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Abstract— In earlier work, we established a decentralized op-
timal control framework for coordinating online connected and
automated vehicles (CAVs) in specific transportation segments,
e.g., urban intersections, merging roadways, roundabouts, and
speed reduction zones. In this paper, we address coordination
of CAVs in a corridor with multiple such scenarios and derive a
closed-form analytical solution that includes interior boundary
conditions. We evaluate the effectiveness of the solution through
simulation in VISSIM. The proposed approach reduces signif-
icantly both fuel consumption and travel time for the CAVs
compared to the baseline scenario where traditional human-
driven vehicles without control are considered.

I. INTRODUCTION

Urban intersections, merging roadways, roundabouts, and
speed reduction zones along with the driver responses to
various disturbances [1] are the primary sources of bottle-
necks that contribute to traffic congestion. Connectivity and
automation in vehicles provide the most intriguing oppor-
tunity for enabling users to better monitor transportation
network conditions and make better operating decisions.
Several research efforts have been reported in the literature
proposing different approaches on coordinating CAVs at
different transportation segments, e.g., urban intersections,
merging roadways, roundabouts, and speed reduction zones,
with the intention to improve transportation efficiency. In
2004, Dresner and Stone [2] proposed the use of the reserva-
tion scheme to control a single intersection of two roads with
vehicles traveling with similar speed on a single direction on
each road, i.e., no turns are allowed. Since then, numerous
approaches have been reported in the literature [3]–[5], to
achieve safe and efficient control of traffic through intersec-
tions including extensions of the reservation scheme in [2].
Some approaches have focused on coordinating vehicles at
intersections to improve the traffic flow [6]–[8]. A detailed
discussion of the research efforts in this area that have been
reported in the literature to date can be found in [9].

Although previous research aimed at enhancing our un-
derstanding of improving emerging transportation systems
just a few efforts have reported results on corridors [10] that
include multiple intersections and merging roadways. More
recently, a control framework was developed for a coordi-
nated and integrated corridor management in a mixed traffic
environment, where CAVs send information to a centralized
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traffic operation center and received control actions from the
center to improve network-wide traffic flow [11], [12].

In earlier work, a decentralized optimal control framework
was established for coordinating online CAVs in different
transportation segments. A closed-form, analytical solution
without considering state and control constraints was pre-
sented in [13], [14], and [15] for coordinating online CAVs
at highway on-ramps, in [16] at two adjacent intersections,
and in [17] at roundabouts. The solution of the unconstrained
problem was also validated experimentally at the University
of Delaware’s Scaled Smart City using ten robotic CAVs [18]
in a merging roadway scenario. The solution of the optimal
control problem considering state and control constraints was
presented in [19] at an urban intersection without considering
rear-end collision avoidance constraint, and the conditions
under which the latter does not become active were presented
in [20].

In this paper, we consider coordination of a number of
CAVs through a corridor. To ensure that no lateral collision
occurs, we impose interior constraints in our Hamiltonian
analysis and derive the optimal solution throughout the entire
corridor.

The paper is organized as follows. In Section II, we
formulate the problem and provide the modeling framework.
In Section III, we derive the analytical, closed form solution
with interior constraints. In Section IV, we validate the
effectiveness of the analytical solution in a simulation envi-
ronment and conduct a comparison analysis with traditional
human-driven vehicles. Finaly, the concluding remarks and
discussion are provided in Section V.

II. PROBLEM FORMULATION

We consider a corridor (Fig. 1) that consists of three
merging zones, e.g., two merging roadways and one urban
intersection. The corridor has a coordinator that can monitor
the vehicles traveling along the corridor within a control
zone (shown with a dashed box in Fig. 1). Note that the
coordinator serves as an information center which is able to
collect vehicular data through vehicle-to-infrastructure and is
not involved in any decision on the vehicle operation. Road
side units could be placed in each merging zone and used
to transmit data between vehicles and the coordinator. Thus,
the coverage of the coordinator is flexible and the length
of corridor could be extended in the presence of connected
infrastructure.

Let N(t) ∈ N be the number of CAVs in the corridor at
time t ∈ R+ and M ∈ M be the number of merging zones
along the corridor where lateral collisions may occur. When
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Fig. 1. Corridor with connected and automated vehicles.

a vehicle enters the control zone of the corridor, it broadcasts
its origin-destination (OD) to the coordinator. Then, the
coordinator assigns a unique number i = 1, . . . , N(t) ∈ N
(Fig. 1) that serves as an identification of the vehicles within
the control zone. The policy through which the sequence
that each vehicle crosses each merging zone throughout the
corridor may be the result of a higher level optimization
problem, which is not addressed in this paper. In what
follows, we will adopt a specific scheme for determining
this sequence of the vehicles crosses each merging zone
throughout the corridor but we emphasize that our analysis
is not restricted to this sequence.

