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Real-Time Self-Learning
Optimization of Diesel Engine
Calibration
Compression ignition engine technologies have been advanced in the past decade to
provide superior fuel economy and high performance. These technologies offer increased
opportunities for optimizing engine calibration. Current engine calibration methods rely
on deriving static tabular relationships between a set of steady-state operating points and
the corresponding values of the controllable variables. While the engine is running, these
values are being interpolated for each engine operating point to coordinate optimal
performance criteria, e.g., fuel economy, emissions, and acceleration. These methods,
however, are not efficient in capturing transient engine operation designated by common
driving habits, e.g., stop-and-go driving, rapid acceleration, and braking. An alternative
approach was developed recently, which makes the engine an autonomous intelligent
system, namely, one capable of learning its optimal calibration for both steady-state and
transient operating points in real time. Through this approach, while the engine is run-
ning the vehicle, it progressively perceives the driver’s driving style and eventually learns
to operate in a manner that optimizes specified performance criteria. The major chal-
lenge to this approach is problem dimensionality when more than one controllable vari-
able is considered. In this paper, we address this problem by proposing a decentralized
learning control scheme. The scheme is evaluated through simulation of a diesel engine
model, which learns the values of injection timing and variable geometry turbocharging
vane position that optimize fuel economy and pollutant emissions over a segment of the
FTP-75 driving cycle. �DOI: 10.1115/1.3019331�
Introduction

Advanced compression ignition engine technologies, such as
uel injection systems, variable geometry turbocharging �VGT�,
xhaust gas recirculation �EGR�, and variable valve actuation
VVA�, have alleviated the traditional disadvantages of diesel en-
ines, and have facilitated their use in the passenger vehicle mar-
et. These technologies provide an increased number of engine
ontrollable variables that can be used for engine calibration to
ptimize one or more engine performance criteria, e.g., fuel
conomy, pollutant emissions, and engine acceleration. Current
ngine calibration methods generate a static tabular relationship
etween the values of the controllable variables and the corre-
ponding steady-state engine operating points to achieve optimal
erformance with respect to the specified criteria. This relation-
hip is incorporated into the electronic control unit �ECU� that
ims to maintain performance optimality. While the engine is run-
ing, values in the tabular relationships are being interpolated to
rovide the values of the controllable variables for each operating
oint.

These methods, however, seldom guarantee optimal engine
alibration for the entire operating domain, especially during tran-
ient operation �1�. The latter often constitutes the largest segment
f engine operation compared with the steady-state one. Fuel con-
umption and emissions during transient operation are extremely
omplicated and are highly dependent on engine calibration �2,3�.
esearch efforts in addressing transient operation have focused on

imulation-based methods to derive calibration maps for transients
f particular driving cycles. However, prespecifying the entire
ransient engine operation as imposed by different driving cycles
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and deriving the optimal values of the controllable variables asso-
ciated with transient operating points are not possible in practice,
thus preventing a priori optimal calibration.

To address these issues, an alternative approach was imple-
mented recently, which treats the engine as a controlled stochastic
system and the engine operation as a Markov decision process
�MDP� �4�. Engine calibration is formulated as a centralized
decision-making problem under uncertainty. The predictive opti-
mal stochastic control algorithm �POSCA� �5� was developed, al-
lowing the engine to learn the values of the controllable variables
in real time. While the engine is running the vehicle, it progres-
sively perceives the driver’s driving style and eventually learns to
operate in a manner that optimizes specified performance criteria.
Consequently, optimal calibration is achieved for steady-state and
transient engine operating points designated by the driver’s driv-
ing style. The engine’s ability to learn its optimum calibration is
not limited, however, to a particular driving style. The engine can
learn to operate optimally for different drivers if they indicate
their identity before starting the vehicle. The engine can then ad-
just its operation to be optimal for a particular driver based on
what it has learned in the past regarding his/her driving style.

