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Abstract— In this paper, we investigate a worst-case-scenario
control problem with a partially observed state. We consider
a non-stochastic formulation, where noises and disturbances
in our dynamics are uncertain variables which take values
in finite sets. In such problems, the optimal control strategy
can be derived using a dynamic program (DP) with respect
to the memory. The computational complexity of this DP can
be improved using a conditional range of the state instead
of the memory. We present a more general definition of an
information state which is sufficient to construct a DP without
loss of optimality, and show that the conditional range is an
example of an information state. Next, we extend this notion to
define an approximate information state and an approximate
DP. We also bound the maximum loss of optimality when using
an approximate DP to derive the control strategy. Finally, we
illustrate our results in a numerical example.

I. INTRODUCTION

A decision maker in a cyber-physical system must gener-
ate control actions using noisy observations and uncertain
predictions of the state’s evolution [1], [2]. Such a deci-
sion making problem is usually modelled using one of the
following approaches: (1) Stochastic control: We consider
that all uncertainties have known distributions and seek a
control strategy which minimizes the expected total cost over
a time horizon [3]. The resulting control strategy performs
optimally on average across multiple runs of the system. (2)
Non-stochastic control: We consider that all uncertainties
take values in known sets with unknown distributions and
seek a control strategy which minimizes the maximum cost
that can be incurred across a time horizon [4]. The resulting
control strategy is more conservative, but has concrete per-
formance guarantees for any evolution of the system. Thus,
this approach is more useful in applications where safety
guarantees are critical, or where the probability distributions
of external disturbances are unknown a priori. Under either
approach, the optimal control strategy can be derived offline
using a dynamic program (DP) [4]. In general, the optimal
action at any time is a function of the historical data in
the decision maker’s memory. This memory grows with
time as more data is added. Subsequently, the domain of
the corresponding control strategy grows with time which
makes it computationally challenging to solve the DP for
long time horizons. In stochastic control, this problem is
alleviated by writing the DP using information states instead
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of the memory [5]. In fact, the notion of an information
state is fundamental in the study of stochastic systems has
also been extended to reinforcement learning [6], [7] and
decentralized problems [8]–[10]. The most frequently used
information state for stochastic control is the belief state,
i.e., a distribution on the feasible states conditioned on
the current memory [3]. However, in some systems with
large state spaces, using an information state imposes severe
computational challenges in DP. Thus, recent efforts focus
on identifying approximate information states [7], [11]. In
contrast, for non-stochastic systems, DP has been simplified
using a conditional range, i.e., the set of state realizations
consistent with the current memory [12]–[15]. This concept
has also been applied to decentralized systems [16]–[18].
However, to the best of our knowledge, there is no general
definition of an information state or approximate information
state for non-stochastic systems.

The contributions of this paper are (1) we introduce a
general definition of an information state (Definition 1) along
with a proof of the optimality of the resulting DP (Theorem
1) and (2) we introduce an approximate information state for
non-stochastic systems (Definition 2), use it to formulate an
approximate DP and present an upper bound on the resulting
loss in performance (Theorems 2 - 3). We illustrate our
results using numerical simulations.

The remainder of the paper proceeds as follows. In Section
II, we present our model. In Section III, we define the
notion of the information state and the corresponding DP.
In Section IV, we present the approximate information state,
approximate DP, and bounds on the approximation loss. In
Section V, we present a numerical example to illustrate our
results. Finally, in Section VI, we draw concluding remarks
and discuss ongoing work.

II. MODEL

A. Notation and Preliminaries

In this paper, we utilize the mathematical framework for
uncertain variables, which was presented in the context
of non-stochastic information theory in [19]. An uncertain
variable is a non-stochastic analogue of a random variable
which take values in a known set and has an unknown
distribution. Thus, for a sample space Ω and a given set X , an
uncertain variable is a mapping X : Ω → X . For any ω ∈ Ω,
the uncertain variable has the realization X(ω) = x ∈ X .
The range of an uncertain variable is analogous to the
distribution of a random variable. The marginal range of
X is the set [[X]] := {X(ω) | ω ∈ Ω}. For two uncertain
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variables X ∈ X and Y ∈ Y , their joint range is the set
[[X,Y ]] :=

{(
X(ω), Y (ω)

)
| ω ∈ Ω

}
. For a given realization

y of Y , the conditional range of X is the set [[X|y]] :={
X(ω) | Y (ω) = y, ω ∈ Ω

}
and in general, the conditional

range of X given Y is [[X|Y ]] :=
{
[[X|y]] | y ∈ [[Y ]]

}
.

