ft(Xt(1:2)7 Ut(1:2)7 Wt(1:2))7 (1

where Wy (1.9) is the disturbance (driver’s power demand,
Piriver and the power required by the battery to reach its
target value, Psoc) of the HEV at time ¢. We have complete
observation of the system’s state X;(1.9).

Assumption 2.4: The driver’s pedal position is a sequence
of independent random variables, independent of the initial
state X0(1:2)~

Assumption 2.4 imposes a condition yielding that the state
Xi¢+1(1:2) depends only on X;(1.2y and Uy(1.). Namely, the
evolution of the state is a controlled Markov chain and can
be represented by a conditional probability, P(X;y1(1.2) =
J1X¢1:2) = 4, Uy1:2)). The completed period of time over
which the system is observed is called the decision-making
horizon and is denoted by 7'. The horizon can be either finite
or infinite; the infinite decision-making horizon is considered
for this problem. This is because we are concerned with
deriving an optimal control policy, 7, that will optimize the
efficiency of the HEV in the long-term and not necessarily
for a specific period of time. The assumption of an infinite
number of stages is never satisfied in practice. However, it
is a reasonable approximation for problems involving a finite
but very large number of stages, as for example, in the HEV
power management control problem where we are interested
in optimizing HEV efficiency over the driver’s commute.
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III. A MULTIOBJECTIVE OPTIMIZATION FRAMEWORK
FOR THE SOLUTION OF THE POWER MANAGEMENT
CONTROL PROBLEM

A. The Average Cost Criterion

Infinite horizon problems are interesting as their analysis
is insightful, and the implementation of optimal policies is
straightforward. The optimal policies are typically stationary
as described in the previous subsection. For the power manage-
ment control problem formulated here, we select the average
cost criterion as we wish to optimize HEV efficiency with
respect to any different driver and commute on average per
time. Thus we are concerned with deriving a stationary optimal
control policy to minimize the long-run average cost per unit
time:

1 T
lim ——E7 Zk(Xt(l:Z)aUt(I:Q))
0

J(Tl') T—oo T + 1

. @

To guarantee that the limit in (2) exists we impose the
following assumption.

Assumption 3.1: For each stationary control policy m =
{p(1), u(2), ..., u(|S])}, where |S| is the cardinality of the
system’s state space, the Markov chain {Xt(1:2)|t =1,2, }
has a single ergodic class.

Namely, for each stationary policy 7 € 1I there is a unique
probability distribution (row vector) ™ = (81, B2, ..., Bjs|),
such that 5™ = g™ - P™, where PP is the transition probability
matrix, with) 5, < B; = 1. A proof of this assertion may be
found in [ [19], p. 227]. Under our assumption, it is known [
[20], p.175] that

3

where 1 = (1,1, ..., 1)T is the column vector whose elements
are all unity. Substituting (3) into (2) shows that the long-run
average cost, J(), does not depend on the initial state and is
given more simply as

JT =Bk “
T

where k™ = is

k(L 1(1)), k(2 1(2)); s k(IS 1(1S1))
the column vector of the cost function. Consequently, a sta-
tionary control policy is optimal if

J* =inf {J7|r € IT}. (5)

Since we assume P™ to be continuous, it follows that 87
is continuous, and since k™ is also assumed continuous, so is
J7. Hence, by compactness of I/, an optimal stationary control
policy exists. Our objective is to derive a stationary control
policy that minimizes the long-run expected average cost of
the HEV. Various methods can be used to solve (5) offline and
derive the optimal control policy that minimizes the long-run
expected average cost J. In this paper, we seek the theoretical
framework that will yield the optimal control policy online
while the subsystems interact with each other.



B. HEV Equilibrium Operating Point

In our approach, the power management controller is faced
with the task of selecting control actions (engine and motor
torque) in several time steps to minimize the average cost.
In the HEV configuration adopted here, the engine and the
motor are coupled together and their speed is a function
of the vehicle speed depending on the gear ratio of the
transmission. At each stage ¢, the controller needs to optimally
split the torque demanded by the driver, Ty, ver, between the
engine and motor, T, and T}, respectively, to optimize
fuel economy. Using a myopic approach, namely, selecting
the engine to provide a portion of the driver’s requested torque
so as to operate the engine at a minimum brake specific fuel
consumption (BSFC), may result in operating the motor at
a lower efficiency, thus wasting energy. Wasting the battery’s
energy affects fuel economy since this energy will be provided
back to the battery from the engine to maintain SOC close to
target value.

