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ABSTRACT

Traffic congestion has been persistently growing in the US from 1982 to 2020 since

road capacity has not grown at the same pace as the population in urban areas. In 2019,

traffic congestion in urban areas in the US caused drivers to spend an extra 8.7 billion hours

on the road, purchasing an extra 3.5 billion gallons of fuel for a congestion cost of $190

billion. Global climate change has also resulted in the pressing need for improved energy

efficiency and reduced environmental impact on transportation. Additionally, traffic safety is

another growing concern. In 2018, there were 5.2M traffic accidents in the US, resulting in

more than 38K fatalities and 2.2M people injured. Equipped with capacities of computing

capabilities and advanced communication and vehicle technologies, connected and automated

vehicles (CAVs) provide novel and innovative opportunities to significantly reduce energy

consumption, greenhouse gas emissions, and travel delays while improving passenger safety.

This dissertation goes through a journey from designing an optimal decentralized co-

ordination framework for CAVs at different traffic bottlenecks to implementing and validating

them in a scaled testbed. The dissertation consists of three main parts. In the first part, we

develop two different bi-level approaches based on a scheduling and recursive algorithm for

coordinating CAVs at multiple adjacent signal-free intersections. In the upper-level planning,

each CAV computes the arrival time at each intersection along its path while ensuring lateral

and rear-end safety. Given the output of the upper-level planning, in the low-level planning,

we formulate an optimal control problem for each CAV with the interior-point constraints,

the solution of which yields the energy optimal control input (acceleration/deceleration).

Considering a signal-free intersection, we present a learning-based decentralized coordination

framework consisting of a hysteretic Q-learning combined with a FIFO queuing policy to

xiv



minimize travel delay and improve fuel consumption while ensuring rear-end and lateral

safety.

In the second part, we provide three different approaches that can extend our frame-

work to consider uncertainty and address it appropriately. We first present a single-level

coordination framework for CAVs, in which each CAV computes the optimal unconstrained

control trajectory without activating any of the state, control, and safety constraints. We inte-

grate a replanning mechanism into our coordination framework, which can be implemented in

a time-driven or event-driven fashion. This embedded replanning aims at introducing indirect

feedback into the coordination framework to respond to the unexpected changes in the system

to some extent. Using the theory of the job-shop scheduling, we further enhance our decentral-

ized coordination framework by introducing a priority-aware resequencing mechanism, which

designates the order of decision making. We formulate a robust coordination framework

by including the deviations from the nominal trajectories as uncertainty. We then employ

Gaussian process regression to learn the uncertainty from the possibly noisy observation

of CAVs’ time trajectories. After obtaining the statistical knowledge about the deviation

from nominal trajectories, we construct the confidence interval for time, position, and speed

trajectories. Finally, we enhance the framework by employing control barrier functions to

provide an additional safety layer and ensure the satisfaction of all constraints in the system.

Using the proposed coordination framework in the motion planning module, each CAV first

uses simple longitudinal dynamics to derive the optimal control trajectory without activating

any constraint. We require a vehicle-level controller to track the resulting optimal trajectory

in a real physical system. However, the system’s constraints may become active due to the

inherent deviations between the actual trajectory and the planned trajectory. We address this

issue by introducing a barrier-certificate module based on more realistic dynamics as a safety

middle layer between the vehicle-level tracking controller and physical vehicle to provide a

reactive mechanism to guarantee constraint satisfaction.

In the last part, we introduce the Information and Decision Science Lab’s Scaled Smart

City (IDS3C), a robotic scaled (1:25) testbed capable of safely validating control approaches

xv



beyond simulation in applications related to emerging mobility systems such as coordination

of CAVs. Then, we demonstrate the effectiveness of coordination of CAVs at a multi-lane

roundabout and show its scalability in a corridor consisting of a roundabout, an intersection,

and a merging roadway.

These research contributions together result in a mathematically rigorous framework

for the online coordination of CAVs in different traffic scenarios. This dissertation advances

the state of the art in utilizing CAVs in real-world traffic scenarios to alleviate congestion,

improve traffic throughput, and increase passenger safety.
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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

Oh, come with old Khayyam, and leave the wise;
To talk; one thing is certain, that life flies;
One thing is certain, and the rest is lies;
The flower that once has blown for ever dies.

Omar Khayyam, Rubaiyat of Omar Khayyam, 1048–1131 CE

1.1 Motivation

Over the last few decades, the urban population of the world has proliferated. Accord-

ing to a report by the united nations [1], it is projected that 66 % of the population will reside

in urban areas by 2050, and by 2030, there would be 41 Mega-cities, which have population

over 10 M people. However, in urban areas road capacity has not grown at the same pace,

and as a result of the increasing population and travel demand, traffic congestion has become

a significant concern in big metropolitan areas around the world. Namely, people in large

urban areas across the US have experienced the negative effects of traffic congestion on their

daily life. Schrank et al. [2] reported that congestion in the US has been persistently growing

from 1982 to 2020. In 2019, traffic congestion in urban areas in the US caused drivers to

spend an extra 8.7 billion hours on the road, purchasing an extra 3.5 billion gallons of fuel

for a congestion cost of $190 billion. In addition, traffic congestion has a negative impact on

traffic safety, in 2018, there were 5.2M traffic accidents in the US resulting in more than 38K

fatalities and 2.2M people injured [3]. Singh [4] reported that the immediate reason for 94%

of the crashes was assigned to the driver, with recognition errors accounted for about 41%,

decision errors 33% and performance errors 11% of the crashes.
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Emerging mobility systems, e.g., connected and automated vehicles (CAVs), shared

mobility, and electric vehicles, mark a paradigm shift in which a numerous of opportunities

exist for users to better monitor the transportation network conditions and make optimal

operating decisions [5–7]. Equipped with capacities of computing capabilities and advanced

communication and vehicle technologies, CAVs are expected to provide novel and innovative

opportunities to transition our current transportation networks into energy-efficient mobility

systems. The introduction of CAVs into the transportation system allows vehicles to make

better decisions, leading to significant reductions of energy consumption, greenhouse gas

emissions, and travel delays along with improvements to passenger safety [8–11]. The gen-

eration of massive amounts of vehicle data also creates significant opportunities to develop

optimization algorithms for controlling large-scale behaviors for the entire urban transporta-

tion system. As we move to increasingly complex emerging mobility systems, new control

approaches are needed to optimize the impact on system behavior of the interplay between

vehicles at different traffic scenarios [12].

1.2 Literature Review

1.2.1 Coordination of Connected and Automated Vehicles

There have been two major approaches to utilizing connectivity and automation of

vehicles, namely, platooning and traffic smoothing. A platoon is defined as a group of closely-

coupled vehicles traveling to reduce their aerodynamic drag, especially at high cruising

speeds. The concept of platoon formation is a popular system-level approach to address traffic

congestion, which gained momentum in the 1980s and 1990s [13–15]. There has been a rich

body of research exploring various methods of forming and/or utilizing platoons to improve

transportation efficiency [16–30]. The second approach smooths the traffic flow to eliminate

stop-and-go driving through optimal coordination through traffic scenarios [31], which gained

attention after the seminal work of Levine and Athans [32, 33] on safely coordinating vehicles

at merging-road ways. Assuming a given merging sequence, Levine and Athans formulated

the merging problem as a linear optimal regulator [32] to control a single string of vehicles,
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with the aim of minimizing the speed errors that will affect the desired headway between each

consecutive pair of vehicles. Since then, substantial research efforts have been reported in

the literature proposing optimal coordination of CAVs in different traffic scenarios such as

merging roadways, roundabouts, speed reduction zones, and urban intersections.

According to Rios-Torres and Malikopoulos [34], approaches on coordination of

CAVs can be categorized into two major groups, namely, centralized and decentralized. In

centralized approaches, there is at least one task in the system that is globally decided for

all CAVs by a single central controller. In decentralized approaches, CAVs are treated as

autonomous agents that optimize specific performance criteria (e.g., fuel efficiency, travel

time) through vehicle to vehicle (V2V) and/or vehicle to infrastructure (V2I) communication.

Centralized Framework

Some work has considered a reservation-based approach for coordination of CAVs

at a signal-free intersection, which requires CAVs to reserve a space-time slot inside the

intersection [35–42], and then a centralized controller accepts/rejects these requests according

to some policy. Dresner and Stone [35, 36] first introduced this scheme based on a first-

in-first-out (FIFO) queuing policy. In a sequel paper, Hausknecht et al. [37] extended this

scheme to the network of interconnected intersections aimed at exploring the best route to

navigate a CAV arriving at the intersection to minimize its delay through the network. Jin et

al.[38] further developed the idea of a reservation-based scheme for signal-free intersection

and relaxed the FIFO queuing policy. By relaxing FIFO, they showed that their approach

resulted in better performance compared to the previous reservation-based schemes based on

FIFO.

Several studies reported in the literature have addressed the coordination problem for

CAVs using a centralized framework [43–50]. The authors in [43, 44] designed a controller to

minimize the total length of overlapped trajectories of CAVs inside the intersection. Gregoire

et al. [45] decomposed the coordination problem into a central priority assignment and

trajectory planning. Given the priority assignment, they planned a safe trajectory with either
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maximum or minimum control inputs. Bichiou and Rakha [46] considered minimizing

travel time jointly with control efforts for M closest CAVs to the intersection. Although the

authors showed improvement in fuel efficiency and travel time, their approach takes 2− 5

minutes to find the optimal control actions for M = 4 rendering it inapplicable for real-time

implementation. Xu et al. [47] presented a centralized controller to find vehicles’ crossing

order at a signal-free intersection based on the heuristic tree search methods. Borek et al. [48]

presented the energy-optimal control for heavy-duty trucks, which employs an online MPC

to track the optimal solution obtained off-line using dynamic programming. Du et al. [49]

introduced a tri-level coordination framework for CAVs at multiple intersections. Employing

a consensus algorithm, each intersection derives the desired speed limit at the top level to

balance the traffic density over multiple intersections. In the middle level, the centralized

controllers generate each vehicle’s reference velocity, minimizing the deviation from the

desired speed limit subject to lateral safety at the intersections. Finally, in the last level, each

vehicle employs a fast MPC to track the reference velocity while avoiding rear-end collision.

Other research efforts have used scheduling theory to address the signal-free intersec-

tion problem [51–57]. Colombo and Del Vecchio [51] designed an intersection controller for

a human driver which only intervenes and overrides the driver’s control action when necessary,

i.e., acting as a supervisory controller. They demonstrated that determining whether a state

belongs to the maximal safe, controlled invariant set is equivalent to solving a scheduling

problem. Ahn et al. [52] extended these results to include uncontrolled human drivers. In a

sequel paper, Ahn and Del Vecchio [54] solved the supervisory problem for the first-order

dynamics without considering the rear-end collision avoidance constraint using a mixed-

integer linear program (MILP). Considering first-order dynamics and assuming an imposed

speed inside the merging zone. Fayazi and Vahidi [55] proposed a framework based on the

arrival time of CAVs at an intersection. Then, they converted the arrival time scheduling

problem to a central MILP. Yu et al. [56] formulated the coordination problem of CAVs at

multiple intersections as a centralized MILP, the solution of which yields the trajectory of

each CAV, along with the lane-changing maneuver decision, minimizing total travel time.
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Guney and Raptis [57] proposed a centralized scheduling framework for the coordination of

CAVs crossing an intersection. In their approach, the intersection controller finds schedules

based on the rule of first-come-first-serve (FCFS).

Decentralized Framework

To date, numerous papers have presented decentralized approaches for the coordination

of CAVs at intersections. One of the early efforts was proposed by Makarem and Gillet [58]

using a navigation function aimed at minimizing the energy consumption of each CAV. Wu

et al. [59] presented an algorithm based on a mutual exclusion in which CAVs compete for

the privilege of crossing the intersection through V2V communication. Focusing on V2V

communication, Azimi et al. [60] proposed various intersection protocols to improve traffic

throughput while avoiding collisions. In their approach, the control zone is considered a

grid divided into small cells. In their most advanced protocol, when there is a potential

conflict at a cell, a lower-priority CAV can either cross the conflicting cell or arrive at the

cell after the higher-priority CAV has exited the cell. Hult et al. [61] presented a bi-level

coordination scheme for CAVs crossing a signal-free intersection. The first level is a central

controller, which yields the required arrival times for CAVs at the intersection along with

CAVs’ crossing orders. In the second level, the authors considered a local MPC given the

arrival time computed from the first level. Other authors have also formulated a local MPC

problem for each CAV with defined crossing priorities [62–64].

In decentralized coordination of CAVs, a number of research efforts have been reported

in the literature using optimal control techniques to find closed-form solutions. Following

a bi-level framework for addressing the throughput maximization and energy minimization

problems, Malikopoulos et al. [65] presented a decentralized coordination framework for

CAVs at a signal-free intersection. Using FIFO queuing policy, in the throughput maximiza-

tion problem, each CAV computes its arrival time at the area of potential lateral collisions

called merging zone. In the energy minimization problem, each CAV obtains its optimal

acceleration/deceleration inside the control zone subject to speed and control constraints. The
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authors considered no turning maneuvers at the intersection and restricted the CAVs to travel

with constant speed inside the merging zone. The analytical solution without considering state

and control constraints, was presented in [66–68] for coordinating online CAVs at highway

on-ramps, in [69, 70] at two adjacent intersections, in [71] at roundabouts and in [72, 73] at a

corridor. The solution of the unconstrained problem was also validated experimentally at a

scaled testbed in [74] for a merging roadway scenario and in [75] at a corridor. Furthermore,

the effectiveness of the decentralized coordination framework at a corridor was validated in a

field test in [76]. In a follow-up paper to [65], Malikopoulos and Zhao [77] further enhanced

the framework by presenting an analytical solution for the speed-dependent rear-end safety

constraint. Relying on FIFO queuing policy, Zhang and Cassandras [78] presented a single-

level decentralized coordination framework by formulating the objective function of each

CAV to jointly minimize travel time and control effort with considering the minimum distance

rear-end safety constraint. The authors provided the analytical solution for speed-dependent

rear-end safety constraint in [79]. Following a similar single-level decentralized coordination

framework, Xiao and Cassandras [80] derived explicit solutions for the unconstrained case

with extensions to optimal trajectories with active constraints and coupled active constraints

for CAVs at highway on-ramps.