A major challenge to this centralized decision-making approach
is the increase in the problem’s dimensionality when more than
one controllable variable �decision maker� is considered. Decen-
tralized decision making requiring limited information is a highly
desirable feature in this situation. It is necessary when complete
information among decision makers, which is required in central-
ized decision making, is impractical due to the increase in the
problem’s dimensionality. Mathematical learning theory has been
developed in systems to address the modeling and control aspects
of sequential decision making under uncertainty �6–8�. Learning
automata have been applied to network routing in which decen-
tralization is attractive and large uncertainties are present �9,10�.
The resulting system performance has demonstrated that decen-
tralized learning schemes can be successful, while the problem’s

dimensionality remains tractable.
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The problem of decentralized control for a class of large scale
nterconnected dynamic systems in continuous time domain was
tudied by Wu �11�. In this offline approach, it is assumed that the
onsidered systems are linear time varying, and the interconnec-
ions between each subsystem are unknown. Szer and Charpillet
12� proposed a model-free distributed reinforcement learning
RL� algorithm that utilizes communication to improve learning
mong the decision makers in a Markov decision process formal-
sm. Scherrer and Charpillet �13� developed a general iterative
euristic approach in which at each decision epoch the focus is on
subgroup of decision makers, and their policies, given the rest of

he decision makers, have fixed plans. Beynier and Mouaddib �14�
ntroduced the notion of expected opportunity cost to better assess
he influence of a local decision of an agent on the others. An
terative version of the algorithm was implemented to incremen-
ally improve the policies of agents leading to higher quality so-
utions in some settings. Yagan and Chen-Khong �15� imple-

ented a model-free coordinated reinforcement learning for
ecentralized optimal control, assuming that each decision maker
an partially observe the state condition. This decentralized
cheme is suited for partially observable Markov decision pro-
esses. Shen et al. �16� developed a decentralized Markov game
odel to estimate the belief among the decision makers. In the

roposed model, the model-free Q-learning algorithm was em-
loyed to adjust dynamically the payoff function of each player.
heeler and Narenda �17� employed a game-theoretic approach

nd developed a decentralized learning control scheme in finite
arkov chains with unknown transition probabilities and costs. In

his scheme, the decision makers demonstrate a myopic behavior;
amely, they are unaware of the surrounding world. In attempting
o improve his/her performance, each decision maker selects a
ontrol action, observes the corresponding cost associated with
he occupied state, and then updates the action. Although many of
hese algorithms address the decentralized learning problem, their
se of the accumulated data acquired over the learning process is
nefficient, and they require a significant amount of experience to
chieve acceptable performance. This requirement arises due to
he formation of these algorithms in deriving control policies
ithout learning the system models en route. In addition, the re-
uirement of real-time derivation of the values of the engine con-
rollable variables imposes an additional computational burden in
mplementing such control schemes.

This paper proposes a decentralized learning control scheme
hat can utilize efficiently the accumulated data acquired from the
ngine output to achieve acceptable performance in a real-time
mplementation. The proposed scheme differs from Wheeler and
arenda’s in the sense that the decision makers �engine control-

able variables� do not demonstrate a myopic behavior explicitly.
n the contrary, a random hierarchy among them is assumed,
ased on which each one observes the control actions of the other.

The remainder of this paper is organized as follows: In Sec. 2,
he mathematical framework of modeling the engine operation as
MDP is reviewed. The decentralized learning control scheme is

ntroduced in Sec. 3. The effectiveness of the method is demon-
trated in Sec. 4 through simulation of a diesel engine calibration
ith respect to the injection timing and VGT vane position over a

egment of the FTP-75 driving cycle. Conclusions are drawn in
ec. 5.

Modeling Engine Operation as a Markov Decision
rocess
In implementing self-learning optimization for engine calibra-

ion in real time, the engine is treated as a controlled stochastic
ystem, and engine operation is modeled as a MDP. The engine
erformance criteria, e.g., fuel economy, emissions, and engine
cceleration performance, are considered controlled random func-
ions. The objective is to select the optimal control policy �opti-

um values of the controllable variables� for the sequences of

ngine operating point transitions, corresponding to the driver’s

22803-2 / Vol. 131, MARCH 2009

aded 05 Jan 2009 to 141.212.134.7. Redistribution subject to ASME
driving style, that optimize one or more engine performance cri-
teria �random functions�. The problem of engine calibration is
thus formulated as a centralized sequential decision-making prob-
lem under uncertainty.

