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a b s t r a c t

Connected and automated vehicles (CAVs) provide the most intriguing opportunity to improve energy
efficiency, traffic flow, and safety. In earlier work, we addressed the constrained optimal coordination
problem of CAVs at different traffic scenarios using Hamiltonian analysis. In this paper, we investigate
the properties of the unconstrained problem and provide conditions under which different combination
of the state and control constraints become active. We present a condition-based computational
framework that improves on the standard iterative solution procedure of the constrained Hamiltonian
analysis. Finally, we derive a closed-form analytical solution of the constrained optimal control problem
and validate the proposed framework using numerical simulation. The solution can be derived without
any recursive steps, and thus it is appropriate for real-time implementation on-board the CAVs.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

The implementation of an emerging transportation system
ith connected and automated vehicles (CAVs) enables a novel
omputational framework to provide real-time control actions
hat optimize energy consumption and associated benefits. From
control point of view, CAVs can alleviate congestion at different
raffic scenarios, reduce emission, improve fuel efficiency and in-
rease passenger safety; see Malikopoulos, Cassandras, and Zhang
2018) and Margiotta and Snyder (2011). Urban intersections,
erging roadways, highway on-ramps, roundabouts and speed

eduction zones along with the driver responses to various dis-
urbances are the primary sources of bottlenecks that contribute
o traffic congestion; see Malikopoulos and Aguilar (2013).

.2. Literature review

Several research efforts have used optimal control theory to
nvestigate how CAVs can potentially improve energy efficiency
nd travel time in these traffic scenarios. Early efforts reported
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in Athans (1969) and Levine and Athans (1966) considered a
single string of vehicles that was coordinated through a traffic
conflict zone with a linear optimal regulator. Shladover et al.
(1991) discussed the lateral and longitudinal control of CAVs for
the automated platoon formation. Varaiya (1993) outlined the key
features of an automated intelligent vehicle/highway system, and
proposed a basic control system architecture. Dresner and Stone
(2004) proposed the use of the reservation scheme to control a
signal-free intersection of two roads. Since then, several research
efforts have considered reservation approaches for coordination
of CAVs at urban intersections; see Au and Stone (2010), de
La Fortelle (2010), Dresner and Stone (2008) and Huang, Sadek,
and Zhao (2012). Alonso et al. (2011) proposed a control frame-
work where a CAV can derive its safe crossing schedule to avoid
collision with a human-driven vehicle. Several approaches for
coordinating CAVs that have been reported in the literature have
proposed the use of centralized control, where there is at least
one task in the system that is globally decided for all vehicles
by a single central controller; see Bakibillah, Kamal, Tan, et al.
(2019), de La Fortelle (2010), Dresner and Stone (2008), Huang
et al. (2012), Lu and Hedrick (2003) and Xu et al. (2018). Some
approaches have focused on coordinating CAVs at intersections
to improve traffic flow; see Kim and Kumar (2014) and Yan,
Dridi, and El Moudni (2009), or travel time; see Raravi, Shingde,
Ramamritham, and Bharadia (2007), while other approaches have
focused on energy consumption improvement; see Mahler and
Vahidi (2014), Sciarretta, De Nunzio, and Ojeda (2015) and Wan,
Vahidi, and Luckow (2016).

Some optimal control approaches reported in the literature
have used standard Hamiltonian analysis for CAV control and

https://doi.org/10.1016/j.automatica.2021.109751
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.109751&domain=pdf
mailto:mahbub@udel.edu
mailto:andreas@udel.edu
https://doi.org/10.1016/j.automatica.2021.109751


A.M.I. Mahbub and A.A. Malikopoulos Automatica 131 (2021) 109751

c
b
p
a
a
e
a
f
c
f
h
e
N
m
a
d
p
p
t
i
t
c
w
(
p
n
r

t
F
t
c
t
t
o
s
s
s
a
f
o
d
p
m
c

s
n
r
l
(
w
v
l
i
c
w
i
a
o
o
s
w
a

l
c
R

oordination, e.g., Wang, Zhao, and Yin (2019) and Zhao, Mah-
ub, and Malikopoulos (2019); while other approaches have em-
loyed model predictive control; see Kim and Kumar (2014)
nd Makarem and Gillet (2012). Dynamic programming (DP) has
lso been used to compute the optimal control input for CAVs,
.g., Ozatay, Ozguner, and Filev (2017), Mahler and Vahidi (2014),
nd Pei, Feng, Zhang, and Yao (2019). DP, however, may not be
easible for real-time implementation due to its high required
omputational effort. In optimal control approaches, the problem
ormulation may have different objective functions including ve-
icle travel time, e.g., Raravi et al. (2007), energy consumption,
.g., Sciarretta et al. (2015), passenger comfort, e.g., Ntousakis,
ikolos, and Papageorgiou (2016), etc. Raravi et al. (2007) for-
ulated an optimization problem the solution of which aims
t finding the minimum time once the merging sequence is
etermined. Kamal, Imura, Ohata, Hayakawa, and Aihara (2013)
roposed numerical algorithms based on Pontryagin’s minimum
rinciple for CAV coordination in a signal-free intersection. A vir-
ual platoon-based cooperative control approach was discussed
n Huang, Zhuang, Yin, Xu, and Luo (2019) for on-ramp coordina-
ion. A hierarchical control framework using an upper-level CAV
oordination and a low-level multiobjective optimization scheme
as proposed in Qian, Gregoire, De La Fortelle, and Moutarde
2015). A similar hierarchical control framework has been re-
orted by Bakibillah et al. (2019), where a two-level combi-
atorial optimization problem is formulated for a cloud-based
oundabout coordination system.

In optimal control approaches, one key challenge is to handle
he associated state, control and safety constraints. Min, Yang,
ang, Sun, and Zhao (2019) considered a platoon-based approach
o coordinate CAVs through a merging roadway, and solved the
onstrained optimization problem with distributed model predic-
ive control. Sciarretta et al. (2015) developed an eco-driving con-
roller for CAVs for adaptive cruise control maneuver, where the
ptimal control problem minimizes the energy consumption with
peed constraint. Wan et al. (2016) proposed a speed advisory
ystem to minimize fuel consumption without considering the
tate and control constraints. Han, Sciarretta, Ojeda, De Nunzio,
nd Thibault (2018) proposed a safety based eco-driving control
or the CAVs. Wang et al. (2019) formulated the multi-objective
ptimization problem for the CAVs approaching intersection, and
erived the analytic solution based on the Pontryagin’s minimum
rinciple. Ozatay et al. (2017) provided a speed profile opti-
ization framework for minimizing fuel consumption without
onsidering any safety or acceleration/deceleration constraints.
Recently, a decentralized optimal control framework was pre-

ented for coordinating CAVs in real time at different traffic sce-
arios such as on-ramp merging roadways, roundabouts, speed
eduction zones and signal-free intersections; see Mahbub, Ma-
ikopoulos, and Zhao (2020a, 2020b) and Malikopoulos et al.
2018), Malikopoulos, Hong, Park, Lee, and Ryu (2019). This frame-
ork uses a hierarchical structure consisting of an upper-level
ehicle coordination problem to minimize travel time, and a
ow-level optimal control problem to minimize the energy of
ndividual CAVs. A complete, analytical solution of the low-level
ontrol problem that includes the rear-end safety constraint,
here the safe distance is a function of speed, was discussed

n Malikopoulos, Beaver, and Chremos (2021) and Malikopoulos
nd Zhao (2019a). A problem formulation for the upper-level
ptimization in which there is no duality gap, implying that the
ptimal time trajectory for each CAV does not activate any of the
tate, control, and safety constraints of the low-level optimization
as presented in Malikopoulos et al. (2021) and Malikopoulos
nd Zhao (2019b).
Detailed discussions of the research efforts reported in the

iterature to date on coordination of CAVs can be found in re-
ent survey papers; see Guanetti, Kim, and Borrelli (2018) and
ios-Torres and Malikopoulos (2017).
2

1.3. Objectives and contributions of the paper

The standard methodology to solve the low-level optimal
control problem; see Malikopoulos et al. (2018); is to employ
Hamiltonian analysis with interior point state and/or control
constraints. Namely, we first start with the unconstrained arc
and derive the solution of the low-level optimal control problem.
If the solution violates any of the state or control constraints,
then the unconstrained arc is pieced together with the arc cor-
responding to the violated constraint. The two arcs yield a set
of algebraic equations which are solved simultaneously using the
boundary conditions and interior constraints between the arcs. If
the resulting solution, which includes the determination of the
optimal switching time from one arc to the next one, violates
another constraint, then the last two arcs are pieced together
with the arc corresponding to the new violated constraint, and
we re-solve the problem with the three arcs pieced together.
The three arcs will yield a new set of algebraic equations that
need to be solved simultaneously using the boundary conditions
and interior constraints between the arcs. The resulting solution
includes the optimal switching time from one arc to the next
one. The process is repeated until the solution does not violate
any other constraints. This recursive process of piecing the arcs
together to derive the optimal solution of the low-level problem
can be computationally expensive and might prevent real-time
implementation.

In this paper, we provide an in-depth analysis of different state
and control constraint activation cases, and establish a rigorous
framework that yields a closed-form analytical solution for the
low-level optimal control problem formulation without requir-
ing the recursive process described above. Thus, the proposed
framework is appropriate for real-time implementation on-board
the CAVs; see Mahbub, Karri, Parikh, Jade, and Malikopoulos
(2020). The objectives of this paper are (i) to derive a priori the
different state and control constraint activation cases through
a rigorous mathematical analysis, (ii) to simplify the recursive
process required to derive the optimal constrained solution of the
Hamiltonian analysis for the low-level optimal control problem,
and (iii) to increase the computational efficiency of the derivation
of the solution in (i) by eliminating numerical computations.

Thus, the contributions of this paper are: (1) an in-depth
exposition of the properties of the different combinations of
the state and control constraint activation cases and a set of a
priori conditions to identify the constrained solution without any
recursive steps, and (2) an explicit expression of the junction
point between the constrained and unconstrained arcs leading
to a closed-form analytical solution of the constrained optimal
control problem. In earlier work, we reported a limited-scope
analysis along with some preliminary results about the condi-
tions for state and control constraint activation; see Mahbub and
Malikopoulos (2020).

1.4. Comparison with related work

The framework that we report in this paper advances the state
of the art in the following ways. First, the solution to the state and
control unconstrained control problem presented in Malikopou-
los et al. (2019) and Ntousakis et al. (2016) shows acceleration
spikes (jerk) at the boundaries of the optimization horizon, pos-
sibly exceeding the vehicle’s physical limitation and giving rise
to undesired driving experience. In addition, the unconstrained
solution can only guarantee that none of the constraints are
violated at the boundaries of the optimization horizon only. In our
proposed framework, we can guarantee that none of the state and
control constraints are violated throughout the entire optimiza-
tion horizon. Second, in contrast to some approaches reported in
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he literature, e.g., Han et al. (2018), Ozatay et al. (2017) and Wan
t al. (2016), where either the state or the control constrained op-
imal control problem was addressed, our framework addresses
ll state and control constraints cases. Moreover, we explicitly
nclude the state and control constraints in the Hamiltonian anal-
sis as opposed to using a feasibility zone; see Wang et al. (2019).
hird, several approaches have considered free terminal time
o address the state/control constraints within the optimization
orizon; see Wang et al. (2019) and Zhang and Cassandras (2019).
n contrast, in our framework, we incorporate the constraints
n the low-level control problem with the fixed time horizon.
ourth, the solution of the constrained optimal control problem
equires piecing the unconstrained and constrained arcs together
esulting in recursive numerical computations until all of the
onstraint activation cases are resolved; see Malikopoulos et al.
2018), Malikopoulos and Zhao (2019a) and Zhang and Cassan-
ras (2019). In our proposed framework, we eliminate this recur-
ive procedure to derive a real-time implementable closed-form
nalytical solution. Finally, the solution of the constrained opti-
ization problem using Hamiltonian analysis reported in some
pproaches, e.g., Malikopoulos et al. (2018), Malikopoulos and
hao (2019a) and Zhang and Cassandras (2019), only addresses
ifferent constraint activation cases without addressing the ex-
licit interdependence between multiple constraint activation.
n this paper, we explore the interdependence of the combina-
ion of the constraint activation cases and explicitly provide the
onditions for their realization.