Additionally, there have been several studies exploring the effects of decision-making

sequence for the coordination of CAVs. Campos et al. [81] presented a heuristic approach to

find a decision order for CAVs at an intersection based on their time to reach an unsafe set, i.e.,

the CAV can no longer stop before the intersection. Alrifaee et al. [82] proposed a graph-based

approach to construct levels of parallelizable agents for non-cooperative decentralized MPC,

in which agents on the same level solve the problem in parallel, sequentially after agents on

the previous level. In [83], the authors presented a dynamic resequencing algorithm to relax

the FIFO queuing policy by checking all feasible crossing sequences, and choosing the best

one in terms of travel time. In a different approach, Xiao and Cassandras [84] relaxed the

FIFO queuing policy by formulating a resequencing problem before the control zone. The

authors assumed that after a CAV performs the resequencing, its speed remains constant until
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it arrives at the control zone.

Owing to the fact that solving a constrained solution leads to solving a system of

non-linear equations that might be hard to solve in real-time for some cases due to its iterative

nature, different approaches have been proposed in the literature. Excluding cases with

terminal speed and safety constraints, Mahbub and Malikopoulos [85, 86] have introduced a

condition-based solution framework for the optimal coordination of CAVs, which leads to a

closed-form analytical solution without this iterative procedure. The authors mathematically

characterized the activation cases of different state and control constraint combinations,

and provided a set of a priori conditions under which different constraint combinations can

become active. The conditions under which the rear-end collision avoidance constraint never

becomes active were discussed in [87]. For highway on-ramps, Xiao and Cassandras [88, 89]

provided conditions to check whether the speed-dependent safety constraint and/or speed

constraints remain inactive for each CAV. A different approach was proposed in [90, 91], and

implemented at a roundabout in [92] and a corridor [93] consisting of a single optimization

level aimed at both minimizing energy consumption and improving the traffic throughput. In

this approach, each CAV computes the optimal exit time of the control zone corresponding

to an unconstrained energy optimal trajectory that satisfies all the state, control, and safety

constraints.

There are several other efforts which have used consensus [94], fuzzy logic [95],

queuing theory [96], and game theory approach [97] to investigate coordination of CAVs at

signal-free intersections. A thorough discussion of research efforts in the area of control and

coordination of CAVs can be found in [34] and [98].

Reinforcement Learning Framework

The evolution of processing power and the generation of a massive amount of data

have paved the way for machine learning techniques, particularly reinforcement learning

(RL), to emerge as an alternative method for traffic control. RL approaches are used when

an agent learns from interaction with an environment without requiring the complete models
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of the environment. These approaches employ the Markov decision process framework to

define the interaction between a learning agent and its environment [99]. Kiumarsi et al. [100]

surveyed various RL-based techniques to solve optimal control problems in real-time using

data measurement along the system trajectories.

An off-policy temporal difference learning called Q-learning is one of the simplest

and most promising RL methods introduced by Watkins [101] in 1989. Since then, numerous

studies have been reported in the literature to employ Q-learning in various transportation

applications. El-Tantawy and Baher [102] presented a Q-learning-based traffic signal control

with different state representations and tested the effectiveness of their model on a real-world

multi-phase intersection. A group of papers employed a Q-learning-based approaches in

ramp-metering control [103–106], lane-changing maneuvers [107], overtaking [108], and

intersections management [109].

However, in large problems with many state-action pairs, to avoid Bellman’s “curse of

dimensionality,” deep reinforcement learning methods (DRL), such as Deep Q-network (DQN)

are used where the Q-function is replaced with a deep neural network. This method, which was

first introduced by Mnih et al. [110] to learn control policies for computer games using only

raw pixels, has been explored by researchers in various transportation applications. Seliman

et al. [111] proposed a control strategy based on a Deep-Q-Network (DQN) Reinforcement

learning (RL) for a single CAV to navigate through a congested lane-reduction zone. Isele

and Cosgun [112] established a DQN framework for navigating a single CAV through a

signal-free intersection and compared its performance with the baseline policy in a traffic

simulator. Tram et al. [113] added a recurrent layer to the DQN for navigating a single CAV

among human-driven vehicles with unknown intentions at an intersection. Instead of finding

a policy with continuous control input, the authors used short-term goals as an action of the

agent, in which the agent learns to keep a set speed, yield for a crossing car, or stop before the

intersection. Several other efforts have considered using DQN in powertrain optimization of

hybrid electric vehicles [114], eco-routing [115], and overtaking maneuver [116]. Few studies

in the literature have applied DRL techniques to the problem of highway on-ramps. Wang and
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Chan [117] presented a DRL formulation for the on-ramp merging of an autonomous vehicle

using DQN. The same problem of freeway merging was addressed by Nishi et al. [118] using

a combination of multi-policy decision making for choosing the possible spots to merge into

and passive actor-critic method to learn the state value for choosing the policy to merge into

the best spot. Nassef et al. [119] used a centralized trajectory recommendation framework for

coordinating CAVs in a lane merging scenario. Ren et al. [120] addressed the CAV merging

problem in the context of a lane drop caused by a highway work zone using a soft actor-critic

algorithm where only the vehicles in the merging lane were considered as RL agents, while

the vehicles on the main lane were controlled by a modified VISSIM driver model.

A survey of the state of the art on deep learning applications on control of CAVs and

transportation research is given in [121] and [122].

1.2.2 Control of CAVs Under Uncertainty

One restrictive assumption that has been made in most of the existing work is neglect-

ing any source of uncertainty in the system. This uncertainty can have a variety of sources,

such as deviation from the nominal strategies, disturbances from the environment, noisy obser-

vations, uncertainties in the system dynamics, and delayed communications. Any framework

for the coordination of CAVs that neglects this uncertainty is prone to suboptimality and can

even lead to unsafe conditions.

Some research efforts in the literature have examined incorporating uncertainty in

the control of CAVs in scenarios such as overtaking, collision avoidance, adaptive cruise

control (ACC), and cooperative adaptive cruise control (CACC). Zhou et al. [123] proposed

a centralized receding horizon stochastic optimal control strategy for ACC and CACC of

platoons of vehicles to incorporate noise in the system dynamics and measurements. However,

their computational time increases exponentially with respect to the prediction horizon and

platoon size. Vitus and Tomlin [124] presented a control framework for the cooperation of

CAVs in the presence of human-driven vehicles with uncertain behavior. They employed a

chance-constrained formulation to avoid a traditional conservative solution resulting from
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considering the worst-case scenario for human-driven vehicles. They used a sampling method

to represent the system state and a convex bounding method to handle the chance constraints.

Gao et al. [125] proposed a control algorithm for an automated vehicle to overtake a human-

driven vehicle based on its aggressiveness/ non-aggressiveness.

Several studies reported in the literature have used various MPC architectures to

include uncertainty in the design of controller for a single autonomous vehicle [126–135].

According to survey paper by Carvalho et al. [126] these designs are grouped into 1) tube-

based robust MPC, 2) linear time-varying stochastic MPC, and 3) scenario-based MPC. In a

tube-based robust MPC approach, the notion of robust positively invariant (RPI) sets is used,

in which, if it is computed, robust constraint satisfaction can be guaranteed. However, the

computation of the RPI set is generally difficult, and it can only be computed off-line for

linear systems. For the linear time-varying stochastic MPC approaches, finding analytical

solutions are restricted to linear systems with normally distributed additive disturbances. In

scenario-based MPC, the intuition is to make the constraints of the MPC problem robustly

safe in all of the scenarios. The benefits of sampling-based based MPC are flexibility in

handling different types of uncertainties and easy implementation. Liu et al. [127] presented

linear-time-varying stochastic MPC to correct the driver’s steering wherever there is a risk

of unintended roadway departures. They used a probabilistic safety constraint that accounts

for uncertainty in the driver’s behavior. Carvalho et al. [128] proposed stochastic MPC for

uncertain environment modeling. To formulate a chance-constrained MPC, they employed an

interacting multiple model Kalman filter to predict the positions of vehicles in the environment.

Using constraint tightening and uncertainty propagation techniques, they solved the equivalent

quadratic problem numerically. Katriniok et al. [129] presented a scenario-based MPC, which

prescribed speed advice to a human driver while considering an uncertain delay in their

response to the advised speed trajectory. Dunlap et al. [130] proposed a sampling-based MPC

for planning a safe path for an autonomous vehicle. Berntorp and Cairano [131] presented a

probabilistic framework for online planning and decision making for an autonomous vehicle

using particle filtering. In a sequel paper, Berntorp et al. [132] validated the proposed particle
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filtering strategy on a small-scale robotics platform for several different scenarios, such as

collision avoidance, overtaking, and traffic-jam scenarios.

Recently in the control community, using the Gaussian process (GP) has gained

attention. A GP is defined as a collection of random variables, any finite number of which

have a joint Gaussian distribution, and can be used to describe a distribution over an infinite-

dimensional space of functions [136]. Several research efforts in the literature have used GP

for learning system dynamics which can be used in stochastic MPC [137] and Robust MPC

[138, 139] setting. The authors in [140] employed GP to predict the future behavior of a

lead vehicle for an overtaking scenario in autonomous racing and then used this to formulate

a stochastic MPC. Hewing et al. [141] used GP to learn the dynamics of a racing car, and

experimentally validated their proposed approach using a real race car in [142]. Some work

has used GP to learn disturbance model [143, 144], which is then used for the path tracking

algorithm. Similarly, the authors in [145, 146] used GP to learn disturbances in the dynamical

system to design a safe learning-based controller. GP models have also been used in other

control applications, including ship trajectory prediction [147] and modeling and control of

buildings [148].

Numerous research efforts have sought the idea of employing control barrier functions

(CBF) to ensure the satisfaction of constraints in a safety-critical system. The CBF approach

handles constraints by rendering the safe sets forward invariant, which means that if the

system initially starts in the safe set, it will stay in the safe set [149–151]. Ames et al. [149]

presented a framework to unify safety constraints along with performance objectives of

safety-critical system with affine control using CBFs and the control Lyapunov functions

(CLFs), respectively. Under reasonable assumptions, the authors proved that CBF provides a

necessary and sufficient condition on the forward invariance of a safe set. They demonstrated

the performance of their approach on automotive applications such as adaptive cruise control

and lane keeping. For systems with higher-relative degree constraints, in which the control

input does not show up after taking the first derivative, exponential CBFs were proposed in

[152], while a complete analysis of handling higher relative degree constraints in general
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cases is given in [153]. A comprehensive discussion of the recent effort on CBFs and their use

to verify and enforce safety in the context of safety-critical controllers is provided in [154].

More recently, there have been a series of papers initially proposed by Xiao et al.

[155, 156] on using CBFs in the coordination of CAVs [155–161]. Xiao et al. [156], provided

a joint CBF and CLF approach to respond to inevitable perturbation and noise in a highway

on-ramps problem. The authors transformed the state and control constraints of the system

into the corresponding CBF constraints and solved a quadratic program (QP) at each time

step. Focusing on the highway merging problem in [155], the authors presented their two-step

approach. First, using linearized dynamic and quadratic costs, they derived the unconstrained

solution to the optimal control problem. Next, by formulating a QP at each time step, they

tracked the optimal control trajectory using CLF and ensured the satisfaction of the constraints

through CBF constraints. Additionally, the authors addressed the feasibility of the resulting QP

by introducing an additional constraint in [159, 162]. Liu et al. [163] applied the formulation

in [156] to a highway on-ramps problem with mixed-traffic, in which, human drivers were

regarded as random disturbances to CAVs. Considering an intersection scenario, Khaled et

al. [158] applied the formulation in [156] to a signal-free intersection, while Rodriguez and

Fathi [157] employed the two-step formulation in [155] to an intersection with traffic lights.

Focusing on the vehicle-level, Shivam et al. [160] proposed a tracking control problem based

on CBFs to track the optimal trajectories generated in [65] for a signal-free intersection.

1.2.3 Experimental Validation in Scaled Testbeds

Although several studies have reported on the impact of coordination of CAVs in traffic

scenarios, e.g., intersections, merging at roadways, and roundabouts, the effectiveness of these

approaches has been primarily shown in the simulation. Evaluating the performance of CAVs

in a simulation environment imposes limitations due to complexities arising from modeling

the exact vehicle dynamics and driving behavior and data loss and transmission latency

associated with connectivity and communication networks. As Grim et al. [164] stated, “the

problem with simulations is that they are doomed to succeed.” Therefore, before deploying
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the fleet of CAVs in different parts of a transportation network, a thorough evaluation of CAVs

is required—ranging from numerical simulation to real-world public roads.

Assessment of the performance of CAVs in scaled testbeds has recently gained mo-

mentum due to the flexibility they offer to conduct quick, repeatable experiments that could

go one step beyond simulation. Such testbeds can be used to conduct quick and repeatable

experiments in an effort to go one step beyond simulation. Gulliver [165] and MOPED [166]

have been the outcome of early efforts on developing scaled testbeds for robotic vehicles.

Gulliver’s focus is mainly on communication among vehicles, while MOPED is focused on

low-level control of a single scaled vehicle. MIT’s Duckietown [167] employs differential

drive robots and Go-CHART [168] uses four-wheel skid-steer vehicles. Both testbeds focus

primarily on local perception and autonomy. The Cambridge Minicars [169] is another

testbed for emulating cooperative driving in highway traffic conditions. A general-purpose

robotic testbed, called Robotarium, has been developed [170], which features differential

drive robots. The Cyber-Physical Mobility Lab [171] has implemented another scaled testbed

on decision-making policies and trajectory planning. For a review of such robotics testbeds,

see [172].

1.3 Research Gaps and Contributions

On the basis of the presented literature review, several research gaps need to be

addressed for establishing a real-time coordination framework for a fleet of CAVs. In what

follows, we present these research gaps and summarize our contributions by showing how

this dissertation advances the state of the art by addressing these gaps.

Multiple adjacent intersections

Although there have been many studies reporting on the coordination of CAVs at signal-

free intersections, coordination of CAVs at multiple adjacent intersections has been assessed

to a very limited extent. One of the main drawbacks of considering each intersection in

isolation is neglecting the effects of the downstream intersection on the upstream intersection.
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Namely, considering multiple intersections together with the same paradigm as of a single

intersection results in unnecessary slowdowns of the CAVs. Therefore, for multiple adjacent

intersections that are closely distanced, not only we should not consider each intersection in

isolation, but we also need a new paradigm for coordinating CAVs in these traffic scenarios.

