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Abstract— Driver feedback systems have the potential to 

improve driving safety and efficiency by providing instructions 

to drivers aimed at improving their driving style. There is 

already a rich body of available literature devoted to the 

derivation of energy efficient speed profiles to develop driver 

feedback or eco-driving systems. While most of them can be 

applied to any type of vehicle, their effectiveness will be 

maximized if their formulation involves the dynamics of the 

particular vehicle powertrain configuration.  This paper 

summarizes the research trends in the development of these 

systems that have been reported in the literature to date 

classifying them according to the powertrain structure and the 

nature of the control strategy. The study concludes with a 

discussion on the remaining challenges and potential future 

research directions.  

I. INTRODUCTION 

The increasing challenges posed by traffic congestion and 

accidents are stimulating the investigation of new 

approaches for improved driving control. One promising 

approach is based on the concept of using enhanced driver 

feedback to improve overall vehicle and traffic network 

performance. Driver responses to traffic disturbances are a 

significant cause of congestion and safety issues [1]. As a 

result, driver behavior has been a key contributor to the 2.2 

million nonfatal injuries, 35,000 deaths and estimated 1.7 

billion metric tons of CO2 released to the environment in 

2012 [2]. In 2014, congestion caused people in urban areas 

to spend 6.9 billion hours more on the road and to purchase 

an extra 3.1 billion gallons of fuel, resulting in a total cost 

estimated at $160  billion [3]. Limitations in mobility 

generate driver frustration, irritation, and stress, which may 

encourage more aggressive driving behavior and further 

slow the process of recovering free traffic flow  [4]. Thus it 

is becoming increasingly clear that driver behavior should be 
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a key concern in developing more sustainable transportation 

technologies.  

There is a solid body of research now available on various 

approaches for optimizing vehicle system efficiency both for 

conventional [5] and hybrid powertrain systems [6]. There 

have been also several studies that have considered 

improving transportation efficiency through coordination of 

connected automated vehicles (CAVs) in particular traffic 

scenarios [7]. One particular question that still remains 

unanswered is “how to take advantage of the unprecedented 

levels of traffic and near-by vehicles information to improve 

the driver’s decision making and performance?”   

In this paper we have two main objectives: (1) to 

summarize recent research efforts related to the design of 

eco-driving systems; and (2) to discuss potential research 

directions. We report related efforts in driver feedback-based 

controls according to the vehicle powertrain configuration, 

i.e., conventional engine-powered, hybrid and plug-in hybrid 

and battery electric.  

Any such effort has obvious limitations. Space constraints 

limit the description of the various approaches in detail, and 

thus, extensive discussions are included only where they are 

important for understanding the fundamental concepts or 

explaining significant departures from previous work. In all 

cases, breadth of perspective and fundamental concepts are 

emphasized over detailed technical arguments. Note that 

eco-driving systems provide real-time feedback to the 

drivers and thus, they need a user-machine interface with 

easy interpretation of the instructions to minimize driving 

distraction and assure a safe driving. The study of those 

interfaces and their level of distraction is thus an additional 

relevant topic related to eco-driving that is beyond the scope 

of this work.  

The structure of the paper is as follows. In sections II, III 

and IV, we cover basic definitions and summarize highlights 

from the literature related to driver impact in conventional, 

hybrid and plug-in hybrid and battery electric vehicles 

respectively. In Section V, we present our conclusions and 

discuss the major opportunities we see for further research. 

 

II. DRIVER FEEDBACK SYSTEMS FOR ECO-DRIVING 

Recent studies indicate that fuel consumption and emissions 

can be reduced in existing vehicles by as much as 30% by 

altering the driver’s driving style [1]. One of the most 

promising approach involves providing immediate 

information to the driver about the effect of driving behavior 

on fuel consumption. Driver feedback systems (Fig. 1) 

provide instructions to drivers aimed at achieving an eco-

driving style, or even providing warnings to avoid a 
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potential collision. Feedback for adapting an eco-driving 

style is typically accomplished by using information from 

fuel-efficient driving profiles that are obtained through the 

use of optimization routines. Such information can be 

provided to the driver either online or offline. 

