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I. Introduction

A. Motivation

I
n a rapidly urbanizing world, we need to make fundamental 
transformations in how we use and access transportation. 
We are currently witnessing an increasing integration of 
our energy and transportation which, coupled with the hu-

man interactions, is giving rise to a new level of complexity 
[1] in emerging transportation systems such as connected and 
automated vehicles (CAVs) and shared mobility. As we move 
to increasingly complex emerging transportation systems, 
new control approaches [2], [3] are needed to optimize their 
impact on the mobility system behavior.

Shared mobility includes a variety of service models (e.g., 
carsharing, ridesharing, bikesharing) to meet travel needs 
and may result in a transformative impact on urban mobil-
ity [4]–[8] and landscape. As shared mobility services evolve, 
there has been a debate on their potential impact [7], [9], [10]. 
The advent of intelligent transportation systems and infor-
mation technologies has aimed at facilitating shared mobil-
ity services (Fig. 1). In this context, impact analysis of the 
introduction of connected vehicles and automated vehicles 
(AVs) into existing shared mobility services is vital to identify 
the opportunities and challenges related to a shared autono-
mous mobility system. In this paper, we review the research 
reported in the literature on carsharing enhanced by vehicle 

FIG 1 A view of a city enhanced by connectivity and automation.

Abstract—Shared mobility can provide access to transportation on a custom basis without vehicle owner-
ship. The advent of connected and automated vehicle technologies can further enhance the potential ben-
efits of shared mobility systems. Although the implications of a system with shared autonomous vehicles 
have been investigated, the research reported in the literature has exhibited contradictory outcomes. In 
this paper, we present a summary of the research efforts in shared autonomous vehicle systems that have 
been reported in the literature to date and discuss potential future research directions.
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connectivity and automation technologies, i.e., shared auton-
omous vehicle (SAV) system, and discuss potential implica-
tions in the environment and urban mobility.

B. Background
There are different types of carsharing service models, in-
cluding round-trip carsharing, one-way station-based or free-
floating carsharing, and peer-to-peer carsharing [5], [11]. In 
the past few years, short-term vehicle rental services pro-
vided by carsharing companies in major cities has attracted 
millions of users, while the number is expected to grow sig-
nificantly [9], [10], [12]. Generally, it is believed that carshar-
ing has positive impacts on energy use and greenhouse gas 
(GHG) emissions [12]–[16], particularly when low-polluting 
vehicles are introduced into the transportation systems [17]. 
Although there is evidence that the use of carsharing services 
leads to a decrease in vehicle ownership [12]–[14], location-
specific variations (e.g., urban form, level of transit service, 
availability of alternative modes, etc.) has an impact on ve-
hicle miles traveled (VMT) and public transit ridership [9], 
[10], [12], [13], [18].

The emerging CAV technologies offer intriguing opportu-
nities to enhance urban mobility and traffic safety, and the 
introduction of CAVs enables innovative often more respon-
sive and efficient options for traveling which may change the 
way people use mobility services [19], [20]. It is likely that the 
wide adoption of CAVs could also affect the usage of existing 
infrastructure to better serve the ever-changing transporta-
tion network [21]. While the benefits of CAV technologies on 
traffic flow and safety [22]–[26], coordination in specific traf-
fic scenarios [27]–[33], and energy improvement on vehicle 
level [34]–[36] are well understood, potential deployment of 
the CAVs for the shared mobility service has raised a number 
of key questions related to fleet sizing, operation strategies 
and the implications on mobility, urban form, and environ-
ment [37]–[41].

With the ongoing growth of shared mobility and in-
creasing interests in CAV fleet, the convergence of emerg-
ing mobility service and technology is still evolving. Many 
major automakers and technology companies are launch-
ing SAV pilot projects in the US and around the world, e.g., 
Ford, Voyage, Waymo, Uber, and Lyft [42]. While there is 
currently no large-scale deployment of SAV fleet, several 
research efforts have evaluated the impacts of the SAVs, 
including simulation-based evaluation on environmental 
impact, cost-benefit, or demand analysis, e.g., [43]–[57]. 
There has been much contention on the potential influ-
ence of SAVs on travel behavior, urban landscape, con-
gestion, and environment [58]. Although it seems that the 
required fleet size as well as the parking spaces to meet 
existing travel demand might drop significantly, multiple 
studies have indicated that full automation is likely to in-
duce travel demand and attract new user groups, which 
may result in a potential increase in energy consumption, 

e.g., [59], [60]. Furthermore, there have been also con-
cerns that SAVs might attract considerable attention from 
public transit patrons rather than private car owners, with 
implications on escalating traffic congestion, if not prop-
erly managed, e.g., [61], [62].

C. Scope of the Paper
In this paper, we review research efforts on the modeling 
and operations of the SAV system and try to identify potential 
research gaps that require further investigation. In our re-
view, we have excluded studies on the demand estimation 
and travel behavior analysis of the SAVs. We applied the fol-
lowing search strings and included the papers up to date 
containing any combination of the keywords in the title, ab-
stract, or keywords:
1) Shared autonomous (electric) vehicles, shared automated 

vehicles, autonomous vehicle sharing;
2) Autonomous carsharing, driverless carsharing, self-driv-

ing carsharing;
3) Autonomous taxi, automated taxi, driverless taxi;
4) Automated demand responsive transport, autonomous 

mobility on demand, automated mobility on demand, au-
tonomous mobility as a service.
Although the exploration of benefits of SAVs is still in early 

stages, we note that there are many aspects in common with 
the conventional carsharing system (with or without the op-
tion of ridesharing). There are several review papers provid-
ing a good summary under the umbrella of shared mobility, 
e.g., see [63]–[69]. Similar review efforts on the SAVs include 
the study by Hao and Yamamoto [70], who focused on the fea-
tures and demand aspects of the SAV system through examin-
ing the corresponding aspects of car sharing in AVs. The most 
recent work conducted by Stocker and Shaheen [42] reviewed 
SAV pilots and legislation in the US, and discussed current 
and future development of the SAV system. Any such effort 
has obvious limitations. Space constraints limit the descrip-
tion of each paper in details, and thus, discussions are in-
cluded only where they are important for understanding the 
fundamental concepts or explaining significant departures 
from previous work.