In Chapter 2, we present two different bi-level decentralized coordination approaches

for CAVs at adjacent signal-free intersections consisting of the upper-level and low-level

planning. The proposed framework advances the state of the art in the following ways. First,

rather than investigating intersections in isolation [34, 65, 73, 173], our proposed framework

considers the effects of intersections’ interdependence methodically. Second, we ensure lateral

safety through a decentralized upper-level planning, as opposed to a strict FIFO queuing

policy [46, 65, 78, 79], or a centralized controller [36, 43, 47, 49, 50, 57, 61, 174]. Third, in

contrast to the research efforts reported in the literature to date, in the upper-level planning,

we allow lane-changing maneuvers. Fourth, our bi-level framework is enhanced to guarantee

safety in the presence of a bounded steady-state error in tracking the positions of CAVs.

Finally, our framework is not limited to straight paths [69] and does not exclude merging

or splitting paths [173]. The results of this part were previously presented in the following

publications:

• Behdad Chalaki and Andreas A Malikopoulos. Optimal control of connected and
automated vehicles at multiple adjacent intersections. IEEE Transactions on Control
Systems Technology, 30(3):972–984, 2022

• Behdad Chalaki and Andreas A Malikopoulos. Time-optimal coordination for connected
and automated vehicles at adjacent intersections. IEEE Transactions on Intelligent
Transportation Systems, 2021

• Behdad Chalaki and Andreas A Malikopoulos. An optimal coordination framework for
connected and automated vehicles in two interconnected intersections. In 2019 IEEE
Conference on Control Technology and Applications (CCTA), pages 888–893. IEEE,
2019
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Decentralized RL-based coordination framework

Although there have been several research efforts reporting on Q-learning-based frame-

work for different transportation applications, no paper has reported work on a decentralized

RL-based coordination framework for CAVs at an intersection and its comparison with the

optimal control method based on Pontryagin’s minimum principle.

In Chapter 2, we establish a decentralized RL-based coordination framework for CAVs

at a signal-free intersection to minimize travel time and improve fuel efficiency. We formulate

the problem by employing a well-known RL approach enhanced with a coordination mecha-

nism called a hysteretic Q-learning, in which two learning rates are considered. Additionally,

we integrate a first-in-first-out (FIFO) queuing policy in our hysteretic Q-learning framework

to improve the performance of our system. We show our proposed approach’s effectiveness

through simulation and comparison with the classical optimal control method based on Pon-

tryagin’s minimum principle. The proposed framework advances the state of the art in the

following ways. First, rather than considering a single agent in the RL framework [111–113],

we propose a decentralized multi-agent framework with 100% penetration rate of CAVs.

Second, in contrast to [109, 112, 113], we incorporate energy consumption minimization into

our framework in addition to traffic throughput improvement while ensuring both lateral and

rear-end safety through our combined hysteretic Q-learning with FIFO framework. Third, in

contrast to the research efforts reported in the literature to date, we compare the results of

our proposed framework with the classical control method based on Pontryagin’s minimum

principle. The results of this part is based on the following publication:

• Behdad Chalaki and Andreas A Malikopoulos. A hysteretic q-learning coordination
framework for emerging mobility systems in smart cities. In 2021 European Control
Conferences (ECC), pages 17–22, 2021

Coordination of CAVs under uncertainty

Most of the research efforts reported on the coordination of CAVs at signal-free

intersections, have neglected uncertainty or assumed a known bound on that uncertainty.
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Following either of these approaches may result in an unsafe or overly conservative behavior.

In Chapter 3, we build upon a single-level coordination framework for CAVs proposed in [91],

and provide three different techniques to make the coordination framework uncertainty-aware.

First, we integrate a replanning mechanism into our coordination framework, which

can be implemented in a time-driven or event-driven manner. This embedded replanning aims

at introducing indirect feedback into the coordination framework to respond to the unexpected

changes in the system to some extent. Additionally, we further enhance our framework by

introducing a priority-aware resequencing mechanism, which designates the order of decision

making. There have been limited studies in exploring the effects of decision-making sequence

among CAVs in decentralized coordination framework. Our approach advances the state of

the art in a way that relaxes the FCFS decision making sequence of the CAVs [57, 65].

Second, we reformulate the motion-planning framework for CAVs at a signal-free

intersection as a robust coordination problem by including the deviations from the nominal

trajectories as uncertainty. We adopt the data-driven approach, GP regression, to learn

the uncertainty from the possibly noisy observation of CAVs’ time trajectories. This work

advances the state of the art in the following way. Rather than not considering uncertainty

for the vehicle’s trajectory planning [49, 57, 61–65, 78, 91] or assuming a known bound

[175], we employ GP regression to model uncertainty and incorporate it in our coordination

framework.

Finally, we enhance our framework through employing CBFs to provide an additional

safety layer and ensure the satisfaction of all constraints in the system. By using the proposed

framework in the motion planning module, each CAV first uses simple longitudinal dynamics

to derive the optimal control trajectory without activating any constraint. A vehicle-level

tracking controller employs a combined feedforward-feedback control law to track the result-

ing optimal trajectory from the motion planning module. Then, a barrier-certificate module,

acting as a middle layer between the vehicle-level tracking controller and physical vehicle,

receives the control law from the vehicle-level tracking controller and using realistic vehi-

cle dynamics ensures that none of the state, control, and safety constraints becomes active.
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Although several studies on coordination of CAVs at different traffic scenarios using CBFs

have been reported in the literature, the approach reported in this dissertation advances the

state of the art in the following ways. First, in contrast to other efforts which attempt to

address satisfaction of all the constraints in the system through CBFs [88, 157, 158, 161],

in this paper, the motion planning module yields an optimal unconstrained trajectory which

guarantees that state, control, and safety constraints are satisfied, while barrier-certificate

module only intervenes if the deviations from the nominal optimal trajectory lead to violating

the constraints. Second, in several research efforts using CBFs, the lateral safety is handled

through imposing a FIFO queuing policy [88, 155, 157, 158]. However, in our approach, we

do not consider a FIFO queuing policy. Relaxing a FIFO queuing policy is not a trivial task

since it introduces a constraint with a higher relative degree, which requires special analysis.

The work in presented in this part appeared in the following publications:

• Behdad Chalaki and Andreas A. Malikopoulos. A priority-aware replanning and
resequencing framework for coordination of connected and automated vehicles. IEEE
Control Systems Letters, 6:1772–1777, 2022

• Behdad Chalaki and Andreas A Malikopoulos. Robust learning-based trajectory plan-
ning for emerging mobility systems. In 2022 American Control Conference (ACC),
pages 2154–2159, 2022

• Behdad Chalaki and Andreas A Malikopoulos. A Barrier-Certified Optimal Coordina-
tion Framework for Connected and Automated Vehicles. arXiv:2203.16418 (in review),
2022

Experimental validation

In Chapter 4, we introduce Information and Decision Science Lab’s Scaled Smart

City (IDS3C), a robotic scaled (1:25) testbed capable of safely validating control approaches

beyond simulation in applications related to emerging mobility systems such as coordination

of CAVs. Then, we demonstrate the effectiveness of coordination of CAVs at a multi-lane

roundabout and we show its scalability in a corridor consisting of a roundabout, an intersection,

and a merging roadway.
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There are several features that distinguish IDS3C from other testbeds. First, unlike

MIT’s Duckietown [167] and GO-Chart [168], the CAVs in IDS3C resemble full-scale vehicles

by using four wheels, built-in suspension, and an Ackermann steering mechanism. Second,

in contrast to the scaled testbeds reported in [167, 169–171], IDS3C is equipped with driver

emulation stations that interface directly with the robotic cars. These stations enable us to

explore and study human driving behavior and their interactions with CAVs. Being able

to study how CAVs can safely interact and co-exist with human-driven vehicles is of great

importance since different penetration rates of CAVs can significantly alter transportation

efficiency and safety. Third, rather than focusing on specific scenarios in a transportation

network [165, 169] or a single individual vehicle [166], IDS3C can accommodate almost

every possible traffic scenario, including crossing three- and four-way intersections, merging

at roadways and roundabouts, cruising in congested traffic, passing through speed reduction

zones, and lane-merging or passing maneuvers. These features make IDS3C a unique scaled

robotic testbed to study problems in emerging mobility systems such as coordination of CAVs,

shared-mobility, eco-routing, and first/last-mile delivery. Finally, only a few testbeds [167,

171] are equipped with a “digital twin.” The digital twin of IDS3C, called the Information

and Decision Science Lab’s Scaled Smart Digital City (IDS 3D City), is a Unity-based virtual

simulation environment that can operate alongside the physical IDS3C and interface with

the existing control framework. The IDS 3D City provides the framework to develop and

implement control algorithms for emerging mobility systems in simulation before moving to

the physical IDS3C for validation. More details about the IDS 3D City can be found in [181].

The results of this section were previously presented in the following publications:

• Behdad Chalaki, Logan E. Beaver, A M Ishtiaque Mahbub, Heeseung Bang, and
Andreas A. Malikopoulos. A research and educational robotic testbed for real-time
control of emerging mobility systems: From theory to scaled experiments. IEEE Control
Systems Magazine, 2022 (in press)

• Behdad Chalaki, Logan E Beaver, and Andreas A Malikopoulos. Experimental valida-
tion of a real-time optimal controller for coordination of cavs in a multi-lane roundabout.
In 31st IEEE Intelligent Vehicles Symposium (IV), pages 504–509, 2020
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This dissertation primarily includes the main contributions of my research; however,

there are several other publications listed as follows which were the outcomes of my research

and collaborations with other colleagues

• A M Ishtiaque Mahbub, Behdad Chalaki, and Andreas A Malikopoulos. A constrained
optimal control framework for vehicle platoons with delayed communication. Network
and Heterogeneous Media, Special Issue: Traffic and Autonomy, 2022 (accepted)

• Heeseung Bang, Behdad Chalaki, and Andreas A Malikopoulos. Combined Optimal
Routing and Coordination of Connected and Automated Vehicles. IEEE Control
Systems Letters, 6:2749–2754, 2022

• Raymond M. Zayas, Logan E. Beaver, Behdad Chalaki, Heeseung Bang, and Andreas A.
Malikopoulos. A digital smart city for emerging mobility systems. arXiv:2109.02811,
2021

• Meera Ratnagiri, Clare O’Dwyer, Logan E. Beaver, Behdad Chalaki, Heeseung Bang,
and Andreas A. Malikopoulos. A scalable last-mile delivery service: From simulation
to scaled experiment. arXiv:2109.05995, 2021

• Behdad Chalaki, Logan E Beaver, Ben Remer, Kathy Jang, Eugene Vinitsky, Alexandre
Bayen, and Andreas A Malikopoulos. Zero-shot autonomous vehicle policy transfer:
From simulation to real-world via adversarial learning. In IEEE 16th International
Conference on Control & Automation (ICCA), pages 35–40, 2020

• Kathy Jang, Eugene Vinitsky, Behdad Chalaki, Ben Remer, Logan Beaver, Andreas A
Malikopoulos, and Alexandre Bayen. Simulation to scaled city: zero-shot policy transfer
for traffic control via autonomous vehicles. In Proceedings of the 10th ACM/IEEE
International Conference on Cyber-Physical Systems, pages 291–300, 2019

• Logan E Beaver, Behdad Chalaki, A M Mahbub, Liuhui Zhao, Ray Zayas, and An-
dreas A Malikopoulos. Demonstration of a Time-Efficient Mobility System Using a
Scaled Smart City. Vehicle System Dynamics, 58(5):787–804, 2020

1.4 Dissertation Outline

In this chapter, we completed the literature review and identified some major research

gaps along with the contributions of this dissertation. In the next chapter, we first present our

bi-level coordination framework for CAVs at multiple adjacent intersections, and then proceed

with our decentralized coordination framework for CAVs based on hysteretic Q-learning.

In Chapter 3, we build upon a single-level coordination framework for CAVs proposed
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in [91], and provide three different techniques both predictive and reactive, to enhance the

coordination framework in the presence of uncertainty. In Chapter 4, we introduce Information

and Decision Science Lab’s Scaled Smart City (IDS3C), a robotic scaled (1:25) testbed, and

validate the effectiveness of our coordination framework for CAVs at a multi-lane roundabout

and a corridor. Finally, in Chapter 4, we summarize the main contributions of this dissertation

and provide some potential future directions.

20



Chapter 2

A DECENTRALIZED COORDINATION FRAMEWORK FOR CONNECTED AND
AUTOMATED VEHICLES

Mighty is the one who has knowledge
By knowledge the old hearts grow young again

Ferdowsi, The Book of Kings, 940–1020 CE

Among different traffic scenarios, intersections are the most challenging from a safety

perspective, as an average of one-quarter of traffic fatalities and roughly half of all traffic

injuries are attributed to intersections [186]. In this chapter, we establish a deterministic

decentralized coordination framework for connected and automated vehicles (CAVs) at signal-

free intersections.

We first provide a general modeling framework for a signal-free intersection in Section

2.1. In the sections 2.2 and 2.3, we study the problem of coordination of CAVs at multiple

adjacent intersections. A closer look at the literature on coordination of CAVs at signal-free

intersections reveals that only a limited number of papers address coordination of CAVs at

adjacent intersections. Mahbub et al. [73] presented coordination of CAVs at a traffic corridor

consisting of multiple traffic scenarios by considering each scenario in isolation. One of

the main drawbacks of considering each intersection in isolation is neglecting the effects of

the downstream intersection on the upstream intersection. Extending the single intersection

results to the multiple intersections might be inefficient and sub-optimal. In this chapter, we

show that applying first-in-first-out (FIFO) queuing policy [65, 78] to find the sequence of

CAVs to enter the merging zone in a single intersection will result in unnecessary slowdowns

of the CAVs at multiple intersections. In Section 2.2, we present a bi-level decentralized

coordination framework for CAVs at multiple adjacent, multi-lane signal-free intersections
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without considering left/right turns. In the upper-level planning, each CAV recursively

computes the energy-optimal arrival time at each intersection on its path along with the

optimal lane, while ensuring both lateral and rear-end safety. In the low-level planning,

we formulate an optimal control problem for each CAV with interior-point constraints, the

solution of which yields the energy optimal control input, given the time from the upper-level

problem. In Section 2.3, we present a different bi-level decentralized coordination framework

for CAVs at two adjacent intersections including every possible path. Focusing on minimizing

travel time, in the upper level, we formulate a decentralized scheduling problem for each

CAV, which can be solved by using mixed-integer linear program (MILP). The solution of the

upper-level problem yields the minimum travel time while satisfying safety constraints. The

solution of the upper-level problem becomes the inputs of the low-level problem. In the low

level, we formulate an optimal control problem for each CAV, the solution of which yields the

energy optimal control input. In Section 2.4, we study the problem of coordination of CAVs

at a signal-free intersection by employing a well-known reinforcement learning approach

enhanced with a coordination mechanism called a hysteretic Q-learning. Additionally, we

integrate a FIFO queuing policy in our hysteretic Q-learning framework to improve the

performance of our approach. Finally, in Section 2.5, we provide a summary of the chapter.

