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Abstract—This article addresses the problem of analyzing the
effects of partial penetrations of optimally coordinated connected
and automated vehicles (CAVs) on fuel consumption and travel
time under low, medium, and heavy traffic volumes. We develop a
microscopic simulation framework to enhance our understanding
of the interactions between human-driven vehicles and CAVs in
a merging on-ramp scenario. We show that fuel consumption is
adversely affected for medium and high traffic while benefits are
realized for travel time under the same traffic conditions. We
also show that higher penetrations of CAVs contribute to more
stable traffic patterns.

Index Terms—Connected and automate vehicles (CAVs), merg-
ing highways, on-ramps, traffic analysis, cooperative merging
control, car following, fundamental diagram, optimal control,
energy implications.

I. INTRODUCTION

A. Motivation

The goals of energy efficient mobility systems are to allevi-
ate congestion, reduce energy use and emissions, and improve
safety. The deep integration of technology in the transportation
sector is providing fundamentally new methods to manage
the flow of goods and people in our next generation trans-
portation systems. Core disruptive technologies include vehicle
connectivity, vehicle automation, and the notion of shared
personalized transportation infrastructure enabled by mobility
on demand systems. The overarching goal is to develop energy
efficient mobility systems to connect communities and increase
accessibility, without increasing the negative consequences of
transportation (e.g., emissions, energy consumption, and con-
gestion). We are currently witnessing an increasing integration
of our energy and transportation, which, coupled with the
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human interactions, is giving rise to a new level of complexity
[1] in transportation. As we move to increasingly complex
transportation systems [2], new control approaches are needed
to optimize the impact on system behavior of the interaction
between vehicles at different traffic scenarios.

Intersections, merging roadways, speed reduction zones
along with the drivers’ responses to various disturbances are
the primary sources of bottlenecks that contribute to traffic
congestion and stop-and-go driving with significant implica-
tions in both, fuel consumption and traffic stability [3]–[7]. In
2015, congestion caused people in urban areas in US to spend
6.9 billion hours more on the road and to purchase an extra
3.1 billion gallons of fuel, resulting in a total cost estimated
at $160 billion [8].

Connected and automated vehicles (CAVs) provide the most
intriguing opportunity for enabling users to better monitor
transportation network conditions and to improve traffic flow.
CAVs can be controlled at different transportation segments,
e.g., intersections, merging roadways, roundabouts, speed re-
duction zones and can assist drivers in making better oper-
ating decisions to improve safety and reduce pollution, fuel
consumption, and travel delays [9].

B. Literature Review

Several research efforts have considered approaches to
achieve safe and efficient coordination of merging maneuvers
with the intention to avoid severe stop-and-go driving. One
of the very early efforts in this direction was proposed in
1969 by Athans [10]. Assuming a given merging sequence,
Athans formulated the merging problem as a linear optimal
regulator to control a single string of vehicles, with the aim
of minimizing the speed errors that will affect the desired
headway between each consecutive pair of vehicles. Later,
a two-layer control scheme was proposed based on heuristic
rules derived from observations of the non-linear system
dynamics behavior [11]. Similar to Athans’ approach, Awal et
al. [12] developed an algorithm that starts by computing the
optimal merging sequence to achieve reduced merging times
for a group of vehicles that are closer to the merging point
[10].

More recently, the problem of coordinating vehicles that
are wirelessly connected to each other at merging roads was
addressed [13]–[15]. A closed-form solution was developed
aimed at optimizing the acceleration of each vehicle online,
in terms of fuel consumption, while avoiding collision with



other vehicles at the merging region. The framework was later
extended for mixed traffic (CAVs interacting with human-
driven vehicles) to analyze the energy impact of different
penetration rates of CAVs on the energy consumption [16].
In another research effort [17], a feedforward controller was
proposed for vehicle coordination in merging maneuver with
the aim to avoid collisions while imposing low communi-
cation requirements. Each vehicle will compute the required
acceleration-deceleration profile to merge in a first-in-first-out
(FIFO) sequence. Through simulations, the authors showed the
efficacy of the algorithm to ensure a collision free merging. A
freeway merging control algorithm was proposed in [18] for
fully automated vehicles aimed at maximizing their average
travel speed. The performance of the algorithm was analyzed
under oversaturated traffic conditions and it was shown that
for short safe headway times, the control strategy can reduce
the queue formation on both, the main lane and the ramp.
However, if the safe gap is chosen to be greater than 1.5 sec,
the queue formation is unavoidable.