D. Organization of the Paper
The structure of the paper is organized as follows. In Sec-
tion II, we present an overview of the SAV system and model-
ing approaches that have been commonly adopted. We then 
identify major design variables and system operating pa-
rameters that are widely studied in the literature to date and 
summarize the research efforts in Section III, including the 
problems of fleet sizing, vehicle assignment and relocation, 
consideration of electric vehicles, and ridesharing. In Section 
IV, we discuss different operation schemes of the SAVs in a 
mixed traffic environment that have been investigated in the 
literature. Finally, we discuss research gaps and potential fu-
ture research directions in Section V.
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II. Shared Autonomous Vehicle System Modeling
SAVs provide carsharing with a way of seamlessly relocating 
vehicles to better match dynamic demand [46]. As pilot pro-
grams of SAVs are beginning to accelerate around the world, 
there has been an increasing interest in investigating the SAV 
system. In this section, we first introduce earlier work on 
the feasibility of statewide implementation of SAVs and sys-
tem performance analysis along with the cost-benefit analy-
sis. We then discuss two major directions in modeling and 
analysis of the SAV system: (1) the development of analyti-
cal models along with specific problems that include vehicle 
assignment and rebalancing, e.g., [71]–[74]; (2) the develop-
ment of agent-based models to emphasize the understanding 
of system performance and impact of the SAV system under 
different scenarios with a variety of parameters settings, e.g., 
[61], [75]–[79].

1) Feasibility Analysis
In an early work [43], Ford proposed a statewide SAV system 
in New Jersey with a grid-based network model. The author 
discussed different operation strategies of a SAV system at 
different time periods. For example, in rush hours, the SAVs 
would function like a personal rapid transit (PRT) system to 
satisfy travel demand and ease congestion, whereas during 
non-rush hours, the SAVs could be operated with more flex-
ibility and provide door-to-door service. The area considered 
in the paper was modeled as gridded zones, where a fixed 
SAV station would be located at the center of each cell. Later, 
Brownell and Kornhauser [80] described in detail two dis-
tinct SAV network models, i.e., PRT and the smart paratransit 
(SPT), and discussed the feasibility of a statewide SAV network 
in New Jersey. In the PRT network, fixed stations of the SAV 
system are established and passengers need to walk to their 
closest stations. Ridesharing is considered only if two pas-
sengers share the same origin-destination pair and arrive at 
the station within a predefined time window. The idea behind 
the SPT system is that trips with close origins and/or destina-
tion will be served by one single vehicle. The vehicle moves 

around within the origin cell to pick up multiple passengers 
before traveling to the destination cell. Along the ways, the 
vehicle may stop at one, or more, locations to pick up or drop 
off passengers. In a SPT system with AVs, since the vehicle 
takes the place of the individual for accessing service, the dis-
tance between nodes in the transit grid could be increased. 
Burns et al. [44] conducted a cost-benefit analysis of a SAV 
system where the entire trip demand is satisfied by SAVs. To 
estimate the performance of a SAV system and compare with 
other systems (e.g., personal vehicle), the authors developed 
an analytical model with spatial queueing approach based on 
simplifying assumptions (e.g., uniformly distributed origins 
and destinations, constant trip request rate, etc.). The results 
from three case studies showed that a SAV system is capable 
of providing better mobility experience at a significantly low-
er cost, in addition to its environmental and safety benefits.

2) Analytical Modeling
Several research efforts reported in the literature have treat-
ed a SAV system as a spatial queueing system where passen-
gers arrive at each station, pick up the vehicles—if parked 
at the station—and wait or leave the system, if no vehicle is 
available (Fig. 2). After dropping off passengers at their des-
tinations, vehicles either start the next service, or park, or re-
locate themselves to other stations, e.g., [71]–[74], [81], [82]. 
For instance, Zhang et al. [38] described a SAV network as a 
spatial queueing system where transportation requests queue 
up and are served by the SAVs in the network. The authors 
presented two models for SAV systems. In the first model, the 
authors considered a distributed approach, where the objec-
tive is to design a routing policy that minimizes the average 
steady-state time delay between the generation of an origin-
destination pair and the time the trip is completed. In the 
second model, the authors considered a lumped approach—
customers are assumed to arrive at a set of stations in the net-
work, where each customer picks up a vehicle, if available, or 
leaves the system, if no vehicle is parked at the station.

3) Agent-Based Modeling
To address the questions on the impact of SAVs on transporta-
tion mobility and investigate performance of the SAV system 
under various scenarios, several research efforts have also 
focused on developing agent-based models to evaluate the 
transportation network with presence of SAVs [61], [75], [76], 
[83]. With the advantage of modeling each individual pas-
senger/vehicle as an agent following simple rules, complex 
behavior [84], [85] at a macroscopic level emerges, which 
provides an approximation of travel behavior in the trans-
portation systems [75]. Marczuk et al. [86] and Azevedo et al. 
[87] proposed an extension to the agent-based demand and 
supply model (SimMobility) for the design and evaluation of 
the SAV system in a multi-level simulation framework, and 
explored the effects of fleet size and station location for both 
station-based and free-floating SAV systems. Boesch and Ciari 
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FIG 2 Shared autonomous vehicles in a queueing system.
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[75] discussed the advantages of MATSim (an activity-based 
agent-based simulation model) with the presence of SAVs and 
its potential applications on investigating related problems, 
such as the potential of SAVs complementing or competing 
with other transportation modes, appropriate fleet size in dif-
ferent transportation systems, and the demand distribution 
with respect to the response of different fleet sizes.

Focusing on the potential impact of a SAV system on ur-
ban parking demand, Zhang et al. [77], [78] investigated dif-
ferent system operation strategies under low penetration of 
SAVs with an agent-based simulation model. Ridesharing and 
traveler’s acceptance of sharing rides were also explored in 
the paper. The results showed a significant parking demand 
reduction with the SAV system—enabling ridesharing and 
adding vehicle cruising options would further reduce park-
ing demand. Kondor et al. [88] developed an agent-based 
simulation model to estimate parking demand savings with 
shared vehicles and SAVs for home-work commuting. Other 
conclusions drawn from this study include that up to 50% re-
duction in parking needs could be achieved at the expense 
of less than 2% increase in VMT. Jager et al. [83] developed 
an agent-based framework for a shared autonomous electric 
vehicle (SAEV) system that reflects the system behavior on 
an operational level. Although the system has a central dis-
patcher, the vehicles compete for customers and make their 
own decisions for routing and charging. Simulation results 
confirmed the feasibility of operating a SAV fleet with both 
high service levels and vehicle utilization. However, environ-
mental benefits can only be expected when using renewable 
energy sources and enabling ride sharing features.