Consequently, at each stage ¢, we need to identify an
equilibrium operating point, defined as HEV equilibrium op-
erating point, among the subsystems, i.e., engine and motor,
that will ensure maximization of the overall HEV efficiency. To
compute the HEV equilibrium operating point, we formulate
a multiobjective decision-making problem consisting of the
engine’s BSFC, fpsrc, and the motor’s efficiency, 7,0t
Given the engine and motor speed Xi(1.0), the objective is
to find the optimal control action Uy(;.p) (engine and motor
torque) that minimizes a multiobjective function reflecting both
the engine’s fuel consumption and the motor’s efficiency. To
avoid dominance of one objective function over the other, both
functions are normalized with respect to their maximum value.
Furthermore, since we formulate a minimization problem, we
consider the inverse of the motor efficiency. Using a weighted
combination of the different objectives is scale dependent.

The BSFC of the engine is a function of the engine speed
Neng, and torque, Te,, 4. Similarly, the efficiency of the motor is
a function of the motor speed N,,,; and torque, 7},,;. Hence,
the normalized BSFC of the engine is fi(Neng, Teng) =

5 Neng;Ten . .
W, and the normalized inverse of the motor’s
o

efficiency is fo(Nmots Trnot)

-
— Mmot Nmot-Tmot)

[

Mmot
The multiobjective optimization problem is formulated as

ll o

II[I]il’l k(Xt(1:2)7 Ut(152)) =

min (o i Xer), Uny) + (1 = @) - fo(Xy(2), U2)))
2 2

S.t. Z Ut(1) = Z Wf(q) = Tariver + TSOCv
i=1 i=1

(6)

where « is a scalar that takes values in [0,1], Xy1.0) =
(Xt(1)7Xt(2)))T (Neng7Nmot)T € S, Ut(l:Z)
(Us1ys Us2y))T = (Teng, Trmot) ™ € U is the vector of engine
and motor torque, and Tsp¢ is the torque corresponding to the
power required by the battery, Psoc, to reach its target value.
Since Psoc is provided exclusively by the engine, Tsoc is
computed by dividing Psoc by the engine speed Ny4. The
multiobjective optimization problem in (6) yields the Pareto
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efficiency set between the engine and the motor by varying «
from O to 1 at any given state of the HEV.

C. Pareto Efficient Power Management Control

In a Pareto efficiency allocation among agents, no one can
be made better off without making at least one other agent
worse. The following is a formal definition.

Definition 3.2 [21]: A solution u°€ U is called Pareto
optimal if there is no u € U such that k(x,u) < k(z,u®). If
u® is Pareto optimal, k(x,u°) is called efficient. If u', u? € U
and k(z,ul) < k(x,u?), we say u' dominates u? and k(x,u')
dominates k(z,u?). The set of all Pareto optimal solutions
u®€ U is the Pareto set, Upqreto- The set of all efficient points
k(z,u®) € Y where u® € Upgreto, is Veyy the efficient set.

The question that arises is whether the Pareto efficiency in
(6) exists. The following result provides the conditions for its
existence.

Proposition 3.3 [21]: Let T' € R! be a nonempty and
compact set and each component k(Xyg), Uy(q)): I' — R be
lower semicontinuous for all ¢ = 1,..., N, N € N. Then the
Pareto efficiency is not empty.

In our problem, the set of admissible state/action pairs, I,
is a nonempty compact space (Definition 2.1). Furthermore,
the engine’s normalized BSFC, k(X (1), Uy(1)). and the inverse
of the motor’s efficiency, k(X (2, Uy(2)), are both continuous
functions. Consequently, the Pareto efficiency exists, and the
Pareto optimal solution can yield the HEV equilibrium oper-
ating point between the engine and motor.