.5. Organization of the paper

The remainder of the paper is organized as follows. In Sec-
ion 2, we introduce the problem formulation and present the
nconstrained case. In Section 3, we discuss different aspects
f the state and control constrained formulation in detail. In
ection 4, we provide the closed-form analytical solution of the
onstrained optimal control problem. In Section 5, we evalu-
te the effectiveness of the proposed approach in a simulation
nvironment. Finally, we draw concluding remarks and discuss
otential directions for future research in Section 6.

. Problem formulation

We consider CAVs traveling through a traffic network con-
aining a four-way signal-free intersection, as shown in Fig. 1.
lthough our analysis can be applied to any traffic scenario,
.g., merging at roadways, roundabouts, and passing through
peed reduction zones, we use an intersection (Fig. 1) as a refer-
nce to present the fundamental ideas and results of this paper,
ince an intersection provides unique features making it techni-
ally more challenging compared to other traffic scenarios. We
efine the area illustrated by the red square of dimension S in
ig. 1 as the merging zone where potential lateral collision of CAVs
ay occur. Upstream of the merging zone, we define a control
one of length L inside of which CAVs can communicate with
ach other using a vehicle-to-vehicle communication protocol;
ee Mahbub et al. (2020). The intersection also has a coordinator
hat communicates with the CAVs traveling inside the control
one. Note that, the coordinator does not make any decisions for
he CAVs. When a CAV enters the control zone, the coordinator
eceives its information and assigns a unique identity i ∈ N to
t. Let N (t) = {1, . . . ,N(t)}, where N(t) ∈ N is the number of
AVs inside the control zone at time t ∈ R+, be the queue of
AVs to enter the merging zone shown in Fig. 1. The time that
CAV i ∈ N (t) enters the control and merging zones is denoted
y t0i and tmi , respectively, while the time that a CAV i exits the

f
erging zone is denoted by ti . In our exposition, we assume C

3

Fig. 1. A traffic network of connected automated vehicles approaching a
four-way signal-free intersection.

that the queue N (t) and the optimal time to enter the merging
one tmi is given a priori and can be derived by solving an upper-
evel vehicle coordination problem subject to rear-end and lateral
afety constraints, as detailed in Mahbub et al. (2020b), Mahbub,
hao, Assanis, and Malikopoulos (2019) and Malikopoulos et al.
2018). Given tmi a priori, the objective of each CAV i ∈ N (t)
is to derive its optimal control input (acceleration/deceleration)
to cross the intersection without any lateral or rear-end collision
with the other CAVs, and without violating any of the state and
control constraints.

2.1. Modeling framework

We model each CAV i ∈ N (t) as a double integrator

˙ i(t) = vi(t), v̇i(t) = ui(t), t ∈ [t0i , t
f
i ], (1)

where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the position,
peed and acceleration (control input) of each CAV i ∈ N (t). The
ets Pi, Vi, and Ui, i ∈ N (t), are complete and totally bounded
ubsets of R. Let xi(t) = [pi(t) vi(t)]T denote the state vector
f each CAV i, with initial value x0i =

[
p0i v0

i

]T taking values in
i = Pi × Vi. The state space Xi for each CAV i is closed with
espect to the induced topology on Pi×Vi and thus, it is compact.

To ensure that the control input and speed of each CAV i ∈ N
re within a given admissible range, we impose the following
onstraints

i,min ≤ ui(t) ≤ ui,max, and

≤ vmin ≤ vi(t) ≤ vmax, t ∈ [t0i , t
f
i ], (2)

here ui,min, ui,max are the minimum and maximum acceleration
or each CAV i ∈ N (t), and vmin, vmax are the minimum and
aximum speed limits respectively. Without loss of generality,
e assume homogeneity in terms of CAV types, which enables
he use of the same maximum acceleration umax and minimum
cceleration umin for any CAV i ∈ N (t). To ensure the avoidance of
ear-end collision of two consecutive CAVs traveling on the same
ane, we impose the rear-end safety constraint

i(t) ≥ δi(t), i ∈ N (t), t ∈ [t0i , t
f
i ], (3)

here si(t) := pk(t) − pi(t) is defined as the distance between

AV i, k ∈ N (t), where CAV k is physically located immediately
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head of CAV i, and δi(t) is the minimum safe distance which is a
unction of speed vi(t). For each CAV i ∈ N (t), we define the set
Γi:= {t | t ∈ [tmi , t fi ]}. Lateral collision between any two CAVs
i, j ∈ N (t) can be avoided if

Γi ∩ Γj = ∅, i, j ∈ N (t), t ∈ [tmi , t fi ]. (4)

In the modeling framework described above, we impose the
following assumptions:

Assumption 1. Each CAV i ∈ N (t) communicates with each
other and with the coordinator without any delays or errors.

Assumption 2. For each CAV i ∈ N (t), no lane change maneuver
is allowed within the control zone.

Assumption 3. None of the state constraints are active at time
t0i when each CAV i ∈ N (t) enters the control zone.

The first assumption may be strong but it is relatively straight-
forward to relax it as long as the noise in the measurements
and/or delays is bounded. For example, we can determine upper
bounds on the state uncertainties as a result of sensing or com-
munication errors and delays, and incorporate these into more
conservative safety constraints. The second assumption allows us
to focus only on the control of longitudinal vehicle dynamics of
CAVs within the control zone. Each CAV i ∈ N (t), however, can
change lanes before the entry and/or after the exit of the control
zone. Our analysis can include multiple lanes by appropriately
revising the vehicle dynamics model (1). Finally, the third as-
sumption ensures that, for each CAV i ∈ N (t), the initial state
at the entry of the control zone is feasible.

2.2. Low-level optimal control problem

For each CAV i ∈ N (t), t ∈ [t0i , t
m
i ], traveling inside the control

zone, we formulate the following optimal control problem

min
ui(t)∈Ui

∫ tmi

t0i

1
2
u2
i (t) dt, (5)

subject to : (1), (2), pi(t0i ) = 0, pi(tmi ) = L,

and given t0i , vi(t0i ), t
m
i ,

where we consider the L2-norm of the control input, i.e., u2
i (t), as

the cost function. By minimizing transient engine operation, we
have direct benefits in fuel consumption in conventional vehicles
(vehicles with internal combustion engines); see Malikopoulos
et al. (2018). Note that we do not explicitly include the lateral (4)
and rear-end (3) safety constraints in (5). The lateral collision con-
straint is enforced by selecting the appropriate merging time tmi
for each CAV i in the upper-level throughput maximization prob-
lem. The activation of rear-end safety constraint can be avoided
under certain conditions; see Malikopoulos et al. (2019).

In our formulation, the state constraints are Si(t, xi(t)) :=

[vi(t) − vmax vmin − vi(t)]T ≤ 0. Note that, Si(t, xi(t)) is not an
explicit function of the control input ui(t). Thus, to formulate the
tangency constraints, we need to take successive time derivatives
of Si(t, xi(t)) until we obtain an expression that is explicitly de-
pendent on ui(t); see Bryson and Ho (1975). If q time derivatives
are required, we refer to each constraint in S(q)i (t, xi(t)) as the qth-
order state variable inequality constraint. In our case, we have

1st-order speed constraint, e.g., S(1)i (t, xi(t), ui(t)) =

[
ui(t)

−ui(t)

]
.

To derive an analytical solution of the optimal control prob-
lem in (5) for each CAV i ∈ N (t), we formulate the adjoined
Hamiltonian function Hi

(
t, xi(t), ui(t)

)
, t ∈ [t0i , t

m
i ], as follows,

Hi
(
t, xi(t), ui(t)

)
=

1
u2(t) + λ

p(t) · vi(t) + λv(t) · ui(t)
2 i i i

4

+ µT
i (t) · Ci(t, xi(t), ui(t)) + ηT

i (t) · Si(t, xi(t))

=
1
2
u2
i (t) + λ

p
i (t) · vi(t) + λv

i (t) · ui(t) (6)

+ µa
i (t) · (ui(t) − umax) + µb

i (t) · (umin − ui(t))

+ ηc
i (t) · (vi(t) − vmax) + ηd

i (t) · (vmin − vi(t)),

here, Ci(t, xi(t), ui(t)) := [ui(t) − umax umin − ui(t)]T is the
ector of control constraints in (2), λ

p
i (t), λv

i (t) are the co-state
omponents corresponding to the state vector xi(t), and µi(t)
s the path co-vector for control constraints consisting of the
agrange multipliers with the following conditions,

a
i (t) =

{
> 0, ui(t) − umax = 0,
= 0, ui(t) − umax < 0, (7)

b
i (t) =

{
> 0, umin − ui(t) = 0,
= 0, umin − ui(t) < 0, (8)

nd ηi(t) is the path co-vector for state constraints consisting of
he Lagrange multipliers,

c
i (t) =

{
> 0, vi(t) − vmax = 0,
= 0, vi(t) − vmax < 0, (9)

d
i (t) =

{
> 0, vmin − vi(t) = 0,
= 0, vmin − vi(t) < 0. (10)

The corresponding Euler–Lagrange equations at time t ∈ [t0i ,
m
i ] are

˙ p
i (t) = −

∂Hi

∂pi
= 0, (11)

λ̇v
i (t) = −

∂Hi

∂vi
=

⎧⎪⎨⎪⎩
−λ

p
i (t), vi(t) − vmax < 0

and vmin − vi(t) < 0,
−λ

p
i (t) − ηc

i (t), vi(t) − vmax = 0,
−λ

p
i (t) + ηd

i (t), vmin − vi(t) = 0,

(12)

nd
∂Hi

∂ui
= ui(t) + λv

i (t) + µa
i (t) − µb

i (t) = 0. (13)

If the inequality state and control constraints (2) are not active,
we have µa

i (t) = µb
i (t) = ηc

i (t) = ηd
i (t) = 0. Applying the

necessary conditions, the optimal control u∗

i (t) can be derived
rom u∗

i (t) + λv
i (t) = 0, i ∈ N (t). From (11) and (12) we have

p
i (t) = ai, and λv

i (t) = −
(
ai ·t+bi

)
, where ai and bi are constants

f integration corresponding to each CAV i ∈ N (t). Therefore, the
nconstrained optimal control input u∗

i (t) is
∗

i (t) = ai · t + bi, t ∈ [t0i , t
m
i ]. (14)

Substituting the last equation into (1) we find the optimal speed
and position for each CAV i ∈ N (t), namely

∗

i (t) =
1
2
ai · t2 + bi · t + ci, (15)

p∗

i (t) =
1
6
ai · t3 +

1
2
bi · t2 + ci · t + di, t ∈ [t0i , t

m
i ], (16)

here ci and di are constants of integration corresponding to
ach CAV i ∈ N (t). The constants of integration ai, bi, ci, and di
an be determined from (14)–(16) using the initial and boundary
onditions imposed in (5). Note that, we can either compute ai,
i, ci, and di only once at time t = t0i and apply the solution
hroughout optimization horizon [t0i , t

m
i ], or update the constants

f integration by recomputing (14)–(16) at some discrete time
tep in [t0i , t

m
i ] to account for any disturbance within the control

one. For the remainder of the paper, we reserve the notations
i, bi, ci, and di only for the unconstrained optimal solution given
n (14)–(16).
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emark 1. For the case where the constants of integration ai = 0
and bi = 0, we have the trivial solution of the unconstrained
problem (14)–(16) as u∗

i (t) = 0, v∗

i (t) = ci, p∗

i (t) = ci · t +di, t ∈

[t0i , t
m
i ]. This implies that if the speed is constant and the speed

constraint is not active at time t = t0i (Assumption 3), none of
the state and control constraints becomes active for t ∈ [t0i , t

m
i ].