There have been also some efforts reported in the literature
towards enhancing our understanding of the effects of CAVs
on traffic flow. A microscopic simulation model was presented
in [19] to study the effects of an automated highway system
on the average traffic speed. A mesoscopic and a macroscopic
traffic flow models based on the dynamics of intelligent cruise
control vehicles to describe the traffic flow characteristics was
reported in [20]. The effectiveness of the efficiency of the
models was demonstrated through simulations that revealed
traffic flow differences with respect to the models representing
manually driven vehicles. More recently, a framework was
presented by [21] that uses different models and technology-
related assumptions to simulate vehicles with distinct commu-
nication and level of automation capabilities.

C. Contribution of the Paper

Most of the current research related to control and coordi-
nation of CAVs has been mainly focused on safety and travel
time. Several studies have attempted to quantify the energy
implications of proposed control and coordination strategies
considering full penetration of CAVs. However, the implica-
tions of partial penetrations of CAVs on energy and travel time
have been, to the best of our knowledge, an under-explored
aspect. In our study we explore the impacts of our previously
proposed optimal coordination framework for CAVs when
there are interactions with human driven vehicles, i.e., for
partial penetration rates of optimally coordinated CAVs, under
different traffic conditions.

The contributions of this paper are: 1) the development of
a simulation framework to capture the interaction of CAVs
with human-driven vehicles under different traffic volumes in
a merging on-ramp scenario, and 2) the analysis of the impact
that different penetrations of CAVs have on fuel consumption,
travel time and traffic flow.

Fig. 1. Simulation framework for mixed traffic.

D. Organization of the Paper

The remaining of the paper proceeds as follows. In Section
II we introduce the simulation framework for mixed traffic
environment. In Section III, we present the optimal control
framework that can be used for CAVs. Finally, we provide
simulation results in Section III and concluding remarks and
discussion in Section IV.

II. SIMULATION FRAMEWORK

Our proposed simulation framework is illustrated in Fig. 1.
To generate the data required to analyze of the implications
of CAVs on different traffic conditions, we create different
traffic scenarios by assuming a set of average traffic flows
between 300 veh/h and 1400 veh/h. For the simulation of
CAVs we use the optimal control framework proposed in [15]
and for modeling the behavior of human drivers we adopt the
Gipps car-following model [22]. We address three different
cases: 1) a baseline case in which all the vehicles on the
road are human-driven (0% CAV penetration), 2) a mixed
traffic case in which the vehicles on the road can be either
human-driven or different penetrations of CAVs, and 3) an
ideal case in which all the vehicles on the road are CAVs
(100% CAV penetration). We simulate all traffic scenarios for
the aforementioned three cases and we analyze the results to
quantify the impact on fuel consumption, travel time, and flow-
density diagram. The details of these steps are described in the
following subsections.

A. Transportation Scenario

For this study, we considered a merging on-ramp (Fig. 2)
consisting of a single lane main road and a single lane on-
ramp. There is also a merging zone of length S, inside of which
the vehicles complete the merging maneuver. For the cases
where human-driven vehicles are involved, we consider that
there is a check zone of length D, inside of which, the drivers
attempt to estimate if there is a safe gap to merge; otherwise,
they need to decelerate to avoid a lateral collision with the
vehicles cruising on the main road. We consider that human-
drivers will make decisions based on their perception of the
surroundings and without using vehicle-to-vehicle (V2V) or
vehicle-to-infrastructure (V2I) communication. For the cases
where CAVs are involved in the same scenario, we use the
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Fig. 2. Transportation scenario used for the study.

optimal control framework presented in [15]. In this frame-
work, we consider that there is a pre-control zone of length
L1 and a control zone of length L2. Once a CAV enters the pre-
control zone, it computes its optimal acceleration-deceleration
by using information from the preceding vehicle on a given
FIFO queue. Without being restrictive in our analysis, we
consider that L1 = L2.