Next, consider that the feasible sets X ,Y are compact,
nonempty subsets of a metric space (S, d), where d(x, y) is
the distance between any feasible realization x ∈ X of the
uncertain variable X and y ∈ Y of the uncertain variable Y .
Furthermore, the distance between the sets X ,Y is measured
using the Hausdorff metric [20, Chapter 1.12]

H(X ,Y) := max{max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)}. (1)

B. Problem Formulation

We consider a partially observed system where an agent
selects control actions over T ∈ N discrete time steps.
At any time t = 0, . . . , T , the state of the system is
denoted by an uncertain variable Xt which takes values
in a finite set Xt. The action at time t is denoted by an
uncertain variable Ut which takes values in a finite set Ut.
Starting with the initial state X0 ∈ X0, the state evolves
as Xt+1 = ft (Xt, Ut,Wt) for all t = 0, . . . , T − 1. The
uncertain variable Wt denotes an uncontrolled disturbance
acting on the state at time t, which takes values in a finite
set Wt. At each t = 0, . . . , T , the agent partially observes
the state as an uncertain variable Yt = ht(Xt, Nt) which
takes values in a finite set Yt. The uncertain variable Nt

denotes a measurement noise which takes values in a finite
set Nt. The external disturbances {Wt : t = 0, . . . , T},
noises in measurement {Nt : t = 0, . . . , T}, and initial state
X0 are collectively called primitive variables. We consider
that each primitive variable is independent of each other.
This ensures that the system evolution is Markovian in a
non-stochastic sense [12], [19]. We also consider that the
agent has perfect memory and thus, at each t = 0, . . . , T ,
the agent’s memory is the set of uncertain variables Mt :=
{Y0:t, U0:t−1} which takes values in a collection of sets Mt.
Note that Y0:t = {Y0, . . . , Yt}. After updating their memory,
at each t the agent selects the action Ut = gt(Mt) using the
control law gt : Mt → Ut. We denote the control strategy by
g := (g0, . . . , gT ) and the set of all feasible control strategies
by G. After T time steps, the agent incurs a terminal cost
cT (XT , UT ) ∈ R≥0. We measure the system’s performance
by the maximum terminal cost

J (g) := max
X0,W0:T ,N0:T

cT (XT , UT ). (2)

Problem 1. The optimization problem is ming∈G J (g),
given the feasible sets {X0,Wt,Nt : t = 0, . . . , T}, the
system dynamics {ft, ht : t = 0, . . . , T} and the terminal
cost function cT .

Our aim is to tractably compute an optimal control strategy
g∗ ∈ G for Problem 1. This strategy is guaranteed to
exist because all variables take values in finite sets. In our
modeling framework, we impose the following assumptions:

Assumption 1. We consider that the feasible sets {Xt,Yt :
t = 0, . . . , T} are both subsets of metric spaces.

Assumption 1 allows us to measure the distance between
any two realizations of Xt and Yt, respectively, for all t. To
this end, we denote a generic metric by d(·, ·).

Assumption 2. We consider that all uncertain variables at
each t and the cost cT (XT , UT ) have a finite maximum
value.

Since all feasible sets are finite, Assumption 2 ensures that
the functions {ft, ht : t = 0, . . . , T} and cT are globally
Lipschitz. To this end, we will denote the Lipschitz constant
of a function ft by Lft ∈ R≥0.

Remark 1. While we derive our results for terminal cost
problems, we present an extension of our results to additive
cost problems in Subsection III-B.

III. DYNAMIC PROGRAMS AND INFORMATION STATES

In this section, we present a DP to derive the optimal
control strategy for Problem 1, and then define an informa-
tion state which can simplify it. For all t, for each possible
realization mt ∈ Mt and ut ∈ Ut of the memory Mt

and action Ut, respectively, we recursively define the value
functions of the DP at t = 0, . . . , T − 1 as

Qt(mt, ut) := max
mt+1∈[[Mt+1|mt,ut]]

Vt+1(mt+1), (3)

Vt(mt) := min
ut∈Ut

Qt(mt, ut), (4)

and QT (mT , uT ) := maxxT∈[[XT |mT ]] cT (xT , uT ) and
VT (mT ) := minuT∈UT

QT (mT , uT ) at time T . The control
law at each t is g∗t (mt) := argminut∈Ut

Qt(mt, ut). The
control strategy g∗ = (g∗0 , . . . , g

∗
T ) can be shown to be the

optimal solution to Problem 1 using standard arguments [4].
Note that at each t, the optimization in the RHS of (4) must
be solved for each possible mt ∈ Mt. As t increases, the size
of the Mt increases with the addition of new information.
Subsequently, a large number of computations are required to
solve the DP for a long time horizon T . This issue motivates
us to seek an uncertain variable, called an information state,
which can be used in the DP instead of the memory, without
loss of optimality.