If ai, bi ̸= 0, we have u∗

i (t
0
i ) ̸= 0.

In what follows, we only consider the non-trivial case (Re-
mark 1) of the constrained optimization problem (5) where
ai, bi ̸= 0.

3. Analysis of the constrained optimal control problem

To derive the constrained analytical solution of (5), we follow
the standard methodology used in optimal control problems with
interior point state and/or control constraints; see Bryson and
Ho (1975) and Bryson, Denham, and Dreyfus (1963). Namely, we
first start with the unconstrained arc and derive the solution
using (14)–(16). If the solution violates any of the state or control
constraints, then the unconstrained arc is pieced together with
the arc corresponding to the activated constraint, and we re-solve
the problem with the two arcs pieced together at the junction
point between the constrained and unconstrained arcs of the
constrained solution (5). The two arcs yield a set of algebraic
equations which are solved simultaneously using the boundary
conditions of (5) and the interior conditions between the arcs. If
the resulting solution, which includes the determination of the
junction point from one arc to the next one, violates another
constraint, then the last two arcs are pieced together with the
arc corresponding to the new activated constraint, and we re-
solve the problem with the three arcs pieced together. The three
arcs will yield a new set of algebraic equations that need to
be solved simultaneously using the boundary conditions of (5)
and interior conditions between the arcs. The resulting solution
includes the junction point from one arc to the next one. The
process is repeated until the solution does not violate any other
constraints.

This process can be computationally intensive for the fol-
lowing reasons. First, the recursive solution process to resolve
all possible combinations of constraint activation might lead to
intensive computation that prohibits real-time implementation.
Second, each of the aforementioned recursion needs to be solved
numerically due to the presence of implicit functions. To address
both issues, we introduce a condition-based framework for the
optimal control problem in (5) which leads to a closed-form
analytical solution without this recursive procedure.

3.1. Condition of constraint exclusion

For the optimal control problem in (5), we have two state
and two control constraints leading to 15 possible constraint
combinations in total that can become active within the op-
timization horizon [t0i , t

m
i ]. In this section, we show that it is

only possible for a subset of the constraints to become active in
[t0i , t

m
i ]. Therefore, it is not necessary to consider all the cases

in (5). In what follows, we delve deeper into the nature of the
unconstrained optimal solution given in (14)–(16) to derive useful
information about the possible existence of constraint activation
within the control zone.

Lemma 1. For each CAV i ∈ N (t), let ai and bi be the constants
of integration of the unconstrained solution of (5) corresponding to
the optimal control input u∗

i (t), t ∈ [t0i , t
m
i ]. If the speed vi(t) is not

specified at tmi , then

ai · tmi + bi = 0, tmi > t0i ≥ 0. (17)
 S

5

Proof. For all i ∈ N (t), since the speed vi(t) at t = tmi > t0i
is not fixed, we have λv

i (t
m
i ) = 0 (Naidu, 2002), which implies

u∗

i (t
m
i ) = 0, and the result follows.

Corollary 1. The constants of integration ai and bi of the uncon-
strained solution of (5) have opposite signs.

Proof. Since tmi is positive and non-zero, the result follows from
(17).

Corollary 2. The unconstrained optimal control input u∗

i (t) is
linearly either increasing or decreasing with respect to time, and
u∗

i (t
m
i ) = 0.

Proof. From (14), u∗

i (t) is a linear function with u∗

i (t
0
i ) ̸= 0 for

the non-trivial case (Remark 1), and u∗

i (t
m
i ) = 0 (Lemma 1), so

the result follows.

Remark 2. The constants of integration ai and bi of the uncon-
strained solution of (5) represents the slope of u∗

i (t), t ∈ [t0i , t
m
i ],

and the initial value of the control input u∗

i (t) at time t = t0i ,
respectively.

Lemma 2. Let vi(t0i ) be the initial speed of CAV i ∈ N (t) when
it enters the control zone at pi(t0i ) and travels up to the entry of
the merging zone at pi(tmi ). Then the nature of the unconstrained
optimal control input u∗

i (t) can be characterized using the following
conditions based on the boundary conditions of vi(t0i ), pi(t

0
i ) and

pi(tmi ): (i) The unconstrained optimal control input u∗

i (t) is linearly

decreasing if vi(t0i ) <
(pi(tmi )−pi(t0i ))

tmi
. (ii) The unconstrained optimal

ontrol input u∗

i (t) is linearly increasing if vi(t0i ) >
(pi(tmi )−pi(t0i ))

tmi
.

Proof. From (15) and (16), we can write vi(t0i ) =
1
2ai · (t

0
i )

2
+ bi ·

0
i + ci and pi(t0i ) =

1
6ai · (t

0
i )

3
+

1
2bi · (t

0
i )

2
+ ci · t0i + di. Without

oss of generality, if we let t0i = 0, we have

i = vi(t0i ), di = pi(t0i ). (18)

Evaluating (16) at t = tmi , we have pi(tmi ) =
1
6ai·(t

m
i )3+ 1

2bi·(t
m
i )2+

i · tmi + di. Substituting (17) and (18) in the above equation and
olving for ai, we have

i =
3(vi(t0i ) · tmi − (pi(tmi ) − pi(t0i )))

(tmi )3
. (19)

Since tmi > 0, we have a non-positive constant of integration ai, if
(vi(t0i )·t

m
i −(pi(tmi )−pi(t0i ))) < 0. From Corollary 2 and Remark 2, a

non-positive ai indicates a negative slope for u∗

i (t), which implies
hat u∗

i (t) is a linearly decreasing acceleration, and the proof is
omplete. The second part of Lemma 2 can be proved following
imilar steps, hence it is omitted.

emark 3. When the CAV i ∈ N (t) travels with its initial
peed vi(t0i ) throughout the control zone, we have vi(t0i ) · tmi =

pi(tmi ) − pi(t0i )). From (19), this implies that ai = 0, referring
o an optimal control input u∗

i (t) with horizontal slope. Since
∗

i (t
m
i ) = 0 (Lemma 1), we have u∗

i (t) = 0, for all t ∈ [t0i , t
m
i ].

emma 3. For the unconstrained optimal solution of (5), if either
i(t) − vmax ≤ 0 or ui(t) − umax ≤ 0 becomes active at any time
∈ [t0i , t

m
i ], neither vmin − vi(t) ≤ 0 nor umin − ui(t) ≤ 0 can

ecome active in [t0i , t
m
i ]. The reverse also holds.

roof. Let u∗

i (t) = ai · t + bi > 0 > umin at some time t ∈ [t0i , t
m
i ).

ince u∗ m ∗
i (ti ) = 0 (Lemma 1) and ui (t) is a linearly decreasing
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unction (Corollary 2), we have u∗

i (t) > umin, for all t ∈ [t0i , t
m
i ],

.e., the constraint umin − ui(t) ≤ 0 cannot become active at any
ime in t ∈ [t0i , t

m
i ]. The corresponding quadratic optimal speed

rofile v∗

i (t) in (15) is a parabolic function of degree 2 with y-
ymmetric axis located at tmi in the speed-time graph. Applying
he necessary and sufficient condition of optimality in (15), we
ave

˙
∗

i (t) = ai · t + bi = 0, v̈∗

i (t) = ai, t ∈ [t0i , t
m
i ]. (20)

olving the first equation of (20), we have the extremum point
t t = −

bi
ai

which corresponds to the vertex of the parabola of
(15) at t = tmi . Whether this point corresponds to the maximum
or minimum of the (15) can be determined from the second
part of (20). Since u∗

i (t) is decreasing, ai < 0 (Remark 2). Thus,
the second equation of (20) indicates a maximum value at the
vertex tmi , indicating a concave quadratic profile of v∗

i (t). Since
he extremum of the quadratic profile of v∗

i (t) is located at tmi
nd vmin < vi(t0i ) < vmax (Assumption 3), we have v∗

i (t) > vmin
or all t ∈ [t0i , t

m
i ]. Therefore, the constraints vmin − vi(t) ≤ 0

annot become active at any time t ∈ [t0i , t
m
i ], and the proof of

he first part of Lemma 3 is complete.
Conversely, let u∗

i (t) = ai · t + bi < 0 < umax at some
∈ [t0i , t

m
i ]. Since u∗

i (t
m
i ) = 0 (Lemma 1) and u∗

i (t) is linearly
ncreasing in t ∈ [t0i , t

m
i ] (Remark 2), umin − ui(t) ≤ 0 cannot

ecome active at any t ∈ [t0i , t
m
i ]. In addition, u∗

i (t) yields a
onvex quadratic profile of v∗

i (t) with vertex at t = tmi . Since
he extremum point is located at tmi and vmin < vi(t0i ) < vmax
Assumption 3), we have v∗

i (t) < vmax for any t ∈ [t0i , t
m
i ], which

implies that the state constraint vi(t) − vmax ≤ 0 cannot become
active at any time t ∈ [t0i , t

m
i ].

Corollary 3. The sign of ai corresponding to the unconstrained
solution of (5) dictates the activation of either constraint set {vi(t)−
max ≤ 0, ui(t) − umax ≤ 0} or {vmin − vi(t) ≤ 0, umin − ui(t) ≤ 0}.

Proof. Since ai is the slope of the optimal control input u∗

i (t)
(Remark 2), the sign of ai determines whether u∗

i (t) is positive and
decreasing or negative and increasing, which, in turn, determines
the constraint activation criteria in Lemma 3.

Remark 4. The sign of ai can provide direct insight on which of
the state and control constraints becomes active, and thus it can
reduce the cardinality of the set of possible constrain activation
cases.

Based on Lemmas 2 and 3, we now present the following result
which provides the condition under which the state and control
constraints become active. Note that the result is based on the
initial and final conditions of (5) which enable the determina-
tion of the possible constraint activation set without solving the
unconstrained optimization problem in (5).