To avoid any possible lateral collision while the vehicles
crossing the merging zones, once a vehicle i enters the
control zone, it computes the time that will be entering each
merging zone which is discussed in the next Section. Let t0i
be the initial time that vehicle i enters the control zone of the
corridor, tmj

i be the time that vehicle i enters the merging
zone j, j ∈M , and tfi be the time that vehicle i exits the last
merging zone along its route. In what follows, we provide a
policy for the vehicle sequence crossing the merging zones
in the corridor. The focus is on the lower level control
problem that yields for each vehicle the optimal control input
(acceleration/deceleration) to achieve the assigned tmj

i using
a given policy that designates tmj

i (upon arrival of CAV i at
the entry of the control zone).

A. Vehicle Model and Constraints

For simplicity, each vehicle is modeled as a double inte-
grator

ṗi = vi(t)

v̇i = ui(t)
(1)

where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the
position, speed and acceleration/deceleration (control input)
of each vehicle i in the corridor. The sets Pi, Vi, and Ui,
i = 1, . . . , N(t) ∈ N, are complete and totally bounded
subsets of R. Let xi(t) = [pi(t) vi(t)]

T denote the state
of each vehicle i, with initial value x0i =

[
p0i v

0
i

]T
, where

p0i = pi(t
0
i ) = 0 is the position of the vehicle at the entry of

the corridor, taking values in Xi = Pi × Vi.

To ensure that the control input and vehicle speed are
within a given admissible range, the following constraints
are imposed.

ui,min ≤ ui(t) ≤ ui,max, and

0 ≤ vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
f
i ],

(2)

where ui,min, ui,max are the minimum deceleration and
maximum acceleration for each vehicle i = 1, . . . , N(t) ∈ N,
and vmin, vmax are the minimum and maximum speed limits
respectively.

To ensure the absence of rear-end collision of two con-
secutive vehicles traveling on the same lane, the position
of the preceding vehicle should be greater than or equal to
the position of the following vehicle plus a predefined safe
distance δi(t). Thus we impose the rear-end safety constraint

si(t) = ξi · (pk(t)− pi(t)) ≥ δi(t), ∀t ∈ [t0i , t
f
i ], (3)

where si(t) ∈ Si denotes the distance of vehicle i from the
vehicle k which is physically located ahead of i. Relate the
minimum safe distance δi(t) as a function of speed vi(t),

δi(t) = γi + ρi · vi(t), ∀t ∈ [t0i , t
f
i ], (4)

where γi is the standstill distance, and ρi is minimum time
gap that vehicle i would maintain while following another
vehicle.

B. Policy for Vehicle Sequence Crossing the Merging Zones

In the modeling framework described above, we assume
that the vehicles traveling in the corridor do not change
lanes except to make necessary turns. When a vehicle i
enters the control zone of the corridor it computes the time
t
mj

i for each merging zone j based on the following three
subsets: 1) Si contains all vehicles share the same route
with vehicle i, 2) Li contains all vehicles that travel in the
same lane in merging zone j with vehicle i but travel from
different routes (i.e., may have rear-end collision with vehicle
i in merging zone j, but lateral collision in the immediate
upstream merging zone j−1), and 3) Ci contains all vehicles
from different entry links in merging zone j that may have
lateral collision with vehicle i.

To ensure that (3) is satisfied at tmj

i , we first impose the
following condition

t
mj

i = max

{
min

{
t
mj

k +ρi,
pj(t)

vmin
+t0i
}
,
pj(t)

v0i
+t0i ,

pj(t)

vmax
+t0i

}
,

(5)
where t

mj

k is the time when the vehicle k enters merging
zone j, k ∈ Si, pj(t) is the distance from the entry point of
the control zone until the entry of merging zone j, and v0i is
the initial speed of vehicle i when it enters the control zone
of the corridor. If Li is not empty, we impose an additional
constraint for the time tmj

i :

(t
mj

i − tmj
e ) · (tmj−1

i − tmj−1
e ) > 0 (6)

where t
mj
e is the time when the vehicle e enters zone j,

e ∈ Li.
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To avoid lateral collision in the merging zone j, we need
to adjust tmj

i from (5) with or without the constraint imposed
by (6) based on the time that each vehicle computes tmj

i in
set Ci as follows.