A. Information States

In this subsection, we define an information state which
is sufficient to construct a DP and prove that it yields an
optimal control strategy.

Definition 1. An information state for Problem 1 at each
t = 0, . . . , T is an uncertain variable Πt = σt(Mt) taking
values in a finite set Pt and generated by σt : Mt → Pt.
Furthermore, for all mt ∈ Mt and ut ∈ Ut, and for all
t = 0, . . . , T , it satisfies the following properties:

1) Sufficient to evaluate terminal cost:

max
xT∈[[XT |mT ]]

cT (xT , uT ) = max
xT∈[[XT |σT (mT )]]

cT (xT , uT ). (5)
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2) Sufficient to predict itself:

[[Πt+1|mt, ut]] = [[Πt+1|σt(mt), ut]]. (6)

In the corresponding DP, for all t, and for all πt ∈ Pt

and ut ∈ Ut, we recursively define the value functions at
t = 0, . . . , T − 1 as

Q̄t(πt, ut) := max
πt+1∈[[Πt+1|πt,ut]]

V̄t+1(πt+1), (7)

V̄t(πt) := min
ut∈Ut

Q̄t(πt, ut), (8)

and Q̄T (πT , uT ) := maxxT∈[[XT |πT ]] cT (xT , uT ) and
VT (πT ) := minuT∈UT

QT (πT , uT ) at time T . The control
law at each t is g∗t (πt) := argminut∈Ut Q̄t(πt, ut). Next, we
prove that the DP decomposition with information states (7) -
(8) yields the same optimal value as the DP decomposition in
(3) - (4) that uses the system’s memory at each t = 0, . . . , T .

Theorem 1. Let Πt = σt(Mt) be an information state for
Problem 1 for all t = 0, . . . , T . Then, for all mt ∈ Mt

and ut ∈ Ut, Qt(mt, ut) = Q̄t(σt(mt), ut) and Vt(mt) =
V̄t(σt(mt)).

Proof. Let mt ∈ Mt and ut ∈ Ut be given realizations
of Mt and Ut, respectively, for all t. We prove the
result using mathematical induction, starting with T
where QT (mT , uT ) = maxxT∈[[XT |mT ]] cT (xT , uT ) =
maxxT∈[[XT |σT (mT )]] cT (xT , uT ) = Q̄T (σT (mT ), uT )
holds as a direct result of (5) in Definition 1. Subsequently,
by taking the minimum on both sides with respect to
ut ∈ Ut, it holds that VT (mT ) = V̄T (σT (mT )). With this
as the basis, for any t = 0, . . . , T − 1, we consider the
induction hypothesis Vt+1(mt+1) = V̄t+1(σt+1(mt+1)).
Next, we first prove that Qt(mt, ut) = Q̄t(σt(mt), ut)
at t by showing that the RHS of (3) is equal to the
RHS of (7). Using the induction hypothesis in the
RHS of (3), maxmt+1∈[[Mt+1|mt,ut]] Vt+1(mt+1) =
maxmt+1∈[[Mt+1|mt,ut]] V̄t+1(σt+1(mt+1)) =
maxσt+1(mt+1)∈[[Πt+1|σt(mt),ut]] V̄t+1(σt+1(mt+1)),
where, in the second equality, we use the fact that
[[Πt+1|mt, ut]] =

{
σt+1(mt+1) ∈ Pt+1

∣∣mt+1 ∈ [[Mt+1|
mt, ut]]

}
and (6). Thus, at time t, it holds that

Qt(mt, ut) = Q̄t(σt(mt), ut). Subsequently, we can
prove Vt(mt) = V̄t(σt(mt)) by minimizing both sides with
ut ∈ Ut. This proves the induction hypothesis at time t, and
the result follows by mathematical induction.

Theorem 1 implies that the control strategy computed
using (7) - (8) is an optimal solution to Problem 1. In
practice, using the information state in the DP decomposition
only improves computational tractability when the set Pt has
fewer elements than Mt for most time steps. This is usually
true for systems with long time horizons.

B. Examples of Information States

In this subsection, we present examples of information
states which satisfy the conditions in Definition 1.