The primary contributions presented in this chapter are

• Section 2.2: (1) the development of a bi-level optimization framework to coordinate
CAVs at multiple adjacent, multi-lane intersections aimed at decreasing stop-and-go
driving and fuel consumption; (2) the enhancement of the upper-level planning layer to
include the lane-changing maneuver to improve the traffic throughput; (3) a complete
analysis of the low-level optimization problem including interior-point constraints; and
(4) the enhancement of the bi-level framework to account for a bounded steady-state
error in tracking the positions of CAVs. The results of this section were previously
presented in the following publication:

– [175] Behdad Chalaki and Andreas A Malikopoulos. Optimal control of connected
and automated vehicles at multiple adjacent intersections. IEEE Transactions on
Control Systems Technology, 30(3):972–984, 2022

• Section 2.3: (1) the establishment of a bi-level optimization framework to coordinate
CAVs at two adjacent intersections considering all traffic movements aimed at decreas-
ing both delay and travel time of each CAV; (2) a decentralized scheduling scheme for
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the upper-level problem considering state and control constraints that relaxes the strict
FIFO queuing policy; (3) a complete, closed-form solution of the low-level optimization
problem including the speed-dependent rear-end safety constraint and state and control
constraints; and (4) a demonstration of the effectiveness of our approach through ex-
tensive numerical simulations including all possible paths for CAVs in two adjacent
intersections and comparison with signalized intersections, centralized scheduling, and
FIFO queuing policy. The work in presented in this chapter appeared in the following
publications:

– [176] Behdad Chalaki and Andreas A Malikopoulos. Time-optimal coordination
for connected and automated vehicles at adjacent intersections. IEEE Transactions
on Intelligent Transportation Systems, 2021

– [70] Behdad Chalaki and Andreas A Malikopoulos. An optimal coordination
framework for connected and automated vehicles in two interconnected intersec-
tions. In 2019 IEEE Conference on Control Technology and Applications (CCTA),
pages 888–893. IEEE, 2019

• Section 2.4: (1) the development of a hysteretic Q-learning optimal framework to
coordinate CAVs at a signal-free intersection aimed at decreasing both travel time and
fuel consumption of each CAV; (2) integrating FIFO queuing policy into our hysteretic
Q-learning optimal framework; and (3) comparison of the proposed framework with the
benchmark solution from the optimal control technique based on Pontryagin’s minimum
principle. The results of this sections is based on the material presented in the following
publication:

– [177] Behdad Chalaki and Andreas A Malikopoulos. A hysteretic q-learning
coordination framework for emerging mobility systems in smart cities. In 2021
European Control Conferences (ECC), pages 17–22, 2021

2.1 Modeling Framework

We consider a symmetrical signal-free multi-lane intersection (Fig. 2.1) as a basis

traffic scenario to describe our modeling framework. There is a coordinator that stores

information about all intersections’ geometric parameters and the planned trajectories of

CAVs. The coordinator does not make any decision and it only acts as a database among

the CAVs. The coordinator can be a physical infrastructure such as a drone, road site unit,

or cloud storage. We define a contol zone in which the coordinator can communicate with

the CAVs traveling inside the control zone. We call the area inside the control zone where a

lateral collision may occur merging zone.
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Figure 2.1: A signal-free intersection with a coordinator communicating with CAVs inside
the control zone.

Let N(t) ∈ N be the total number of CAVs that have entered the control zone by

the time t ∈ R≥0, and N (t) = {1, . . . , N(t)} be the queue that designates the order that

each CAV entered the control zone. Upon entering the control zone, the coordinator assigns

each CAV an integer index equal to N(t) + 1. If two or more CAVs enter the control

zone simultaneously, the CAV with the shorter path is assigned lower position in the queue;

however, if the length of their paths is the same, then their positions are randomly chosen by

the coordinator. The coordinator removes any CAV from N (t) when they exit the control

zone. When there is no CAV inside the control zone, then N (t) = ∅.

We model the longitudinal dynamics of each CAV i ∈ N (t) as a double integrator,

i.e.,

ṗi(t) = vi(t),

v̇i(t) = ui(t),
(2.1)
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where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote position, speed, and acceleration at

t ∈ R≥0, respectively. Let xi(t) = [pi(t), vi(t)]
⊤ and ui(t) be the state and control input of

the CAV i at time t, respectively, t0i ∈ R≥0 be the time that CAV i ∈ N (t) enters the control

zone, and tfi > t0i ∈ R≥0 be the time that CAV i exits the control zone.

For each CAV i ∈ N (t) the control input and speed are bounded by

ui,min ≤ ui(t) ≤ ui,max, (2.2)

vmin ≤ vi(t) ≤ vmax, (2.3)

where ui,min, ui,max are the minimum and maximum control inputs and vmin, vmax are the

minimum and maximum speed limit, respectively. Without loss of generality, we do not

consider diversity among CAVs’ maximum and minimum control input. Thus, to this end,

we set ui,min = umin and ui,max = umax. The sets Pi, Vi, and Ui, i ∈ N (t), are complete and

totally bounded subsets of R.

Assumption 2.1.1. None of the state, control, and safety constraints (defined in following

sections) is active for each CAV i ∈ N (t) at the entry of the control zone.

Assumption 2.1.2. There are no errors or delays in the vehicle-to-vehicle and vehicle-to-

infrastructure communication.

The assumption 2.1.1 is imposed to ensure that the initial state and control input are

feasible. This is a reasonable assumption since CAVs are automated, and so there is no

compelling reason for them to activate any of the constraints by the time they enter the control

zone. Although the assumption 2.1.2 is a strong assumption, it is relatively straightforward to

relax this assumption as long as the noise or delays are bounded.
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2.2 Optimal Control of Connected and Automated Vehicles at Multiple Adjacent

Intersections

In this section, we establish a decentralized optimal control framework for CAVs

crossing multiple adjacent, multi-lane signal-free intersections to minimize energy consump-

tion and improve traffic throughput. Our framework consists of two layers of planning. In

the upper-level planning, each CAV computes its optimal arrival time at each intersection

recursively along with the optimal lane to improve the traffic throughput. In the low-level

planning, we formulate an energy-optimal control problem with interior-point constraints, the

solution of which yields the optimal control input (acceleration/deceleration) of each CAV

to cross the intersections at the time specified by the upper-level planning. Moreover, we

extend the results of the proposed bi-level framework to include a bounded steady-state error

in tracking the optimal position of the CAVs. Finally, we demonstrate the effectiveness of the

proposed framework through simulation for symmetric and asymmetric intersections , where

the geometry of intersections might be different, and comparison with traditional signalized

intersections.

This section is organized as follows. In subsection 2.2.1, we formulate the problem,

while in subsections 2.2.2 and 2.2.3, we provide the upper-level planning and low-level

planning with their corresponding solutions, respectively. In subsection 2.2.4, we enhance the

framework to include the deviation from the nominal planned position. Finally, we provide

simulation results in subsection 2.2.5.

2.2.1 Problem Formulation

We consider multiple adjacent intersections closely distanced from each other (see

Fig. 2.2 for two adjacent intersections).

Definition 2.2.1. The set of merging zones indexed uniquely in the control zone, is given by

Z := {1, . . . , nz}, nz ∈ N, where nz is the total number of merging zones in the control zone.
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Figure 2.2: Bird-eye view of two interconnected intersections.

Definition 2.2.2. The set of all same-directional lanes across all roads that are connected

to the intersection, is given by L := {1, . . . , nℓ}, nℓ ∈ N, where 1 and nℓ are indices for the

rightmost lane and leftmost lane, respectively (Fig. 2.2).

Without loss of generality, in our analysis, we consider multiple intersections with

two lanes on each road that is connected to an intersection, i.e., L := {1, 2}. We consider

the distance between the two adjacent intersections to be D, and a merging zone of length

S = 4w, where w ∈ R≥0 is the lane width. In this section, we limit our analysis to the cases

where no left/right turns are allowed, and lane-change maneuver is only possible inside the

lane-changing zone which we describe next.

Definition 2.2.3. The lane-changing zone Λ is the interval with length Lc located at the entry

of the control zone, where CAVs can change lanes (Fig. 2.2), i.e.,

Λ := [pi(t
0
i ), pi(t

0
i ) + Lc] ⊂ Pi, i ∈ N (t). (2.4)

Definition 2.2.4. The lane-changing occupancy interval Γi is the time interval that CAV

i ∈ N (t) occupies the lane-changing zone, i.e.,

Γi :=
{
t | t > t0i , pi(t) ≤ Lc, t ∈ R≥0

}
. (2.5)
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Definition 2.2.5. For each CAV i ∈ N (t), ℓ0i , ℓ
f
i ∈ L denote the lane that CAV i occupies

before and after the lane-changing zone, respectively.

Definition 2.2.6. Let Zi := {z1, . . . , zn} ⊆ Z be the set of merging zones that CAV i ∈ N (t)

crosses, while z1 and zn ∈ Zi, n ∈ N, denote the first and n’th merging zone that CAV i

crosses along its path.

Definition 2.2.7. For each CAV i ∈ N (t), we denote tz
∗
i ∈ R≥0 and ℓf

∗

i ∈ L to be the optimal

arrival time at the entry of zone z ∈ Zi and the optimal lane occupied after the lane-changing

zone, respectively.

For CAV i ∈ N (t0i ), CAV j ∈ N (t0i ) \ {i}, j < i, belongs to one of the following
time-invariant subsets, determined upon CAV i’s entrance at the control zone:

1. Aℓi , ℓ ∈ L, is the set of all CAVs that travel on lane ℓ after a lane-changing zone with
the same direction and destination as CAV i.

2. Bzi , z ∈ Zi, is the set of all CAVs which may cause collision with CAV i at the merging
zone z at time t ≥ t0i .

3. Ci, is the set of all CAVs with a different origin-destination pair from CAV i, without
any potential conflict for t ≥ t0i .

For example, consider CAV #9 in Fig. 2.2. We have: A1
9 = {6}, A2

9 = {2}, B1
9 = {3, 4},

B2
9 = {7, 8}, C9 = {5}.

To ensure the absence of rear-end collision between CAV i ∈ N (t) and a preceding

CAV k ∈ N (t) \ {i}, we impose the following rear-end safety constraint

pk(t)− pi(t) ≥ δ, (2.6)

where δ ∈ R≥0 is a constant safe distance. Note that, since we study urban intersections,

the average speed variation is not significant, thus considering a constant safe distance is

reasonable. However, for scenarios in which the average speed variation is not negligible, one

may consider speed-dependent safe distance discussed in [77, 79, 91, 176].

28



Definition 2.2.8. The lane changing maneuver for CAV i ∈ N (t) is defined to be feasible, if

upon arriving at the lane-changing zone, no other CAV occupies the lane-changing zone, i.e.,

{t0i } ∩ Γj = ∅ for all j ∈ Aℓi , ℓ ∈ L.

Definition 2.2.9. For each CAV i ∈ N (t), T zi is the set of optimal arrival times of CAVs at

zone z ∈ Zi that belong to Bzi , i.e.,

T zi := {tz∗j | j ∈ Bzi }. (2.7)

2.2.2 Upper-level Planning

The objective of each CAV at the entry of the control zone is to derive the optimal

control input (acceleration/deceleration) aimed at minimizing fuel consumption and improving

traffic throughput by eliminating stop-and-go-driving. To achieve this aim, we establish a

decentralized control framework consisting of two layers of planning. In the upper-level

planning, each CAV i ∈ N (t) recursively computes the arrival time at each merging zone

along its path with the optimal lane to occupy after lane-changing zone in order to improve

traffic throughput and energy consumption. The outputs of the upper-level planning become

the inputs for the low-level planning, which we describe in Section 2.2.3.

Definition 2.2.10. For each CAV i ∈ N (t), vzavg is its average speed inside the merging zone

z ∈ Zi, i.e.,

vzavg =

∫ tzi+∆tzi
tzi

vi(t)dt

∆tzi
, (2.8)

where tzi , ∆t
z
i ∈ R+ are the arrival time at zone z and the time that it takes for CAV i to exit

the merging zone z, respectively.

To increase safety and improve the throughput of CAV i ∈ N (t) while traveling inside

the merging zone z ∈ Zi, we impose a constant average speed inside the merging zone equal

to the speed that CAV i entered the control zone ( vzavg := vi(t
0
i )). This results in traveling

at the merging zone with constant time ∆tzi =
∆xzi
vzavg

, where ∆xzi is the distance traveled at

merging zone z for CAV i. As mentioned earlier, since no turn is allowed inside the merging
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zone, ∆xzi is the same for all CAVs, and it is equal to S = 4w (see Fig. 2.2). It should be

noted that, imposing desired average speed inside the merging zone is different from setting

a constant speed as in [65], and thus it is less restrictive since CAV’s speed can vary inside

the merging zone as long as it satisfies the desired average speed. Moreover, to minimize the

energy consumption of CAV i ∈ N (t) inside the control zone, we minimize transient engine

operation, L2-norm of the control input in [t0i , t
f
i ], which was shown to have direct benefit in

fuel consumption and emission [187–189].