III. Shared Autonomous Vehicle System Design Variables
Similar to conventional carsharing service, not only the op-
erations of a SAV is significantly affected by the assignment 
and rebalancing strategies over a fleet of SAVs, mobility and 
environment, but also the urban landscape can be consid-
erably impacted by the implementation strategies of a SAV 
system. Naturally, the problems of fleet sizing, vehicle-trip as-
signment, and rebalancing in a network of SAVs are the ma-
jor subjects in enhancing our understanding of a SAV system, 
with the options of ridesharing and usage of electric vehicles 
that have attracted considerable attention recently. The ma-
jority of the literature to date has concentrated on how the SAV 
system tackles one or more of the aforementioned problems, 
and has aimed at enhancing our understanding about the per-
formance and potential benefits of the network with a fleet of 
SAVs. In the following subsections, we provide a summary of 
SAV system modeling and discuss key topics that have been 
investigated in previous studies regarding the SAV system.

A. Fleet Sizing of a Shared Autonomous Vehicles System
Fleet size is the major determinant of the operating cost of 
the SAV system. General considerations in determining the 
fleet size include system access, directness, sharing, and pas-

senger waiting time [89], [90]. In what follows, we summarize 
different approaches in addressing fleet sizing problems in a 
SAV system.

Fagnant et al. [91] simulated a SAV system in Austin area 
with a grid-based network model following a similar model-
ing framework presented in [43]. In this work, a fleet of SAVs 
is generated in the network to ensure that passenger wait-
ing times are within predefined bounds. A heuristic strategy 
is implemented to relocate vehicles such that the stock of 
SAVs among cells is balanced. A replacement rate of 1 SAV 
per 9.3 conventional vehicles was identified as appropriate 
for the area considered in the paper. The authors concluded 
that even with an excess VMT, emissions and environmen-
tal outcomes for the SAVs are still advantageous compared to 
those for the average US vehicle fleet. In the modeling frame-
work for the SAV system developed by Winter et al. [89], the 
minimum fleet size and the optimal fleet size that yield the 
minimum system costs are determined through an iterative 
procedure, where the core is a simulation tool that is applied 
for assigning vehicles to passenger requests. Several scenar-
ios are conducted to analyze the influence of different design 
parameters (e.g., vehicle capacity, operational parameters, 
demand level) on system performance.

Vazifeh et al. [92] investigated the minimum fleet size 
problem of a SAV system with a network-based model. Trips 
based on known demand and link travel times were taken 
as input to construct the vehicle shareability network under 
the constraint of maximum trip connection time. With fully 
knowledge of daily trip demand, the authors found that 40% 
taxis in New York City can be reduced without incurring delay 
to passengers, under the constraint of 15-minute maximum 
trip connection time. Relaxing the assumption of complete 
demand information, the authors concluded that if trip re-
quests were collected at 1-minute interval, the system could 
be operated with a 30% fleet reduction at a relative high level 
of service (i.e., above 90% served trips within a 6-min delay).

Spieser et al. [73] addressed two major fleet sizing prob-
lems: (1) the minimum number of vehicles needed to sta-
bilize the workload of a SAV system and (2) the number of 
vehicles needed to ensure a desired level of service provided 
to the customers. In their paper, the SAV system is modeled 
as a queueing network where each region is mapped into 
single-server node, and each route between each pair of re-
gions is mapped into infinite-server nodes. The vehicle re-
balancing process is modeled as an arrival process of “virtual 
passengers.” Conducting a case study in Singapore, the paper 
showed that a SAV can meet the personal mobility needs of 
the entire population with a fleet size about one third of the 
total number of passenger vehicles currently in operation.

Masoud and Jayakrishnan [93] discussed a different im-
plementation strategy of the SAV system, with households 
forming clusters (i.e., neighborhoods). Each neighborhood 
shares the ownership and ridership of a set of autonomous 
vehicles that serve as rental cars during their idling times. 
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The authors focused on the optimization of the fleet size in 
a neighborhood and the number of rental requests for the 
vehicles during their idling times. Two optimization models 
were developed. The first model addressed the neighborhood 
clusters and aimed at minimizing the total number of the ve-
hicles by considering essential trips to be satisfied for all the 
households in a neighborhood. The second model optimized 
the total number of rental requests so as to maximize extra 
income from idling vehicles, considering time window con-
straints of the owners’ essential trips.

Most of previous work has emphasized on searching for 
the minimum fleet size of SAVs that could provide service on 
the existing demand at a desired level, when replacing the 
existing conventional vehicle service by SAVs. We have no-
ticed promising results from multiple papers indicating that 
a high replacement rate of conventional vehicles is feasible 
to satisfy the same level of demand. However, there is still 
some work missing to assess holistically the impact of ur-
ban mobility due to potentially changing travel behavior and 
demand as a result of the introduction of AV in the mixed 
traffic environment.

B. Vehicle Assignment in a Shared Autonomous  
Vehicle System
Although there is a rich body in the literature in dynamic as-
signment problems with various applications on taxi, para-
transit, trucking services, etc., that require real-time vehicle 
assignment to dynamic service requests (e.g., see [94]–[97] for 
more details), most papers reported in the literature to date 
have focused on investigating SAV system performance with 
simplified vehicle assignment strategies (usually rule-based). 
In what follows, we present a general formulation of the ve-
hicle assignment problem in a SAV system. Let i M!  be a 
trip request, j N!  be the index of a vehicle, and xij equal to 
1 if and only if trip i is assigned to vehicle j, where NM 1  is 
the set of trip requests and NN 1  is the set of vehicles. The 
general vehicle-traveler, or vehicle-trip, assignment problem 
to minimize the trip assignment cost, Ja, [38], [98]:

 ,   min J c xa ij
i

ij
j

= //  (1)

subject to

 , ,x i1 Mij
j

!=/  (2)

 { , }, , ,x i j0 1 NMij 6! ! !  (3)

where cij is the cost of assigning trip request i to vehicle j, 
which could be represented by trip travel distance, travel 
time, or monetary cost. The trip assignment cost in (1) is eval-
uated at every trip assignment time step with dynamic service 
requests. The constraint (2) ensures that each traveler is as-
signed to only one vehicle.