B. Traffic generation scenarios

To generate the different traffic scenarios, we use the shifted
negative exponential distribution as proposed by the federal
highway administration (FHWA) [23] aimed at deciding the
inter-arrival time of the vehicles to the road section. According
to this distribution, the vehicles will arrive at the entry of the
pre-control zone following a given average vehicular flow as
defined in equations (1) and (2)

h = (H − hmin)[−ln(1−R)] +H − hmin, (1)

H = 3600/Qavg, (2)

where h is the headway time (s), H is a desired mean headway
time (s), R is a random number between 0 and 1 and, Qavg

is an average vehicular flow (veh/s).

C. Optimal Control Framework

We adopt the optimization framework proposed in [15] for
the scenario with CAVs. We consider a number of CAVs
N(t) ∈ N in each lane, where t ∈ R+ is the time, entering the
control zone (Fig. 2). Let N (t) = {1, . . . , N(t)}, be the FIFO
queue inside the control zone. The dynamics of each vehicle
i ∈ N (t) are represented by a state equation

ẋi = f(t, xi, ui), xi(t
0
i ) = x0i , (3)

where t ∈ R+, xi(t), ui(t) are the state of the vehicle and
control input, t0i is the time that vehicle i enters the control
zone, and x0i is the value of the initial state. For simplicity, we
model each vehicle as a double integrator, e.g., ṗi = vi(t) and
v̇i = ui(t), where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui de-
note the position, speed and acceleration/deceleration (control
input) of each vehicle i ∈ N (t) inside the control zone. Let
xi(t) =

[
pi(t) vi(t)

]T
denote the state of each vehicle i,

with initial value x0i =
[

0 v0i
]T

, taking values in the state
space Xi = Pi × Vi.

For any initial state (t0i , x
0
i ) and every admissible control

u(t), the double integrator has a unique solution x(t) on some

interval [t0i , t
m
i ], where tmi is the time that vehicle i ∈ N (t)

enters the merging zone. In our framework we impose the
following state and control constraints:

ui,min 6 ui(t) 6 ui,max, and

0 6 vmin 6 vi(t) 6 vmax, ∀t ∈ [t0i , t
m
i ],

(4)

where ui,min, ui,max are the minimum and maximum control
inputs (maximum deceleration/ acceleration) for each vehicle
i ∈ N (t), and vmin, vmax are the minimum and maximum
speed limits respectively. For simplicity, in the rest of the paper
we consider no vehicle diversity, and thus, we set ui,min =
umin and ui,max = umax.

For absence of any rear-end collision of two consecutive ve-
hicles traveling on the same lane, the position of the preceding
vehicle should be greater than or equal to the position of the
following vehicle plus a safe distance δ(vave(t)) < S, which
is a function of the average speed of the vehicles inside the
control zone. Thus, we impose the following rear-end safety
constraint

si(t) = pk(t)− pi(t) > δ(vave(t)), ∀t ∈ [t0i , t
m
i ], (5)

where k denotes the vehicle that is physically located ahead
of i in the same lane, and vave(t) is the average speed of the
vehicles inside the control zone at time t.

Definition 1: For each vehicle i ∈ N (t), we define the set
Γi that includes only the positions along the lane where a
lateral collision is possible, namely

Γi ,
{
pi(t) | pi(t) ∈ [L,L+ S], ∀t ∈ [tmi , t

f
i ]
}
. (6)

where tfi is the time that vehicle i ∈ N (t) exits the merging
zone.

To avoid a lateral collision for any two vehicles i, j ∈ N (t)
on different roads, the following constraint should hold

Γi

⋂
Γj = ∅,∀t ∈ [tmi , t

f
i ]. (7)

The above constraint implies that only one vehicle at a time
can be inside the merging zone. If the length of the merging
zone is long, then this constraint might not be realistic since it
results in dissipating space and capacity of the road. However,
the constraint is not restrictive in the problem formulation and
it can be modified appropriately as described in the following
section.

In the modeling framework described above, we impose the
following assumptions:

Assumption 1: The vehicles cruise inside the merging zone
with the imposed speed limit, vsrz . This implies that for each
vehicle i

tfi = tmi +
S

vi(tmi )
= tmi +

S

vsrz
. (8)

Assumption 2: Each vehicle i has proximity sensors and
can measure local information without errors or delays.