Lemma 2.2.11. The arrival time of CAV i ∈ N at the merging zone of n’th intersection

zn ∈ Zi along its path, without considering rear-end or lateral safety constraints, minimizing

the energy-consumption is denoted by t̄zni and is computed recursively as follows

t̄zni =


t0i +

L

vi(t0i )
, for z1,

t
z∗n−1

i +∆t
zn−1

i +
D

vi(t0i )
, otherwise.

(2.9)

Proof. There are two cases to consider: Case 1: z1 and Case 2: zn.

Case 1: Suppose CAV i ∈ N (t) enters the control zone at t = t0i , and let the arrival

time at merging zone of the first intersection z1 ∈ Zi along its path be tz1i . Let t̄z1i be the arrival

time at z1 ∈ Zi minimizing the following cost function Ji(ui(t), tz1i ) =
1

2

∫
t
z1
i

t0i

ui(t)
2dt,

without considering rear-end safety or lateral safety constraints. For the unconstrained case,

the Hamiltonian is

Hi(t, pi(t), vi(t), ui(t)) =
1

2
ui(t)

2 + λpi vi(t) + λvi ui(t), (2.10)

where λpi and λvi are costates. Applying the Euler-Lagrange optimality conditions, the optimal

control input minimizing the cost function Ji(ui(t), tz1i ) is u∗i (t) = −λvi ∗ = ait + bi [65],

where ai and bi are constants of integration. We also have λpi
∗ = ai. Since the speed at

t = t̄z1i is not specified, we have λvi (t̄
z1
i ) = 0. In addition, since tz1i is not defined, we have

the following transversality condition Hi(t̄
z1
i , p

∗
i (t), v

∗
i (t), u

∗
i (t)) = 0. From the transversality
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condition, we have Hi(t̄
z1
i , p

∗
i (t), v

∗
i (t), u

∗
i (t)) = λpi

∗v∗i (t̄
z1
i ) = 0, and because v∗i (t̄

z1
i ) ̸= 0,

we get

λpi
∗ = 0⇒ u∗i (t) = 0, ∀ t ∈ [t0i , t̄

z1
i ]. (2.11)

Hence, CAV i cruises with vi(t0i ), and t̄z1i = t0i +
L

vi(t0i )
.

Case 2: For the n’th merging zone, zn ∈ Zi, let us consider the optimal arrival time at

the upstream merging zone, zn−1 ∈ Zi, to be t
z∗n−1

i . Let t̄zni be the energy-efficient arrival time

at zn ∈ Zi without considering rear-end safety or lateral safety constraint. As it was shown in

Case 1, by neglecting the safety constraint, CAV i ∈ N (t) cruises with vi(t0i ) to minimize the

energy consumption. Thus, t̄zni = t
z∗n−1

i +∆t
zn−1

i +
D

vi(t0i )
.

Remark 2.2.12. To consider the impact of the upstream merging zone zn−1 on the merging

zone zn for CAV i ∈ N (t), we need a recursive formulation to relate the arrival time at zn to

the optimal arrival time at zn−1.

In order for CAV i ∈ N (t) to avoid the lateral collision with CAV j ∈ Bzi , it can either

arrive at merging zone z ∈ Zi after CAV j exits the merging zone z, or exit the merging zone

z before CAV j enters the merging zone z. This is formulated as either

tz
∗

i ≥ tz
∗

j +∆tzj , (2.12)

or

tz
∗

i +∆tzi ≤ tz
∗

j . (2.13)

Let CAV k ∈ Ali, l = lf
∗

i , be the vehicle immediately ahead of CAV i ∈ N (t) at lane

lf
∗

i ∈ L. In order for CAV i to avoid the rear-end collision at the merging zone z ∈ Zi,

tz
∗

i ≥ tz
∗

k + ρzk, (2.14)

where ρzk ∈ R+ is the time that it takes for CAV k to travel a safe distance δ inside the merging

zone z.
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As we mentioned earlier, in the upper-level planning, we relax the FIFO queuing

policy to improve the traffic throughput in multiple intersections. Upon arrival at the control

zone, each CAV i ∈ N (t) recursively computes the energy-optimal arrival time for each

merging zone along its path ensuring the lateral safety in conjunction with the lane that it

should occupy using the Algorithms 1 and 2. Given ℓfi , the lane that CAV i needs to follow

after lane changing zone, CAV i employs Algorithm 1 to find the energy-optimal arrival time

for all merging zones z ∈ Zi.

Algorithm 1 Recursive upper-level planning
Input: ℓfi
Output: Arrival time at merging zones Zi = {z1, . . . , zn}
1: for z ∈ Zi do
2: k = max{j | j ∈ Aℓ

i , ℓ = ℓfi }
3: tz

∗

i ← max
{
t̄zi , t

z∗

k + ρzk
}

4: Sort T z
i increasingly

5: for tz
∗

j ∈ T z
i do

6: if tz
∗

j +∆tzj ≤ tz
∗

i then
7: continue ▷ CAV j exits before CAV i enters
8: end if
9: if tz

∗

i +∆tzi ≤ tz
∗

j then
10: break ▷ CAV i exits before CAV j enters
11: else ▷ CAV i has conflict with CAV j
12: tz

∗

i ← tz
∗

j +∆tzj
13: end if
14: end for
15: end for
16: return {tz∗

i | z ∈ Zi}

Theorem 2.2.13. For a given lane ℓfi ∈ L, CAV i ∈ N (t) recursively computes the energy-

optimal arrival time at merging zone z ∈ Zi, which minimizes the energy consumption of CAV

i ∈ N (t) inside the control zone, subject to the constraints (2.12)-(2.14) using Algorithm 1.

Proof. For a given lane ℓfi after lane-changing zone, there are four cases to consider.

Case 1: If N (t0i ) = Ci, then we have: Bzi = ∅ for all z ∈ Zi and Aℓi = ∅ for all ℓ ∈ L.

Thus, there is no leading vehicle (in line 2, k = ∅), and T zi = ∅. Thus, we have tz∗i = t̄zi for

all z ∈ Zi, and from Lemma 2.2.11, t̄zi is the energy-optimal arrival time.

Case 2: If N (t0i ) = Aℓi , ℓ = ℓfi ∈ L, there exists a CAV k ∈ Aℓi , ℓ = ℓfi , which is
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immediately ahead of CAV i at lane ℓfi (in line 2, k ̸= ∅). Similarly, we have: Bzi = ∅ for all

z ∈ Zi and C = ∅. To ensure rear-end safety, we have

max
{
t̄zi , t

z∗

k + ρzk
}
≤ tz

∗

i , ∀z ∈ Zi. (2.15)

Selecting the lower bound in the above equation, CAV i computes the energy-optimal arrival

time at the merging zone z ∈ Zi satisfying the rear-end safety constraint (2.14) (line 3).

Case 3: If N (t0i ) =
⋃
z∈Zi

Bzi , then we have: C = ∅ and Aℓi = ∅ for all ℓ ∈ L. Since for CAV

i, t̄zi is the energy-optimal arrival time at merging zone z ∈ Zi without considering safety

(Lemma 2.2.11), we use t̄zi as a lower bound (line 6-8). CAV i determines tz∗i ∈ [t̄zi ,∞] to be

the smallest time satisfying lateral safety constraints in (2.12) or (2.13) (line 5 -14).

Case 4: Similarly, for other cases that Aℓi ̸= ∅, ℓ ∈ L, Bzi ̸= ∅ z ∈ Zi, and Ci ̸= ∅, the

energy-optimal arrival time at the merging zone z ∈ Zi, tz
∗
i ∈ [t̄zi ,∞] is the smallest time

satisfying the lateral safety constraints in (2.12) or (2.13) (line 5 -14), and rear-end safety

constraint (2.14) (line 3).

Algorithm 2 Lane-changing decision
1: occupancy←

⋃
j∈Aℓ

i ,ℓ∈L
[t0i ,∞) ∩ Γj

2: ℓf
∗

i ← ℓ0i
3: t

z∗
n

i ← Find arrival time at zn, given ℓf
∗

i

4: if occupancy = ∅ then
5: for ℓ ∈ L \ ℓ0i do
6: ℓfi ← ℓ

7: tzni ← Find arrival time at zn, given ℓfi
8: if tzni < t

z∗
n

i then
9: ℓf

∗

i ← ℓ

10: t
z∗
n

i ← tzni
11: end if
12: end for
13: end if
14: return ℓf

∗

i

Using Algorithm 2, CAV i ∈ N (t) investigates the feasibility of the lane-changing

maneuver (line 1). If such a maneuver is not feasible, CAV i exits from the lane-changing
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zone with the same lane that it entered the control zone, ℓf
∗

i = ℓ0i ∈ L, and no lane-change

maneuver is performed. Otherwise, CAV i selects the optimal lane ℓf
∗

i ∈ L yielding the

minimum travel time, i.e., the arrival time at the last merging zone.

2.2.3 Low-level Planning

In our decentralized framework, the outputs of the upper-level planning for CAV

i ∈ N (t), which are the optimal arrival time, tz∗i , at merging zone z ∈ Zi along with the

optimal lane to occupy, ℓf
∗

i , become inputs for the low-level planning. In particular, in the

low-level planning, CAV i ∈ N (t) formulates the optimal control problem with interior-point

constraints defined at the entry and exit of each merging zone, the solution of which minimizes

the engine control effort, and energy consumption correspondingly. In addition, if the optimal

lane after the lane-changing zone, ℓf
∗

i ̸= ℓ0i , CAV i needs to perform the lane-changing

maneuver. If so, CAV i ∈ N (t) first travels a distance δ ∈ R≥0 on the lane that it entered,

ℓ0i ∈ L, and then travels on a triangle with the hypotenuse ds ∈ R≥0 and sides Lc − δ and

w ∈ R≥0, respectively, to reach lane ℓf
∗

i (see Fig. 2.3). Since w ≪ Lc − δ, we approximate

ds ≈ Lc − δ.

Figure 2.3: Lane-changing maneuver.

For CAV i ∈ N (t) the control-effort minimization with interior-point constraints at

the boundary of each merging zone z ∈ Zi is formulated as follows
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Problem 2.2.14. Control-effort minimization

min
ui∈Ui

Ji(ui(t)) =
1

2

∫
tfi

t0i
ui(t)

2dt,

subject to: (2.1), (2.2), (2.3), (2.6),

given pi(t
0
i ), vi(t

0
i ),

pi(t
z∗
i ), pi(t

z∗
i +∆tzi ), ∀z ∈ Zi.

(2.16)

Recall that tfi is the time that CAV i exits the control zone, i.e., the merging zone of

the last intersection along its path, tfi = t
z∗n
i +∆tzni .

Solution of the Control-Effort Minimization

To derive the solution of the control-effort minimization (Problem 2.2.14), we apply

Hamiltonian analysis. After solving the upper-level problem for CAV i ∈ N (t), the entry

and exit time of merging zones z ∈ Zi are the interior-point constraints for the low-level

problem. First, we adjoin the control inequality constraints (2.2) along with the qth-order

state variable inequality constraints to the Hamiltonian function. The qth-order state variable

inequality constraint can be found by taking the successive total time derivative of constraint

and substitute (2.1), until we obtain an expression that is explicitly dependent on the control

variable [190]. For each CAV i ∈ N (t), with CAV k ∈ Aℓi , ℓ = ℓf
∗

i , physically located ahead

of it, the Hamiltonian given by

Hi(t, pi(t), vi(t), ui(t)) =
1

2
ui(t)

2 + λpi vi(t) + λvi ui(t)

+µai (ui(t)− ui,max) + µbi(ui,min − ui(t))

+µci(ui(t)) + µdi (−ui(t))

+µsi (ui(t)− u∗k(t)),

(2.17)

where λpi and λvi are costates, and µ⊤i = [µai , µ
b
i , µ

c
i , µ

d
i , µ

s
i ] is a vector of Lagrange multipliers.

It should be noted that u∗k(t) is the optimal control input for CAV k ∈ Aℓi , ℓ = ℓf
∗

i , which
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is available information to CAV i through the coordinator. The Euler-Lagrange equations

become:

λ̇pi = −
∂Hi

∂pi
= 0, (2.18)

λ̇vi = −
∂Hi

∂vi
= −λpi , (2.19)

∂Hi

∂ui
= ui + λvi + µai − µbi + µci − µdi + µsi = 0. (2.20)

Since the speed of CAV i is not specified at the fixed terminal time tfi , we have [190]

λvi (t
f
i ) = 0. (2.21)

Since the arrival time of CAV i ∈ N (t) at the entry and exit of each merging zone

z ∈ Zi, is specified, for each interior-point constraint at specified time t1, we have the

following condition

N(xi(t), t) =

 pi(t)− C

t− t1

 = 0, (2.22)

where C is the position at the specified time t1 (i.e., entry/exit of merging zone). In addition,

the costates and the Hamiltonian should satisfy the following jump conditions at t−1 and t+1 ,

[190]

λ⊤i (t
−
1 ) = λ⊤i (t

+
1 ) + π⊤

∂N

∂xi
|t=t1 , (2.23)

Hi(t
−
1 ) = Hi(t

+
1 )− π⊤

∂N

∂t
|t=t1 . (2.24)

36



where λ⊤i = [λpi , λ
v
i ], π

⊤ = [π1, π2],
∂N

∂xi
=

 1 0

0 0

 and
∂N

∂t
= [0, 1]⊤. Hence,

λpi (t
−
1 ) = λpi (t

+
1 ) + π1, (2.25)

λvi (t
−
1 ) = λvi (t

+
1 ), (2.26)

Hi(t
−
1 ) = Hi(t

+
1 )− π2. (2.27)

Note that π⊤ is a 2-component vector of constant Lagrange multipliers, determined so that

the interior-point constraint (2.22) is satisfied.

Unconstrained Solution Without Interior-point Constraints

If the state and control constraints never become active, µai = µbi = µci = µdi = µsi = 0

the solution, see [65], is

u∗i (t) = ait+ bi, (2.28)

by substituting (2.28) in (2.1), we have

v∗i (t) =
1

2
ait

2 + bit+ ci, (2.29)

p∗i (t) =
1

6
ait

3 +
1

2
bit

2 + cit+ di. (2.30)

In the above equations ai, bi, ci, di are constants of integration, which are found by substituting

the initial and final conditions p∗i (t
0
i ), v

∗
i (t

0
i ), p

∗
i (t

f
i ) and u∗i (t

f
i ) = 0.