When assigning travelers to the nearest idling AVs, several 
research efforts have considered a first-come-first-served 

strategy, which is a heuristic approach to minimize pas-
senger waiting time [44], [78], [90], [91, [99]. In a paper by 
Fagnant and Kockelman [46], the SAV service area is divided 
into small zones, where trips are randomly generated. Every 
five minutes, passengers will be randomly ordered and as-
signed to the nearest available SAV in the same zone, up to 
a maximum vehicle arrival time. If such assignment fails, 
those passengers will be held until next assignment. Hyland 
and Mahmassani [100] investigated the underlying stochas-
tic vehicle assignment problem for the SAV system with no 
shared rides. With the assumption that the fleet operator has 
no information of the spatial-temporal demand distribution, 
the authors compared different SAV assignment policies as 
the solution approaches to the local optimization problem at 
each time step. Two of the applied strategies were first-come-
first-served, and the other strategies minimized traveler 
waiting times (under different vehicle-traveler assignment 
constraints).

Hanna et al. [101] examined four different methods for as-
signing vehicles in a SAV system: (1) a decentralized greedy 
matching where users are assigned to their nearest vehicles 
in a random order, (2) a centralized greedy matching ap-
proach ensuring that each vehicle is matched with its closest 
user, (3) the Hungarian minimum cost matching algorithm 
that minimizes passenger waiting time and unoccupied dis-
tance traveled, and (4) a minimal makespan matching algo-
rithm which minimizes the longest distance that any vehicle 
must travel to a passenger. The authors showed that com-
pared to greedy approaches, the latter two methods improved 
system performance through reducing unoccupied travel 
distance, passenger waiting time, and waiting time variation.

C. Vehicle Rebalancing of a Shared Autonomous  
Vehicle System
The SAV system shares similar characteristics with the car-
sharing system consisting of conventional vehicles [46]. In 
terms of unbalanced demand distribution, both systems face 
the same problem of vehicle rebalancing. Two major rebal-
ancing strategies have been investigated in the literature of 
carsharing with conventional vehicles including (1) operator-
based vehicle relocation and (2) user-based vehicle reloca-
tion, which could potentially be adapted in addressing the 
same problem in the SAV system, see [63], [102]–[105]. How-
ever, the relocation of SAVs still have differences with that of 
conventional sharing vehicles, since SAVs are fully compliant 
and always cooperative [106]. Thus, due to the inherent capa-
bilities of self-driving and self-rebalancing of a SAV system, 
research efforts have focused more on the problem with a 
centralized operator that has dispatching control over the en-
tire SAV network, which may yield a system optimum solution 
for the entire system.

We provide a general formulation to illustrate the vehicle 
rebalancing problem for a SAV system. Let ry be the num-
ber of idling vehicles in zone/station y Z!  and ryz be the 
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number of rebalancing vehicles from zone/station y to zone/
station z Z! , where NZ 1  is the total number of zones/
stations in the network. Generally, the objective function Jr is 
the total cost induced by vehicle rebalancing [71], [107], [108]:

 ,   min J c rr yz
y

yz
z

= //  (4)

subject to

 , , ,r r y z Zyz
z

y 6 !=/  (5)

 , , ,r y zN Zyz 6! !  (6)

where cyz is the cost of moving vehicles from zone/station y 
to zone/station z, which could be represented by trip travel 
distance, travel time, or monetary cost. In a system with dy-
namic trip requests, (4) will be evaluated at every rebalanc-
ing time step and (5) defines the total rebalancing vehicles 
from zone/station y should equal the number of idling ve-
hicles in the zone.

Targeting at the problem of unbalancing demand and 
supply, Pavone et al. [109] addressed the vehicle relocation 
problem for a mobility-on-demand system, optimizing the re-
balancing assignment that minimizes the number of vehicles 
to be moved. Using a fluid model of the system, the authors 
showed that the optimal rebalancing policy can be found as 
the solution to a linear program, under which every station 
reaches an equilibrium where there are excess vehicles and 
no waiting customers. Based on this study, Zhang and Pavone 
[72] presented a queueing-theoretical approach and provided 
the solution to an offline optimal rebalancing problem. Later, 
Wen et al. [107] extended the research by incorporating door-
to-door service and ridesharing option in a free-floating SAV 
system. From the fleet operator’s perspective, Spieser et al. 
[108] investigated the vehicle rebalancing problem in a SAV 
system by quantifying the operation cost as a function of fleet 
size, demand loss and utilization rate, and analyzed the im-
pact of fleet size on demand loss, vehicle utilization rate, and 
vehicle rebalancing miles traveled. Hörl et al. [110] evaluated 
performance of four heuristic and optimal rebalancing poli-
cies for a SAV system in an agent-based simulation environ-
ment, and suggested that the utilization of intelligent demand 
forecasts and rebalancing algorithms would be crucial for a 
SAV system to be competitive with private vehicles.

Through simulation based evaluation, recent work fo-
cused on the impact of vehicle rebalancing strategies in a 
SAV system. Zhu and Kornhauser [111] investigated the re-
balancing strategies for the SAV system in New Jersey and 
their effects on the fleet size and level of service provided 
in scenarios where all non-walking travel demand is served 
by SAVs. Shared trips are served by vehicles of different ca-
pacities (i.e., 3, 6, 15, and 50 passengers). Two rebalancing 
strategies are developed based on known demand. In the first 
approach, vehicles are moved at the end of the day to make 
sure that there are enough vehicles at each station that 

satisfy the demand at the beginning of the day. In the second 
approach, vehicles are relocated as needed to fill in any sta-
tion without enough vehicles. The authors also evaluated the 
performance of the statewide SAV system with varying fleet 
sizes, in terms of passenger waiting time and rebalancing 
trip lengths. The results showed that one SAV could possibly 
replace more than six traditional vehicles while the demand 
could still be well served.