A. General performance metrics in eco-driving 

There are specific actions that can help the drivers 

improve their driving style [8], e.g., accelerate smoothly, try 

to keep a steady speed, shift up early, etc. Some systems can 

provide feedback to the driver by following these simple 

rules [9], [10]. However, to maximize the benefits of eco-

driving it is important to know when to apply these rules and 

how they need to be adapted according to the specific 

vehicle powertrain configuration.   

The objective here is to find an energy-efficient speed 

profile that reduces energy consumption while ensuring the 

safety of the driver. The approaches to derive energy 

efficient speed profiles can be broadly categorized as 

optimal approaches and heuristic approaches. While most of 

them can be applied to any type of vehicle, their 

effectiveness will be maximized if their formulation involves 

the dynamics of the particular vehicle powertrain 

configuration [11]. 

 

 
 

Fig. 1. Example of a visual driver information and feedback display 
systems. 

III. DRIVER FEEDBACK FOR CONVENTIONAL VEHICLES 

Conventional vehicles are powered only by an internal 

combustion engine. Their efficiency is very sensitive to the 

time spent on idling and stop-and-go patterns. There have 

been research efforts to integrate some degree of traffic 

information into eco-driving systems aimed at improving the 

driver’s driving style.  

A. Optimization-Based Approaches 

The optimal control problem aims at minimizing a 

function that estimates the fuel or energy consumption of the 

vehicle over a particular trip. This problem is subject to 

different constraints to ensure drivability, safety and 

satisfaction of driver power demand. The most common 

constraints found in the literature include the minimum and 

maximum speed and acceleration limits and the maximum 

time allowed for the entire trip. 

 The optimization problem solved by Wollaeger et al. 

[12], aims at minimizing the engine fuel flow rate as a 

function of engine torque and speed, this function is 

commonly found in the form of an engine fuel consumption 

map, but it can also be defined as a polynomial function with 

tunable parameters. The authors proposed a two-step 

optimization process. First the fuel consumption 

optimization problem is solved with dynamic programming 

(DP) by using a coarse grid. Then, a finer grid is defined 

around the initial optimal solution to find the global optimal. 

Their method, known as “pseudo-dynamic programming,” 

uses traffic information to define the constraints of the 

optimization problem. This work was later extended by 

Ozatay et al. [13] and tested in real-time using a driver 

assistant system. Similar approaches were proposed and 

solved using DP in [14] and [15]. 

In the research reported in [1] and [16], the authors 

investigated the driving factors that have a major impact on 

fuel consumption. The system is integrated with an 

optimization framework that can be used to optimize a 

driving style with respect to these driving factors. Then they 

developed a driver feedback system that can provide 

instructions to the driver in real time to alter her/his driving 

style and make it eco-friendlier. The optimization problem is 

subject to speed or time constraints and is solved by 

applying sequential quadratic programming.   

1) Multi-objective optimization. 

Kamal et al. [17], [18], [19], proposed an optimization 

framework for fuel economy improvement and presented 

some traffic network analysis. In [17] the multi-objective 

optimization target is to minimize four weighted terms: fuel 

consumption, acceleration, deviation from an imposed speed 

limit, and deviation from the desired gap distance from the 

preceding vehicle. The fuel economy is estimated as a 

function of speed and acceleration and a model predictive 

control (MPC) problem is solved by using computation and 

the generalized minimum residual method. They analyzed 

the effects of using the proposed system on a road section 

with intersections controlled by traffic lights using results 

from a simulation in the traffic simulator AIMSUN [20]. A 

similar problem was proposed in [19]. In [18], the authors 

included some information about the upcoming terrain and 

proposed to optimize the velocity profile by minimizing 

three terms: the cruising fuel consumption, the acceleration 

force due to road grade, and the tracking speed error with 

respect to the driver-desired velocity. Each term is 

multiplied by a weighting term whose values are tuned 

through observation. Fuel consumption is estimated by using 

a polynomial function.   