Theorem 1. Let CAV i ∈ N (t) enter the control zone with initial
speed vi(t0i ) and travel with the unconstrained optimal control input
u∗

i (t), t ∈ [t0i , t
m
i ]. Then, (i) vmin − vi(t) ≤ 0 and umin − ui(t) ≤ 0

do not become active in t ∈ [t0i , t
m
i ], if vi(t0i ) <

(pi(tmi )−pi(t0i ))
tmi

, and
(ii) vi(t) − vmax ≤ 0 and ui(t) − umax ≤ 0 do not become active in

∈ [t0i , t
m
i ], if vi(t0i ) >

(pi(tmi )−pi(t0i ))
tmi

.

roof. If vi(t0i ) <
(pi(tmi )−pi(t0i ))

tmi
, then from (19) ai < 0, hence

∗

i (t) is linearly decreasing (Lemma 2). Therefore, from Lemma 3,
vmin − vi(t) ≤ 0 and umin − ui(t) ≤ 0 cannot become active in
t ∈ [t0, tm], which concludes the proof of the first part.
i i

6

For the second part of Theorem 1, suppose that vi(t0i ) >
(pi(tmi )−pi(t0i ))

tmi
. Hence ai > 0 (Lemma 2), and u∗

i (t) is linearly
ncreasing. Therefore, from Lemma 3, vi(t) − vmax(t) ≤ 0 and
i(t) − umax ≤ 0 cannot become active in t ∈ [t0i , t

m
i ], and the

roof is complete.

emark 5. Theorem 1 aims at reducing the possible set of
onstraint activation cases. For example, if the condition in part (i)
f Theorem 1 holds, then from the 15 possible cases of constraint
ctivation, we only need to consider 3 cases: (a) vi(t)− vmax ≤ 0,
b) ui(t)−umax ≤ 0, and (c) both vi(t)−vmax ≤ 0 and ui(t)−umax ≤

. Similarly, if the condition in part (ii) of Theorem 1 holds, then
rom the 15 possible cases of constraint activation, we only need
o consider 3 cases: (a) vmin − vi(t) ≤ 0, (b) umin − ui(t) ≤ 0, and
c) both vmin − vi(t) ≤ 0 and umin − ui(t) ≤ 0.

Although Theorem 1 aims at reducing the possible constraint
ctivation cases, it does not lead to the identification of the exact
onstraint activation of the unconstrained solution of (5). In what
ollows, we provide the conditions that can be used to extend the
esults of Theorem 1 and identify the activation of any constraint
ase in [t0i , t

m
i ].

.2. Conditions of constraint activation

We start our exposition with some results that contain essen-
ial properties of the state and control constraint activation.

emma 4. If neither ui(t)−umax ≤ 0 nor umin −ui(t) ≤ 0 is active
t t = t0i , then it is guaranteed that neither of them will become
ctive for all t ∈ [t0i , t

m
i ].

roof. Suppose that the unconstrained optimal solution of (5)
ields u∗

i (t) = ait+bi with ai < 0. From Corollary 2 and Remark 2,
∗

i (t) decreases with respect to t , and at tmi , u∗

i (t
m
i ) = 0. Therefore,

f u∗

i (t
0
i ) < umax, then u∗

i (t) < umax for all t ∈ [t0i , t
m
i ]. The second

art of Lemma 4 can be proved following similar steps, hence it
s omitted.

emma 5. If either vi(t) − vmax ≤ 0 or vmin − vi(t) ≤ 0 becomes
ctive at any time t ∈ [t0i , t

m
i ), then it will remain active until

= tmi .

roof. Suppose that the unconstrained optimal solution of (5)
ields u∗

i (t) = ait+bi with ai < 0. From Corollary 2 and Remark 2,
∗

i (t) decreases with respect to t , and at tmi , u∗

i (t
m
i ) = 0, which

mplies that v∗

i (t) is monotonically increasing, i.e., v∗

i (t
m
i ) ≥ v∗

i (t)
in t ∈ [t0i , t

m
i ). Therefore, vi(t)− vmax ≤ 0 will remain active until

t = tmi . The second part of Lemma 5 can be proved following
similar steps, hence it is omitted.

Remark 6. Lemma 4 implies that the entry of the control-
constrained arc can be only at t = t0i , while Lemma 5 implies
that there is no exit point in [t0i , t

m
i ] of the state-constrained arc

after it becomes active.

The following results provide the conditions for which state
and control constraint activation cases can be identified for the
optimal control problem (5) a priori.

Theorem 2. Let u∗

i (t) = ait+bi, t ∈ [t0i , t
m
i ], be the optimal control

input of CAV i ∈ N (t) for the unconstrained solution of (5). Then, (i)
for ai < 0, vi(t)−vmax ≤ 0 becomes active if tmi ≤

3(pi(tmi )−pi(t0i ))

vi(t0i )+2vmax
, and

(ii) for ai > 0, vmin −vi(t) ≤ 0 becomes active if tmi ≥
3(pi(tmi )−pi(t0i ))

vi(t0i )+2vmin
.
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roof. For ai < 0, suppose that there exists a time tsi ∈ (t0i , t
m
i ] at

which vi(t) − vmax ≤ 0 becomes active. Then, from (15) and (18),
we have 1

2ai · (t
s
i )

2
+ bi · tsi + vi(t0i ) = vmax. Solving the quadratic

equation for tsi , we have tsi =
−2bi±

√
4b2i −8ai·(vi(t0i )−vmax)

2ai
, which

yields tsi = tmi ±

√
4b2i −8ai·(vi(t0i )−vmax)

4a2i
. Since tsi ≤ tmi , a feasible

olution of tsi exists if we have
√
4b2i − 8ai · (vi(t0i ) − vmax) ≥ 0

resulting in ai ≤
2(vi(t0i )−vmax)

(tmi )2
. Combining with (19), the proof of

he first statement of Theorem 2 follows.
For ai > 0, suppose that there exists a time tsi ∈ (t0i , t

m
i ] at

which the state constraint vmin − vi(t) ≤ 0 becomes active. Then,
from (15) and (18), we have 1

2ai·(t
s
i )

2
+bi·tsi +vi(t0i ) = vmin. Solving

the above equation for tsi , we have tsi =
−2bi±

√
4b2i −8ai·(vi(t0i )−vmin)

2ai
,

hich yields tsi = tmi ±

√
4b2i −8ai·(vi(t0i )−vmin)

4a2i
. Since tsi ≤ tmi , we need

o have
√
4b2i − 8ai · (vi(t0i ) − vmin) ≥ 0, and combining with (19),

he proof of the second statement of Theorem 2 follows.

heorem 3. Let u∗

i (t) = ai · t + bi, t ∈ [t0i , t
m
i ], be the

optimal control input of CAV i ∈ N (t) for the unconstrained
solution of (5). Then, (i) for ai < 0, ui(t) − umax ≤ 0 be-

comes active if tmi ≤
−3vi(t0i )+

√
9(vi(t0i ))

2+12umax·(pi(tmi )−pi(t0i ))

2umax
, and

ii) for ai > 0, umin − ui(t) ≤ 0 becomes active if tmi ≥

−3vi(t0i )+
√
9(vi(t0i ))

2+12umin·(pi(tmi )−pi(t0i ))

2umin
.

Proof. For ai < 0, without loss of generality, we let t0i = 0.
Given vi(t0i ), pi(t

0
i ) and pi(tmi ), we will show that tmi determines

whether ui(t) − umax ≤ 0 becomes active or not. Let t̂mi be
the value for which ui(t) − umax ≤ 0 becomes active at t0i ,
and âi, b̂i the corresponding constants of integration. Then from
(17) and (19), we can write b̂i = −

3(vi(t0i )·t̂
m
i −L)

(t̂mi )2
= umax, where

L = pi(tmi ) − pi(t0i ) = pi(t̂mi ) − pi(t0i ), which can be reduced
to umax · (t̂mi )2 + 3vi(t0i ) · t̂mi − 3L = 0. The solution of the last

equation yields t̂mi =
−3vi(t0i )±

√
9(vi(t0i ))

2+12umax·L

2umax
. Since t̂mi > 0,

ˆmi =
−3vi(t0i )+

√
9(vi(t0i ))

2+12umax·L

2umax
. Hence, for any tmi such that tmi ≤

t̂mi , ui(t) − umax ≤ 0 becomes active, and the proof of the first
statement of Theorem 3 is complete.

For ai > 0, without loss of generality, we let t0i = 0.
Let t̂mi be a value that umin − ui(t) ≤ 0 becomes active at t0i ,
and âi, b̂i the corresponding constants of integration. Then from
(17) and (19), we can write b̂i = −

3(vi(t0i )·t̂
m
i −L)

(t̂mi )2
= umin, where

L = pi(tmi ) − pi(t0i ) = pi(t̂mi ) − pi(t0i ), which can be reduced to
umin · (t̂mi )2+3vi(t0i ) · t̂

m
i −3L = 0. The solution of the last equation

yields t̂mi =
−3vi(t0i )±

√
9(vi(t0i ))

2+12umin·L

2umin
, from which we have the

only admissible result t̂mi =
−3vi(t0i )+

√
9(vi(t0i ))

2+12umin·L

2umin
. Hence, for

any tmi such that tmi ≥ t̂mi , umin − ui(t) ≤ 0 becomes active, and
the proof of the second statement of Theorem 3 is complete.

3.3. Interdependence of constraint activation cases

We have discussed so far the conditions under which any
of the state and control constraints become active. Using these
conditions, we can derive the analytical solution of (5). However,
the resulting solution might activate additional constrained arcs.
 o

7

Therefore, we need to be able to identify beforehand under which
conditions any additional constrained arcs may become active.
Next, we provide a set of conditions based on the junction point
where transition between the constrained and unconstrained arcs
occur.

Theorem 4. For CAV i ∈ N (t), let τ ∗
s ∈ (t0i , t

m
i ] be the

unction point of the state constrained arc where either vi(t) −

max ≤ 0 or vmin − vi(t) ≤ 0 becomes active. Then, (i) vi(t) −

max ≤ 0 may cause ui(t) − umax ≤ 0 to become active, if τ ∗
s ≤

−3vi(t0i )+
√
9(vi(t0i ))

2+12umax·(p∗
i (τ

∗
s )−pi(t0i ))

2umax
, and (ii) vmin − vi(t) ≤ 0 may

cause umin − ui(t) ≤ 0 to become active, if

τ ∗
s ≥

−3vi(t0i )+
√
9(vi(t0i ))

2+12umin·(p∗
i (τ

∗
s )−pi(t0i ))

2umin
.

Proof. Suppose that vi(t)−vmax ≤ 0 becomes active at τ ∗
s , where

0
i < τ ∗

s ≤ tmi . Then from (1), u∗

i (t) = 0 in t ∈ [τ ∗
s , tmi ] and

i(τ ∗
s ) = pi(tmi ) − vmax · (tmi − τ ∗

s ). We will determine whether
ny control constraint ui(t) − umax ≤ 0 becomes active in t ∈

t0i , τ
∗
s ]. From Lemma 4, the control constraint becomes active

t t = t0i . Let t̂mi be the value that ui(t) − umax ≤ 0 becomes
ctive at t0i , and âi, b̂i the corresponding constants of integration.
ithout loss of generality, if we let t0i = 0, then from (17)

nd (19) we can write, b̂i = −
3(vi(t0i )·t̂

m
i −(p∗

i (τ
∗
s )−pi(t0i ))

(t̂mi )2
= umax,

here pi(τ ∗
s ) − pi(t0i ) = pi(t̂mi ) − pi(t0i ), which can be reduced to

max · (t̂mi )2 + 3vi(t0i ) · t̂mi − 3(p∗

i (τ
∗
s ) − pi(t0i )) = 0. The solution of

he last equation yields t̂mi =
−3vi(t0i )±

√
9(vi(t0i ))

2+12umax·(p∗
i (τ

∗
s )−pi(t0i )))

2umax
.

ince t̂mi > 0, t̂mi =
−3vi(t0i )+

√
9(vi(t0i ))

2+12umax·(p∗
i (τ

∗
s )−pi(t0i ))

2umax
. Hence, for

any τ ∗
s such that τ ∗

s ≤ t̂mi , ui(t) − umax ≤ 0 becomes active, and
the proof of the first statement of Theorem 4 is complete.