Fagnant and Kockelman [46] investigated the operation of 
SAVs through an agent-based model and focused on the im-
plications of travel and environmental impacts of SAVs under 
a mixed traffic condition. Addressing the imbalanced demand 
patterns, the authors proposed several relocation strategies to 
balance vehicle supply and reduce future traveler wait times: 
(1) relocating vehicles based on expected demand and (2) re-
locating vehicles to balance stock based on predicted supply. 
Marczuk et al. [112] developed a simulation framework for 
rebalancing an one-way SAVs system in SimMobility environ-
ment. The proposed fleet management center is responsible 
for passenger-to-vehicle assignment, vehicle routing and re-
balancing. Three vehicle relocation strategies were proposed 
for the system: (1) no rebalancing as the baseline scenario, (2) 
offline rebalancing that minimizes the number of rebalancing 
trips, and (3) online rebalancing that minimizes the total time/
effort spent for rebalancing per rebalancing interval. Winter 
et al. [113] analyzed the impacts of different relocation strate-
gies of a SAV system in a simulated generic grid network. Five 
vehicle relocation strategies were tested, including remaining 
idle, random shuffling, returning to original location, moving 
based on demand anticipation, and moving to balance vehi-
cle stock over the network. In the simulation framework, the 
fleet size of the SAV system is given as an input, and vehicles 
are dispatched through a rule-based strategy. Performance 
measures such as average passenger utility, average waiting 
time, and the ratio of vehicle driving time were examined. 
The simulation showed that remaining idle strategy would 
be the most efficient in terms of passenger waiting time, yet 
the worst performer considering link occupancy and parking 
turnover rates. In contrast, strategies aimed at distributing 
vehicles yielded higher parking turnover rates but showed 
lower service efficiency. In light of these results, the authors 
extended the study by imposing the constraints of limited 
parking facilities in the evaluation of the above five heuristic 
relocation strategies for idle SAVs, and examined the potential 
impact of SAVs on urban traffic in terms of congestion, parking 
consumption and mode shift [114].

As discussed in the above papers, e.g., [111]–[114], de-
pending on the objectives and targeting performance mea-
sures, the rebalancing strategy to be applied in a SAV system 
may be different. The operation of a fleet of SAV is consider-
ably affected by the applied relocation strategy or a combina-
tion of strategies, considering the inter-dependencies among 
parking demand, traffic condition, and user mode choice. 
Although current research efforts emphasize rebalancing 
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strategies in an isolated SAV system, the externalities should 
be analyzed in more depth to enhance the understanding of 
traffic dynamics with the implementation of SAV service.

D. The Usage of Electric Vehicles in a Shared  
Autonomous Vehicle System
A significant amount of work has focused on the use of electric 
vehicles in a SAV system to achieve larger energy and emis-
sion savings for a greener transportation system [61], [76], [90]. 
Considering the range of electric vehicles, there is a number 
of constraints in a SAEV system. For instance, a vehicle may 
need to visit a charging station after dropping off passengers. 
There may be instances that vehicles have to turn down trip 
requests and drive to charging stations instead, resulting in 
different vehicle-trip assignment strategies [115]–[117].

Based on the work in [38], Zhang et al. [106] presented a 
model predictive control (MPC) approach to optimize vehicle 
scheduling and routing in a SAEV system, considering vehicle 
charging constraints. Compared to other control algorithms 
of a SAV system (i.e., nearest-neighbor dispatch, collaborative 
dispatch, Markov redistribution, real-time rebalancing), the 
authors concluded with a case study in New York City that the 
MPC algorithms outperformed the other strategies in terms of 
average customer waiting times.

Chen et al. [61], [76] addressed the operations of a SAEVs 
with an agent-based model based on the work reported in [46] 
and [91]. The emphasis of this research is the performance 
analysis of a fleet of SAEVs under various vehicle range and 
charging infrastructure scenarios. The authors also explored 
the pricing schemes of a SAEV system when competing 
against other modes (i.e., private human-driven vehicles and 
city bus service), and found that with higher SAEV penetra-
tion rate, the private vehicle replacement rate by the SAEVs 
increases, leading to improved system performance. Simi-
larly, the study by Bauer et al. [118] predicted battery range 
and charging infrastructure requirements of a fleet of SAEVs 
operating on Manhattan island with an agent-based model. 
The authors also conducted sensitivity analysis of the cost 
and the environmental impact of providing SAEV service with 
a wide range of changes in cost components (e.g., battery 
type, vehicle type, etc.). The study indicated that instead of 
battery range, the major challenge to introducing SAEVs may 
be building sufficient charging infrastructure.

Kang et al. [115] developed a framework for a SAEV system 
that consists of demand forecasting, fleet assignment, electric 
vehicle designing, and charging station locating modules. The 
fleet assignment module determines the optimal vehicle as-
signment and charging schedules, and the charging station lo-
cating module decides the optimal charging station locations. 
The system-level objective is to maximize service profit for 
the operator, through optimizing decision variables including 
fleet size, number of charging stations, electric powertrain de-
sign, membership fee, and vehicle rental fee. The locations of 
charging stations are selected with a p-median model from a 

pool of predetermined candidates. A comparison between a 
SAV system and a SAEV system was conducted in terms of cost 
and benefit under different scenarios (e.g., varying gas prices 
and charging station installation costs), showing that a SAEV 
system would be more profitable for most of the scenarios. 
Although both systems are marketable, the optimized SAEVs 
required longer waiting times than optimized SAVs due to the 
constraints of vehicle range and charging issues.

Iacobucci et al. [119] developed a simulation model to 
evaluate a SAEV system interacting with passengers and 
charging at designated stations based on a heuristic charging 
strategy. The potential utilization of the SAEV system as an 
operating reserve provider and its performance in response 
to grid operator requests were evaluated. The authors con-
cluded that the proposed system could reduce the required 
fleet size as compared to private vehicles while providing a 
comparable level of transportation service with low break-
even prices. Later, based on the work presented in [106], the 
authors developed a framework for the optimization of charg-
ing scheduling and vehicle routing and relocation for a fleet 
of SAEVs [120]. The proposed framework consists of two lay-
ers of optimization model: over longer time scales, the charg-
ing scheduling optimization minimizes waiting times and 
electricity costs, while over shorter time scales, vehicle rout-
ing and relocation are optimized under charging constraints. 
The authors reported that a substantial reduction in charging 
costs was yielded from the proposed framework without sig-
nificantly affecting passenger waiting times, as well as the po-
tential of SAEVs to offer energy storage to the grid and avoid 
grid congestion.

In summary, the introduction of electric vehicles in the 
SAV system offers a large potential to further enhance en-
vironmental benefits. However, constraints such as vehicle 
range and charging facility locations add more dynamics 
into the system, and multiple studies suggested that the in-
frastructure and charging scheduling are the key influencing 
factors of system performance of a fleet of SAEVs. Consider-
ably work has focused on the performance analysis of SAEV 
system as compared to the SAV system, through evaluating 
the impact of vehicle range, charging infrastructure, as well 
as electricity costs [61], [76], [118]. Considering charging con-
straints, several research efforts have also emphasized on re-
examining vehicle routing and relocation strategies as well as 
optimizing charging locations [106], [115], [121]. Recently, the 
option of vehicle-to-grid as well as the integrated planning 
of power grid and shared mobility service has also attracted 
considerable attention [119], [120], to improve the perception 
of SAEVs and ensure sustainable commutes within the notion 
of smart cities [122].