We briefly comment on the above assumptions. The first
assumption is intended to enhance safety awareness, but it
could be modified appropriately, if necessary. The second
assumption may be a strong requirement to impose but it is
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relatively straightforward to extend our results in the case that
it is relaxed, as long as the noise in the measurements and/or
delays are bounded.

We consider the problem of deriving the optimal control
input (acceleration/deceleration) of each CAV inside the pre-
control and control zones (Fig. 2), under the hard safety
constraint to avoid rear-end collision. By controlling the speed
of the vehicles, the speed of queue built-up at the merging
zone decreases, and thus the congestion recovery time is
also reduced. The latter results in maximizing the throughput
in the merging zone. Moreover, by optimizing the accelera-
tion/deceleration of each vehicle, we minimize transient engine
operation, thus we can have direct benefits in fuel consumption
[24] and emissions since internal combustion engines are
optimized over steady state operating points (constant torque
and speed) [25], [26].

1) Communication Structure of Connected and Automated
Vehicles:

Definition 2: Each CAV i ∈ N (t) belongs to at least one of
the following two subsets of N (t) depending on its physical
location inside the control zone: 1) Li(t) contains all CAVs
traveling on the same road and lane as vehicle i and 2) Ci(t)
contains all CAVs traveling on a different road from i and can
cause collision at the merging zone.

When a vehicle i enters the control zone, it receives some
information from the vehicle i− 1 ∈ N (t) in the queue.

Definition 3: For each CAV i entering the control zone, we
define the information set Yi(t), which include all information
without any errors or delays (Assumption 2) that each vehicle
shares, as

Yi(t) ,
{
pi(t), vi(t),Q, tmi

}
,

∀t ∈ [t0i , t
m
i ],

(9)

where pi(t), vi(t) are the position and speed of CAV i inside
the control zone, Q ∈ {1, 2} is the subset assigned to CAV i
by the coordinator, and tmi , is the time targeted for CAV i to
enter the merging zone, whose evaluation is discussed next.

A “coordinator” handles the information between the vehi-
cles as follows. When a CAV reaches the pre-control zone at
some instant t, the coordinator assigns a unique identity to each
vehicle i ∈ N (t), which is a pair (i, j), where i = N(t)+1 is
an integer representing the location of the vehicle in a FIFO
queue N (t) and j ∈ {1, 2} is an integer based on a one-to-
one mapping from Li(t) and Ci(t) onto {1, 2}. If the vehicles
enter the control zone at the same time with the same initial
speed, then the coordinator selects randomly their position in
the queue.

The time tmi that the vehicle i will be entering the merging
zone is restricted by the imposing rear-end and lateral collision
constraints. Therefore, to ensure that (5) and (7) are satisfied
at tmi we impose the following conditions which depend on
the subset that the vehicle i− 1 belongs to:

If vehicle i− 1 ∈ Li(t)

tmi = max

{
min

{
tmi−1+

δ(vave(t))

vi−1(tmi−1)
,
L

vmin

}
,

L

vi(t0i )
,
L

vmax

}
,

(10)
if vehicle i− 1 ∈ Ci(t)

tmi = max

{
min

{
tmi−1+

S

vi−1(tmi−1)
,
L

vmin

}
,

L

vi(t0i )
,
L

vmax

}
,

(11)
where vi−1(tmi−1) is the speed of the vehicle i− 1 at the time
tmi−1 that enters the merging zone, and it is equal to the speed,
vsrz , imposed inside the merging zone (Assumption 1). The
conditions (10) and (11) ensures that the time tmi each vehicle
i will be entering the merging zone is feasible and can be
attained based on the imposed speed limits inside the control
zone. In addition, for low traffic flow where vehicle i − 1
and i might be located far away from each other, there is
no compelling reason for vehicle i to accelerate within the
control zone to have a distance δ(vave(t)) from vehicle i− 1,
if i − 1 ∈ Li(t), or a distance S if i − 1 ∈ Li(t), at the
time tmi that vehicle i enters the merging zone. Therefore, in
such cases vehicle i can keep cruising within the control zone
with the initial speed vi(t

0
i ) that entered the control zone at

t0i . The recursion is initialized when the first vehicle enters
the control zone, i.e., it is assigned i = 1. In this case, tm1 can
be externally assigned as the desired exit time of this vehicle
whose behavior is unconstrained. Thus the time tm1 is fixed
and available through Y1(t). The second vehicle will access
Y1(t) to compute the times tm2 . The third vehicle will access
Y2(t) and the communication process will continue with the
same fashion until the vehicle N(t) in the queue access the
YN(t)−1(t).