1) Perfectly Observed Systems: Consider a system where
Yt = Xt for all t = 0, . . . , T . Then, the state is a valid

information state [4], i.e., Πt = Xt, which takes values in
the set Xt and satisfies (5) - (6) for all t.

2) Partially Observed Systems: The conditional range
Πt = [[Xt|Mt]] is an information state for each t = 0, . . . , T
in any partially observed system [4]. This is a set-valued
uncertain variable which takes values in the power set 2Xt .
Explicitly, for a given realization of the memory mt ∈
Mt at time t, the conditional range takes the realization
Pt := {xt ∈ Xt|∃x0 ∈ X0, w0:t−1 ∈

∏t−1
ℓ=0 Wℓ, n0:t ∈∏t

ℓ=0 Nℓ such that yt = ht(xt, nt), xℓ+1 = fℓ(xℓ, uℓ, wℓ),
yℓ = hℓ(xℓ, nℓ) for all ℓ = 0, . . . , t − 1}. We denote the
realization by Pt instead of πt to highlight that it is a set.

3) Additive Cost Problems: Consider a partially ob-
served system where the agent incurs a cost ct(Xt, Ut) ∈
R≥0 at each t = 0, . . . , T and the performance is mea-
sured by an additive performance criterion J ad(g) :=
maxX0,W0:T ,N0:T

∑T
t=0 ct(Xt, Ut). We can construct a DP

and an information state for an additive cost problem by
recasting it as a terminal cost problem [12]. At t = 0, we
define A0 := 0 and for all t = 1, . . . , T , we recursively
define an uncertain variable At ∈ At as At := At−1 +
ct−1(Xt−1, Ut−1). Then, at each t, we consider an aug-
mented state St = (Xt, At) and note that it yields a terminal
cost AT + cT (XT , UT ). Thus, we can derive the optimal
control strategy using the terminal cost DP. The information
state at time t is the conditional range Πt = [[Xt, At|Mt]]
which takes values in the power set 2Xt×At .

Remark 2. While the conditional range is an information
state for all partially observed systems, the more general
conditions in Definition 1 can enable us to identify sim-
pler information states for cases like systems with perfect
observation. However, in many applications we may seek
to construct an information state using limited data or seek
to improve computational tractability of the DP by approxi-
mation. To account for these applications, in Section IV, we
extend Definition 1 to define approximate information states.

IV. APPROXIMATE INFORMATION STATE

In this section, we define an approximate information state
by relaxing the conditions in Definition 1. Then, we use it
to develop an approximate DP and derive an upper bound
on the resulting loss of optimality.

Definition 2. An approximate information state for Problem
1 is an uncertain variable Π̂t = σ̂t(Mt), at each t = 0, . . . , T ,
taking values in a finite set P̂t and generated by σ̂t : Mt →
P̂t. Furthermore, for all t, there exist parameters ϵT , δt ∈
R≥0 such that for all mt ∈ Mt and ut ∈ Ut it is:

1) Sufficient to approximate terminal cost:

| max
xT∈[[XT |mT ]]

cT (xT , uT )− max
xT∈[[XT |σ̂T (mT )]]

cT (xT , uT )|

≤ ϵT . (9)

2) Sufficient to approximate evolution: We define Kt+1 :=
[[Π̂t+1 | mt, ut]] and K̂t+1 := [[Π̂t+1 | σ̂t(mt), ut]]. Then,

H(Kt+1, K̂t+1) ≤ δt, (10)
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where recall that H(·) is the Hausdorff metric from (1).

In the approximate DP, for all t = 0, . . . , T−1, for all π̂t ∈
P̂t and ut ∈ Ut, we recursively define the value functions

Q̂t(π̂t, ut) := max
π̂t+1∈[[Π̂t+1|π̂t,ut]]

V̂t+1(π̂t+1), (11)

V̂t(π̂t) := min
ut∈Ut

Q̂t(π̂t, ut), (12)

and Q̂T (π̂T , uT ) := maxxT∈[[XT |π̂T ]] cT (xT , uT ) and V̂T (

π̂T ) := minuT∈UT
Q̂T (π̂T , uT ) at time T . The control law

at each t is ĝ∗t (π̂t) := argminut∈Ut
Q̂t(π̂t, ut) and the

approximately optimal strategy is ĝ∗ = (ĝ∗0 , . . . , ĝ
∗
T ). Next,

in Theorem 2, we establish an error bound when the value
functions for the optimal DP (3) - (4) are approximated by
(11) - (12). We begin with two preliminary lemmas.