The MDP �18� provides the mathematical framework for mod-
eling such problems �19�. It comprises a decision maker �control-
ler�, states �engine operating points�, actions �controllable vari-
ables�, the transition probability matrix �driver�, the transition
reward matrix �engine performance indices�, and optimization cri-
teria �e.g., maximizing fuel economy, minimizing pollutant emis-
sions, and maximizing engine acceleration�. In this framework,
the controller �decision maker� is faced with the problem of influ-
encing engine operation over time by selecting optimal actions.

Following the exposition in Ref. �5�, a discrete-time stochastic
controlled MDP is defined as the tuple,

sk = �S,A,P�· , ·�,R�· , ·�� �1�

where S= �1,2 , . . . ,N�, N�N denotes a finite state space, A
=�sk�SA�sk� stands for a finite action space, P�· , ·� is the transi-
tion probability matrix, and R�· , ·� is the transition reward matrix.
The decision-making process occurs at each of a sequence of de-
cision epochs k=0,1 ,2 , . . . ,M, M �N. At each epoch, the deci-
sion maker observes a system’s state, sk= i�S, and executes an
action, ak�A�sk�, from the feasible set of actions, A�sk��A, at
this state. At the next epoch, the system transits to the state sk
= j�S imposed by the conditional probabilities p�sk+1= j �sk

= i ,ak�, designated by the transition probability matrix P�· , ·�. The
conditional probabilities of P�· , ·�, p :S�A→ �0,1�, satisfy the
constraint

�
j=1

N

p�sk+1 = j�sk = i,ak� = 1 �2�

Following this state transition, the decision maker receives a re-
ward associated with the action ak, R�sk+1= j �sk= i ,ak�, where
R :S�A→R, as imposed by the transition reward matrix R�· , ·�.
The states of a MDP possess the Markov property, stating that the
conditional probability distribution of future states of the process
depends only on the current state and not on any past states; i.e.,
it is conditionally independent of the past states �the path of the
process� given the present state. Mathematically, the Markov
property states that

p�sk+1�sk,sk−1, . . . ,s0� = p�sk+1�sk� �3�

The solution to a MDP can be expressed as a policy �
= ��0 ,�1 , . . . ,�M�, which provides the action to be executed for a
given state, regardless of prior history; �� is a function mapping
states sk into actions ak=���sk�, such that ���sk��A�sk�. Such
policies are addressed as admissible. Consequently, for any initial
state at decision epoch k=0, s0, and for any finite sequence of
epochs k=0,1 ,2 , . . . ,M, M �N, the expected accumulated value
of the rewards of the decision maker is given by

J��s0� = E
sk�S

ak�A�sk�

	RM�sM� + �
k=0

M−1

Rk�sk+1 = j�sk = i,ak�

�4�

∀i, j � S, ∀ ak � A�sk�

where RM�sM� is the reward at the final state. In the finite-horizon
context, the decision maker should maximize the accumulated
value for the next M decision epochs; more precisely, an optimal
policy �� is one that maximizes the overall expected accumulated
value of the rewards,

J��

�s0� = maxJ��s0� �5�

��A
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Consequently, the optimal policy ��= ��0
� ,�1

� , . . . ,�M
� � se-

uence is given by

�� = arg max
��A

J��

�s0� �6�

Dynamic programming �DP� has been widely used for many
ears as the principal method for solving Markov decision prob-
ems �20�. However, DP algorithms require the realization of the
ransition probability matrix, P�· , ·�, and the transition reward ma-
rix, R�· , ·�. For complex systems, e.g., an internal combustion
ngine, with large state space, these matrices can be either imprac-
ical or impossible to compute. Alternative approaches for solving

arkov decision problems have been developed in the field of RL
21,22�. RL has aimed to provide simulation-based algorithms for
earning control policies of complex systems, where exact model-
ng is infeasible or expensive �23�. In this framework, the system
nteracts with its environment in real time and obtains informa-
ion, enabling it to improve its future performance by means of
ewards associated with the control actions taken. This interaction
llows the system to learn in real time the course of action �con-
rol policy� that optimizes the rewards. The majority of RL algo-
ithms are founded on dynamic programming. They utilize evalu-
tion functions attempting to successively approximate Eq. �4�.
hese evaluation functions assign to each state the total reward
xpected to accumulate over time starting from a given state when
policy � is employed. However, in learning engineering systems

n which the initial state is not fixed, recursive updates of the
valuation functions to approximate Eq. �4� would demand sig-
ificant amount of time to achieve the desired system performance
24�.