E. The Option of Ridesharing in a Shared  
Autonomous Vehicle System
The problems of ridesharing and carsharing are usually de-
coupled in the existing literature [123]. Recently research 
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efforts started exploring the option of ridesharing in a SAV 
system, e.g., [124]–[127]. By allowing ridesharing, the fleet 
size may be further reduced to provide a desired level of 
service to the passengers, although the total VMT probably 
might increase [128], [129]. There are generally two types of 
ridesharing as illustrated in Fig. 3: (a) trip combining neigh-
boring origins and destinations (Fig. 3a) and (b) trip chaining 
based on trip temporal and spatial characteristics (Fig. 3b). 
We consider here ridesharing as the option of serving multi-
ple passengers in a single vehicle trip, or trip chain, in the SAV 
system, and emphasize the impact of opening up rideshar-
ing options in the SAV service, without detailing the operation 
modes and strategies for ridesharing. Considering different 
system objectives (e.g., minimizing total VMT, minimizing 
total travel time, or maximizing served trips) and various 
system constraints (e.g., time window and seat constraints), 
there has been work on the SAV system with the option of 
ridesharing and the evaluation of different ridesharing strate-
gies against network performance.

Levin et al. [124] analyzed the possibility of ridesharing 
in a SAV system where passengers could select the first ar-
rived vehicle regardless of occupancy. The authors found that 
SAVs with the choice of ridesharing may cause more conges-
tion due to additional miles traveled for detouring. Zhang  
et al. [78], [142] applied an agent-based model to evaluate 
the performance and potential benefits of a SAV system with 
dynamic ridesharing. In a grid-based simulation network, a 
centralized operator monitors real-time trip requests and SAV 
status as well as manages trip assignment for the SAV sys-
tem, where ridesharing option is evaluated against passen-
ger’s willingness and travel cost. Their work suggested that 
dynamic ridesharing in a SAV system could potentially lead to 
reduced vehicle ownership, parking demand, and emissions.

Hyland and Mahmassani [125] compared the performance 
of a SAV system with and without ridesharing option in terms 
of the ability to handle demand surges. In this paper, the 
mathematical formulations of the vehicle assignment with/
without ridesharing were presented and the solutions were 
derived with a rolling-horizon approach. The simulation 
results indicated that the SAV with ridesharing service im-
proved system performance in response to demand surges.

Based on the vehicle rebalancing strategies tested in [46], 
Fagnant and Kockelman [126] considered the option of dy-
namic ridesharing in a simulated SAV system. With the case 
study of a 24-mile by 12-mile region in Austin, the authors 
concluded that dynamic ridesharing in a SAV system was able 
to limit excess VMT from the SAV system, reduce passenger 
waiting times (under the constraint that ridesharing should 
not increase travel time of current passengers by more than 
40%), and yield an enhanced level of service.

Farhan and Chen [141] discussed the impacts of rideshar-
ing on the operational efficiency of SAEVs with a discrete-
time simulation model. Both the fleet size and number of 
charging stations are determined during simulation. In their 

research, the travelers are grouped into clusters based on 
spatial criteria, and the ride-share matching problem is for-
mulated as a vehicle routing problem minimizing system-
wide vehicle miles traveled under time window constraint. 
The results indicated that allowing a second passenger in 
ridesharing yielded marginal benefit of fleet size and charg-
ing station reduction. Although more passengers in shared 
trips reduced the required fleet size and number of charge 
stations, passenger waiting times increased due to rideshar-
ing (i.e., reduced level of service).

IV. Shared Autonomous Vehicle System Operation
Although the majority of the literature has been focused on 
examining the feasibility and performance of the SAV service 
as an isolated system, there is an increasing interest towards 
the investigation of more realistic operational scenarios re-
lated to the SAVs. Recent research efforts have also focused 
on answering questions such as: “How will the SAV system 
perform in a mixed traffic environment?” “What will be the 
mobility impact of integrating the SAVs with other modes of 
transport?” In this section, we focus on different operational 
aspects of a SAV system, and summarize the studies that con-
sider realistic and mixed traffic conditions.

A. Operation in a Realistic Traffic Environment
The majority of the aforementioned work has addressed 
the SAV system with full SAV penetration or without consid-
ering background traffic. Only a few papers have focused 
on the impact of congestion of SAVs, e.g., [81], [124], [132], 
[155], [156]. For example, to investigate the impact of SAVs on 
mobility, Levin et al. [124] presented a general event-based 
framework for simulating the operations of a SAV system 
with existing traffic models. Considering 100% penetration 

Trip Origin

Trip Destination

(a)

(b)

FIG 3 Ridesharing in the shared autonomous vehicle system: a) trip 
combination; b) trip chaining.
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of SAVs, the  authors found that under certain scenarios (e.g., 
with the option of dynamic ridesharing), a smaller fleet of 
SAVs performed better than a larger fleet due to lower con-
gestion in the network. Maciejewski and Bischoff [156] evalu-
ated the impact of a city-wide introduction of SAVs on traffic 
congestion through an agent-based simulation model, focus-
ing on the analysis of traffic congestion under different SAV 
penetration rates. Under the assumption of increased road 
capacity due to AV operations, their work showed that despite 
increased traffic volume, a fleet of SAV could have a positive 
effect on traffic at a penetration rate as low as 20%.

Levin [131] developed a linear programming formulation 
for vehicle routing problem in the SAV system, where traffic 
flow was modeled through the link transmission model. The 
results showed that asymmetric demand (e.g., demand dur-
ing peak periods) could lead to significantly rebalancing trips 
and greater congestion than uniformly distributed demand 
pattern. Since more vehicles might cause additional conges-
tion on roadway network, it is important for the SAV system to 
plan for different traffic patterns. Liang et al. [132] proposed 
an integer programming model to define the routing of the 
SAVs based on profit maximization function, where travel 
times on the links varied with the flow of SAVs (without any 
background traffic). Later in [133], the authors applied the al-
gorithm for trip assignment and dynamic routing in the city of 
Delft, the Netherlands with a rolling horizon scheme. Assum-
ing that the operator of a SAV fleet has the choice of accepting 
or rejecting trip requests according to a profit maximization 
function, the analysis showed that taking into account the im-
pact of dynamic travel time led to different results of satisfied 
trips and VMT, and ultimately affected overall operator profit 
and network congestion level.