The problem of smoothing the traffic flow by controlling 

a host vehicle was addressed in [21]. The dynamic behavior 

of the following vehicle is included in the multi-objective 
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optimization, and the dynamics of the n preceding vehicles 

are used to estimate the future speed trajectory of the host 

vehicle. The cost function includes four weighted terms: 

deviation error from desired velocity, host vehicle 

acceleration, following vehicle acceleration, and deviation 

error from the desired gap with the preceding vehicle. 

Through numerical simulation the authors showed that the 

system is able to reduce the propagation of a traffic jam on 

uniformly distributed dense traffic.  

In [22], [23], the problem of finding optimal trajectories 

by indirect fuel consumption optimization was addressed. 

The problem in [22] is formulated, as to minimize velocity 

transients and trip time, by predicting traffic using a feed-

forward traffic estimator based on the gas-kinetic model. DP 

was used while it was emphasized the importance of 

prediction accuracy in achieving the potential improvements. 

Zhang and Vahidi [24] proposed a predictive cruise 

control that uses probabilistic prediction of the preceding car 

position. The optimization problem is formulated to 

minimize the vehicle’s acceleration and the car-following 

error so that efficiency can be improved while safety 

requirements are met. The estimation of the probability 

distribution for the position of the preceding car is made 

using a Markov chain model, and the problem is solved with 

MPC. In [25] the cost function for the multi-objective 

optimization problem includes the probabilistic prediction of 

the traffic signal timing and it is solved using deterministic 

DP in a receding horizon way. DP has been also used to 

solve multi-objective optimization problems in [26], [27], 

[28], [29], and [30]. Kerper et al. [27] used historical data to 

predict a short-term future velocity profile that is optimized 

to minimize fuel consumption. The comprehensive modal 

emission model was used to evaluate fuel and emissions, and 

a dynamic time warping algorithm was used for clustering.    

Wang et al. [29] used an emissions map to derive a speed 

profile that produces minimum emissions and used it as a 

reference speed. The proposed multi-objective problem 

includes the cost of deviations from the emissions-optimal 

speed, the cost of deviation from a desired speed, the cost of 

deviating from the desired gap with the preceding vehicle, 

and, finally, the cost of high acceleration values. The 

problem is solved using DP for uniform prediction time 

windows. Simulations were performed for a 1 km single lane 

ring road for two average vehicle densities and assuming all 

the vehicles are equipped with the system.  

B. Heuristic Approaches 

The research efforts in this section focus on the use of 

heuristic rules to find velocity profiles that reduced fuel 

consumption. The approaches in [31], [32], and [33] used 

signal phasing and timing information to compute ideal 

and/or feasible velocity profiles. The overall goal is to derive 

the speed profile to avoid stopping at a red light, whenever 

possible, and thus reduce idling operation. The signal phase 

and time can be predicted or assumed to be deterministic. 

Rakha et al. [31] used the velocity profiles as inputs to 

estimate the required fuel consumption from the Virginia 

Tech microscopic model. The approach presented by 

Munoz-Orgarero and Magaña [34] attempts to reduce the 

use of the brakes when the vehicle is approaching a traffic 

signal that requires the vehicle to stop. The authors used 

image recognition algorithms to detect a set of specific 

traffic signals. Then the distance required to stop the vehicle 

without using the brakes is calculated and used to advise the 

driver when to release the accelerator pedal. The rolling 

resistance and road slope information are used in the speed 

calculation. Fuel consumption is calculated from the mass 

air flow sensor and the vehicle speed obtained from the 

OBD2 port. From the experimental results they concluded 

that decelerations greater than 1.5 m/s2 produce an 

exponential increment in fuel consumption and confirmed 

that smooth acceleration patterns correlate to reductions in 

fuel consumption. 