Definition 3.4 : We define the Pareto control policy 7° the
policy that selects a control action which is Pareto optimal.

In the problem considered here, the Pareto control policy is
derived as follows. For each state, i € S, and for any different
torque demand, T ,iver +71soc, ranging from 0 to a maximum
value, we solve (6) with « taken values from O to 1. The control
action, uf, ., = 1(2), associated with the Pareto control policy
is the one that yields the minimum one-stage expected cost in
(6) among all values corresponding to different a,, namely

u(()1:2) =

. . o 7
argmin {ka, (i, Ulioy)s - - K, (4 u(am))},r eN, )

where ua{:Q is the solution of (6) when the scalar is «,,
and karéau?ﬂz)) is the corresponding minimum one-stage

expected cost for the state ¢ € S for «,.. Thus, for each state
of the HEV and torque demand we derive the Pareto optimal
solution that minimizes (6), and store it in a table. If there
are multiple solutions, then one of these solutions is selected
randomly since all of them will yield the same one-stage
expected cost. The Pareto control policy is implemented online
using this table as follows. For any combination of vehicle
speed, thus engine and motor speed, and torque demand, the
Pareto control policy interpolates the control values of the table
corresponding to the Pareto optimal solution, uf; ., = (i) that
minimizes one-stage expected cost (6).

Theorem 3.5 [22]: The Pareto control policy 7° is the
optimal control policy 7* that minimizes the average cost
criterion (2).



D. Dynamic Programming Simulation-Based Solution for the
Average Cost Criterion

To compare the control policy that yields the Pareto optimal
solution with the optimal control policy of DP from Bellman’s
equation, we need to solve |S| linear equations, where |S]| is
the cardinality of the state space. It is well known that under
Assumption 3.1 the minimum average cost J* has a common
value for all initial states, denoted by A\*, J*(i) = A\*,i € S.
Moreover, A\* in conjunction with a differential cost vector
h = (h(1),...,h(]S])) satisfies Bellman’s equation [23]

IS
h(i) + N* = min > [P(ili, p(0)) - h(5) + k(i p(0))] - (8)
j=1

To solve (8) we need to know the cost function, k(Xt(m) =
i, Up1:2) = m(Xy(1:2))) or k(i, p(i)) for simplicity, and the
transition probabilities, P(X;11(1.2) = j|X¢1:2) = %, Uy(1:2))s
of the HEV, which are not available a priori in our problem as
they depend on the driver’s power demand. However, we can
simulate the HEV model because the state space and control
space are known. So at each stage t and for a given state
Xi(1:2) i € S, the controller can select a control action
Ui1:2) u(7), and based on the uncertainty, Wy(q.2y, the
system will transit to a new state X, 1(1.2) = J € S as
imposed by the system’s dynamics, (1), and thus generate a
corresponding transition cost k(i, uu(7)). It is then possible to
use repeated simulation to calculate (at least approximately)
the transition probabilities of the system and the expected one-
stage costs by averaging and then solve the |S| linear equa-
tions, (8). However for large and complex systems, e.g., HEVs,
a more attractive method to derive the optimal control policy
is to learn the optimal control policy rather than estimating
explicitly the transition probabilities and stage costs using the
Q-learning method. This method is analogous to value iteration
and has the advantage that it can be used directly in the case of
multiple policies. Instead of approximating the cost function
of a particular policy, it updates directly the factors associated
with an optimal policy, thereby avoiding the multiple policy
evaluation steps of he policy iteration method.

It can be seen [24] that the Q-learning method for solving
(8) is the following equation

(

where i, € S is an arbitrary but fixed state. The aim of the Q-
learning algorithm is to learn the Q-factors when the transition
probabilities, P(+|-,-), are not known but there is access to a
simulation device, e.g., simulating an HEV model over a given
driving cycle, that can generate them by simulating the system.
This can be achieved by simulating the HEV model over a
given driving cycle repeatedly until the Q-factors converge.
Then the optimal control policy can be extracted by (9). The
resulting solution corresponds to the optimal control policy that
minimizes the long-run expected average cost criterion [24].