2) Optimal Control Problem Formulation for Connected
and Automated Vehicles: Since the coordinator is not involved
in any decision on the vehicle coordination framework we can
formulate N(t) sequential decentralized control problems that
may be solved on line:

min
ui

1

2

∫ tmi

t0i

u2i (t) dt, (12)

subject to : (3) and (4),

with initial and final conditions: pi(t0i ) = 0, pi(tmi ) = L,
t0i , vi(t0i ), tmi , and vi(tmi ) = vsrz . In the problem formulation
above, we have omitted the rear end (5) and lateral (7) collision
safety constraints. As mentioned earlier, (7) is implicitly
handled by the selection of tmi in (11). Eq. (5) is omitted
because it has been shown [27] that the solution of (12)
guarantees that this constraint holds throughout [t0i , t

f
i ]. Thus,

(12) is a simpler problem to solve on line.
For the analytical solution and real-time implementation of

the control problem (12), we apply Hamiltonian analysis. In
our analysis, we consider that when the vehicles enter the
control zone, none of the constraints are active. To address
this problem, the constrained and unconstrained arcs need to
be pieced together to satisfy the Euler-Lagrange equations

4



and necessary condition of optimality. The analytical solution
of (12) without considering state and control constraints was
presented in earlier papers [13]–[15] for coordinating in real
time CAVs at highway on-ramps and [28] at two adjacent
intersections. When the state and control constraints are not
active, the optimal control input (acceleration/deceleration) as
a function of time is given by

u∗i (t) = ait+ bi., (13)

and the optimal speed and position for each vehicle are

v∗i (t) =
1

2
ait

2 + bit+ ci (14)

p∗i (t) =
1

6
ait

3 +
1

2
bit

2 + cit+ di, (15)

where ai, bi, ci and di are constants of integration. These
constants can be computed by using the initial and final
conditions. Since we seek to derive the optimal control (13) in
real time, we can designate initial values pi(t0i ) and vi(t0i ), and
initial time, t0i , to be the current values of the states pi(t) and
vi(t) and time t, where t0i ≤ t ≤ tmi . Similar results to (13)-
(15) can be obtained when the state and control constraints
become active [27].

D. Human-driven vehicles model

The Gipps car following model is used to represent the
drivers’ behavior. It aims to keep a safe following distance
from the leader vehicle or to travel at a desired speed in free
traffic [22], [29]–[31]. The speed vf of the follower vehicle is
computed as

vf (t+ τ) = min{vf,acc(t+ τ), vf,dec(t+ τ)}, (16)

vf,acc(t+ τ) = vf (t) + 2.5uf,maxτ ·
(

1− vf (t)

vf,max

)
·√

0.025 +
vf (t)

vf,max
, (17)

vf,dec(t+ τ) = uf,minτ +

(
u2f,minτ

2 − uf,min

(
2(pl(t)−

pf (t)− (Lveh + fd))− vf (t)τ − vf (t)

ûl,min

))1/2

, (18)

where the subscripts f , l identify the follower and the leader
respectively, τ represents both the driver’s reaction time and
sample time of the simulation, vacc is the speed when the
vehicle is not constrained by the traffic, vdec is the speed
when the vehicle is constrained by a leader in front, p is the
vehicle position, v is the vehicle speed, vf,max is the maximum
desired speed, uf,max is the maximum desired acceleration,
uf,min is the highest allowed braking value, ûl,min is the
follower’s estimation of the leader highest braking value, Lveh

is the vehicle length, and fd is the desired headway distance
when the vehicles are at stop. To ensure a collision-free trip,

the follower’s highest desired braking must be greater than or
equal to the leader’s highest braking value, namely

uf,min ≥ ûl,min, (19)

We consider the merging roadways in Fig. 2 and assume
that all the vehicles behave according to the Gipps car-
following model [22]. Therefore, the vehicles do not receive
information from nearby vehicles nor the infrastructure. They
use estimations of their leading vehicle behavior to decide on
the safe speed at each sample time. Several studies have shown
that this model can represent driver behaviors with acceptable
accuracy, and it is used in traffic simulation software like
AIMSUN [30], [31].