Lemma 1. Consider a metric space (A, d) and two finite
subsets A,B ⊂ X . Let f : X → R be a function with a
global Lipschitz constant Lf ∈ R≥0. Then,∣∣max

a∈A
f(a)−max

b∈B
f(b)

∣∣ ≤ Lf · H(A,B). (13)

Proof. We prove this result by considering two cases
which are mutually exclusive but cover all the possibil-
ities. Case 1: maxa∈A f(a) ≥ maxb∈B f(b), which im-
plies |maxa∈A f(a) − maxb∈B f(b)| = maxa∈A f(a) −
maxb∈B f(b). We define the non-empty set A1 := {a ∈
A|f(a) ≥ maxb∈B f(b)} and note that maxa∈A f(a) −
maxb∈B f(b) = maxa∈A1 f(a) − maxb∈B f(b) =
maxa∈A1 minb∈B(f(a) − f(b)) ≤ maxa∈A minb∈B |f(a) −
f(b)| ≤ Lf · maxa∈A minb∈B |a − b|. We can complete
the proof for case 1 by invoking the definition of the
Hausdorrf metric in (1) to conclude that |maxa∈A f(a) −
maxb∈B f(b)| ≤ Lf ·maxa∈A minb∈B |a−b| ≤ Lf ·H(A,B).
Case 2: maxa∈A f(a) < maxb∈B f(b) and can prove the
result using similar arguments as case 1.

Lemma 2. Consider a finite set X and two functions f :
X → R and g : X → R with bounded outputs. Then,

|max
x∈X

f(x)−max
x∈X

g(x)| ≤ max
x∈X

|f(x)− g(x)|, (14)

|min
x∈X

f(x)−min
x∈X

g(x)| ≤ max
x∈X

|f(x)− g(x)|. (15)

Proof. First, we prove (14) by considering two mutu-
ally exclusive cases which cover all possibilities. Case 1:
We consider maxx∈X f(x) ≥ maxx∈X g(x), which im-
plies |maxx∈X f(x) − maxx∈X g(x)| = maxx∈X f(x) −
maxx∈X g(x). Then, we define x∗ := argmaxx∈X f(x)
and note maxx∈X f(x)−maxx∈X g(x) = f(x∗)−maxx∈X
g(x) ≤ f(x∗) − g(x∗) ≤ maxx∈X |f(x) − g(x)|. Case 2:
maxx∈X f(x) < maxx∈X g(x). The proof can be completed
using similar arguments as in Case 1. The proof for (15)
follows from similar arguments as (14). Due to space limi-
tations, it is omitted.

Theorem 2. Let LV̂t+1
be the Lipschitz constant of V̂t+1(·)

for all t = 0, . . . , T . Then, for all mt ∈ Mt and ut ∈ Ut:

|Qt(mt, ut)− Q̂t(σ̂t(mt), ut)| ≤ αt, (16)

|Vt(mt)− V̂t(σ̂t(mt))| ≤ αt, (17)

where αT = ϵT and αt = αt+1 + LV̂t+1
· δt for all t =

0, . . . , T − 1.

Proof. For all t, let mt ∈ Mt and ut ∈ Ut be the realizations
of Mt and Ut, respectively. We prove both results by math-
ematical induction, starting at time T , where (16) follows
from (9) in Definition 2. For (17), we can expand the LHS
as |VT (mT )− V̂T (σ̂T (mT ))| = |minuT∈UT

QT (mT , uT )−
minut∈UT

Q̂T (σ̂T (mT ), uT )| ≤ maxuT∈UT
|QT (mT , uT )−

Q̂T (σ̂T (mT ), uT )| ≤ ϵT , where in the first inequality, we use
(15) from Lemma 2 and in the second inequality we use (16).
Next, for all t, we consider the hypothesis |Vt+1(mt+1) −
V̂t+1 (σ̂t+1(mt+1))| ≤ αt+1. Then, |Qt(mt, ut) −
Q̂t(σ̂t(mt), ut)| =

∣∣maxmt+1∈[[Mt+1|mt,ut]] Vt+1(mt+1) −
maxπ̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]

V̂t+1(π̂t+1)
∣∣. Then,

|Qt(mt, ut)− Q̂t(σ̂t(mt), ut)| ≤
∣∣ max
mt+1∈[[Mt+1|mt,ut]]

Vt+1(mt+1)− max
σ̂t+1(mt+1)∈[[Π̂t+1|mt,ut]]