Jiménez et al. [35] proposed a set of action rules based on 

the solution derived using DP. The objective is to minimize 

fuel consumption that is computed using a fuel consumption 

map in conjunction with the road slope. The proposed 

feedback system allows real-time advice, accounting for 

traffic information. Vagg et al. [36] used information about 

the time between peaks and troughs of the speed profile, the 

acceleration, and the relative positive acceleration, which is 

a function of position, speed and acceleration, to give 

feedback to the driver in real time. The feedback includes 

gear shifting advice. 

IV. DRIVER FEEDBACK FOR HYBRID AND PLUG-IN HYBRID 

VEHICLES 

Hybrid electric vehicles (HEVs) (Fig. 2) and plug-in 

HEVs (PHEVs) have attracted considerable attention due to 

their potential for reducing petroleum consumption and 

greenhouse gas emissions. This capability is mainly 

attributed to: 1) the potential for downsizing the engine; 2) 

the capability of recovering energy during braking, and thus 

recharging the energy storage unit (e.g., battery or 

ultracapacitor); and 3) the ability to minimize engine 

operation at speeds and loads where fuel efficiency is low. In 

addition, hybridization of conventional powertrain systems, 

which typically refers to the power requirements for the 

electric motor or the degree of electrification, allows 

elimination of near-idle engine operation, thus enabling 

direct fuel economy enhancement. 

A typical HEV consists of the fuel converter (internal 

combustion engine), the inverter, the battery, and the electric 

machines (motor and generator). HEVs may be categorized, 

based on architecture, as one of three types: 1) parallel, 2) 

series, or 3) power split. In parallel HEVs, both the engine 

and the motor are connected to the transmission, and thus, 

they can power the vehicle either separately or in 

combination. The series HEV, in which the electric motor is 

the only means of providing the power demanded by the 

driver, is the simplest HEV configuration. Finally, the power 

split HEV can operate either as a parallel or a series HEV, 

combining the advantages of both. PHEVs are hybrid 
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vehicles with rechargeable batteries that can be restored to 

full charge by connecting a plug to an external electric wall 

socket. A PHEV shares the characteristics of both an HEV, 

having an electric motor and an internal combustion engine, 

and an all-electric vehicle (EV), having a plug to connect to 

the electrical grid. This is especially appealing in situations 

where daily commuting is within a small amount of miles. 

These vehicle architectures usually have regeneration 

capabilities, which allow them to be more efficient in 

transient operation.  Attempts to develop eco-driving 

systems for these HEV architectures frequently involve in-

vehicle optimization.  

A. Optimization-Based Approaches 

Bouvier et al [11] considered two approaches to find the 

optimal speed profile. In the first approach, they used 

general terms that play an important role for a conventional 

engine powered vehicle: the fuel consumption, the total 

travel time and a penalty term that penalizes the speed 

values above the stated limits. In the second approach, the 

authors included a fourth term related to the battery State of 

Charge (SOC) into the cost function.  They implemented an 

optimal energy management strategy for the HEV and 

compared the fuel consumption results using the two optimal 

speed profiles. They found that considering the specific 

powertrain configuration when computing the optimal speed 

profile, can further increase the fuel economy by 2% to 3% 

percent. Other optimization-based approaches can be found 

in [37] and [38]. Mensing et al. [37] proposed to use DP to 

find the optimal velocity trajectory by minimizing the fuel 

consumption, state-of-charge variation rate, and time. 

 
Fig. 2.  HEV configuration showing the engine (red), the inverter (orange), 

the battery packages (blue), and the electric machines (yellow). 