Unconstrained Solution With Interior-point Constraints

To find the analytical solution for CAV i ∈ N (t) including the interior-point con-

straints at the entry and exit of merging zone z ∈ Zi (recall that z1 and zn are the first and last

merging zones that CAV i crosses, respectively, Definition 2.2.6), we need to satisfy 2n− 1

interior-point constraints (tfi is excluded, since it is a boundary condition).
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Lemma 2.2.15. The optimal control input u∗i (t) when none of the constraints is active at the

interior-point constraint Nj, j ∈ {1, . . . , 2n− 1}, where n is the total number of merging

zones in CAV i’s path, is continuous.

Proof. Let tj be the time that we have an interior-point constraint Nj, j ∈ {1, . . . , 2n− 1}.

From (2.26), we know λvi is continuous tj , i.e.,

λvi (t
−
j ) = λvi (t

+
j ), (2.31)

Since none of the state or control inequality constraints is active, we have µai = µbi = µci =

µdi = µsi = 0 and from (2.20), we have λvi (t) = −ui(t) which gives

ui(t
−
j ) = ui(t

+
j ). (2.32)

Theorem 2.2.16. The unconstrained solution of Problem 2.2.14 for CAV i ∈ N (t) with n

merging zones, is a continuous piecewise linear function.

Proof. For CAV i ∈ N (t), we first divide [t0i , t
f
i ] (recall that tfi = t

z∗n
i + ∆tzni ) into 2n

sub-intervals with corresponding optimal control input as follows:

u∗i (t) =



u
(1)
i (t), if t0i ≤ t < t

z∗1
i ,

u
(2)
i (t), if t

z∗1
i ≤ t ≤ t

z∗1
i +∆tz1i ,

...

u
(2n−1)
i (t), if t

z∗n−1

i +∆t
zn−1

i ≤ t ≤ t
z∗n
i ,

u
(2n)
i (t), if t

z∗n
i ≤ t ≤ tfi .

(2.33)

Integrating (2.18) and (2.19) at each time-interval j ∈ {1, . . . , 2n} and using (2.20), we get

a linear form for u(j)i (t). From Lemma 2.2.15, we have continuity of control input at each

interior point, thus the control input is a continuous piecewise linear function.

38



Corollary 2.2.17. For CAV i ∈ N (t), let π(j) = [π
(j)
1 , π

(j)
2 ]⊤ be the constant Lagrange

multipliers for the interior-point constraint Nj, j ∈ {1, . . . , 2n− 1} at time tj , where n is

the total number of merging zones in CAV i’s path. Then, we have

π
(j)
2 = −π(j)

1 vi(tj). (2.34)

Proof. From (2.27) and (2.17), we have

1

2
ui(t

−
j )

2 + λpi (t
−
j )vi(t

−
j ) + λvi (t

−
j )ui(t

−
j ) =

1

2
ui(t

+
j )

2 + λpi (t
+
j )vi(t

+
j ) + λvi (t

+
j )ui(t

+
j )− π2, (2.35)

and by substituting (2.25) and λvi (t) = −ui(t) into (2.35), we get

−1

2
ui(t

−
j )

2 + (λpi (t
+
j ) + π

(j)
1 ) vi(t

−
j ) =

−1

2
ui(t

+
j )

2 + λpi (t
+
j )vi(t

+
j )− π

(j)
2 . (2.36)

Using continuity of speed at the interior-point, i.e., vi(t−j ) = vi(t
+
j ) = vi(tj) and rearranging

(2.36), we get

−1

2
ui(t

−
j )

2 + π
(j)
1 vi(tj) = −

1

2
ui(t

+
j )

2 − π(j)
2 . (2.37)

From Lemma (2.2.15), we have ui(t−j ) = ui(t
+
j ). Therefore π(j)

2 = −π(j)
1 vi(tj), and the proof

is complete.

The unconstrained solution with interior-point constraints for CAV i ∈ N (t) with n

merging zones, consists of 2n unconstrained arcs as follows:

u∗i (t) =



a
(1)
i t+ b

(1)
i , if t0i ≤ t < t

z∗1
i ,

a
(2)
i t+ b

(2)
i , if t

z∗1
i ≤ t ≤ t

z∗1
i +∆tz1i ,

...

a
(2n−1)
i t+ b

(2n−1)
i , if t

z∗n−1

i +∆t
zn−1

i ≤ t ≤ t
z∗n
i ,

a
(2n)
i t+ b

(2n)
i , if t

z∗n
i ≤ t ≤ tfi ,

(2.38)
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Initial conditions pi(t0i ) and vi(t0i ), final conditions pi(t
f
i ) and ui(t

f
i ), (4 equations), continuity

of state and control at interior-point constraints (3 · (2n− 1) equations), position at interior-

point constraints (2n− 1 equations), and jump conditions on λpi at interior-point constraints

(2n− 1 equations) result in 10n− 1 equations, which form a system of linear equations that

yields the optimal trajectory.

Remark 2.2.18. After finding the optimal trajectory, along with π(j)
1 , j ∈ {1, . . . , 2n − 1},

one can use Corollary 2.2.17 to find π(j)
2 which satisfies (2.27).

Theorem 2.2.19. For the cases that none of the state/control inequality constraints becomes

active, the control effort minimization problem with interior-point constraints always has a

unique solution.

Proof. The analytical solution for the unconstrained case with interior-point constraints is

found by solving a system of linear equations in the classical form AX = B, where A ∈

R(10n−1)×(10n−1) is the coefficients matrix, X ∈ R(10n−1)×1 is the vector of 10n−1 unknowns

and b ∈ R(10n−1)×1 is the constant vector. Since there are 10n − 1 linearly independent

equations, which forms row vectors in AX = B, we have rank(A) = rank(A|B) = 10n− 1,

and the proof is complete.

Constrained solution

Using (2.38), we first start with the unconstrained solution of Problem 2.2.14. If the

solution violates any of the speed (2.3) or control (2.2) constraints, then the unconstrained

arc is pieced together with the arc corresponding to the violated constraint at unknown time

τ1, and we re-solve the problem with the two arcs pieced together. The two arcs yield a

set of algebraic equations which are solved simultaneously using the boundary and interior

conditions at τ1. If the resulting solution violates another constraint, then the last two arcs are

pieced together with the arc corresponding to the new violated constraint, and we re-solve

the problem with the three arcs pieced together at unknown times τ1 and τ2. The three arcs

will yield a new set of algebraic equations that need to be solved simultaneously using the
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boundary and interior conditions at τ1 and τ2. The process is repeated until the solution does

not violate any other constraints, [65, 176]. In the following section, we show the analysis for

the case where the rear-end safety constraint becomes active.

Rear-end safety constraint becomes active

Suppose for CAV i ∈ N (t), at some time t = τ1, the rear-end safety constraint with

the vehicle k becomes active until t = τ2, pk(t) − pi(t) = δ for all t ∈ [τ1, τ2], in this case

µsi ̸= 0. At the entry of the constrained arc, we have the following tangency conditions

N(xi(t), t) =

 pi(t)− p∗k(t) + δ

vi(t)− v∗k(t)

 = 0. (2.39)

Since N(t,xi(t)) = 0 for t ∈ [τ1, τ2], its first derivative, which is dependent on the optimal

control input, should vanish in t ∈ [τ1, τ2], i.e.,

N(1)(t,xi(t)) = u∗i (t)− u∗k(t) = 0. (2.40)

From (2.40), the optimal control input of CAV i ∈ N (t), when rear-end safety constraint is

active, can be found u∗i (t) = u∗k(t) The optimal solution needs to satisfy the following jump

conditions on costates upon entry to the constrained arc at t = τ1,

λpi (τ
−
1 ) = λpi (τ

+
1 ) + [π1, π2]

∂N

∂pi
= λpi (τ

+
1 ) + π1, (2.41)

λvi (τ
−
1 ) = λvi (τ

+
1 ) + [π1, π2]

∂N

∂vi
= λvi (τ

+
1 ) + π2, (2.42)

Hi(τ
−
1 ) = Hi(τ

+
1 )− [π1, π2]

∂N

∂t
= Hi(τ

+
1 ) + π1v

∗
k(t) + π2u

∗
k(t), (2.43)

where π1 and π2 are constant Lagrange multipliers, determined so that (2.39) is satisfied. At

the exit point of the constrained arc, we have

λpi (τ
−
2 ) = λpi (τ

+
2 ), λvi (τ

−
2 ) = λvi (τ

+
2 ), Hi(τ

−
2 ) = Hi(τ

+
2 ). (2.44)
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As described earlier, the three arcs need to be solved simultaneously using initial and final

conditions (speed and position), interior-point constraints (2.22), and interior conditions at

unknown times τ1 and τ2 (continuity of speed and position, jump conditions (2.39)-(2.44)).

2.2.4 Deviation From Nominal Planned Position

We extend the previous results to include a bounded steady-state error in CAV’s

position, which can be originated from the vehicle-level controller tracking the optimal

trajectory. Namely, suppose that CAV i’s actual position deviates from the nominal p∗i (t),

which is the optimal solution of the Problem 2.2.14, and it takes values in [p∗i (t)−ϵ , p∗i (t)+ϵ],

where ϵ ∈ R≥0 is the maximum deviation from the nominal path. To guarantee longitudinal

and lateral safety, we consider the worst-case scenario in our upper-level and low-level

planning analysis.

Low-level Safety

To guarantee rear-end safety between CAV i ∈ N (t) and CAV k ∈ N (t), where CAV

k ∈ Ali, l = lf
∗

i is the vehicle immediately ahead of CAV i, we modify the rear-end safety

constraint (2.6) as (pk(t)− ϵ)− (pi(t) + ϵ) ≥ δ, where it simplifies to pk(t)− pi(t) ≥ δ+ 2ϵ.

Thus, considering the worst-case scenario in the low-level planning results in increas-

ing the rear-end safety distance δnew = δ + 2ϵ. However, this might be a conservative causing

the rear-end safety constraint becomes active without being necessary and thus results in

higher fuel consumption.

Upper-level Safety

In the low-level problem, we modified the rear-end safety constraint to guarantee safety

in the worst-case scenario in the presence of a bounded steady-state error in the position. In

addition, to ensure safety in the upper-level problem, we need to consider the error’s effects

in order to avoid lateral collision. By introducing the idle-time tidle, acting as a safety buffer
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in the presence of a bounded steady-state error in position, we modify the lateral safety

constraints with idle-time as follows

tz
∗

i ≥ tz
∗

j +∆tzj + tidle, (2.45)

or

tz
∗

i +∆tzi + tidle ≤ tz
∗

j , (2.46)

where in (2.45), merging zone should be idle after CAV j’s planned exit time and in (2.46)

merging zone should be idle before CAV j’s planned arrival time. To consider rear-end safety

at entry of each merging zone, (2.14) is being adjusted as follows

tz
∗

i ≥ tz
∗

k + ρzk + tidle. (2.47)

The worst-case scenario for computing tidle can be computed as follows

tidle =
2ϵ

vmin
. (2.48)

It should be noted that tidle computed from (2.48) is very conservative, since it assumes that

both vehicles cross the merging zone with minimum speed. Algorithm 3 can be employed to

consider the deviation from the nominal planned position.

2.2.5 Simulation Results

To evaluate the effectiveness of the proposed framework in reducing fuel consumption

and improving traffic throughput, we investigate the coordination of CAVs at three adjacent

intersections in two scenarios under different traffic volumes, and then compare the results with

a baseline scenario consisting of two-phase traffic signals. We construct the baseline scenario

with two-phase fixed-time traffic signals in PTV-VISSIM [191], which is a commercial

microscopic multi-modal traffic flow simulation software, by considering all vehicles as

human-driven and without V2V communication. To emulate human-driven vehicles’ driving
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Algorithm 3 Recursive upper-level planning with idle-time
Input: ℓfi
Output: Arrival time at merging zones Zi = {z1, . . . , zn}
1: for z ∈ Zi do
2: k = max{j | j ∈ Aℓ

i , ℓ = ℓfi }
3: tz

∗

i ← max
{
t̄zi , t

z∗

k + ρzk + tidle
}

4: Sort T z
i increasingly

5: for tz
∗

j ∈ T z
i do

6: if tz
∗

j +∆tzj + tidle ≤ tz
∗

i then
7: continue
8: end if
9: if tz

∗

i +∆tzi + tidle ≤ tz
∗

j then
10: break
11: else
12: tz

∗

i ← tz
∗

j +∆tzj + tidle;
13: end if
14: end for
15: end for
16: return {tz∗

i | z ∈ Zi}

behavior, we use a built-in car-following model (Wiedemann [192]) in PTV-VISSIM with

default parameters. In the optimal-scenario, we use a dynamic-link library in PTV-VISSIM to

simulate our framework. Videos from our simulation analysis can be found at the supplemental

site, https://sites.google.com/view/ud-ids-lab/OCMI.

For the first scenario, we construct three symmetric adjacent intersections. We consider

the length of each road connecting to the intersections to be L = 150 m, the length of the

merging zones to be S = 15 m, and the distance between each intersection to be D = 75

m (see Fig. 2.4). The CAVs enter the control zone with initial speed uniformly distributed

between 11 m/s to 13 m/s from each entry with equal traffic volumes.

Table 2.1 shows the average travel time of all CAVs inside the control zone for the

baseline and optimal cases, respectively, at different traffic volumes ranging from 600 veh/h

to 1,400 veh/h per lane for each entry. For each traffic volume, we performed five simulations

with different random seeds and averaged the results. Within our proposed framework,

average travel time has been decreased by 11%− 24% compared to the baseline scenario with

two-phase traffic signals. Relative frequency histogram of travel time of each CAV for traffic

volume 1,400 veh/h for one of the selected seed, which includes 119 vehicles, for the baseline
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Figure 2.4: Snap-shot of the three multi-lane adjacent intersections in the first scenario.

and optimal scenarios are shown in Fig. 2.5. As it can be seen in Fig. 2.5, travel times for all

CAVs are less than 40 s for the optimal scenario, whereas, in the baseline scenario, 23% of

vehicles have travel time higher than 40 s. For the scenario shown in Fig. 2.5, the average

travel time has been reduced by 17.62%.