In the merging scenario we consider here, each vehicle
traveling on the main road deems the preceding vehicle as its
leader and follows the speed designated by the Gipps model
until it reaches the merging zone. Once the vehicle enters the
merging zone, then it evaluates whether it has a new leader to
follow. In the case that a new leader is identified, the vehicle
will adjust its speed to keep a safe distance and avoid a rear-
end collision with its new leader.

Similarly, each vehicle traveling on the secondary road will
consider its preceding vehicle on the same road as its leader
until it reaches a distance D from the merging zone and the
leader has merged into the main road. Then, if a safe gap to
merge into the main road is available, the vehicle will adjust its
speed to merge and continue following the new leader while
maintaining a safe distance. If there is not a gap available, the
vehicle will come to a stop before the merging zone and wait
for the next available gap. Once a safe gap is identified, the
vehicle will accelerate to merge and will behave according to
the Gipps car-following model again.

III. SIMULATION FRAMEWORK

We consider the traffic scenario illustrated in Fig. (2), where
the pre-control and control zones are of length L1 = L2 = 200
m, and the merging and check zones are of length S = D =
30 m. We assume that the human drivers attempt to reach
and maintain a desired speed vdes = 13.41 m/s and will
use the check zone to evaluate the merging conditions and to
decide whether to accelerate to merge or decelerate and wait
for the next safe gap on the main road. We also assume the
CAVs support V2V and V2I communication and attempt to
reach and maintain a desired speed vdes = 13.41 m/s before
entering and after leaving the merging zone. Note that these
values are not restrictive and can be modified accordingly.

We seek to study the impact of the gradual penetration
of CAVs on fuel consumption, travel time and traffic flow
under different traffic conditions. To accomplish this goal,
we first generate sets of entry volumes varying from 300
veh/h to 1400 veh/h for a total of 300 vehicles. To analyze
the effects in fuel consumption, we use the vehicles’ speed
and acceleration/deceleration trajectories from the moment
the vehicles enter the pre-control zone until they exit the
merging zone. Fuel consumption is computed with respect
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to speed and acceleration/deceleration using the polynomial
meta-model proposed in [32]. The time that each vehicle takes
to travel from the beginning of the pre-control zone to the end
of the merging zone is also recorded in order to compute the
total travel time. To analyze the effects of gradual penetrations
of CAVs on the traffic flow, we aggregated data related to
traffic (i.e., travel time, traffic volume, average speed and
queue) every 30 sec and used it to plot the traffic flow as
a function of traffic density.

We simulate each set of entry volumes for the three cases
discussed in the following subsections. To account for the
stochastic nature of traffic and driver behaviors, we repeate
the complete set of simulations, i.e., different entry volumes
for the three cases, five times. The final measures of travel
time and fuel consumption correspond to the average value
for the five runs.

A. Case 1: No CAVs Penetration

We consider that all the vehicles entering the traffic segment
behave according to the Gipps car following model. This case
is the baseline scenario.

B. Case 2: Full CAVs Penetration

We consider that all the vehicles on the traffic segment
are CAVs computing their own optimal path by using local
information received from other vehicles and the infrastructure
via V2V or V2I.

C. Case 3: Partial CAVs Penetration

Since we seek to analyze the impacts of mixed traffic,
we combine the Gipps car following model and the optimal
control framework of CAVs. To explore the effects of gradual
penetration of CAVs, we simulate seven penetration rates
ranging from 10% to 80% for each set of entry volumes. From
the total number of vehicles, we select randomly which vehicle
will be human-driven and which one will be a CAV.

IV. SIMULATION RESULTS

For low traffic volume, fuel consumption decreases as the
penetration of CAVs increases (Fig. 3). At very low traffic
flows (300 veh/h to 500 veh/h) the travel time decreases
significantly only for full CAVs penetration (Fig. 6). At 0%
penetration (case 1) the drivers on the ramp have to yield to
the vehicles on the main road until a safe gap is available
to merge. This eventually creates a queue on the ramp with
frequent stop-and-go driving patterns and, as a consequence,
fuel consumption is increased. In contrast, for full and partial
penetration rates (cases 2 and 3) there are significant savings in
fuel consumption as the vehicles cooperate to merge smoothly
without stopping on the ramp. In particular, for full CAVs
penetration the savings can vary from 40% to 55%. Note that
the travel time increases slightly for some penetration rates of
CAVs (Fig. 6) since some of them are limited by the human-
driven vehicles which have to stop on the ramp and wait for
a gap to merge.