 

B. Heuristic Approaches 

Calculating optimal deceleration patterns that maximize 

the energy recuperation along a route is the focus of Van 

Keulen et al. [39]. Using vehicle mass and geographical 

information to take advantage of road elevations, they 

predict the velocity profile for a particular route. Then, they 

compute the required deceleration that allows the electric 

machine to generate at its maximum value and avoid the use 

of the mechanical brakes. The predicted speed profile is used 

later to find the optimal controls for in-vehicle energy 

management. Van Keulen et al. [40] and Vajedi et al. [41] 

proposed to divide the route into segments and to define a 

particular optimal trajectory shape for each segment. Then 

nonlinear programming is used to find the parameters for 

each segment that minimizes fuel consumption. 

V. DRIVER FEEDBACK FOR ELECTRIC VEHICLES  

EVs are powered by an electric motor and a battery. The 

range or maximum number of miles the vehicle can travel 

without recharging is an important characteristic defining 

vehicle performance. The main goal of eco-driving systems 

for all-electric vehicles is to reduce the battery energy 

consumption such that the vehicle range is increased.  

Energy consumption optimization is the focus of two 

studies reported in the literature recently [42], [43]. 

Employing heuristic rules in [42], the authors investigated 

the feasible time ranges that allows a vehicle to pass through 

traffic lights without stopping and using this time windows, 

they divided the optimization problem into sub-problems 

that are solved to find the sub-optimal speed profile. In [43], 

the authors presented a macroscopic steady-state analysis of 

an urban traffic network subject to boundary flows affected 

by traffic lights and variable speed limits. The cell 

transmission model, adapted to urban traffic, is used to 

model the system and it is assumed that the vehicles on the 

road travel at an equilibrium speed. Thus, the road section is 

divided into homogeneous cells to represent the traffic flow. 

In this particular study, there are two representative cells: the 

congested cell and the free cell. The authors solved a multi-

objective optimization problem to select the optimal velocity 

of the free cell using the instantaneous travel time, total 

travel time, total travel distance, and energy at the 

macroscopic level as the parameters of the cost function. 

Through the simulation of a road section with two traffic 

lights it was shown that the problem has a nontrivial 

solution.  

Wang et al. [44] investigated the problem of optimally 

controlling how to accelerate and decelerate a non-ideal 

energy-aware electric vehicle so as to (a) maximize its 

cruising range and (b) minimize the traveling time to a 

specified destination under a limited battery constraint. 

Although the proposed solution for the cruising range 

maximization problem can be attained numerically, the 

authors proposed an approximate solution structure that the 

original optimal control problem can be transformed into a 

simpler nonlinear parametric optimization problem. Using 

this methodology to the travelling time it can yield 

practically realizable results. 

Freuer and Reuss [45] used predictive route data and 

information from a radar sensor to optimize energy use by 

minimizing the electric powertrain losses. The optimization 

problem is solved online using DP for time horizons of 

different lengths depending on the available predictive data. 

Similar approaches, with focus on the minimization of 

energy losses, were proposed by Dib et al. [46] and Tan et 

al. [47]. A multi-objective optimization problem that 

penalizes energy consumption, travel time and driving 

comfort is proposed in [48]. The optimal velocity profile is 
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computed offline and used to provide feedback to drivers 

while driving an electric vehicle on an actual highway. 

The optimization framework proposed in [1] for 

conventional vehicles was used to implement a driver 

feedback system for an electric bus in [49]. In this work, the 

optimal problem involves the minimization of the 

instantaneous vehicle power consumption that is modeled as 

a function of the speed and acceleration. Given the 

dimensions of the vehicle, the grade has a non-negligible 

impact on the vehicle power request. Thus, it is included in 

the instantaneous power meta-model which was generated 

by using experimental data from a real battery electric bus. 

In addition, the authors proposed a driver feedback interface 

and a driver scoring method to allow the driver improving 

the driving skills.  