For the engine calibration problem built upon the MDP theoret-
cal framework, the POSCA is employed �5�. POSCA is intended
o derive the control policy �values of the engine controllable
ariables� for any initial state �engine operating point�. In apply-
ng this algorithm to more than one controllable variable, how-
ver, limitations arise due to the requirement for the algorithm to
ccount for all combinations of the controllable variables in a
ingle set of a finite action space A. To overcome this problem, the
ecentralized learning control scheme is implemented.

Decentralized Learning Control Scheme
While the engine is running the vehicle and interacting with the

river, the probability of engine operating point transitions desig-
ates the elements of the transition probability matrix, P�· , ·�. The
esired engine performance criteria, e.g., fuel economy and pol-
utant emissions, are represented by the elements of the transition
eward matrix, R�· , ·�. Through this interaction, the driver intro-
uces a state sk�S �engine operating point� to the engine’s ECU,
nd on that basis the ECU selects an action, ak�A�sk� �combina-
ion of values of the controllable variables�. As a consequence of
ts action, the ECU receives a numerical reward,Rk+1�R, and the
ngine transits to a new state, sk+1�S, as illustrated in Fig. 1.

ig. 1 Learning process during the interaction between the
ngine and the driver
OSCA aims to compute the control policy �values of the control-
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lable variables� for the sequence of engine operating transitions
based on the conditional probabilities of the matrix, P�· , ·�. During
this process, however, when two or more controllable variables
are considered, the combinations of their values can grow intrac-
tably, resulting in a huge feasible action space A=�sk�SA�sk�.

The decentralized learning control scheme proposed in this pa-
per establishes a learning process that enables the derivation of the
values of the controllable variables to occur in parallel phases
�25�. A random hierarchy among them is assumed, based on which
each one observes the control actions of the other. In particular,
POSCA is employed to derive the control actions of the first mem-
ber in the hierarchy of decision makers with respect to the se-
quence of state transitions. At the same time, the algorithm is
engaged separately to derive the control actions of the second
member in the hierarchy of decision makers with respect to the
policy as learned from the first one. Similarly, the algorithm is
employed to derive the control actions of the third decision maker
with respect to the second one, and so forth.

For instance, in implementing a diesel engine calibration with
respect to the injection timing, �, and VGT vane position, �, a
feasible set of values, A and B, for each controllable variable is
defined. The decentralized learning enables the engine to imple-
ment two different mappings in parallel. In the first, injection
timing is mapped to the states as a result of the correspondence of
the driver’s driving style to particular engine operating points, i.e.,
S�A→R. In the second, VGT is mapped to the injection timing,
i.e., A�B→R. The learning algorithm utilizes these two map-
pings to derive the control policies, ��

� �A and ��
� �� �values of

injection timing and VGT�, for the driver’s driving style as ex-
pressed by the incidence in which particular states or particular
sequences of states arise.

The decentralized learning process of the engine transpires at
each decision epoch k in conjunction with the injection timing
ak�A taken for each state sk= i�S and the VGT vane position
�k�B for each ak�A. At the early epochs, and until full explo-
ration of the feasible sets A and B occurs, the mapping from states
to probabilities of selecting a particular value of injection timing
ak�A and the mapping from ak�A to probabilities of selecting
VGT �k�B are constant; namely, the values of each controllable
variable are selected randomly with the same probability,

p�ak�sk� =
1

�A�
, ∀ ak � A, ∀ sk � S �7�

and

p��k�ak� =
1

�B�
, ∀ ak � A, ∀ �k � B �8�

Exploration of the entire feasible set for each variable is impor-
tant to evade suboptimal solutions. POSCA is thus used after the
exploration phase to realize the policies ��

� , and ��
� by means of

the expected values of the rewards, V�sk+1 �sk ,ak� and
V�ak+1 �ak ,�k�, generated by the mappings S�A→R and A�B
→R, respectively. The expected values of the rewards are defined
to be