Suppose that vmin−vi(t) ≤ 0 becomes active at τ ∗
s , where t0i <

∗
s ≤ tmi . Then from (1), u∗

i (t) = 0 in t ∈ [τ ∗
s , tmi ] and pi(τ ∗

s ) =

i(tmi ) − vmin · (tmi − τ ∗
s ). Let t̂

m
i be the value that umin − ui(t) ≤ 0

ecomes active at t0i , and âi, b̂i the corresponding constants of
ntegration. Without loss of generality, if we let t0i = 0, then from

17) and (19) we can write, b̂i = −
3(vi(t0i )·t̂

m
i −(p∗

i (τ
∗
s )−pi(t0i ))

(t̂mi )2
= umin,

here pi(τ ∗
s ) − pi(t0i ) = pi(t̂mi ) − pi(t0i ), which can be reduced to

min · (t̂mi )2 + 3vi(t0i ) · t̂mi − 3(p∗

i (τ
∗
s ) − pi(t0i )) = 0. The solution of

he last equation yields t̂mi =
−3vi(t0i )±

√
9(vi(t0i ))

2+12umin·(p∗
i (τ

∗
s )−pi(t0i )))

2umin
,

here t̂mi =
−3vi(t0i )+

√
9(vi(t0i ))

2+12umin·(p∗
i (τ

∗
s )−pi(t0i ))

2umin
is the only ad-

missible result. Hence, for any τ ∗
s such that τ ∗

s ≥ t̂mi , umin −

i(t) ≤ 0 becomes active, and the proof of the second statement
f Theorem 4 is complete.

heorem 5. For CAV i ∈ N (t), let τ ∗
c ∈ (t0i , t

m
i ] be the junction

oint of the control constrained arc where either ui(t) − umax ≤ 0
or umin − ui(t) ≤ 0 becomes active. Then, (i) ui(t) − umax ≤ 0 may
cause vi(t) − vmax ≤ 0 to become active, if tmi ≥ τ ∗

c −
2(vi(τ∗

c )−vmax)
umax

,
nd (ii) umin − ui(t) ≤ 0 may cause vmin − vi(t) ≤ 0 to become
ctive, if tmi ≥ τ ∗

c −
2(vi(τ∗

c )−vmin)
umin

.

roof. Suppose that ui(t) − umax ≤ 0 becomes active at t0i
Remark 6) with an exit time at τ ∗

c ∈ (t0i , t
m
i ]. Then from (1),

∗

i (t) = umax in t ∈ [t0i , τ
∗
c ]. Consequently, we have vi(τ ∗

c ) =

i(t0i )+umax · τ ∗
c . We will determine whether any state constraint

i(t) − vmax ≤ 0 becomes active for the unconstrained arc within
∈ [τ ∗

c , tmi ]. Suppose that there exists a time tsi ∈ (τ ∗
c , tmi ] at

hich vi(t) − vmax ≤ 0 becomes active in [τ ∗
c , tmi ]. Without loss

f generality, if we let τ ∗
= 0, then the constants of integration
c
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0

âi, b̂i are given by âi = −
umax
t̂mi

and b̂i = umax (Remark 2), where

t̂mi := tmi − τ ∗
c . From (15) and (18), we have 1

2 âi · (tsi )
2

+ b̂i ·

tsi + vi(τ ∗
c ) = vmax. Solving the quadratic equation for tsi , we

have tsi =
−2b̂i±

√
4b̂2i −8âi·(vi(τ∗

c )−vmax)

2âi
, which yields tsi = t̂mi ±

4b̂2i −8âi·(vi(τ∗
c )−vmax)

4â2i
. Since we require tsi ≤ t̂mi , we need to have√

4b̂2i − 8âi · (vi(τ ∗
c ) − vmax) ≥ 0 resulting in âi ≤

2(vi(τ∗
c )−vmax)
(t̂mi )2

. By
sing the value of âi in the above equation and simplifying, the
roof of the first statement of Theorem 2 follows.
For the second statement of Theorem 5, suppose that there

xists a time tsi ∈ (τ ∗
c , tmi ] at which vmin − vi(t) ≤ 0 becomes

ctive in [τ ∗
c , tmi ]. Without loss of generality, if we let τ ∗

c = 0,
hen the constants of integration âi, b̂i are given by âi = −

umin
t̂mi

nd b̂i = umin (Remark 2), where t̂mi := tmi − τ ∗
c . From (15) and

(18), we have 1
2 âi · (tsi )

2
+ b̂i · tsi + vi(τ ∗

c ) = vmin. Solving the

quadratic equation for tsi , we have tsi =
−2b̂i±

√
4b̂2i −8âi·(vi(τ∗

c )−vmin)

2âi
,

hich yields tsi = t̂mi ±

√
4b̂2i −8âi·(vi(τ∗

c )−vmin)

4â2i
. Since tsi ≤ t̂mi ,

e need to have
√
4b̂2i − 8âi · (vi(τ ∗

c ) − vmin) ≥ 0 resulting in

ˆ i ≤
2(vi(τ∗

c )−vmin)
(t̂mi )2

. By using the value of âi in the above equation
nd simplifying, the proof of the second statement of Theorem 2
ollows.

emark 7. The conditions in Theorems 4 and 5 depend on the
unction points τ ∗

s and τ ∗
c of the corresponding constraint acti-

ation cases, which can be derived analytically from the known
oundary conditions of (5). Since the derivation of such analytical
olution requires additional information, we provide the analysis
n the following section.

. Analytical solution of the constrained optimal control prob-
em

To derive the analytical solution of (5), we present a condition-
ased framework consisting of the following steps. We first eval-
ate the condition stated in Theorem 1 to reduce the set of
ossible constraint activation cases (Remark 5). Then using above
esult, we evaluate the conditions presented in Theorems 2 and
to determine whether any constraint has become active. If

one of the constraints in (2) becomes active, we simply derive
he unconstrained solution using (14)–(16) and terminate the
rocess. However, if the conditions in Theorems 2 and 3 indicate
he activation of any constraint cases, we need to evaluate further
he conditions in Theorems 4 and 5 to determine whether any
dditional constraints may become active within the constrained
olution as a result of the constraint cases identified from Theo-
ems 2 and 3. Once the nature of the final constraint activation
ase is identified using Theorems 4 and 5, we then piece together
he relevant unconstrained and constrained arcs that yield a set
f algebraic equations which are solved simultaneously using the
oundary conditions of (5) and interior conditions between the
rcs.
Since we piece together multiple constrained and uncon-

trained arcs, we denote the constants of integration correspond-
ng to each arc by a(p)i , b(p)i , c(p)i , d(p)i , p = 1, 2, . . . ,Narc , where
arc ∈ N is the total number of arcs pieced together in the
onstrained solution and p represents the position of the arcs in
erms of their appearance in the optimal solution starting from
0
i to tmi . For Narc arcs, we have (Narc − 1) junction points. At any
unction point τ , the states are continuous, namely,

(τ−) = p (τ+), v (τ−) = v (τ+), (21)
i i i i a

8

where, τ− and τ+ represent the time instance right before and
ight after τ , respectively.

In what follows, we present the closed form analytical solution
f different cases of state and control constraint activation to
erive the optimal input u∗

i (t), t ∈ [t0i , t
m
i ], for each CAV i ∈ N (t).

ase 1. Only the state constraint vi(t)−vmax ≤ 0 becomes active.

In this case, we have µa
i (t) = µb

i (t) = ηd
i (t) = 0. From (11),

12), and (13), we have ui(t)+λv
i (t) = 0, λ̇

p
i (t) = 0, and λ̇v

i (t) =

−λ
p
i (t) − ηc

i (t). By Lemma 5, CAV i ∈ N (t) exits the constrained
arc at t = tmi which leads to a single junction point. Let τs,
t0i < τs < tmi , be the junction point and let τ−

s and τ+
s be the

time instance just before and after time τs. The optimal speed and
control input on the constrained arc are

v∗

i (t) = vmax, u∗

i (t) = 0, t ∈ [τs, tmi ]. (22)

The jump conditions of the costates and the Hamiltonian at τs are

λ
p
i (τ

−

s ) = λ
p
i (τ

+

s ) + πi ·
∂

∂pi(t)

[
vi(t) − vmax

] ⏐⏐⏐⏐
t=τs

, (23a)

λv
i (τ

−

s ) = λv
i (τ

+

s ) + πi ·
∂

∂vi(t)

[
vi(t) − vmax

] ⏐⏐⏐⏐
t=τs

, (23b)

Hi(τ−

s ) = Hi(τ+

s ) − πi ·
∂

∂t

[
vi(t) − vmax

] ⏐⏐⏐⏐
t=τs

, (23c)

where πi is a constant Lagrange multiplier determined so that
vi(t)− vmax = 0 is satisfied. Note that, (23a)–(23c) imply possible
discontinuity of the costates and the Hamiltonian at t = τs. The
tate variables are continuous at t = τs. From (23c), we have
1
2
u2
i (τ

−

s ) + λ
p
i (τ

−

s ) · vi(τ−

s ) + λv
i (τ

−

s ) · ui(τ−

s )

ηc
i (τ

−

s ) · (vi(τ−

s ) − vmax) =
1
2
u2
i (τ

+

s ) + λ
p
i (τ

+

s ) · vi(τ+

s )

λv
i (τ

+

s ) · ui(τ+

s ) + ηc
i (τ

+

s ) · (vi(τ+

s ) − vmax). (24)

rom the continuity of the states and since vi(τ+
s ) = vmax,

i(τ+
s ) = 0, we have λ

p
i (τ

−
s ) · vi(τ−

s ) = λ
p
i (τ

+
s ) · vi(τ+

s ). The
agrange multiplier ηc

i (t) in (9), yields ηc
i (τ

−
s ) · (vi(τ−

s ) − vmax) =
c
i (τ

+
s ) · (vi(τ+

s ) − vmax) = 0. By combining the above equa-
ions, (24) reduces to 1

2u
2
i (τ

−
s ) + λv

i (τ
−
s ) · ui(τ−

s ) = 0, which
mplies that either ui(τ−

s ) = 0 or 1
2ui(τ−

s ) + λv
i (τ

−
s ) = 0,

r both. Since the second term contradicts ui(t) + λv
i (t) = 0,

e have ui(τ−
s ) = 0. The Lagrange multiplier ηc

i (t) is ηc
i (t) =

0 if vi(t) < vmax, t ∈ [t0i , τs),
−λ

p
i (t), if vi(t) = vmax, t ∈ [τs, tmi ].

.