Wu et al. [50] proposed an approach that assumes that 

information regarding the upcoming terrain and real time 

traffic data is available and consider the queues at 

intersection crossings. The optimization problem aims at 

minimizing the vehicle energy consumption, which is a 

function of speed, acceleration and road grade, subject to 

state constraints, queue limitation, travel time limits and 

states boundaries.   

More recently, Yi and Bauer [51], considered the weather 

conditions, specifically the wind speed, into the optimization 

problem. The proposed optimization problem aims at 

minimizing the aerodynamic and rolling resistance energy 

losses of the vehicle. 

VI. DRIVER FEEDBACK FOR ECO-DRIVING: SUMMARY   

Most of the driver feedback systems address the issue of 

finding an optimal speed profile in terms of fuel/energy 

consumption for a single vehicle. When attempting to 

account for traffic in the formulation, traffic lights and car 

following have been extensively studied while limited 

consideration has been given to ramps, intersections, or lane 

changing. The majority of the papers predict, or assume that 

some sort of traffic information is available, and use it to set 

constraints for the optimization problem. DP is the most 

frequently used strategy, but some authors have also used 

MPC, and non-linear programming. The most commonly 

used software tool is Matlab/Simulink, followed by 

AIMSUN, PSAT, and Autonomie.  In HEVs, it is common 

to have a two-level optimization. Typically, in the first level 

the speed profile is optimized and in the second level, there 

is in-vehicle optimization to achieve further improvements. 

In the case of electric vehicles, the approaches are similar to 

the case of conventional vehicles, but instead of minimizing 

fuel consumption, the goal is to minimize the energy 

consumption.  

Table 1 categorizes the references according to the type of 

solution, i.e., optimization or heuristics, the method of 

evaluation, i.e., simulation or field test, and the percentage 

of fuel, energy, and equivalent fuel consumption 

improvement. While some optimization-based approaches 

can yield more than 20% improvement in fuel or energy 

consumption, they are not always amenable to real time 

implementation and most of the reported results are based on 

simulations.  

VII. DRIVER FEEDBACK FOR SAFETY 

A significant amount of research has focused on developing 

information systems for improving safety such as vehicle 

collision warning systems (CWSs). CWSs provide warning 

signals to alert the driver when potential collisions are 

detected. Typical CWSs are based on the information 

obtained by the vehicle using radar and acoustic and vision 

sensors. The sensors yield relative information about the 

vehicle and moving or stationary obstacles. This information 

is then processed to determine the likelihood of a collision 

and to estimate the time to collision. A warning is issued if 

the estimated time to collision is smaller than the specific 

threshold under the specific scenario. Tan and Huang [52] 

explored the engineering feasibility of a cooperative CWS 

(CCWS) where vehicles are equipped with a differential 

global positioning system and basic motion sensors. The 

paper provided a comprehensive exploration of possible 

functional architectures for such systems and presented an 

example demonstrating the engineering feasibility of such 

designs. Car-to-car overlay networks for enhancing safety in 

a group of cars has also been investigated for CCWSs 

(Aoyama and Takeichi [53]).  

Advanced driver-assistance systems (ADASs) provide 

essential information to the driver aimed at automating 

difficult or repetitive tasks and thus can lead to an overall 

increase in safety and an enhanced driving experience. 

Ammoun et al. [54] investigated the contribution of 

intervehicle communication (IVC) in ADASs and compared 

it with traditional safety sensors. Tampere et al. [55] 

presented a continuous human-kinetic traffic-flow model for 

the explorative analysis of ADASs. It is a multiclass variant 

of kinetic traffic-flow models that is strongly based on 

individual driver behavior, i.e., on fully continuous 

acceleration/deceleration behavior and explicit modeling of 

the activation level of the driver. The effectiveness of its 

efficiency was illustrated on a queue tail warning ADAS that 

alerts drivers when approaching sudden decelerations in 

queue tails. 

Slowdown warning systems aim to simultaneously 

provide information to all drivers in a platoon of vehicles 

when a vehicle abruptly decelerates. This advance 

information gives the drivers more time to react in 

preparation for the impending slowdown, and as a result, it 

increases the distances between vehicles. Chakravarthy et al. 