V̂t+1(σ̂t+1(mt+1))
∣∣+∣∣ max

π̂t+1∈[[Π̂t+1|mt,ut]]
V̂t+1(π̂t+1)− max

π̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]
V̂t+1(π̂t+1)

∣∣,
(18)

where, we use the triangle inequality. In the
first term,

∣∣maxmt+1∈[[Mt+1|mt,ut]] Vt+1(mt+1) −
maxσ̂t+1(mt+1)∈[[Π̂t+1|mt,ut]]

V̂t+1(σ̂t+1(mt+1))
∣∣ ≤

maxmt+1∈[[Mt+1|mt,ut]]

∣∣Vt+1(mt+1) − V̂t+1(σ̂t+1(mt+1))
∣∣

≤ αt+1, where, in the first inequality, we note
that [[Π̂t+1|mt, ut]] = {σ̂t+1(mt+1) ∈ P̂t|mt+1 ∈
[[Mt+1|mt, ut]]} and use (14) from Lemma 2;
and, in the second inequality, we use the induction
hypothesis. The second term in the RHS of
(18) satisfies

∣∣maxπ̂t+1∈[[Π̂t+1|mt,ut]]
V̂t+1(π̂t+1) −

maxπ̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]
V̂t+1(π̂t+1)

∣∣ ≤ LV̂t+1
· δt using

(13) from Lemma 1 and (10) from Definition 2. Substituting
the inequality for each term in the RHS of (18) yields
|Qt(mt, ut) − Q̂t(σ̂t(mt), ut)| ≤ αt+1 + LV̂t+1

· δt.

Subsequently, we can prove (17) as Vt(mt)− V̂t(σ̂t(mt)) =
|minut∈Ut Qt(mt, ut) − minut∈Ut Q̂t(σ̂t(mt), ut)| ≤
maxut∈Ut

|Qt(mt, ut) − Q̂t(σ̂t(mt), ut)| ≤ αt, where,
in the first inequality, we use (15) from Lemma 2. This
completes our proof by induction for all t = 0, . . . , T .

After bounding the approximation error for value func-
tions, we also seek to bound the optimality gap from
using the approximate strategy. Consider the approxi-
mately optimal strategy ĝ := (ĝ0, . . . , ĝT ) with ĝt(π̂t) =
argminut∈Ut

Q̂t(π̂t, ut) for all t. Then, the equivalent strat-
egy g = (g0, . . . , gT ) using memory has gt(mt) :=
ĝt(σ̂t(mt)) for all t. To compute the performance of g, we
define for all t = 0, . . . , T−1, for all mt ∈ Mt and ut ∈ Ut:

Θt(mt, ut) := max
mt+1∈[[Mt+1|mt,ut]]

Λt+1(mt+1), (19)

Λt(mt) := Θt(mt, gt(mt)), (20)

and ΘT (mT , uT ) := maxxT∈[[XT |mT ]] cT (xT , uT ) and
ΛT (mT ) := ΘT (mT , gT (mT )) for time T . Then, because
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m0 = {y0}, the performance of g is Λ0(y0) for any y0 ∈ Y0.
Next, we bound the difference in the performance of the
approximate strategy g and the optimal strategy.

Theorem 3. Let LV̂t+1
be the Lipschitz constant of V̂t+1(·)

for all t = 0, . . . , T . Then, for all mt ∈ Mt and ut ∈ Ut,

|Qt(mt, ut)−Θt(mt, ut)| ≤ 2αt, (21)
|Vt(mt)− Λt(mt)| ≤ 2αt, (22)

where αT = ϵT and αt = αt+1 + LV̂t+1
· δt for all t =

0, . . . , T − 1.

Proof. For all t = 0, . . . , T − 1 and for each π̂t ∈ P̂t

and ut ∈ Ut, let Θ̂t (π̂t, ut) := maxπ̂t+1∈[[Π̂t+1|π̂t,ut]]

Λ̂t+1(π̂t+1) and Λ̂t(π̂t) := Θ̂t(π̂t, ĝt(π̂t)). At t =
T , Θ̂T (π̂T , uT ) := maxxT∈[[XT |π̂T ]] cT (xT , uT ) and Λ̂T

(π̂T ) := Θ̂T (π̂T , ĝT (π̂T )). Note that Θ̂t(π̂t, ut) =
Q̂t(π̂t, ut) and Λ̂t(π̂t) = V̂t(π̂t) for all t since ĝt(π̂t) =
argminut∈Ut Q̂t(π̂t, ut). Next, at each t = 0, . . . , T , we use
the triangle inequality in the LHS of (21):

|Qt(mt, ut)−Θt(mt, ut)| ≤ |Qt(mt, ut)−
Q̂t(σ̂t(mt), ut)|+ |Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)|