Table 2.1: Average travel time of vehicles in the first scenario for the optimal and baseline
cases under different traffic volumes.

Flow Average number Average travel time (s)
(veh/h) of vehicles Baseline Optimal %

600 44 25.51 19.41 24
800 61 25.14 20.23 20
1,000 76 26.03 20.59 21
1,200 91 26.26 21.99 16
1,400 110 27.27 24.30 11

To investigate the computational complexity of our approach, for each traffic flow in

each seed, the time that it takes for a CAV to compute the optimal trajectory is recorded, and

then averaged across all the CAVs. For each traffic flow, we choose the seed with a maximum

mean of computation time to report. The mean and standard deviation of computation times

of CAVs in our optimal proposed framework for different traffic volumes are listed in Table

2.2. It shows that our approach is computationally feasible and does not grow exponentially

with increasing the traffic volume. Note that since our scheme is decentralized, there is not a

relation between the traffic flow and computation times.
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Table 2.2: The mean and standard deviation of computation times of CAVs in the first scenario.

Traffic volume 600 800 1,000 1,200 1,400

Mean (ms) 0.21 0.19 0.18 0.18 0.17
Standard deviation (ms) 0.14 0.14 0.13 0.13 0.13

Figure 2.5: A travel time of each vehicle for the first scenario in the baseline and optimal
cases under traffic volume 1,400 veh/h.

Our next measure of effectiveness is time-delay, which is computed as a difference

between the vehicle’s travel time, and the time that it would have taken for the vehicle to

cruise with the same speed as the one that it entered the control zone. For CAV i ∈ N (t), the

time-delay is denoted by tdelay
i and given by

tdelay
i = (tfi − t0i )−

pi(t
f
i )− pi(t0i )
vi(t0i )

. (2.49)

Average delay of all CAVs inside the control zone for the baseline and optimal

scenarios at different traffic volumes ranging from 600 veh/h to 1,400 veh/h per lane for each

entry, along with the percentage of improvement are illustrated in Fig. 2.6. As shown in Fig.

2.6, in our proposed framework the average delay has been reduced 47% - 85% compared to

the baseline scenario.
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Figure 2.6: Average delay of vehicles in the first scenario for the baseline and optimal cases.

The instantaneous average, maximum, and minimum speed of CAVs inside the control

zone for the baseline and optimal scenarios with traffic volume 600 veh/h, 1,000 veh/h, and

1,400 veh/h for three randomly selected seeds are shown in Fig. 2.7. The average speed for

the optimal scenario is higher than the average speed in the baseline scenario most of the time,

which shows improved traffic throughput. The instantaneous minimum speed for all traffic

volumes in the optimal scenario is positive indicating smooth traffic flow, compared to the

baseline scenario, which experiences much stopping due to the traffic lights. The position,

speed, and control input for a CAV entering the control zone from the east are shown in Fig.

2.8 for the optimal proposed framework, and in Fig. 2.9 for the baseline scenario. As it was

shown earlier (Theorem 2.2.16), the control input is a continuous piecewise linear function.

We can see in Fig. 2.8 that the CAV needs to accelerate to satisfy the imposed average speed

at each merging zone. Choosing the optimal speed for vzavg may reduce this oscillation, and

potentially improve the system’s efficiency.

To evaluate fuel efficiency improvement achieved by our proposed framework, we

use a polynomial meta-model proposed in [193], which approximates the fuel consumption

in ml/s as a function of speed and control input of a CAV and coefficients obtained from

an engine torque-speed-efficiency map of a typical car. Table 2.3 summarizes the average
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(a) (b) (c)

Figure 2.7: The instantaneous average, maximum and minimum speed of CAVs inside the
control zone in the first scenario for the baseline and optimal cases with traffic volume (a)
600 veh/h, (b) 1,000 veh/h and (c) 1,400 veh/h.

fuel consumption and the average cumulative fuel consumption for the optimal and baseline

scenarios at different traffic volumes for which five simulations with different random seeds

were performed, and the results were averaged. It can be noted that our optimal framework

results in better fuel efficiency compared to the baseline scenario. Within our optimal

framework, the average cumulative fuel consumption has been improved by 32% - 55%

compared to the baseline scenario with two-phase traffic signals.

Table 2.3: Average fuel consumption and average cumulative fuel consumption in first
scenario for the optimal and baseline cases under different traffic volumes.

Average fuel Average cumulative
Flow consumption (ml/s) fuel consumption (ml)

(veh/h) Baseline Optimal Baseline Optimal %

600 0.32 0.19 8.87 3.89 55
800 0.33 0.21 8.91 4.58 48
1,000 0.34 0.23 9.46 4.92 48
1,200 0.34 0.25 9.54 5.80 39
1,400 0.34 0.27 10.01 6.79 32

In the second scenario, we consider an asymmetric corridor in W 4th street in Wilm-

ington, Delaware consisting of three adjacent intersections with N Orange street, N Shipley

street, and N Market street (see Fig. 2.10). In terms of geometry, this is an asymmetric

scenario since it consists of one way and two-way roads. The incoming traffic flows are also

not symmetric, since one of the streets has two incoming lanes. We consider the length of
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Figure 2.8: The position, speed and control input for a CAV entering the control zone from
east for the optimal case in the first scenario.

each road connecting to the intersections to be L = 150 m. The vehicles enter the control

zone with initial speed uniformly distributed between 8 m/s to 11 m/s from each entry with

equal traffic volumes. For each traffic volume, we performed five simulations with different

random seeds and averaged the results.

Table 2.4 contains the average travel time and average delay of all CAVs inside the

control zone for the baseline and optimal cases, respectively, at different traffic volumes

ranging from 600 veh/h to 1,400 veh/h per lane for each entry. The results indicate that three

is 21%− 35% reduction in the average travel time, and 57%− 84% decrease in the average

delay compared to the baseline scenario with two-phase traffic signals.

Table 2.5 shows the average fuel consumption and the average cumulative fuel con-

sumption for the optimal and baseline cases at different traffic volumes. The results further

support the improvement in fuel efficiency by using the optimal framework. Namely, the

average cumulative fuel consumption has been improved by 54% - 62% compared to the

baseline scenario with two-phase traffic signals.
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Figure 2.9: The position, speed, and control input for a CAV entering the control zone from
east for the baseline case in the first scenario.

2.3 Time-Optimal Coordination for Connected and Automated Vehicles at Adjacent

Intersections

In this section, we provide a different bi-level coordination framework for CAVs at

two adjacent intersections. This framework consists of an upper-level scheduling problem

and a low-level optimal control problem. By partitioning the area around two adjacent

intersections into different zones, we formulate a scheduling problem for each individual

CAV aimed at minimizing its total travel time. For each CAV, the solution of the upper-level

problem designates the arrival times at each zones on its path which becomes the inputs

of the low-level problem. The solution of the low-level problem yields the optimal control

input (acceleration/deceleration) of each CAV to exit the intersections at the time specified

in the upper-level scheduling problem. We validate the performance of our proposed hierar-

chical framework through extensive numerical simulations and comparison with signalized

intersections, centralized scheduling, and FIFO queuing policy.

We organize this section as follows. In subsection 2.3.1, we provide a detailed
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Figure 2.10: An asymmetric corridor in W 4th street in Wilmington, Delaware, second
scenario.

Table 2.4: Average travel time and delay of vehicles in in the second scenario for the optimal
and baseline cases under different traffic volumes.

Flow Avg. travel time (s) Avg. delay (s)
(veh/h) Baseline Optimal % Baseline Optimal %

600 37.72 24.53 35 15.92 2.56 84
800 39.67 25.89 35 17.80 3.47 80
1,000 40.10 28.65 29 18.17 5.42 70
1,200 40.69 30.38 25 18.57 6.52 65
1,400 42.25 33.38 21 19.98 8.68 57

exposition of the formulation of both low-level and upper-level optimization problems, while

in subsection 2.3.4, we derive the corresponding solutions. Finally, we demonstrate the

effectiveness of our approach through simulation in subsection 2.3.5.

2.3.1 Problem Formulation

We consider two adjacent intersections shown in Fig. 2.11 which are closely distanced

from each other. We partition the roads around the intersections into nz ∈ N zones where

each zone has a unique integer index that belongs to the setM = {1, . . . , nz}. Although

the number nz of partitions is arbitrary, choosing a big number increases the burden of

computation for the scheduling problem since each CAV i ∈ N (t) needs to find its arrival

time at each zone. We consider each road connecting to the merging zone to be a single zone.
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Table 2.5: Average fuel consumption and average cumulative fuel consumption in second
scenario for the optimal and baseline cases under different traffic volumes.

Average fuel Average cumulative
Flow consumption (ml/s) fuel consumption (ml)

(veh/h) Baseline Optimal Baseline Optimal %

600 0.25 0.14 9.36 3.86 59
800 0.25 0.13 9.74 3.73 62
1,000 0.24 0.13 9.79 4.14 58
1,200 0.24 0.13 9.96 4.44 55
1,400 0.24 0.14 10.18 4.73 54

Similarly, we partition each merging zone into four smaller zones (Fig. 2.11). Without being

restrictive in our analysis, the total number of zones in the two intersections considered here

(Fig. 2.11) is nz = 22. We should note that zones are numbered arbitrarily.

Definition 2.3.1. When CAV i ∈ N (t) enters the control zone, it creates a tuple of the zones

Ii := [m1, . . . ,mn], mn ∈ M, n ∈ N, defined as the “path” of CAV i, where m1 and mn

denote the first and last zone on its path respectively, that i needs to cross until it exits the

control zone.

Definition 2.3.2. For each CAV i ∈ N (t) upon entering the control zone, we define the set

Ci,j of conflict zones with CAV j ∈ N (t) \ {i}, which is present in the control zone (j < i),

Ci,j = {m |m ∈ M, m ∈ Ii , m ∈ Ij}. (2.50)

For example in Fig. 2.11, CAV #3 has the following conflict tuples with CAV #1 and

#2 respectively: C3,1 = {7} and C3,2 = {4, 13, 7, 8, 19}.

Definition 2.3.3. Let CAV k ∈ N (t) \ {i} be the preceding vehicle of CAV i ∈ N (t) in zone

m ∈ M. The distance, dm(pk(t), pi(t)), between i and k in zone m is defined as

dm(pk(t), pi(t)) = (pk(t)− pk(T
m

k ))− (pi(t)− pi(T
m

i )), (2.51)
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Figure 2.11: Two interconnected intersections with a drone as a coordinator. Zones numbered
topologically and the fixed path for each CAV is shown.

where pk(T
m

k ), pi(T
m

i ) ∈ R≥0 correspond to the distances from the entry point of the control

zone to the entry point of the conflict zone m for CAV k and i respectively. If no such CAV k

leads CAV i at zone m, then we let dm(·)→∞. Note that, pk(T
m

k ) and pi(T
m

i ) depends on

the geometry of the control zone and intersections.

To ensure the absence of rear-end collision between CAV i ∈ N (t) and the preceding

CAV k ∈ N (t) \ {i} in zone m ∈ Ii, while m ∈ Ik, we impose the following rear-end safety

constraint

dm(pk(t), pi(t)) ≥ δi(t), t ∈ [T
m

i , T
m′

i ], (2.52)

where Tm

i and Tm′

i are the entry time at and exit time from from zone m of CAV i respectively,

and δi(t) is a predefined safe distance. The minimum safe distance δi(t) is a function of speed

δi(t) = γ + φ · vi(t), t ∈ [T
m

i , T
m′

i ], (2.53)

where γ is the standstill distance, and φ is the reaction time.

In our modeling framework described above, we impose the following assumption

Assumption 2.3.4. The speed of each CAV i ∈ N (t) at the boundary of zone m ∈M in the

merging zones is given and is equal to vmerge.
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This assumption can be relaxed by estimating the speed at the boundaries of each zone

in the upper-level problem.

2.3.2 Upper-level Problem: Scheduling

The objective of each CAV inside the control zone is to derive the optimal control input

(acceleration/deceleration) aimed at minimizing travel time and improving traffic throughput.

In the upper-level scheduling problem, each CAV i ∈ N (t) computes its arrival time to each

zone m ∈ Ii that minimizes its total travel time inside the control zone and guarantees lateral

safety constraints.

Scheduling is a decision-making process that addresses the optimal allocation of

resources to tasks over given time periods [194]. Thus, in what follows, we use scheduling

theory to find the time that CAV i ∈ N (t) has to reach the zone m ∈ Ii. Each zone m ∈M

represents a “resource,” and CAVs crossing this zone are the “jobs” assigned to the resource.

Definition 2.3.5. The time that a CAV i ∈ N (t) enters a zone m ∈ Ii is called “schedule”

and is denoted by T
m

i ∈ R≥0. For CAV i ∈ N (t), we define a “schedule tuple,”

Ti = [T
m

i |m ∈ Ii]. (2.54)

For example, the schedule tuple of CAV #1 in Fig. 2.11 is T1 = [T
22

1 , T
5

1 , T
7

1 , T
17

1 ]. For

each zone m ∈ Ii, i ∈ N (t), the schedule Tm

i ∈ R≥0 is bounded by

T ¯
m

i +R¯
m

i ≤ T
m

i ≤ T ¯
m

i +D ¯
m

i , (2.55)

where
¯
m ∈ Ii is the zone right before zone m ∈ Ii, T ¯

m

i is the time that CAV i enters the

zone
¯
m, and R¯

m

i ∈ R≥0 and D ¯
m

i ∈ R≥0 are the shortest and latest feasible times that it takes

for CAV i ∈ N (t) to travel through the zone
¯
m respectively. R¯

m

i ∈ R≥0 and D ¯
m

i ∈ R≥0 are

called the release time and the deadline of the job respectively.
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Remark 2.3.6. The exit time, T
m′

i , of CAV i ∈ N (t) from zone m ∈ Ii is equal to the entry

time to zone m̄ ∈ Ii, which is the zone that CAV i crosses right after zone m.

T
m′

i = T
m̄

i . (2.56)

Definition 2.3.7. For each CAV i ∈ N (t), we define the set Γi of all feasible time headways

which do not violate the rear-end safety constraint (2.52) at the entry of all zones m ∈ Ii.