[56] investigated scenarios aimed at providing advance 

warnings to enhance safety in the context of IVC. They 

looked at various scenarios wherein only a subset of the 

vehicles in a multivehicle stream was equipped with 

advance-warning capabilities. In their study, it was shown 

that conditions exist wherein even equipping some of the 

vehicles with such systems can be sufficient to alleviate 

crashes, including in the unequipped vehicles. Chiara et al. 

[57] investigated the use of Vehicle to Vehicle (V2V) and 

Vehicle to Infrastructure (V2I) communication systems to 
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reduce secondary accidents whose occurrence is often due to 

low visibility and/or poor weather conditions where 

conventional safety features/systems such as brake lights are 

not effective. A case study of five vehicles traveling in a 

single lane was used to estimate the effect of V2V and V2I 

communication systems on reducing secondary accidents. 

The results and explanations show that the use of such 

systems may be an efficient way to reduce the number of 

secondary accidents. Torrent-Moreno et al. [58] analyzed 

V2V communication from an active-safety perspective and 

identified the challenges and associated strategies for 

improving performance through packet-level interference 

management. In this context, they proposed a distributed 

transmission power control strategy that allows the 

bandwidth to be made available for higher priority data like 

dissemination of warnings. 

Systems based on trends of cooperative driving have been 

proposed that enable an electronic safety horizon for 

foresighted driving by implementing onboard vehicle hazard 

detection and V2V communication [59]. These systems can 

focus on low penetration levels in rural traffic through a 

message-management strategy that is based on storing 

warning information in the vehicle and distributing warnings 

through communication, particularly with oncoming traffic. 

They can also provide timely warnings to drivers concerning 

dangerous situations ahead by decentralized distribution of 

warnings and incident messages via heuristic IVC. Gomes et 

al. [60] proposed a cooperative driver-assistance system that 

leverages V2V communication to transform vision-

obstructing vehicles into transparent tubular objects. The 

system combines several technologies that are available in 

modern vehicles such as windshield cameras, computer 

vision, and laser holographic projection. Umedu et al. [61] 

proposed an IVC protocol aimed at detecting drivers who 

violate the speed limit. In their approach, each vehicle 

communicates identification information on surrounding 

vehicles with other vehicles and propagates warning 

information that is then forwarded using ad hoc 

communications. Garcia-Costa et al. [62] developed a 

stochastic model that yields the probability of collisions in a 

chain of vehicles where a CWS is available. The inherent 

assumption is that due to the existence of the warning 

notification system all drivers react to the warning message 

independently, and thus the motion equations can be 

simplified. The model is independent of the particular 

communication system used as long as its operation can be 

characterized by an appropriate notification delay including 

communication latency and driver reaction time. 

The references related to driver feedback systems for 

safety are also categorized in Table I according to the 

method used for validation.   

 

  

VIII. CONCLUDING REMARKS AND FUTURE DIRECTION 

Based on the studies summarized here, it appears that 

most of the research in eco-driving to date has focused on 

conventional vehicles but some recent work has begun to 

address hybrid electric and battery electric vehicles. Given 

the differences between internal combustion engines and 

electric machines, speed trajectories that are optimal for 

conventional vehicles are not necessarily optimal for HEV 

or electric powertrains. Furthermore, given the different 

aerodynamics of light- and heavy-duty vehicles, optimal 

speed trajectories for them are not necessarily the same 

either. In general, DP and MPC seem to be the preferred 

tools for performance optimization. 

Table I. Summary of results for driver feedback approaches. 