|S|

Q" (i, (i)
> P(jli, p(i)) - kG, p(i) + min  Q'(j, u(5))
j=1

in )-©
n(3)€C(y)

Q' (io, p(io)),¥i € S,
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IV. SIMULATION RESULTS

To validate the effectiveness of the power management
controller using the Pareto control policy, we used Autonomie.
A vehicle model representing a heavy duty parallel HEV
specified by the sponsor was developed in Autonomie and
used in this study. The HEV model was simulated over the
city-suburban heavy vehicle route (CSHVR). To derive the
Pareto control policy, the multiobjective optimization problem
(6) was solved offline for different combinations of vehicle
speeds, e.g., 0-80 km/h (discretized in 5 km/h), and driver’s
torque requests, e.g., 0-18,800 Nm (discretized in 100 Nm).
For each vehicle speed-torque combination, the Pareto optimal
solution that minimizes (7) was computed and stored in a
table. Fig. 2 shows the Pareto efficiency set at 21 km/h when
the torque demand is 6,975 Nm and the transmission gear
ratio is 1.5. Fig. 3 illustrates the Pareto set (set of all Pareto
optimal solutions), Uj};.5y € Upareto corresponding to engine
and motor torque (discretized in 100 Nm). In this particular
case, the Pareto control policy selects control actions, e.g.,
Teng = 310 Nm and T;,,; = 620 Nm, yielding the normalized
engine BSFC, f1(Neng, Teng) = 0.3272, and the normalized
inverse of the motor efficiency, fo(Nmot, Tmot) = 0.3095,
since it minimizes (7). The Pareto optimal solution is the HEV
equilibrium operating point and can be implemented easily
online by interpolating the table.

0.52

0.5

o o o
N N
o ®
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IS

I~
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[}

Normalized BSFC []
o o
W w <
[ @ o

o
w
1S

© o0 o000

0.32 ; .
0.295 0.3 0.305

Normalized Inverse Motor Efficiency []

Fig. 2. The Pareto efficiency set, Vs, corresponding to 21 km/h vehicle
speed and 6,975 N-m driver’s torque demand.

The Pareto control policy was evaluated over the CSHVR
driving cycle and compared to the DP control policy cor-
responding to the long-run average cost per unit time op-
timization criterion (8). The DP control policy was derived
though simulation by using Q-learning (9). The HEV model
was simulated repeatedly over the same driving cycle until the
Q-factors in (9) convergence. For the CSHVR driving cycle,
Q-learning ran repeatedly 58 times until convergence. The one-
on-one correlation, shown in Fig. 1, between SOC and the
power added to the driver’s power request aimed at maintaining
SOC at the target value, i.e., 70% in this case. Both control
policies achieved the same cumulative fuel consumption (Table
I), which illustrates that the control policy yielding the Pareto
optimal solution is an optimal control policy that can be
implemented online.
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Fig. 3. The Pareto set, Upgreto, corresponding to 21 km/h vehicle speed

and 6,975 N-m driver’s torque demand.

TABLE L. SIMULATION RESULTS USING DYNAMIC PROGRAMMING

AND THE PARETO CONTROL POLICY

Initial State of Charge of the Battery

Dynamic Programming 70%
Pareto Control Policy 70%
Final State of Charge of the Battery

Dynamic Programming 70%
Pareto Control Policy 70%
Ci lative Fuel C ption

Dynamic Programming 1.24 kg
Pareto Control Policy 1.24 Kg

V. CONCLUDING REMARKS

In the research reported here, we developed the analytical
formulation for modeling HEV operation as a controlled
Markov chain and presented the solution of the stochastic
optimal control problem using the long-run expected average
cost criterion. Then we formulated a multiobjective optimiza-
tion framework and showed that the Pareto control policy
minimizes the average cost per unit time criterion.

The effectiveness of the efficiency of the Pareto control
policy was validated through simulation of an HEV model
for the CSHVR driving cycle, and it was compared to the
control policy derived with DP. Both control policies achieved
the same cumulative fuel consumption, demonstrating that
the Pareto control policy is an optimal control policy that
minimizes the long-run expected average cost criterion online.
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