V�sk+1 = j�sk = i,ak� ª p�sk+1 = j�sk = i,ak� · R�sk+1 = j�sk = i,ak�

+ max
ak+1�A

��
l=1

N

p�sk+2 = l�sk+1 = j,ak+1�

· R�sk+1 = l�sk = j,ak+1��,

i, j = 1,2, . . . ,N, N = �S� �9�
and

MARCH 2009, Vol. 131 / 022803-3
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�ak+1 = m�ak = n,�k�

ª p�ak+1 = m�ak = n,�k� · R�ak+1 = m�ak = n,�k�

+ max
�k+1�B

��
p=1

�

p�ak+2 = p�ak+1 = m,�k+1�

· R�ak+2 = p�ak+1 = m,�k+1��, m,n = 1,2, . . . ,�, � = �A�

�10�
In deriving the control policies of the injection timing and VGT

n self-learning calibration, which is treated in a stochastic frame-
ork, all uncertain quantities are described by probability distri-
utions. The control policies ��

� , and ��
� are computed by utilizing

he max-min control approach, whereby the worst possible values
f the uncertain quantities within the given set are assumed to
ccur. This essentially ensures that the control policies will result
n at least a minimum overall reward value. Consequently, at state

k= i, POSCA computes the control policy ��
� in terms of the

alues of injection timing � as

��
��sk� = arg max

�̄k�sk��A�sk�
min

sk+1�S
�V�sk+1 = j�sk = i,ak��, ∀ i, j � S

�11�

For the control policy ��
� , POSCA computes the control policy

�
� of the values of the VGT vane position � as

��
��ak� = arg max

�k�ak��B�ak�
min

ak+1�A
�V�ak+1 = m�ak = n,�k��, ∀ m,n � A

�12�
mploying this decentralized learning control scheme, derivation
f the values of more than one controllable variable can be
chieved, while the problem’s dimensionality remains tractable.

Real-Time Self-Learning Injection Timing and VGT
n a Diesel Engine

The decentralized learning control scheme introduced in the
revious section is applied here to a four-cylinder, 1.9 l turbo-
harged diesel engine. The objective is to find the injection timing
nd VGT vane position while the engine is running the vehicle
hat maximize the engine brake torque. Consequently, the control-
er’s inputs are the engine operating points and brake torque,
hile the outputs are the injection timing and VGT vane position.

njection timing is an important controllable variable in the com-
ustion process and affects performance and emissions �26�. The
ajor objective of injection timing is to initiate fuel injection at

he crank angle, resulting in the maximum brake torque �MBT�. It
esignates the ignition delay defined to be the crank angle be-
ween the start of injection �SOI� and the start of combustion
SOC�. The VGT technology was originally considered to in-
rease engine brake torque at tip-ins and to reduce turbo-lag. VGT
as a system of movable guide vanes located on the turbine stator.
y adjusting the guide vanes, the exhaust gas energy to the tur-
ocharger can be regulated, and thus the compressor mass airflow
nd exhaust manifold pressure can be controlled.

The software package ENDYNA THEMOS CRTD by TESIS �27�
uitable for real-time simulation of diesel engines is employed.
he software utilizes thermodynamic models of the gas path and

s well suited for testing and development of ECU. In the ex-
mple, the existing static correlation involving injection timing
nd VGT is bypassed to incorporate the decentralized learning
ontrol scheme and is used as a baseline comparison. The engine
odels with the baseline and self-learning calibration are run re-

eatedly over the same driving style represented by a segment of
he FTP-75 driving cycle, illustrated in Fig. 2. Every run over this
riving style constitutes one complete simulation. Before initiat-

ng the first simulation of the engine model, the elements of the

22803-4 / Vol. 131, MARCH 2009
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transition probability and reward matrix are assigned the value of
zero. That is, the engine at the beginning has no knowledge re-
garding the particular driving style and the values of the rewards
associated with the controllable variables �injection timing and
VGT�.