≤ αt+|Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)|, (23)

where, in the second inequality, we use (16) from Theorem
2. Next, we prove that |Θ̂t(σ̂t(mt), ut) − Θt(mt, ut)| ≤ αt

and |Λ̂t(σ̂t(mt)) − Λt(mt)| ≤ αt for all t = 0, . . . , T
using backward mathematical induction starting at
time T . At time T , from (10) in Definition 2,
|Θ̂T (σ̂T (mT ), uT )−ΘT (mT , uT )| = |maxxT∈[[XT |σ̂T (mT )]]

cT (xT , uT ) − maxxT∈[[XT |mT ]] cT (xT , uT )| ≤
ϵT . Furthermore, |Λ̂T (σ̂T (mT )) − ΛT (mT )| =
|Θ̂T (σ̂T (mT ), ĝT (σ̂T (mT ))) − ΘT (mT , gT (mT ))| ≤ ϵT ,
where the inequality holds because gT (mT ) =
ĝT (σ̂T (mT )). With this as the basis, for any
t = 0, . . . , T − 1, we consider the induction hypothesis
|Λ̂t+1(σ̂t+1(mt+1)) − Λt+1(mt+1)| ≤ αt+1. Then, using
the definitions of the value functions, |Θ̂t(σ̂t(mt), ut) −
Θt(mt, ut)| = |maxπ̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]

Λ̂t+1(π̂t+1) −
maxmt+1∈[[Mt+1|mt,ut]] Λt+1(mt+1)|. Next, we expand the
RHS using the triangle inequality to write that

|Θ̂t(σ̂t(mt), ut)−Θt(mt, ut)| ≤
∣∣ max
π̂t+1∈[[Π̂t+1|σ̂t(mt),ut]]

Λ̂t+1(π̂t+1)− max
π̂t+1∈[[Π̂t+1|mt,ut]]

Λ̂t+1(π̂t+1)|+| max
mt+1∈[[Mt+1|mt,ut]]

Λt+1(mt+1)− max
σ̂t+1(mt+1)∈[[Π̂t+1|mt,ut]]

Λ̂t+1(σ̂t+1(mt+1))|

≤ LV̂t+1
· δt + αt+1 = αt, (24)

where, in the second inequality, the first term is upper
bounded by noting that Λ̂t+1(π̂t+1) = V̂t+1(π̂t+1), using
(13) from Lemma 1 and then using (10) from Definition
2, whereas the second term is bounded using the induction
hypothesis. Following the same sequence of arguments as
time T , |Λ̂t(σ̂t(mt))−Λt(mt)| ≤ αt as a direct consequence
of (24). This completes the induction. The proof is complete

by substituting this result into the RHS of (23) to show (21)
and consequently, (22).

A. Examples

In this subsection, we present two approximate infor-
mation states which satisfy Definition 2. They are both
inspired by state quantization [21]. Specifically, at any t =
0, . . . , T , let Xt be the set of feasible states. Then, a subset
X̂t ⊂ Xt is a set of quantized states with parameter γt ∈
R≥0 if maxxt∈Xt minx̂t∈X̂t

d(xt, x̂t) ≤ γt. The correspond-
ing quantization function µt : Xt → X̂t is defined as
µt(xt) := argminx̂t∈X̂t

d(xt, x̂t). Note that by construction,
d(xt, µt(xt)) ≤ γt for all xt ∈ Xt, for all t.

1) Perfectly Observed Systems: Consider a system where
Yt = Xt for all t = 0, . . . , T . Recall from Subsection III-
B that the information state is simply Πt = Xt and it takes
values in Xt for all t. Then, an approximate information state
for such a system is the quantized state Π̂t := µt(Xt) with
ϵT = 2LcT ·γT and δt = 2γt+1+2Lft ·γt, where γT+1 = 0,
and LcT and Lft are the Lipschitz constants for cT (·) and
ft(·), respectively. The derivation for the values of ϵT and
δt can be found in Appendix A of our online preprint [22].