Using the Euler–Lagrange equations, interior conditions, the
nitial and final boundary conditions, and the terminal condition
f the costates, we can formulate a set of equations by piecing
he unconstrained and constrained arcs together at time t =

s. This results in a total number of 9 equations that we need
o solve simultaneously to compute 4 + 4 + 1 = 9 variables
orresponding to the constants of integration of unconstrained
nd constrained arc, and the junction point τ ∗

s respectively. From
14)–(16) and the boundary conditions in (5), we receive the
ollowing 4 equations: 1

2a
(1)
i · (t0i )

2
+ b(1)i · t0i + c(1)i = vi(t0i ),

1
6a

(1)
i ·

(t0i )
3

+
1
2b

(1)
i · (t0i )

2
+ c(1)i · t0i + d(1)i = pi(t0i ), a

(2)
i · tmi + b(2)i =

, 1
6a

(2)
i · (tmi )3 +

1
2b

(2)
i · (tmi )2 + c(2)i · tmi + d(2)i = pi(tmi ). From the

state and control continuity at the junction point τs, we receive
the remaining 5 equations are,
1
2
a(1)i · (τs)2 + b(1)i · τs + c(1)i = vmax, (25a)
(1)

· τ + b(1) = 0, (25b)
i s i
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1
6
a(1)i · (τs)3 +

1
2
b(1)i · (τs)2 + c(1)i · τs + d(1)i

+ vmax · (tmi − τs) = pi(tmi ), (25c)
1
2
a(2)i · (τs)2 + b(2)i · τs + c(2)i = vmax, (25d)
(2)
i · τs + b(2)i = 0, (25e)

where a(1)i , b(1)i , c(1)i , d(1)i and a(2)i , b(2)i , c(2)i , d(2)i are the constants
of integration for the unconstrained and constrained arcs, respec-
tively. The recursive process to solve the above set of equations
cannot be computed in real time. Additionally, the computational
speed and convergence of numerical methods are also sensitive to
the initial guess of the variables, which impose additional burden
on the real-time computation effort. However, if the junction
point τ ∗

s can be derived as an explicit function of the initial and
final boundary conditions, then the above set of equations can
lead to a closed-form solution that can be solved analytically in
real time.

Lemma 6. For CAV i ∈ N (t), let τ ∗
s be the junction point

between the unconstrained and constrained arc of the state con-
strained vi(t) − vmax ≤ 0 solution. Then τ ∗

s is an explicit function
of pi(tmi ), vmax, tmi , and vi(t0i ), and can be expressed as τ ∗

s =
3(pi(tmi )−vmax·tmi )

(vi(t0i )−vmax)
.

roof. See Appendix A.

ase 2. Only the control constraint ui(t) − umax ≤ 0 becomes
active.

In this case, we have µb
i (t) = ηc

i (t) = ηd
i (t) = 0. From (11),

(12), and (13), we have ui(t) + λv
i (t) + µa

i (t) = 0, λ̇
p
i (t) =

, and λ̇v
i (t) = −λ

p
i (t). By Lemma 4, CAV i ∈ N (t) enters the

onstrained arc at time t = t0i and has a single exit junction point.
Let τc, t0i < τc < tmi , be the junction point where the control
constrained arc transitions into the unconstrained arc, and let τ−

c
nd τ+

c be the immediate left and the right instance of τc . The
ptimal control input u∗

i (t) at the junction point is u∗

i (τc) = umax.
he jump conditions are λ

p
i (τ

−
c )−λ

p
i (τ

+
c ) = 0, λv

i (τ
−
c )−λv

i (τ
+
c ) =

0, and Hi(τ+
c ) − Hi(τ−

c ) = 0, which imply continuity of the
costates and the Hamiltonian at the junction point t = τc . The
last jump condition leads to 1

2u
2
i (τ

−
c ) + λ

p
i (τ

−
c ) · vi(τ−

c ) + λv
i (τ

−
c ) ·

i(τ−
c ) + µa

i (τ
−
c ) · (ui(τ−

c ) − umax) =
1
2u

2
i (τ

+
c ) + λ

p
i (τ

+
s ) · vi(τ+

c ) +
v
i (τ

+
c ) · ui(τ+

c ) + µa
i (τ

+
c ) · (ui(τ+

c ) − umax).
From the continuity of the state and costate λ

p
i at t = τc ,

e have λ
p
i (τ

−
c ) · vi(τ−

c ) = λ
p
i (τ

+
c ) · vi(τ+

c ). Moreover, (7) yields
µa

i (τ
−
c ) · (ui(τ−

c ) − umax) = µa
i (τ

+
c ) · (ui(τ+

c ) − umax) = 0,
hich after simplification leads to either ui(τ+

c ) = ui(τ−
c ) or

1
2 (ui(τ+

c ) + ui(τ−
c )) + λv

i (τ
+
c ) = 0, or both. Both equations lead

to ui(τ+
c ) = ui(τ−

c ) = umax. The Lagrange multiplier µa
i (t) is

µa
i (t) is µa

i (t) =

{
−λv

i (t) − vmax, if t ∈ [t0i , τc].
0 if t ∈ [τc, tmi ].

Using the Euler–Lagrange equations, jump conditions at the
junction point, the initial and final boundary conditions, and the
costate condition at t = tmi , we can formulate a set of equations
by piecing the constrained and unconstrained arcs together at
t = τc . In this case, we have a constrained arc with constant
parameters a(1)i , b(1)i , c(1)i , d(1)i , followed by an unconstrained arc
with constant parameters a(2)i , b(2)i , c(2)i , d(2)i pieced together at
junction point τc , leading to 4+ 4+ 1 = 9 variables that need to
e determined. At time t = t0i and t = τc , we have the following

set of equations for the constrained arc,

a(1)i · t0i + b(1)i = umax, (26a)

a(1) · τ + b(1) = u , (26b)
i c i max

9

1
2
a(1)i · (t0i )

2
+ b(1)i · t0i + c(1)i = vi(t0i ), (26c)

1
6
a(1)i · (t0i )

3
+

1
2
b(1)i · (t0i )

2
+ c(1)i · t0i + d(1)i = pi(t0i ). (26d)

rom (26a) and (26b), considering t0i = 0 without loss of gener-
lity, we have a(1)i = 0 and b(1)i = umax. Substituting in (26c), we

have c(1)i = vi(t0i ). Finally, solving (26d), d(1)i = pi(t0i ). The follow-
ing set of equations aim to determine the remaining constants of
integration a(2)i , b(2)i , c(2)i , d(2)i of the exiting unconstrained arc and
the junction point τ ∗

c

a(2)i · τc + b(2)i = umax, (27a)

a(2)i · tmi + b(2)i = 0, (27b)
1
2
a(2)i · τ 2

c + (b(2)i − umax) · τc + c(2)i − v0
i = 0, (27c)

1
6
a(2)i · τ 3

c +
1
2
(b(2)i − umax) · τ 2

c + (c(2)i − v0
i ) · τc

+ d(2)i − pi(t0i ) = 0, (27d)
1
6
a(2)i · (tmi )3 +

1
2
b(2)i · (tmi )2 + c(2)i · tmi + d(2)i = pi(tmi ). (27e)

emma 7. For CAV i ∈ N (t), let τ ∗
c be the junction point

etween the unconstrained and control constraint ui(t) − umax ≤

0 solution. Then τ ∗
c can be expressed as an explicit function of

i(tmi ), pi(t0i ), umax, tmi , and vi(t0i ).

roof. See Appendix B.

ase 3. Both state constraint vi(t) − vmax ≤ 0 and the control
onstraint ui(t) − umax ≤ 0 become active.

If both ui(t)−umax ≤ 0 and vi(t)−vmax ≤ 0 become active, we
erive the analytical solution combining the steps described in
he previous two cases. In this case, we have µb

i (t) = ηd
i (t) =

. From (11), (12), and (13), we have ui(t) + λv
i (t) + µa

i (t) =

, λ̇
p
i (t) = 0, and λ̇v

i (t) = −λ
p
i (t) − ηc

i (t). Let τc be the
unction point that CAV i ∈ N (t) exits the control constrained
rc and τs be the junction point that CAV i enters the state
onstrained arc such that t0i < τc < τs < tmi . The optimal
ontrol input at the control constrained arc is u∗

i (t) = umax, for
ll t ∈ [t0i , τc]. In the state constrained arc, we have v∗

i (t) =

max, u∗

i (t) = 0, for all t ∈ [τs, tmi ]. From the jump conditions
t the junction points τc and τs, we have continuity in the state
nd control input. The Lagrange multipliers µa

i (t) and ηc
i (t) are

iven by µa
i (t) =

{
0, t ∈ (τc, tmi ],

−λv
i (t) − umax, t ∈ [t0i , τc]

}
, and ηc

i (t) =

0 t ∈ [t0i , τs),
−λ

p
i (t), t ∈ [τs, tmi ]

}
.

Solving (26a)–(26d), considering t0i = 0 without loss of gener-
lity, the constants of integration a(1)i , b(1)i , c(1)i , d(1)i of the control
onstrained arc are a(1)i = 0, b(1)i = umax, c(1)i = v0

i and
(1)
i = pi(t0i ). The unconstrained arc with constants of integra-
ion a(2)i , b(2)i , c(2)i , and d(2)i can consist of the following set of
quations,
(2)
i · τc + b(2)i = umax, (28a)
1
2
a(2)i · τ 2

c + (b(2)i − umax) · τc + c(2)i − v0
i = 0, (28b)

1
6
a(2)i · τ 3

c +
1
2
(b(2)i − umax) · τ 2

c + (c(2)i − v0
i ) · τc

+ (d(2) − p (t0)) = 0, (28c)
i i i
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(2)
i · τs + b(2)i = 0, (28d)
1
2
a(2)i · τ 2

s + b(2)i · τs + c(2)i − vmax = 0, (28e)

1
6
a(2)i · (τs)3 +

1
2
b(2)i · (τs)2 + c(2)i · τs + d(2)i

+ vmax · (tmi − τs) = pi(tmi ). (28f)

inally, the state-constrained arc with constants of integration
(3)
i , b(3)i , c(3)i , d(3)i consists of the following set of equations,
(3)
i · tmi + b(3)i = 0, (29a)
(3)
i · τs + b(3)i = 0, (29b)
1
2
a(3)i · τ 2

s − b(3)i · τs − c(3)i − vmax = 0, (29c)

1
6
a(3)i · (tmi )3 +

1
2
b(3)i · (tmi )2 + c(3)i · tmi

+ d(3)i − pi(tmi ) = 0. (29d)

rom (29a)–(29d), we have a(3)i = 0, b(3)i = 0, c(3)i = vmax and
(3)
i = pi(tmi ) − vmax · tmi . The remaining constants of integration
(2)
i , b(2)i , c(2)i , d(2)i of the unconstrained arc, and the junction points

τ ∗
s and τ ∗

c can be determined by solving the set of Eqs. (28a)–(28f).

Lemma 8. The junction point τ ∗
s between the unconstrained and

the constrained arc if vi(t) − vmax ≤ 0 becomes active, and the
junction point τ ∗

c between the unconstrained and the constrained
arc if ui(t) − umax ≤ 0 also becomes active are explicit functions of
pi(tmi ), vmax, umax, tmi , and vi(t0i ).

Proof. See Appendix C.

Case 4. Only the state constraint vmin −vi(t) ≤ 0 becomes active.

In this case, we have µa
i (t) = µb

i (t) = ηc
i (t) = 0. From (11),

(12), and (13), we have ui(t)+λv
i (t) = 0, λ̇

p
i (t) = 0, and λ̇v

i (t) =

−λ
p
i (t)−ηd

i (t). Let t = τs be the junction point that vmin−vi(t) ≤ 0
becomes active. The optimal speed and control at the junction
point are v∗

i (t) = vmin, u∗

i (t) = 0, for all t ∈ [τs, tmi ].
The jump conditions are

λ
p
i (τ

−

s ) = λ
p
i (τ

+

s ) + πi ·
∂

∂pi(t)

[
vmin − vi(t)

] ⏐⏐⏐⏐
t=τs

, (30a)

λv
i (τ

−

s ) = λv
i (τ

+

s ) + πi ·
∂

∂vi(t)

[
vmin − vi(t)

] ⏐⏐⏐⏐
t=τs

, (30b)

Hi(τ−

s ) = Hi(τ+

s ) − πi ·
∂

∂t

[
vmin − vi(t)

] ⏐⏐⏐⏐
t=τs

, (30c)

where πi is a constant Lagrange multiplier determined so that
vmin − vi(t) = 0 is satisfied. Note that, (30a)–(30c) imply possible
discontinuity of the costates and the Hamiltonian at t = τs. The
tate variables are continuous at t = τs. From (30a) and (30c),
he position costate and the Lagrangian of the Hamiltonian is
ontinuous at t = τs.

emma 9. If the state constraint vmin − vi(t) ≤ 0 becomes active,
hen the control input ui(t) is continuous at the junction point t = τs.

roof. See Appendix D.