Rossi et al. [81] studied the routing and rebalancing prob-
lem of SAVs in congested transportation networks, where a 
SAV system is modeled in a network flow framework such 
that vehicles are represented as flows in a road network. The 

objective of the routing problem is to minimize the weighted 
sum of passenger trip travel times and vehicle rebalancing 
travel times considering network capacity. The objective of 
the rebalancing problem is to optimize rebalancing paths 
such that traffic congestion is minimized. Through numeri-
cal studies on real-world traffic data, the authors showed that 
the proposed real-time routing and rebalancing algorithm 
yielded lower customer waiting time by avoiding excess con-
gestion on the road, compared to point-to-point rebalancing 
algorithms where no underlying road network is assumed.

Through an agent-based model, Fagnant and Kockelman 
[46] investigated the operation of SAVs and focused on the im-
plications of travel and environmental impacts of SAVs under 
a mixed traffic condition. Instead of 100% penetration of SAVs, 
the authors considered the transportation system with a small 
market share of SAVs (i.e., around 3.5%). The simulation re-
sults under different scenarios (e.g., varying trip generation 
rates, network congestion levels, SAV fleet size, etc) indicated 
that each SAV can substitute around eleven conventional ve-
hicles at the cost of 10% more VMT, and the overall emissions 
savings are expected to be sizable for most emission species.

B. Operating in a Multi-Modal Environment
Based on the discussion in the previous sections, it seems 
clear that SAVs, compared to personal owned human-driven 
vehicles, have significant advantages for individuals as well 
as for the transportation system in terms of mobility, safety, 
and energy savings (especially with SAEVs), e.g., [46]–[48], 
[76], [83], [86]. A combination of SAVs with other transporta-
tion modes such as public transportation, however, might im-
pose different conclusions [9], [10], [12], [18]. Although SAVs 
could be utilized in the way to facilitate the first and last mile 
transport [157] and promote the use of public transportation 
system (e.g., [154], [158]), SAVs may also divert passengers 
away from transit systems due to their capability of providing 
door-to-door services (e.g., [154], [159]).

Approach Topic Reference 

Optimization Fleet sizing [38], [73], [92], [93], [98], [115], [130] 

Vehicle routing / trip assignment [81], [98], [106], [120], [123], [125], [127], [131]–[136] 

Vehicle rebalancing / relocation [72], [81], [107], [108], [130] 

Other considerations [115], [121], [134] 

Simulation evaluation Fleet sizing [43], [44], [47], [48], [80], [86], [89], [90], [128]

Vehicle routing / trip assignment [83], [87], [99], [128], [137], [138] 

Vehicle rebalancing / relocation [46], [48], [77], [91], [104], [110], [112]–[114], [128], [137], [139], [140] 

Ridesharing [77], [124], [126], [129], [141]–[147] 

Pricing scheme [57], [61], [145], [148], [149] 

Transit integration / mode choice [61], [87], [89], [138], [140], [143], [146], [148]–[154]

Electric vehicles [57], [76], [83], [104], [116]–[119], [140], [141] 

Table 1. Approaches in shared autonomous vehicle system modeling.
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1) Shared Autonomous Vehicles as  
a Complement of Public Transit
Early research efforts have explored the performance of in-
tegrating the SAV system with transit systems. For example, 
based on the same network in New Jersey as in [43], Zacha-
riah et al. [143] simulated a system of SAVs where the train 
network is preserved and treated as an integral part of the 
system. Using SAVs as a complementary service of a train 
system, Liang et al. [134] presented an optimization model 
to define the service area of a SAV system for first/last mile 
transport that maximizes the profit of the SAV operator. 
Later in [135], the authors designed a SAV system providing 
shuttle service between a major train station and city area, 
considering the competition between SAVs or other modes 
(e.g., biking or walking), as well as the impact of traffic 
congestion on mode split. With the objective of minimiz-
ing total travel time, the authors developed an optimization 
model to decide the best fleet size and price rate for the 
SAV system.

Shen et al. [146], [151] explored the feasibility of integrat-
ing SAVs in the public transportation system to improve the 
first/last mile connectivity. With a simplified simulation mod-
el without considering traffic congestion where the demand 
for the SAV system was assumed to be 10% of the original 
bus demand, the study showed that by enabling ridesharing, 
the integrated service was able to reduce average passenger 
travel time and ease traffic through less occupancy of road 
resources. Scheltes and de Almeida Correia [140] studied the 
SAEV system providing last-mile service for a train line. In 
the simulation model, vehicle assignment in response to trav-
eler request followed a first-come-first-served model. The 
scenarios of short-term pre-booking, vehicle relocating, and 
opportunity charging were also explored. The results showed 
that compared to bicycle and walking as last mile transpor-
tation modes, the SAEV system was able to reduce average 
passenger travel time and waiting time, especially when pre-
booking option was enabled.

Wen et al. [153] proposed a systematic approach to design 
and simulate an integrated system of SAVs and public tran-
sit. The authors emphasized that the SAV operation is de-
signed to be transit-oriented with the purpose of supporting 
existing public transit service. In an agent-based simulation 
platform, the interaction between service operator and trav-
elers is modeled with a set of system dynamics equations, 
such that the decisions of both parties could be captured in 
the system. The authors suggested that encouraging ride-
sharing, allowing in-advance requests, and combining fare 
with transit would be useful to enable service integration 
and promote sustainable travel. Pinto et al. [138] proposed 
a simulation framework integrating a travel mode choice 
model and a dynamic transit assignment model to assess 
the impacts of a suburban first-mile SAV system on transit 
demand. Similarly, Martinez and Viegas [150] presented an 
agent-based model to evaluate the impact of the SAVs in the 

city of Lisbon, Portugal. In their simulation model, current 
travel demand is served by two types of AVs that compete 
with each other, i.e., a SAV providing door-to-door service 
with the choice of ridesharing and an autonomous minibus 
that replaces current bus service without any transfers for 
users. The simulation results revealed positive mobility im-
pact of SAVs especially when introducing the autonomous 
minibus into the network.