For medium and high traffic volumes, total fuel consumption
is reduced only at 100% penetration of CAVs (Fig. 4 and

Fig. 5), while significant benefits are realized in travel time
only when there are more than 40% CAVs on the road (Fig.
7 and Fig. 8). At 100% penetration of CAVs, total fuel
consumption decreases by 16% to about 60% and the travel
time between 40% and 67% . Notably, the highest benefit
in travel time (67%) and fuel savings (63%) are achieved at
medium traffic conditions as CAVs are able to communicate
with each other and follow the optimal control without the dis-
turbances induced by human-drivers. Furthermore, in moderate
traffic they will be driving closer to each other but will still
have more freedom (and headways) to perform the optimal
acceleration/deceleration patterns computed by the optimal
control as opposed to the heavy traffic case. Thus the higher
fuel saving percentages are achieved for moderate traffic. In
mixed traffic, the CAVs following a human-driven vehicle are
constrained by the random acceleration/deceleration choices
of the driver and the lack of communication, so they will
need to rely on their own estimations (through sensors) to
ensure a collision-free trajectory. This implies that the CAVs
will be adversely affected by the stop-and-go driving of
the human-driven vehicles when attempting to merge and
will be required to perform harder acceleration/deceleration
maneuvers to ensure safety, resulting in consuming more fuel.
This becomes particularly critical for the total travel time at
low CAVs penetration as a considerable number of human-
driven vehicles will be stoping to find a gap to merge and the
CAVs will have to decelerate/stop more often affecting the
traffic behind them. As the CAVs penetration rate goes over
50%, there are more CAVs communicating with each other and
able to follow the optimal control inputs, and thus, decreasing
the overall travel time. Notably, as the traffic starts increasing,
CAVs are more constrained to follow the optimal trajectories
due the lack of communication with the human-driven vehicles
and the inaccurate prediction of their future behavior. Thus, the
traffic becomes increasingly unstable and even with 80% CAVs
penetration, the unpredicted behavior of human drivers who
could still have random acceleration/deceleration choices, and
even stop-and-go driving when attempting to merge, will affect
the upstream traffic producing a negative impact on the fuel
consumption. However, it is still evident that, as the number
of CAVs on the road exceeds the number of human-driven
vehicles, their optimal operation has a positive influence on
the the overall traffic.

Summarizing, under low traffic volumes, fuel savings are
realized for all CAVs penetration rates. At very low demands
the travel time remain almost constant, but as the demand
starts increasing travel time savings are achieved. For moderate
traffic volumes, fuel savings are realized only in the full
penetration case while travel time savings are still achieved in
most cases. For higher traffic volumes, fuel savings are again
realized only in the full penetration case, and the travel time
will be significantly reduced only when at least 40% of the
vehicles on the road are CAVs being optimally coordinated.

To analyze how the traffic evolves as CAVs gradually
penetrates in the scenario under analysis, we used the aggre-
gated traffic data to plot the traffic flow versus density for
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Fig. 3. Fuel savings with respect to the baseline scenario for different
penetrations of CAVs under low average traffic demand.

Fig. 4. Fuel savings with respect to the baseline scenario for different
penetrations of CAVs under medium average traffic demand.

Fig. 5. Fuel savings with respect to the baseline scenario for different
penetrations of CAVs under high average traffic demand.

Fig. 6. Travel time savings with respect to the baseline scenario for different
penetrations of CAVs under low average traffic demand.

Fig. 7. Travel time savings with respect to the baseline scenario for different
penetrations of CAVs under medium average traffic demand.