The Lagrange multiplier ηd
i (t) can be expressed as, ηd

i (t) =

{
0, if t ∈ [t0i , τs),
−λ

p
i (t), if t ∈ [τs, tmi ].

Using the Euler–Lagrange equations,

nterior conditions, initial and final boundary conditions, and the
ostate condition at t = tm, we can formulate a set of equations
i e

10
similar to Case 1 to solve for 4+4+1 = 9 variables corresponding
to the constants of integration of the unconstrained and con-
strained arc, and the junction point τs. The set of equations of the
unconstrained arc with constants of integration a(1)i , b(1)i , c(1)i , d(1)i
are, 1

2a
(1)
i ·(t0i )

2
+b(1)i ·t0i +c(1)i = vi(t0i ),

1
6a

(1)
i ·(t0i )

3
+

1
2b

(1)
i ·(t0i )

2
+c(1)i ·

t0i +d(1)i = pi(t0i ),
1
2a

(1)
i ·(τs)2+b(1)i ·τs+c(1)i = vmin, a(1)i ·τs+b(1)i =

0, and 1
6a

(1)
i · (τs)3 +

1
2b

(1)
i · (τs)2 + c(1)i · τs + d(1)i + vmin · (tmi − τs) =

i(tmi ). The set of equations of the state constrained arc with the
onstants of integration a(2)i , b(2)i , c(2)i , d(2)i are 1

2a
(2)
i · (τs)2 + b(2)i ·

s + c(2)i = vmin, a(2)i · tmi + b(2)i = 0, a(2)i · τs + b(2)i = 0, and 1
6a

(2)
i ·

t0i )
3

+
1
2b

(2)
i · (t0i )

2
+ c(2)i · t0i + d(2)i = pi(tmi ), which yield a(2)i =

, b(2)i = 0, c(2)i = vmin and d(2)i = pi(tmi )−vmin ·tmi . The remaining
onstants of integration a(1)i , b(1)i , c(1)i , d(1)i and the junction point

τ ∗
s can be determined numerically by solving simultaneously the
bove set of equations.

emma 10. For CAV i ∈ N (t), let τ ∗
s be the junction point between

he unconstrained and constrained arc of the state constrained vmin−

i(t) ≤ 0 solution. Then τ ∗
s is an explicit function of pi(tmi ), vmin, tmi

nd vi(t0i ), and can be expressed as τ ∗
s =

3(pi(tmi )−vmin·tmi )

(vi(t0i )−vmin)
.

roof. The proof is similar to the proof of Lemma 6 (see Ap-
endix A), hence it is omitted.

ase 5. Only the control constraint umin − ui(t) ≤ 0 becomes
ctive.

In this case, we have µa
i (t) = ηc

i (t) = ηd
i (t) = 0. From (11),

12), and (13), we have ui(t) + λv
i (t) − µb

i (t) = 0, λ̇
p
i (t) =

, and λ̇v
i (t) = −λ

p
i (t). Let τc > t0i be the junction point that CAV

∈ N (t) transitions from the constrained arc to the unconstrained
rc. The optimal control at the junction point τc is u∗

i (τc) = umin.
rom the jump conditions, we have λ

p
i (τ

−
c ) = λ

p
i (τ

+
c ), λv

i (τ
−
c ) =

v
i (τ

+
c ), and Hi(τ+

c ) = Hi(τ−
c ).

emma 11. If the control constraint umin − ui(t) ≤ 0 becomes
ctive, then the control input u(t) is continuous at the junction point
= τc .

roof. See Appendix E.

The Lagrange multiplier µb
i (t) can be expressed as, µb

i (t) =

{
λv
i (t) + umin, if t ∈ [t0i , τc),

0, if t ∈ [τc, tmi ].
Using the Euler–Lagrange

quations, interior condition, initial and final boundary condi-
ions, and the condition of costates at t = tmi , we have a set of
quations of the constrained arc: a(1)i · t0i + b(1)i = umin, a

(1)
i · τc +

(1)
i = umin,

1
2a

(1)
i (t0i )

2
+ b(1)i · t0i + c(1)i = vi(t0i ), and 1

6a
(1)
i (t0i )

3
+

1
2b

(1)
i · (t0i )

2
+ c(1)i · t0i + d(1)i = 0., resolving which with t0i = 0

ields, a(1)i = 0, b(1)i = umin, c(1)i = vi(t0i ), d(1)i = pi(t0i ),
here a(1)i , b(1)i , c(1)i , d(1)i are the constants of integration for the
onstrained arc. In addition, we have a set of equations of the
nconstrained arc: a(2)i · τc − b(2)i + umin = 0, a(2)i · tmi + b(2)i =

, 1
2a

(2)
i · τ 2

c + (b(2)i − umin) · τc + c(2)i − vi(t0i ) = 0, 1
6a

(2)
i · τ 3

c +

1
2 (b

(2)
i − umin) · τc + (c(2)i − vi(t0i ) · τc + d(2)i = 0, and 1

6a
(2)
i · (tmi )3 +

1
2b

(2)
i ·(tmi )2+c(2)i ·tmi +d(2)i −pi(tmi ) = 0, where a(2)i , b(2)i , c(2)i , d(2)i

are the constants of integration of the unconstrained arc.

Lemma 12. For CAV i ∈ N (t), let τ ∗
s be the junction point between

he unconstrained and constrained arc of the control constrained
umin − ui(t) ≤ 0) solution of (5). Then τ ∗

c can be expressed as an
xplicit function of p (tm), p (t0), u , tm, and v (t0).
i i i i min i i i
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roof. The proof is similar to the proof of Lemma 7 (see Ap-
endix B), hence it is omitted.

ase 6. Both state constraint vmin − vi(t) ≤ 0 and the control
constraint umin − ui(t) ≤ 0 become active.

In this case, we can derive the analytical solution following
imilar steps to Case 3. A control constrained umin − ui(t) ≤

arc with constants of integration a(1)i , b(1)i , c(1)i , d(1)i is pieced
ogether with an unconstrained arc with constants of integration
(2)
i , b(2)i , c(2)i , d(2)i at the junction point τc . The unconstrained arc
s pieced together with the state constrained vmin − vi(t) ≤ 0
rc with constants of integration a(3)i , b(3)i , c(3)i , d(3)i at the junction
oint τs. The constants of integration of the constrained and
nconstrained arcs, and the junction points τ ∗

s and τ ∗
c can be

etermined by a set of equations similar to those derived in Case
.

emma 13. The junction point τ ∗
s between the unconstrained and

he constrained arc when vmin − vi(t) ≤ 0 becomes active, and the
unction point τ ∗

c between the unconstrained and the constrained arc
hen umin − ui(t) ≤ 0 also becomes active are explicit functions of
i(tmi ), vmin, umin, tmi , and vi(t0i ).

roof. The proof is similar to the proof of Lemma 8 (see Ap-
endix E), hence it is omitted.

. Simulation results

We validate the analytical solution of the optimal control
roblem (5) through numerical simulation in MATLAB. In this
ection, we present the results considering tmi = 10 s, where
nly the state constraint vi(t) − vmax ≤ 0 and control constraint
i(t) − umax ≤ 0 can become active (Theorem 1). Similar results
o those presented here can be also derived for the case where
min − vi(t) ≤ 0 and umin − ui(t) ≤ 0 become active. We consider

the initial and final position of CAV i ∈ N (t) to be pi(t0i ) = 0 m
and pi(tmi ) = 200 m, and the initial speed vi(t0i ) = 14.3 m/s.
For each CAV i ∈ N (t), we enforce the maximum speed limit
and acceleration to be vmax = 22 m/s and umax = 1.8 m/s2
respectively. The standard procedure to solve the optimal control
problem (5) is to identify whether any of the state or control
constraints become active and derive the constrained solution in
a recursive manner until none of the constraints are active, as
shown in Fig. 2. The unconstrained solution (blue trajectory in
Fig. 2) activates the state constraint vi(t) − vmax ≤ 0 only. The
acceleration corresponding to the state-constrained (vi(t)−vmax ≤

0) solution is shown by the red trajectory in Fig. 2, where the
unconstrained and constrained arcs are pieced together at the
junction point at t = 7.79 s. However, the state-constrained
solution (red trajectory in Fig. 2) has to be re-derived since the
control constraint ui(t) − umax ≤ 0, which was not active before,
becomes active now as shown by the red trajectory in Fig. 2.
The constrained optimal control input is derived by piecing the
state and control constrained arcs together, and it is shown by
the green trajectory in Fig. 2.

In our condition-based framework, we do not need to consider
the intermediate iterative steps above, i.e., the unconstrained
(blue trajectory) and state constrained solution (red trajectory)
in Fig. 2. We can directly derive the final closed-form analytical
solution (green trajectory in Fig. 2) by sequentially checking
the conditions in Theorems 1–5. First, we start with Theorem 1
to reduce the possible constraint activation set. Since the first
statement of Theorem 1 holds for tmi = 10 s and the boundary
conditions, we only need to consider whether vi(t) − vmax ≤ 0
or u (t) − u ≤ 0 become active, which reduces the possible
i max t

11
Fig. 2. Optimal control trajectory for the unconstrained (blue), state constraint
vi(t) − vmax ≤ 0 only (red) and both state-control constraint (green) case. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

constraint activation cases from 15 to 3. Then, we use Theorems 2
and 3 to identify the specific constraint activation case. In this
case, part (i) of Theorem 2 holds, indicating that vi(t) − vmax ≤

0 becomes active in (t0i , t
m
i ]. However, part (i) of Theorem 3

does not hold indicating that ui(t) − umax ≤ 0 will not become
active. Using the result obtained above, we then check part (i)
of Theorem 4 which readily indicates that an additional and
initially non-existent control constraint ui(t)− umax ≤ 0 becomes
ctive within the state-constrained solution, as shown by the red
rajectory in Fig. 2. Using the result of Theorem 4, we apply the
nalysis presented in Case 3 to determine the complete state and
ontrol constrained-optimal solution. Here, the aforementioned
ondition-based framework requires 0.001107 s to solve in an
ntel Core i7-6700 CPU @ 3.40 GHz using MATLAB R2017b. Note
hat, if the first statement of Theorem 4 does not hold, then none
f the control constraints can become active, and thus we can
se the analysis presented in Case 1 to determine the optimal
olution.
Next, we consider a different scenario to show the impact

hen the control constraint (ui(t) − umax ≤ 0) becomes active
Fig. 3). In this case, we set the maximum speed vmax and accel-
ration umax to be 23 m/s and 1.35 m/s2 respectively. Following
he above procedure, we check part (i) of Theorems 2 and 3. Since
nly part (i) of Theorem 3 holds, we conclude that the control
onstraint ui(t)−umax ≤ 0 will become active. We then check part
i) of Theorem 5 to check whether any additional state constraint
ill become active within the control constrained solution. In this
ase, part (i) of Theorem 5 holds, as evident from the control
onstrained state trajectory (red trajectory) in Fig. 3. Therefore,
e use the analysis presented in Case 3 to derive the complete
tate- and control-constrained solution as illustrated by the green
rajectory in Fig. 3. Note that, in Fig. 3, in the unconstrained
olution (blue trajectory) none of the state constraints become
ctive. However, the control-constrained solution (red trajectory)
ctivates the state constraint vi(t) − vmax ≤ 0. Based on our
ondition-based framework, we can avoid the computation of
he intermediate solutions, i.e., the unconstrained trajectory (blue
rajectory in Fig. 3) and the control constrained trajectory (red
rajectory in Fig. 3), and directly derive the final constrained

rajectory as illustrated by the green trajectory in Fig. 3.
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Fig. 3. Optimal speed trajectory for the unconstrained (blue), control constraint
i(t) − umax ≤ 0 only (red) and both state-control constraint (green) case. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