2) Shared Autonomous Vehicles as  
a Competitor of Public Transit
Liu et al. [149] simulated transportation patterns in Austin 
network with a system of SAV from a mode-choice perspec-
tive. A user-equilibrium based dynamic traffic assignment 
model was applied in simulation environment. The study fo-
cused on travelers’ mode choices with the presence of SAVs. 
In a mixed traffic environment, where private human-driv-
en vehicles, public transit, and SAVs coexist, the study ana-
lyzed the impacts of the SAV system on energy consumption 
and emissions under different SAV penetration rates and SAV 
rental fees. Based on the sensitivity analysis of rental fees, 
the authors found that if the SAV fare rate is low enough, SAV 
users might travel more than private vehicle users. There-
fore, although the use of AVs is expected to result in ener-
gy savings and emission reduction, the extra VMT by SAVs 
could compromise such environmental benefits. The mode 
choice results indicated that, for travelers who do not own a 
private vehicle, SAVs are preferable for short-distance trips 
compared to public transit. However, demand shifting from 
public transit would be a concern once the SAVs become 
available in the study area. Hörl [148] conducted a similar 
study and investigated the SAV service in a multi-modal traf-
fic simulation environment. The simulation results in the 
test scenario raised the following two concerns: (1) the in-
troduction of SAVs led to increased VMT and, moreover, (2) 
SAVs attracted public transportation users rather than pri-
vate car owners.

Snelder et al. [152] developed a simulation framework to 
assess both direct and indirect impacts of AVs and SAVs in 
a mixed traffic environment. To capture demand elasticities, 
the network fundamental diagram was combined with mode 
choice models. Furthermore, the spatial impact was also 
modeled as an exogenous input to the framework via a per-
centage of relocated inhabitants per lane use type. The simu-
lation results showed that a shift to SAVs could be expected. 
However, the improved accessibility for many residents could 
result in a significant increase in vehicle trips (and also in 
VMT), which might impose negative effects on traffic condi-
tion. Similar conclusions were drawn from the study on the 
effects of full automation with the possibility of trip chaining 
of household trips, yet in a scenario where most vehicles are 
still privately owned [136].

In summary, findings of multiple studies indicate that al-
though the introduction of SAVs in the transportation system 
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might improve mobility and safety, it could result in enormous 
changes of travel behavior, mode choice, car ownership, and 
possibly transportation infrastructure and urban form. A ho-
listic assess of the impact of the SAV systems on urban mo-
bility and related social implications might be challenging at 
the moment as SAVs are still evolving. However, SAV service 
could possibly have negative impact on traffic congestion and 
be strongly competitive with public transit without appropri-
ate incentive mechanisms.

V. Outlook and Future Directions

A. Concluding Remarks
In this paper, we summarized current research efforts in SAV 
systems that have been reported in the literature to date. Al-
though the SAV system have many aspects in common with 
the conventional carsharing system, the inherent character-
istics of self-driving and self-rebalancing with SAVs further 
enhance free-floating carsharing service and increase the 
stochasticity of the system internally. Externally, the intro-
duction of AVs in the transportation network could change 
fundamentally traffic patterns in the future. The complexity 
of traffic and urban dynamics, thus, places considerable un-
certainty in terms of both short-term and long-term impacts 
of the system [160].

The majority of research efforts has considered a sys-
tem either of full SAV penetration rate or without any traf-
fic, and compared its performance with the conventional 
mobility systems (in terms of fleet size requirement, ener-
gy implications, VMT, passenger travel times, etc). Among 
these research efforts, agent-based modeling is one of the 
major approaches to evaluate network performance of a 
SAV system and assess potential impacts of the system. 
Several research efforts have focused on developing op-
timization models to address the following questions: (1) 
“what is the minimum fleet size to provide a desired level 
of service?” (2) “What is the optimal vehicle assignment 
strategy to minimum passenger travel time?” (3) “What 
is the optimal vehicle relocation strategy to minimize the 
number of rebalancing trips without inducing waiting de-
lay?” In general, the SAV system could benefit from the 
cooperative characteristics of the fleet—the connectivity 
and automation embedded in the system open up the op-
portunities for a central controller to apply optimal opera-
tion strategies to achieve global optimum against different 
network design objectives.

Although previous research has aimed at enhancing 
our understanding of the SAV systems, there are still open 
issues to be addressed. For example, most papers consid-
er the SAV system with fixed stations whereas free float-
ing SAV systems have not been thoroughly investigated. 
Within a SAV system, the optimal fleet sizing problem to 
maintain a minimum required level of service or to en-
sure a desired level of service is still under-explored. The 

 considerations of different vehicle assignment and relo-
cation strategies, or the option of ridesharing further in-
crease the complexity of the problem. So far most papers 
have applied heuristics for the implementation of SAVs to 
solve these problems and focused more on assessing po-
tential benefits of a SAV system.

B. Future Research
There are several directions for future research considering 
the gaps in the work reported in the literature to date. Al-
though previous work has addressed the replacement ratio 
of SAVs to conventional private vehicles, the majority of the 
results are derived with existing demand patterns in an iso-
lated system. The problem of modeling the SAV system with 
presence of other transportation modes, as either a comple-
ment or competing mode, needs further investigation. Es-
pecially, the following questions still remain unanswered: 
(1) “What is the network performance of a SAV system in a 
realistic transportation network?” (2) “How much improve-
ment in the level of service in a transportation network can 
be achieved with an integrated SAV system?” To address 
these challenges, it is necessary to study the operational 
strategies (e.g., optimal fleet size/vehicle assignment/relo-
cation strategy, etc) which would yield the minimum and/
or desired level of service of the transportation network. 
Furthermore, in an environment where massive amount 
of data could be collected from vehicles and infrastructure, 
what we used to model as uncertainty become an additional 
input. With the advent of information and communication 
technologies, better utilizing available information for op-
timal operational strategies requires novel solutions to re-
duce dimensions and to overcome issues associated with 
data in high-dimensional spaces.

With all possible mobility service options enabled by CAVs, 
one particular question that still remains unanswered is “how 
demand pattern or travel behavior will eventually change?” 
With the shared mobility choices (and enhanced convenience 
with SAVs), there is already an evidence of an increase of in-
duced demand (e.g., more night travels, or trips shifted from 
transit demand). However, little research has been conducted 
on investigating the impact of the emerging SAV system on 
the vulnerable population, while a systematic framework 
of providing accessibility to a variety of social groups is still 
missing. Meanwhile, the nature of self-driving and self-rebal-
ancing of a SAV system also implies potential changes on land 
use. For example, the implications of a SAV system on urban 
parking spaces is still under-explored. Thus, the long-term 
impact of shared mobility system on urban transportation sys-
tems is still an open question.
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