After completing the learning process, the decentralized control
scheme specified the values of the injection timing and VGT vane
position. The vehicle with the self-learning calibration was able to
follow the segment of the driving cycle requiring lower gas-pedal
position rates for the same engine speed, as illustrated in Figs.
3–5. The implication is that the derived policy of injection timing
and VGT resulted in higher engine torque compared with the
baseline calibration. The injection timing �before top dead center
�BTDC�� for both vehicles is illustrated in Figs. 6 and 7. While the
baseline calibration interpolates values of the injection timing of
steady-state operating points, the injection timing derived by the
decentralized scheme corresponded to the engine operating point
transitions imposed by the driver’s driving style, and thus, self-
learning calibration was able to capture transient engine operation.
Drivability issues that may be raised in such a noisy injection
timing response could be addressed by tightening the allowable
space of two successive control actions �injection timing values�.
Lower gas-pedal position rates resulted in reducing the fuel mass
injection duration, shown in Fig. 8, and consequently, less fuel
mass was injected into the cylinders, as illustrated in Fig. 9 �in

Fig. 2 Segment of the FTP-75 driving cycle
Fig. 3 Engine speed

Transactions of the ASME
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oom-in for clarity�. In the decentralized learning of the engine,
he injection timing was mapped to the engine operating points

ig. 4 Gas-pedal position rate representing a driver’s driving
tyle

ig. 5 Gas-pedal position rate representing a driver’s driving
tyle „zoom-in…
Fig. 6 Injection timing

ournal of Engineering for Gas Turbines and Power
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�states�, while the VGT vane position was mapped to the injection
timing. The derived VGT policy is illustrated in Figs. 10 and 11.
Having the engine operate at the maximum brake torque, a 9.3%
overall improvement of fuel economy was accomplished, as illus-
trated in Fig. 12, compared with the baseline calibration.

Fig. 7 Injection timing „zoom-in…

Fig. 8 Fuel mass injection duration „zoom-in…
Fig. 9 Fuel mass injected per cylinder „zoom-in…

MARCH 2009, Vol. 131 / 022803-5
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At constant engine speed and constant fuel mass per cycle, for
given injection duration, and at fixed brake mean effective pres-

ure �BMEP�, if the injection timing is advanced from the MBT,
hen brake specific fuel consumption �BSFC� is decreased and

Fig. 10 VGT vane position

Fig. 11 VGT vane position „zoom-in…
Fig. 12 Fuel consumption for the driving cycle

22803-6 / Vol. 131, MARCH 2009
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NOx emissions are increased. In our case, however, fuel mass per
cycle, injection duration, and BMEP all vary, and thus, this behav-
ior is altered. Since the injection duration is decreased, ignition
delays decrease as well. Less time is available for fuel-air mixing,
resulting in a less intense premixed burn and a lower premixed
spike in the heat release rate curve. Cylinder bulk gas tempera-
tures are therefore decreased, and so is NOx production, as illus-
trated in Figs. 13 and 14.

5 Concluding Remarks
This paper presented a decentralized learning control scheme

that addresses the problem dimensionality in the centralized
decision-making approach as employed in making the engine into
an autonomous intelligent system. In this scheme, a learning pro-
cess is established, which enables the derivation of the values of
the controllable variables to occur in parallel phases. The values
for more than one controllable variable can thus be determined
while keeping the problem’s dimensionality tractable. The ex-
ample presented an application of this scheme to a diesel engine
with respect to injection timing and VGT vane position. The en-
gine was able to realize the values of injection timing and VGT
for a driving style represented by a segment of the FTP-75 driving
cycle. Future research should validate this method for more than
two controllable variables and the implications for the required
learning time.

Fig. 13 Emission temperature in the exhaust manifold
Fig. 14 NOx concentration of emissions „zoom-in…
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The decentralized control scheme, in conjunction with POSCA,
an guarantee optimal calibration for steady-state and transient
ngine operating points designated by the driver’s driving style.
he ultimate goal of this approach is to fully exploit the engine’s
iven technology in terms of the optimum specified performance
riteria, e.g., fuel economy, pollutant emissions, and engine accel-
ration, that can be achieved. It aims to provide an answer to the
ollowing question: “For an engine with a given technology, what
re the optimum performance criteria that a driver can get with
espect to his/her driving habits?”

The long-term potential benefits of this approach are substan-
ial. True fuel economy of vehicles will be increased while meet-
ng emission standard regulations; drivers will be able to evaluate
heir driving behavior and learn how to improve fuel economy and
educe emissions by modifying it. This capability can be also
specially appealing in engines utilized in hybrid-electric power-
rain systems when real-time optimization of the power manage-

ent is considered.
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