Fig. 8. Travel time savings with respect to the baseline scenario for different
penetrations of CAVs under high average traffic demand.
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different CAVs penetration values, i.e., 0%, 10%, 20%, 30%,
40%, 50%, 60%, 80%, and 100%. Figure 9 illustrates the
flow-density plots for low CAVs penetrations (0%, 10% and
20%). In the baseline case (0%), the traffic flow is scattered
and mostly concentrated below 1500 veh/h while the road
utilization remains at low values. At low CAVs penetrations,
i.e., 10% and 20%, the data points representing congested
traffic become even more scattered while the road utilization
starts increasing. The increased instability of the traffic flow
at low penetrations is attributed to the fact that CAVs are
not able to accurately estimate the behavior of human-driven
vehicles and need to constantly self-adjust their controls, or
over-write their computed optimal inputs, to ensure a collision-
free trip. This implies that CAVs will be more prone to sudden
decelerations that will be reflected in the downstream traffic.

The flow-density plots for medium CAVs penetrations (30%,
40% and 50%) are illustrated in Fig. 10. Even though the
traffic is still increasingly unstable at medium penetration
values, it is possible to observe that the low traffic flow
data points start moving upward, i.e., dots representing traffic
flows below 500 veh/h start moving up the plot as the CAVs
penetration rate increases. It is also observed an increasing
trend for the traffic density, i.e., the road utilization increases.

Figure 11 illustrates the flow-density plots for higher CAVs
penetration rates (60%, 80% and 100%). At higher penetra-
tions (60% and 80%) the data points are still scattered on
the plot. However, the traffic becomes more stable and the
data points start concentrating at higher traffic flows (> 500
veh/h) and higher densities (> 100 veh/km) given that
more CAVs are on the road communicating with each other
and coordinating to merge. At full penetration (100%), and
for average traffic values less than 1500 veh/h the traffic
flows freely, i.e., there is not congestion. As the traffic start
reaching the road capacity, some congestion can still occur
(at high traffic flows and densities), but in general the flow-
density diagram shows a significant reduction in the traffic
flow variations compared to the mixed traffic conditions.

V. CONCLUDING REMARKS AND DISCUSSION

Given the limited number of CAVs that have already been
deployed on the roads, there is not enough data available that
can be used to make conclusive statements on the implications
of CAVs on fuel consumption and traffic conditions. Therefore,
it is important to identify alternatives to start analyzing the
operation of CAVs and their influence on traffic efficiency
and fuel consumption, particularly when operating in mixed
environments, i.e., interacting with human-driven vehicles.

In this paper, we developed a simulation framework to
analyze the impact of CAVs on fuel consumption, travel time
and traffic flow in a merging on-ramp scenario under different
traffic volumes and penetration rates. The CAVs are optimally
coordinated with the aim to reduce fuel consumption while
the human-driven vehicles behave according to the Gipps car
following model. For the mixed traffic cases and to allow safe
operation of CAVs under the constraint of high traffic flows,

we considered that the optimal control inputs are overwritten if
a threshold in the distance with the leader vehicle is violated.

The simulation results revealed that the benefits in fuel
consumption are realized under the following conditions: (1)
100% penetration of CAVs under any traffic volume and
(2) in mixed traffic only when the traffic volume is low. In
contrast, the benefits in travel time are realized under the
following conditions (1) all the vehicles are CAVs traveling
under medium and high traffic flows and (2) in mixed traffic
under medium and high traffic flows only if there are more
than 50% CAVs on the road.

In the case of travel time, for lower CAVs penetration, the
low number of CAVs on the roads are adversely affected by
the “random” human driving patterns. Finally, by comparing
the flow-density diagrams for different CAVs penetration, we
observed that as the number of CAVs on the road commu-
nicating and coordinating their operation increases the traffic
patterns become more stable.

Ongoing work is exploring whether it is possible to account
for human-behavior when optimizing the operation of CAVs
so that in addition to benefits in travel time, benefits in fuel
consumption can also be realized under partial penetration
scenarios. Future work should analyze the effects of gradual
CAVs penetration for different traffic scenarios and whether
CAVs can be used to have indirect control on human-drivers
with the aim to achieve reduced fuel consumption and more
stable traffic patterns in mixed traffic conditions.
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Fig. 9. Traffic flow vs traffic density for low CAVs penetration rates (0%, 10% and 20%).

Fig. 10. Traffic flow vs traffic density for medium CAVs penetration rates (30%, 40% and 50%).

Fig. 11. Traffic flow vs traffic density for high CAVs penetration rates (60%, 80% and 100%).
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