. Concluding remarks

In this paper, we addressed the state and control constrained
ptimal framework for coordinating CAVs at different traffic sce-
arios such as merging at roadways and roundabouts, cruising in
ongested traffic, passing through speed reduction zones, under
00% CAV penetration, and provided a condition-based frame-
ork to determine the constrained solution without requiring
o follow the standard recursive process. We mathematically
haracterized the activation cases of different state and control
onstraint combinations, and provided a priori conditions under
hich different constraint combination can become active. In
ddition, we presented the closed-form analytical solution of
he constrained optimal control problem that can be derived
nd implemented in real time. We validated a subset of con-
traint activation cases through numerical simulation and showed
ow the proposed framework can identify the interdependent
onstraint activation based on the boundary conditions. By elim-
nating the intermediate steps of solving the constrained optimal
ontrol problem, the proposed condition-based framework im-
roves on the standard methodology to solve the constrained
ptimal control problem.
The proposed framework has certain limitations since it does

ot consider the optimal control problem with constrained termi-
al speed, which may result in multiple junction points leading
o a more complex formulation. Moreover, in our framework, we
onsidered 100% penetration rate of CAVs having access to perfect
nformation (no errors or delays) which both impose limitations
or real-world applications. It is expected that CAVs will gradually
enetrate the market, interact with non-CAVs and contend with
ehicle-to-vehicle and vehicle-to infrastructure communication
imitations, e.g., bandwidth, dropouts, errors and/or delays. On-
oing work includes further exposition into the existence of the
ptimal solution under different constraint combinations, and
he consideration of the terminal speed constrained formulation.
uture work should also address the implementation of the pro-
osed framework under different penetration rates of CAVs and
mperfect communication.
 w
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Appendix A. Proof of Lemma 6

If vi(t) − vmax ≤ 0 becomes active, we have an unconstrained
arc (with constant parameters a(1)i , b(1)i , c(1)i , d(1)i ) followed by a
onstrained arc (with constant parameters a(2)i , b(2)i , c(2)i , d(2)i )
ieced together at the junction point t = τ ∗

s . The constrained arc
ields at t = τ ∗

s and t = tmi ,
(2)
i · τ ∗

s + b(2)i = 0, (A.1a)
(2)
i · tmi + b(2)i = 0, (A.1b)
1
2
a(2)i · (tmi )2 + b(2)i · (tmi ) + c(2)i = vmax, (A.1c)

1
6
a(2)i · (τ ∗

s )
3
+

1
2
b(2)i · (τ ∗

s )
2
+ c(2)i · (τ ∗

s ) + d(2)i

+ vmax · (tmi − τ ∗

s ) = pi(tmi ). (A.1d)

rom (A.1a) and (A.1b), we have a(2)i = 0 and b(2)i = 0. Substitut-
ng in (A.1c), we have c(2)i = vmax. Finally, from (A.1d) we have
(2)
i = (pi(tmi ) − vmax · tmi ). The unconstrained arc at the initial
ondition t = t0i yields the following equations: 1

2a
(1)
i · (t0i )

2
+b(1)i ·

t0i )+c(2)i = vi(t0i ),
1
6a

(1)
i ·(t0i )

3
+

1
2b

(1)
i ·(t0i )

2
+c(1)i ·(t0i )+d(1)i = pi(t0i ).

olving the above two equations by considering t0i = 0, without
oss of generality, we have c(1)i = vi(t0i ) and d(1)i = 0. At τ ∗

s , we
ave the following set of equations for the unconstrained arc,
(1)
i · τ ∗

s + b(1)i = 0, (A.2a)
1
2
a(1)i · (τ ∗

s )
2
+ b(1)i · τ ∗

s + (vi(t0i ) − vmax) = 0, (A.2b)

1
6
a(1)i · (τ ∗

s )
3
+

1
2
b(1)i · (τ ∗

s )
2

+ (vi(t0i ) − vmax) · τ ∗

s − (pi(tmi ) − vmax · tmi ) = 0. (A.2c)

ubstituting τ ∗
s = −

b(1)i

a(1)i
from (A.2a) in (A.2b), we have (b(1)i )2

a(1)i
=

(vi(t0i )− vmax). Substituting τ ∗
s = −

b(1)i

a(1)i
from (A.2a) in (A.2c), we

ave 1
3
(b(1)i )3

(a(1)i )2
+

(b(1)i )

a(1)i
· (vmax −vi(t0i ))− (pi(tmi )−vmax · tmi ) = 0. From

the last two equations, we obtain τ ∗
s = −

3(pi(tmi )−vmax·tmi )

(vmax−vi(t0i ))
, where

∗
s is an explicit function of the known parameters pi(tmi ), vmax,

vi(t0i ) and tmi .

Appendix B. Proof of Lemma 7

If ui(t) − umax ≤ 0 becomes active, we have a constrained arc
(with constant parameters a(1)i , b(1)i , c(1)i , d(1)i ) followed by an
nconstrained arc (with constant parameters a(2)i , b(2)i , c(2)i , d(2)i )

pieced together at the junction point t = τ ∗
c . Solving (27a) and

(27c)–(27e), we have a(2)i = −

√
(umax)3

3(tmi )2·umax+6tmi ·vi(t0i )−6L
, where L =

i(tmi )−pi(t0i ). From (27a) and (27b), τ ∗
c =

umax

a(2)i
+ tmi . Finally, sub-

tituting a(2)i into the last equation, the junction point τ ∗
c is given

y τ ∗
c = tmi −

umax√
(umax)3

3(tmi )2 ·umax+6tmi ·vi(t
0
i )−6L

, and can be simplified to τ ∗
c =

m
i −

√
3(tmi )2·umax+6tmi ·vi(t0i )−6L

umax
, which is an explicit function of the

known boundary parameters tmi , pi(tmi ), pi(t0i ), vi(t0i ), and umax.

ppendix C. Proof of Lemma 8

If ui(t) − umax ≤ 0 becomes active, we have a constrained arc
ith constants of integration a(1), b(1), c(1), d(1) followed by an
i i i i
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nconstrained arc with constants of integration a(2)i , b(2)i , c(2)i , d(2)i ,
ieced together at the junction point t = τ ∗

c . If vi(t) − vmax ≤ 0
becomes active, we have a constrained arc with constants of
integration a(2)i , b(2)i , c(2)i , d(2)i followed by a constrained arc with
constants of integration a(3)i , b(3)i , c(3)i , d(3)i pieced together at
the junction point t = τ ∗

s . Solving (26a)–(26d) for the control
constrained arc with t0i = 0, we have a(1)i = 0, b(1)i = umax,
c(1)i = vi(t0i ) and d(1)i = pi(t0i ). Solving (29a)–(29d) for the state
constrained arc, considering t0i = 0 without loss of generality,
we have a(3)i = 0, b(3)i = 0, c(3)i = vmax and d(3)i = pi(tmi ) −

vmax · tmi . From (28a) and (28d), we have τ ∗
c =

umax−b(2)i

a(2)i
and

∗
s = −

b(2)i

a(2)i
respectively. Substituting the latter into (28b), (28c),

(28e) and (28f), and solving the system of equations, we have

a(2)i = −u2
max ·

√
−

1
φ
, and b(2)i =

umax(−2vi(t0i )
√

−
1
φ

+2vmax
√

−
1
φ

+1)

2 ,

where, φ(tmi , pi(tmi ), vi(t0i ), umax, vmax) = −24(tmi · umax · vmax −

pi(tmi ) · umax + vi(t0i ) · vmax) + 12(v2
i (t

0
i ) + v2

max). Substituting
the last results into (28a) and (28d), the junction points τ ∗

s
and τ ∗

c are given as explicit functions of the known parameters
tmi , pi(tmi ), vi(t0i ), umax and vmax.

Appendix D. Proof of Lemma 9

From (30c), we have

1
2
u2
i (τ

−

s ) + λ
p
i (τ

−

s ) · vi(τ−

s ) + λv
i (τ

−

s ) · ui(τ−

s )

ηd
i (τ

−

s ) · (vmin − vi(τ−

s )) =
1
2
u2
i (τ

+

s ) + λ
p
i (τ

+

s ) · vi(τ+

s )

λv
i (τ

+

s ) · ui(τ+

s ) + ηd
i (τ

+

s ) · (vmin − vi(τ+

s )). (D.1)

Since vi(τ+
s ) = vmin and ui(τ+

s ) = 0, and from the continuity of
state (21) and λ

p
i (30a), we have λ

p
i (τ

−
s ) · vi(τ−

s ) = λ
p
i (τ

+
s ) · vi(τ+

s ).
From (9), we have ηd

i (τ
−
s ) · (vmin − vi(τ−

s )) = ηd
i (τ

+
s ) · (vmin −

vi(τ+
s )) = 0. Hence, (D.1) reduces to 1

2u
2
i (τ

−
s )+λv

i (τ
−
s )·ui(τ−

s ) = 0,
which implies that either ui(τ−

s ) = 0 or 1
2ui(τ−

s ) + λv
i (τ

−
s ) = 0,

or both. Since the second term cannot hold, we have ui(τ−
s ) =

i(τ+
s ) = 0.

Appendix E. Proof of Lemma 11

Since Hi(τ+
c ) = Hi(τ−

c ), we have 1
2u

2
i (τ

−
c ) + λ

p
i (τ

−
c ) · vi(τ−

c ) +
v
i (τ

−
c ) · ui(τ−

c ) + µb
i (τ

−
c ) · (umin − ui(τ−

c )) =
1
2u

2
i (τ

+
c ) + λ

p
i (τ

+
s ) ·

i(τ+
c ) + λv

i (τ
+
c ) · ui(τ+

c ) + µb
i (τ

+
c ) · (umin − ui(τ+

c )). From the
ontinuity of the state (21) and λ

p
i at t = τc , we have λ

p
i (τ

−
c ) ·

i(τ−
c ) = λ

p
i (τ

+
c ) · vi(τ+

c ). From (7) we have µb
i (τ

−
c ) · (umin −

i(τ−
c )) = µb

i (τ
+
c ) · (umin − ui(τ+

c )) = 0. After simplifying, we have
ither ui(τ+

c ) = ui(τ−
c ) or 1

2 (ui(τ+
c ) + ui(τ−

c )) + λv
i (τ

+
c ) = 0. Both

the equations lead to the continuity in control input ui(t) at time
t = τc , i.e., ui(τ+

c ) = ui(τ−
c ).
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