1 initialize set A← ∅, variable tmj

i
∗ ← 0;

2 find A←
{
t
mj
o : t

mj
o ≥ tmj

i ,∀o ∈ Ci
}

;
3 if A = ∅, then

A←
{
t
mj
o ,∀o ∈ Ci

}
,

t
mj

i
∗ ← max{max{A}+ ρi, t

mj

i };
else

if tmj

i + ρi ≤ min{A}, then tmj

i
∗ ← t

mj

i ;
else

for z ← 1 to N(A)− 1 :
if tmj

z + ρi ≤ t
mj

z+1 − ρi,
then tmj

i
∗ ← t

mj
z + ρi;

end
end
if tmj

i
∗
= 0, then tmj

i
∗ ← max{A}+ ρi

end
end

end
4 t

mj

i ← t
mj

i
∗
.

Each vehicle follows the above policy to compute the time
t
mj

i that will be entering the merging zone j ∈ M upon
arrival of vehicle i in the entry of the control zone of the
corridor. In what follows, we will provide the closed-form
solution of the optimal control problem for each vehicle i =
1, . . . , N(t) ∈ N.

III. ANALYTICAL SOLUTION

A. Analytical Solution for the Unconstrained Problem

For each vehicle i = 1, . . . , N(t) ∈ N, we define the cost
functional Ji(u(t)) which is the L2-norm of the control input
in [t0i , t

f
i ]

Ji(u(t)) =
1

2

∫ tfi

t0i

u2i (t) dt, (7)

subject to : (1), (2), (3), pi(t0i ) = 0, pi(t
mj

i ) = pj ,

and given t0i , v0i , tmj

i .

To simplify the analysis we do not consider the state and
control constraints (2). The constrained problem formulation
has been addressed in [19], and it requires the constrained
and unconstrained arcs of the state and control input to be
pieced together to satisfy the Euler-Lagrange equations and
necessary condition of optimality. So our approach yields the
optimal solution as long as the control input and speed of
each vehicle is within the imposed limits.

From (7) and the state equations (1), for each vehicle i =
1, . . . , N(t) ∈ N the Hamiltonian function with the state and
control adjoined is

Hi

(
t, pi(t), vi(t), ui(t)

)
=

1

2
u(t)2i + λpi · vi(t) + λvi · ui(t),

(8)

where λpi and λvi are the costate components.
When the inequality state and control constraints are not

active, applying the necessary condition, the optimal control
can be given

ui(t) + λvi = 0, i ∈ N (t). (9)

From the Euler-Lagrange equations we have λpi (t) = ai,
and λvi (t) = −

(
ai · t + bi

)
. The coefficients ai and bi

are constants of integration corresponding to each vehicle i.
From (9) the optimal control input (acceleration/deceleration)
as a function of time is given by

u∗i (t) = ai · t+ bi, ∀t ≥ t0i . (10)

Substituting the last equation into (1) we find the optimal
speed and position for each vehicle, namely v∗i (t) = 1

2ai ·
t2+bi · t+ci, p∗i (t) = 1

6ai · t
3+ 1

2bi · t
2+ci · t+di, ∀t ≥ t0i .

where di and ei are constants of integration. The constants
of integration ai, ci, di, and ei are computed at each time
t, t0i ≤ t ≤ tfi , using the values of the control input, speed,
and position of each vehicle i at t, the position pi(t

f
i ), and

the values of the one of terminal transversality condition,
i.e., λvi (t

f
i ). Since the terminal cost, i.e., the control input,

at tfi is zero, we can assign λvi (t
f
i ) = 0. To derive online

the optimal control for each vehicle i, we need to update the
integration constants at each time t. We form the following
system of four equations, namely

t2

2 t 1 0

t3

6
t2

2 t 1
(tfi )

3

6

(tfi )
2

2 tfi 1

−tfi −1 0 0

 ·

ai

bi

ci

di

 =


vi(t)

pi(t)

pi(t
f
i )

λvi (t
f
i )

 ,∀t ≥ t0i .