Category 

Energy/Fuel/Equivalent Fuel Consumption Improvement 

<10% 
10% to 

20% 

20% to 

30% 
>30% 

Not 

Stated or 

N/A 

Optimization 

[17],[18], 

[27],[29], 

[45],[51] 

[11],[12], 

[13],[14], 

[19],[25], 

[30],[37], 

[46]  

[1],[15], 

[16],[22], 

[43] 

[23],[24], 

[47],[49], 

[50]  

[21],[26], 

[28],[44], 

[48]  

Heuristic 
[35],[36], 

[40] 

[32],[39], 

[41],[63]    

[31],[33], 

[34],[42]  

Evaluated 

through 

Simulation 

[17],[18], 

[27],[29], 

[51] 

[11],[12], 

[14],[19], 

[25],[32], 

[37],[39], 

[41] 

[1],[15], 

[16],[22], 

[43] 

[23],[24], 

[47],[49], 

[50]  

[21],[26], 

[28],[31], 

[33],[42], 

[55],[56], 

[57],[58], 

[60],[61], 

[62] 

Evaluated 

through Field 

Test 

[35],[36], 

[40],[45] 

[13],[30], 

[46], [63]  
    

[34],[44], 

[48],[52],

[54],[55],

[59] 

 

Most of the published work focuses on finding an optimal 

velocity profile for a single vehicle by solving similar 

optimization problems and adding or neglecting particular 

parameters. Furthermore, the main assumption in most cases 

is that the vehicle speed is only limited by pre-established 

speed limits and just a few authors have considered the 

speed limitations imposed by the traffic. Thus, following the 

suggested optimal patterns in real world traffic can have 

negative impacts in the energy efficiency and safety of eco-

driving approaches. More recently, some research efforts 

have started exploring the overall effects of eco-driving 

systems on traffic networks and the possibilities of creating 

eco-driving systems for a fleet of vehicles or an entire 

vehicular network. The objective is to find a speed trajectory 

that avoids collision and minimizes travel time. This new 

trend may lead to significant contributions to the 

sustainability of the entire transportation infrastructure. 

As the necessity for CAVs is becoming pervasive, it 

seems that driver feedback systems could be potentially 

combined with CAVs and provide solutions for improving 

both safety and efficiency for the entire transportation 

network. It is apparent that new approaches are needed that 

can take advantage of external information collected in real 

time, to maximize the benefits of eco-driving systems. The 
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advent of CAVs provides the opportunity for such new 

approaches as they foster the development of improved 

systems to monitor traffic conditions and the design and 

implementation of optimal strategies as a result of the 

available global data and information. However, many 

challenges have still to be addressed before having a massive 

deployment of fully automated vehicles. It is expected, that 

CAVs will penetrate in the market slowly and interact with 

non-autonomous vehicles.  

Two critical questions need to be addressed: 1) how to 

take advantage of the connected environment and driver 

assistant systems to provide instructions to drivers? and 2) 

how to account for the uncertainty produced by drivers who 

do not follow the instructions to guarantee the safety of the 

traffic network? Investigating methods to habilitate 

autonomous and non-autonomous connected vehicles to 

safely interact under realistic scenarios is critical to fully 

exploit the opportunities to improve efficiency and reduce 

emissions, offered by intelligent transportation systems. 

Furthermore, driver responses to external information related 

to real-time conditions, social and news media can have a 

significant impact in the traffic network efficiency and 

safety and thus, it is imperative that eco-driving systems 

involve some level of driver behavior prediction.  

Given the previous extensive research into how best to 

link human controllers with other complex systems such as 

nuclear reactors and aircraft [64], [65], and [66], it would 

seem prudent to consider how results from those studies 

might apply to the present context. We suggest that, given 

the current state of the art, there are many opportunities to 

improve the basic understanding of how real-time 

information, drivers-in-the-loop and the driver-vehicle 

interface can be optimally integrated. We also expect that 

the most impactful results will be integrated by studies that 

bridge across multiple traditional disciplines, such as 

mathematics, computational simulation, statistics, 

mechanical and electrical engineering, measurement science, 

neuroscience and human factors engineering.  
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