2) Partially Observed Systems: For a partially observed
system, recall from Section III-B that an information state is
given by the conditional range Πt = [[Xt|mt]]. We approx-
imate the conditional range by quantizing each element in
Πt. This is generated by the mapping νt : 2

Xt → 2X̂t which
yields the approximate range νt(Πt) := {µt(xt) ∈ X̂t|xt ∈
Πt}. Then, Π̂t = νt(Πt) is an approximate information state
for partially observed systems for all t = 0, . . . , T with
ϵT = 2LcT · γT and δt = 2γt+1 + 2Lf̄t · Lht+1

· Lft · γt,
where γT+1 = 0, and LcT , Lf̄t , Lht+1 and Lft are Lipschitz
constants of cT (·), f̄t(·), ht+1(·), and ft(·), respectively.
The derivation of the values of ϵT and δt can be found in
Appendix B of our online preprint [22].

V. NUMERICAL EXAMPLE

In this section, we present a numerical example illustrating
the performance of the approximate conditional range for a
gridworld pursuit problem. We consider an agent who seeks
to catch a moving target at the end of a time horizon T on
9 × 9 grid with static obstacles. For all t = 0, . . . , T , we
denote the position of the agent by Xag

t and the position
of the target by X ta

t , each of which takes values in the set
of grid cells X =

{
(−4,−4), (−4,−3), . . . , (3, 4), (4, 4)

}
\

O, where O ⊂ X is the set of obstacle cells. Let Ut =
Wt = Nt = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)} for all t.
Then, starting at X ta

0 ∈ X , the target’s position is updated as
X ta

t+1 = I(X ta
t +Wt ∈ X ) · (X ta

t +Wt)+ (1− I(X ta
t +Wt ∈

X )) ·X ta
t , where Wt ∈ Wt and I(·) is the indicator function.

At each t, the agent receives an observation of the target
Yt = I(X ta

t + Nt ∈ X ) · (X ta
t + Nt) + (1 − I(X ta

t + Nt ∈
X )) · X ta

t , where Nt ∈ Nt. The agent observes their own
position perfectly. Then, the agent selects an action Ut ∈ Ut

and updates their position to Xag
t+1 = I(Xag

t + Ut ∈ X ) ·
(Xag

t + Ut) + (1 − I(Xag
t + Ut ∈ X )) · Xag

t . The terminal
cost after T time steps is d(X ta

T , X
ag
T ), where d(·, ·) is the
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shortest path between two cells while avoiding all obstacles.
The distance between two adjacent cells is 1 unit. The grid
and an initial state are illustrated in Fig. 1(a). Here, the black
colored cells mark the obstacles. The red triangle and the
red circle indicate the position and observation of the agent,
respectively, at t = 0. The red hatched region indicates the
possible locations of the target at t = 0.

(a) The original grid (b) The quantized grid

Fig. 1. The gridworld pursuit problem with the initial conditions x
ag
0 =

(−2,−3) and y0 = (−4, 3).

Recall from Subsection III-B that an information state at
time t is Πt =

(
Xag

t , [[X ta
t |Mt]]

)
∈ X × 2X . We construct

an approximation of the conditional range [[X ta
t |Mt]] at time

t using the quantization approach from Subsection IV-A.
The set of quantized states X̂ , with γt = 1 for all t, is
illustrated in Fig. 1(b) by marking the relevant cells with
dots. Recall that µt(xt) = argminx̂t∈X̂ d(xt, x̂t) and the
approximate range at time t is Ât =

{
µt(xt) ∈ X̂ |xt ∈

[[X ta
t |Mt]]

}
. We consider the approximate information state

Π̂t =
(
Xag

t , Ât, Y0

)
∈ X × 2X̂ × X for all t. The initial

observation Y0 in Π̂t makes the prediction of Ât+1 more
accurate. For five initial conditions, we compute the best
control strategy for T = 6 using both the information state
(IS) and the approximate information state (AIS). In Fig. 2,
we present the worst-case costs for both the DPs (V0 and V̂0)
and the computational times (Run.) in seconds. Note that
the approximate DP has a significantly faster runtime. We
also implement both strategies on the system with random
disturbances. In Fig. 2, we illustrate differences in actual
costs across 1000 such simulations when implementing the
approximate strategy and the optimal strategy. The dots
indicate the most frequently observed difference for each
case. Note that the difference in costs is bounded.

Fig. 2. Results of numerical simulations for T = 6.

VI. CONCLUSION

In this paper, we presented a theory of information states
for non-stochastic control problems. We characterized the
information states by their properties and proved that they
can be used to derive the optimal control strategy. Then, we

proposed a definition for an approximate information state
which yielded an approximate DP. We provide upper bounds
on the approximation error if an agent uses the approximately
optimal strategy to generate their control actions. Future
work should consider constructing approximate information
states using only partial knowledge of system dynamics.
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