(11)

B. Analytical Solution with Interior Constraints

We consider the general case where the path of vehicle i
consists of more than one merging zone, e.g., vehicle i enters
from the first ramp and travels through #2 and #3 (Fig. 1).
Between the time t0i that the vehicle enters the control zone
and the time tfi that the vehicle exits the merging zone #3,
vehicle i has to travel across the merging zones #1 and #2 at
the designated time tm1

i and tm2
i respectively. So, we need to

impose interior boundary conditions. For the merging zone
#1, we have pi(tm1

i ) = p1. If a speed limit is imposed as an
interior boundary condition, then we have also vi(tm1

i ) = v1.
Let tm1−

i and tm1+
i represents the time just before and after

the interior condition. Then

λpi (t
m1−
i ) = λpi (t

m1+
i ) + π0, (12)

λvi (t
m1−
i ) = λvi (t

m1+
i ) + π1, (13)

H− = H+ − π0 · vi(tm1
i )− π1 · ui(tm1

i ). (14)

where π0 and π1 are constant Lagrange multipliers, deter-
mined so that the interior boundary conditions are satisfied.
Eq. (12), (13), and (14) imply discontinuities in the position
and speed costates and the Hamiltonian at tm1

i . The two arcs,
i.e., equations before and after tm1

i , are pieced together to
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solve the problem including the constants of integration, π0
and/or π1, and the corresponding equations: the initial con-
ditions, the interior boundary conditions the final conditions,
i.e., λi(t

f
i ), pi(t

f
i ), and the junction points defined in (12) and

(13). To derive online the optimal control for each vehicle i,
we need to update the integration constants at each time t, so
that the controller yields the optimal control online for each
vehicle i, with feedback provided through the re-calculation
of the constants of integration for each arc. We form the
following system of nine equations, namely

t2

2 t 1 0 0 0 0 0 0

t3

6
t2

2 t 1 0 0 0 0 0

(t
m1
i )3

6

(t
m1
i )2

2 tm1
i 1 0 0 0 0 0

(t
m1
i )2

2 tm1
i 1 0 − (t

m1
i )2

2 −tm1
i −1 0 0

0 0 0 0
(tfi )

3

6

(tfi )
2

2 tfi 1 0

0 0 0 0 −tfi −1 0 0 0

0 0 0 0
(t

m1
i )3

6

(t
m1
i )2

2 tm1
i 1 0

tm1
i 1 0 0 −tm1

i −1 0 0 0

1 0 0 0 −1 0 0 0 −1



·



ai
bi
ci
di
gi
hi
qi
wi

π0


=



vi(t)
pi(t)
pi(t

m1
i )
0

pi(t
f
i )

λvi (t
f
i )

pi(t
m1
i )
0
0


,∀t ≥ t0i . (15)

where ai, bi, ci, di are the constants of integration for the
first arc, and gi, hi, qi, wi are the constants of integration for
the second arc. The analysis for the merging zone #2 can be
derived in a similar fashion.

IV. SIMULATION RESULTS

To validate the effectiveness of the analytical solution, we
create a simple case study in MATLAB that includes two
adjacent intersections. The vehicle starts at the beginning
of a path with length of 430 m, where the initial speed
12.5 m/s. The first intersection is located at 100 m, and
the second one is at 230 m. We are given the times t1, t2
that the vehicle will be entering the first and second merging
zones as well as the time tf that the vehicle will exiting
the second merging zone as designated by a higher level
optimization problem. In this scenario we consider t1 =
7s, t2 = 21s, and tf = 38s. Vehicle position, speed and
acceleration profiles without any interior speed constraints
are shown in Fig. 2 b). Three acceleration arcs are pieced
together for the entire corridor due to the existence of
two intermediate intersections, resulting in smooth speed
transitions. Assuming that there is one designated speed at
each intersection (i.e., v1 = 12.5m/s, and v2 = 15m/s), the

speed costate is discontinuous as indicated with non-zero π1
in (12). Fig. 2a) shows that the acceleration jumps at the
intersections.

Fig. 2. Optimal trajectory traveling through two intersections.

A. Traffic Simulation

In this case study, we create a network of MCity in
VISSIM environment, where the corridor consists of one
merging at highway on ramp, one roundabout, and one
intersection (Fig. 3). Vehicles enter the network on the ramp,
join the traffic on the highway with desired speed of 20
m/s, then travel through the roundabout and intersection,
where a reduced speed limit of 15.6 m/s, until the end
of the path. To evaluate the network performance with the
proposed control algorithm, we develop two scenarios (i.e.,
0% and 100% CAV market penetration). For the 0% CAV
penetration scenario (i.e., baseline scenario), the Wiedemann
car following model [21] built in VISSIM is applied. The
intersection is controlled by fixed-time signal controller,
whose signal timing is optimized for given traffic conditions.
The simulation duration is 900 s, and the network serves
around 400 vehicles. To accommodate stochastic components
of traffic and drive behaviors, we conduct 5 simulation runs
for each scenario. Through VISSIM interface, we collected
evaluation data at each merging zone, including average
traffic speed, delay, CO emission, and fuel consumption
every 30 s.

1) Average Speed: As we can see from Fig. 4a, because
of smooth vehicle movement under the optimal control
operation in the merging zone #1, the fluctuation in average
speed is reduced for both primary road and ramp. The
improvement in traffic speed is marginal considering low
traffic flow on both roadways. However, in zone #2, which
receives the traffic flow towards the roundabout and also all
the traffic from zone #1, traffic condition in the baseline
scenario (Fig. 4b) is even worse with large fluctuations.
In some cases, uncontrolled merging vehicles may achieve
higher speed than those under optimal control, if there is
low circulating flow inside the roundabout. Thus, we can
see that for several time interval, the average speed under
baseline scenario is higher than that under optimal control
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Fig. 3. The corridor in MCity.

scenario in (Fig. 4b). With upstream traffic flow, the number
of eastbound vehicles arriving at the intersection (i.e., zone
#3) is much higher than other traveling directions, which
creates congestion that may even propagate to the upstream
roundabout. Also, under baseline scenario with fixed-time
signal controller, the average speed ranges between 5 m/s
and 15 m/s because of stopping for the red lights (Fig. 4c).
Through eliminating the stop-and-go driving and removing
the signal controller, the CAVs are able to achieve higher
travel speed.

Fig. 4. Average speed in each merging zone.

2) Total Delay: The average delay in each zone is col-
lected in VISSIM, and the total delay is calculating by
multiplying it by the total number of vehicles processed
during each collecting interval. From Fig. 5, we can see a

clear increasing delay farther downstream of the corridor,
due to higher traffic volume and signal controller in zone
#3. However, with the optimal control, the vehicles are
coordinated from the beginning of the corridor, such that
the traffic flow feeding into zone #3 is relatively stable. As
a result, although there are still minor delays upstream in
zones #1 and #2, the delay in zone #3 is negligible, which
is in contrast to the baseline scenario where traffic condition
gets worse downstream in zone #3.

Fig. 5. Accumulated delay in each zone.

3) Accumulative Fuel Consumption: Relating fuel con-
sumption to the delay and stops, the trends of total fuel
consumption over time are similar to the total delay for
each zone. Since traffic control are at the place to regulate
traffic under the baseline scenario, i.e., yielding in zone #2
for the roundabout merging, and signal controller in zone
#3 for intersection control, and the traffic volume increases,
the fuel consumption is much higher at these downstream
zones than in zone #1. Similarly, whereas less control efforts
in zone #1 leads to marginal fuel savings (Fig. 6a), we
achieve high fuel savings in zones #2 and #3 (Fig. 6b
and 6c) through fully controlling of CAV movements. The
summarized improvements of a network of CAVs over that
of non-CAVs are included in Table IV-A.3.

Fig. 6. Accumulated fuel consumption for each zone.

4) The corridor travel time: We calculate the average
travel times for the vehicles traveling from the ramp through
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TABLE I
DIFFERENCES IN MEASURE OF EFFECTIVENESS BETWEEN CAVS AND

NON-CAVS.

Zone
Fuel

Consumption CO Emission Total Delay Average Speed

(%) (%) (%) (%)
1 -6 -5 -78 +0
2 -17 -16 -95 +4
3 -64 -65 -99 +55

merging zones #1 to #3 on the route. Shown in Fig. 7, the
large fluctuation in the average travel time under baseline
scenario is due to red/green light process. Because of the
stop-and-go driving situation under the baseline scenario, the
average travel time for the corridor is higher than the one
corresponding to optimal control. On average, there is around
8% savings on average travel time and 11% savings on total
for the ramp vehicles only through optimal coordination of
CAVs.

Fig. 7. Travel time performance of the corridor.

V. CONCLUDING REMARKS AND DISCUSSION

In this paper, we investigated the optimal coordination
of CAVs in a corridor. We derived a closed-form analytical
solution that considers interior boundary conditions, which
provide optimal trajectory for the entire route assigned to the
vehicle. The simulation analysis showed the optimal solu-
tion can effectively improve network performance. Through
vehicle coordination, stop-and-go driving is eliminated, the
corridor traffic condition is substantially improved, achieving
less fuel consumption and average travel time per vehicle.
The state and control constraints were not incorporated in
this paper. Ongoing efforts consider the complete solution
that includes state and control constraints. Future research
should focus on vehicle coordination under mixed traffic
environment that include interactions between human-driving
vehicles and CAVs.
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