Definition 2.3.8. For each CAV i ∈ N (t) and j ∈ N (t) \ {i}, j < i, the safety constraint at

the entry of zone m ∈ Ci,j can be restated as

|Tm

i − T
m

j | ≥ th, (2.57)

where th ∈ Γi is the minimum time headway to avoid lateral collision.

Remark 2.3.9. Definition 2.3.8 relaxes the FIFO queuing policy for entering zone m ∈M

by restricting the absolute value of the difference between the two schedules, rather than just

enforcing T
m

i − T
m

j ≥ th.

Problem 2.3.10. (Scheduling problem) For each CAV i ∈ N (t) with schedule tuple Ti and

minimum time headway th ∈ Γi, the scheduling problem is formulated as follows

min
Ti

J
[1]
i (Ti) = tfi (Ti),

subject to: (2.55), (2.57).
(2.58)

Remark 2.3.11. In Problem 2.3.10, the time tfi that each CAV i exits the control zone is a

function of the schedule tuple Ti as implied by (2.55), which relates the arrival time at each

zone to the arrival time at its previous zone.

Upon entering the control zone, CAV i solves the scheduling problem that yields its

time-optimal arrival time at each zone. Then, it shares the schedule tuples with the drone.
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Consider, for example (see Fig. 2.11), CAV #3 with I3 = [10, 3, 4, 13, 7, 8, 19], C3,1 = {7}

and C3,2 = {4, 13, 7, 8, 19}. The constraint (2.55) for each zone m ∈ I3 is

t03 +R
10

3 ≤ T
3

3 ≤ t03 +D
10

3 , T
3

3 +R
3

3 ≤ T
4

3 ≤ T
3

3 +D
3

3, (2.59)

T
4

3 +R
4

3 ≤ T
13

3 ≤ T
4

3 +D
4

3, T
13

3 +R
13

3 ≤ T
7

3 ≤ T
13

3 +D
13

3 , (2.60)

T
7

3 +R
7

3 ≤ T
8

3 ≤ T
7

3 +D
7

3, T
8

3 +R
8

3 ≤ T
19

3 ≤ T
8

3 +D
8

3, (2.61)

T
19

3 +R
19

3 ≤ tf3 ≤ T
19

3 +D
19

3 . (2.62)

Note that the time CAV #3 enters the zone #10, T 10

3 is equal to the time that CAV # 3 enters

the control zone t03. From the safety constraint (2.57) for m ∈ C3,1 and m ∈ C3,2 we have

|T 7

3 − T
7

1 | ≥ th, |T 4

3 − T
4

2 | ≥ th, |T 13

3 − T
13

2 | ≥ th, (2.63)

|T 7

3 − T
7

2 | ≥ th, |T 8

3 − T
8

2 | ≥ th, |T 19

3 − T
19

2 | ≥ th, (2.64)

where the schedule tuples of CAV #1 and #2 are accessible through the drone. CAV i ∈ N (t)

derives the release time and the deadline of each zone m ∈ Ii prior to solving the scheduling

problem (Problem 2.3.10). CAV #3 above, for example, computes Rm

3 and Dm

3 for all m ∈ I3,

and then it solves the scheduling problem, the solution of which yields the tuple T3. Next, we

formulate the problems that yield the release time and deadline respectively.

Problem 2.3.12. (Release time problem) For each CAV i ∈ N (t) and each zone m ∈ Ii, the

release time R
m

i is derived by the following optimization problem

min
ui∈Ui

J
[2]
i (ui(t)) = te,mi (ui(t))− ts,mi ,

subject to: (2.1), (2.2), (2.3),

given pi(t
s,m
i ), vi(t

s,m
i ), pi(t

e,m
i ), vi(t

e,m
i ),

(2.65)

where ts,mi and te,mi are the time that CAV i ∈ N (t) enters and exits the zone m ∈ Ii
respectively. The optimal solution u∗i (t) of Problem 2.3.12 yields the release time, R

m

i =

te,mi (u∗i (t))− t
s,m
i , which is the shortest feasible time that it takes for CAV i to travel through
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zone m without considering safety.

Problem 2.3.13. (Deadline problem) For each CAV i ∈ N (t) and each zone m ∈ Ii, the

deadline D
m

i is derived by the following optimization problem

max
ui∈Ui

J
[3]
i (ui(t)) = te,mi (ui(t))− ts,mi ,

subject to: (2.1), (2.2), (2.3),

given pi(t
s,m
i ), vi(t

s,m
i ), pi(t

e,m
i ), vi(t

e,m
i ).

(2.66)

The optimal solution u∗i (t) of Problem 2.3.13 yields the deadline, Dm

i = te,mi (u∗i (t))

− ts,mi , which is the latest feasible time that it takes for CAV i to travel through zone m

without considering safety.

Remark 2.3.14. Note that in Problems 2.3.12 and 2.3.13, we do not consider safety con-

straints. The only objective of these two problems is to find the feasible bound for arrival time

at each zone m in (2.55), to form the scheduling problem (Problem 2.3.10).

2.3.3 Low-level Problem: Energy Minimization

After solving the upper-level scheduling problem, the low-level problem yields for

each CAV the minimum control input at each zone (acceleration/deceleration) that satisfies

the schedule resulted from the upper-level problem. We demonstrate the system architecture

in Fig. 2.12

Problem 2.3.15. For each CAV i ∈ N (t) and each zone m ∈ Ii, the energy minimization

problem is

min
ui∈Ui

J
[4]
i (ui(t), T

m

i , T
m̄

i ) =
1

2

∫
T

m̄

i

T
m

i

u2i (t) dt,

subject to: (2.1), (2.2), (2.3), (2.52),

given pi(T
m

i ), vi(T
m

i ), pi(T
m̄

i ), vi(T
m̄

i ), T
m

i , T
m̄

i ,

(2.67)

where T
m

i and T
m̄

i are the entry and exit time of CAV i ∈ N (t) from zone m ∈ Ii, determined

by the upper-level scheduling problem.
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Figure 2.12: The hierarchical system architecture for CAV i and drone (coordinator)

2.3.4 Solution of Low-level and Upper-level Problems

In the previous subsection, we described the bi-level optimization framework that

consists of three upper-level problems and one low-level problem. Upon entering the control

zone, each CAV is added to the queueN (t), and it solves the upper-level problems (Problems

2.3.10, 2.3.12 and 2.3.13) the solutions of which designate the optimal entry time to each

zone along its path. In the upper-level problems, each CAV first derives the release time and

deadline (Problems 2.3.12 and 2.3.13) for each zone prior to solving the scheduling problem

(Problem 2.3.10). The outcome of the upper-level scheduling problem becomes the input of

the low-level problem (Problem 2.3.15). In particular, in the low-level problem (Problem

2.3.15), each CAV derives the optimal control input (acceleration/deceleration) that minimizes

energy consumption at each zone of its path at the times specified in the upper-level (Problem

2.3.10).

To this end, to simplify notation, we use psi , v
s
i , p

e
i and vei instead of pi(t

s,m
i ), vi(t

s,m
i ),

pi(t
e,m
i ) and vi(t

e,m
i ) respectively.
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Analytical solution of the release time and the deadline

Here, we provide the analytical closed-form solutions to Problems 2.3.12 and 2.3.13,

which each CAV i ∈ N (t) uses to formulate the scheduling problem (Problem 2.3.10). One

of the main advantages of deriving analytical solutions to Problem 2.3.12 and 2.3.13 is to

improve the computational effort in the upper-level problem. For the analytical solution of

the release time problem (Problem 2.3.12), we apply Hamiltonian analysis. For each CAV

i ∈ N (t) the Hamiltonian function with the state and control constraints adjoined is

Hi(t, pi(t), vi(t), ui(t), λi(t)) = 1 + λpi vi(t) + λvi ui(t) + µai (ui(t)− umax)

+µbi(umin − ui(t)) + µci(vi(t)− vmax) + µdi (vmin − vi(t)),
(2.68)

where λpi and λvi are costates, and µ⊤i = [µai , µ
b
i , µ

c
i , µ

d
i , µ

s
i ] is a vector of Lagrange multipliers.

The Euler-Lagrange equations become:

λ̇pi = −
∂Hi

∂pi
= 0, λ̇vi = −

∂Hi

∂vi
= −λpi − µci + µdi . (2.69)

Similarly for the deadline problem (Problem 2.3.13), the Hamiltonian function is

Hi(t, pi(t), vi(t), ui(t), λi(t)) = −1 + λpi vi(t) + λvi ui(t) + µai (ui(t)− umax)

+µbi(umin − ui(t)) + µci(vi(t)− vmax) + µdi (vmin − vi(t)).
(2.70)

State constraints are not active

First, we consider the case where the state constraint (2.3) does not become active,

hence µci = µdi = 0.

Lemma 2.3.16. The sign of the optimal control input of the release time problem (Problem

2.3.12) for zone m, when the state constraint is not active, can change at most once, and it

is equal to either: (1) ui(t) = umin, or (2) ui(t) = umax , or (3) ui(t) = umax and then it

switches to ui(t) = umin.
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Proof. If the state constraints for the release time problem (Problem 2.3.12) are not active,

this implies that µci = µdi = 0. Solving (2.69), we have λp
∗

i (t) = ai and λv∗i (t) = −ait+ bi,

where ai, bi are the constants of integration. From Pontryagin’s minimum principle, the

optimal control input should satisfy the following condition

H(t, p∗i (t), v
∗
i (t), u

∗
i (t), λ

∗
i (t)) ≤ H(t, p∗i (t), v

∗
i (t), ui(t), λ

∗
i (t)). (2.71)

Substituting (2.68) in above equation, and simplifying yields λv∗i (t) u∗i (t) ≤ λv
∗
i (t) ui(t).

Therefore, u∗(t) is found as follows

u∗i (t) =

 umin, if λv
∗
i (t) > 0

umax, if λv
∗
i (t) < 0

. (2.72)

It follows immediately from the linearity of λv∗i (t) that its sign can change at most once. For

the second statement, we use the fact that we can have at most one switching point. There

are four cases that we should consider: Case 1: u∗i (t) = umin, Case 2: u∗i (t) = umax, Case

3: u∗i (t) = umax and then it switches to u∗i (t) = umin, and Case 4: u∗i (t) = umin and then

it switches to u∗i (t) = umax. The initial and final states, denoted by [psi , v
s
i ]
⊤ and [pei , v

e
i ]
⊤

respectively, are known.

Case 1: If CAV i ∈ N (t) decelerates with umin, then from (2.1) its final speed is

vfi =
√

2umin · (pei − psi ) + vsi
2.

Case 2: If CAV i ∈ N (t) accelerates with umax, similarly from (2.1) its final speed is

vfi =
√

2umax · (pei − psi ) + vsi
2.

Case 3: We have umax then umin, this implies the following:

λv
∗

i (t) =


− , if ts,mi ≤ t < tc,mi

0 , if t = tc,mi

+ , if tc,mi < t ≤ te,mi

, (2.73)
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where tc,mi is the time that the control input changes sign, and ˙λv
∗
i (t) = −λp

∗

i = −ai > 0.

Evaluating the Hamiltonian along the optimal control at tc,mi yields

Hi(t
c,m
i , p∗i (t

c,m
i ), v∗i (t

c,m
i ), u∗i (t

c,m
i ), λ∗i (t

c,m
i )) = 1 + λp

∗

i v
∗
i (t

c,m
i ). (2.74)

Since the final time t = te,m is not specified, the transversality condition gives

Hi(t
e,m
i , p∗i (t

e,m
i ), v∗i (t

e,m
i ), u∗i (t

e,m
i ), λ∗i (t

e,m
i )) = 0. (2.75)

Additionally, the Hamiltonian (2.68) must be constant along the optimal solution, since it is

not an explicit function of time

1 + λp
∗

i v
∗
i (t

c,m
i ) = 0. (2.76)

Hence, v∗i (t
c,m
i ) = − 1

λp
∗

i

> 0.

Case 4 : Similarly to Case 3, it can be shown that λp
∗

i = ai > 0 . Solving (2.76) for

v∗i (t
c,m
i ), we have v∗i (t

c,m
i ) = − 1

λp
∗

i

< 0. Hence, this case cannot be a feasible solution.

Lemma 2.3.17. In Problem 2, let xsi = [psi , v
s
i ]
⊤ and xei = [pei , v

e
i ]
⊤ be the initial and final

states of CAV i ∈ N (t) traveling in zone m ∈ Ii. Let xci = [pci , v
c
i ]
⊤ be the intermediate state

at the time tc,mi that the control input changes sign. Then,

pci =
vei

2 − vsi 2 + 2(umaxp
s
i − uminp

e
i )

2(umax − umin)
, (2.77)

vci =
√
vsi

2 + 2umax · (pci − psi ). (2.78)

Proof. From (2.1) and Lemma 2.3.16, the intermediate states are found by solving the

following system of equations vci
2 − vsi 2 = 2umax · (pci − psi )

vei
2 − vci 2 = 2umin · (pei − pci)

, (2.79)
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which yields (2.77) and (2.78).

Proposition 2.3.18. The release time of CAV i ∈ N (t) traveling in zone m ∈ Ii, when the

state constraint is not active, is

R
m

i =
vci − vsi
umax

+
vei − vci
umin

. (2.80)

Proof. When ui(t) = umax for all t ∈ [ts,mi , tc,mi ] and ui(t) = umin for all t ∈ [tc,mi , te,mi ],

where tc,mi is the time that the control input changes sign, the total time traveled inside the

zone m can be found by integrating (2.1), hence

vci − vsi = umax · (tc,mi − ts,mi ), ∀ t ∈ [ts,mi , tc,mi ],

vei − vci = umin · (te,mi − tc,mi ), ∀ t ∈ [tc,mi , te,mi ].
(2.81)

Solving (2.81) for tc,mi and te,mi , we have

tc,mi =
vci − vsi
umax

+ ts,mi , te,mi =
vci − vsi
umax

+
vei − vci
umin

+ ts,mi . (2.82)

Substituting te,mi into Rm

i = te,mi − ts,mi yields (2.80).

Lemma 2.3.19. The optimal control input of the deadline problem (Problem 2.3.13) for zone

m ∈ Ii, when the state constraint is not active, changes sign at most once, and it is equal

to either: (1) ui(t) = umin, or (2) ui(t) = umax , or (3) ui(t) = umin and then it switches to

ui(t) = umax.

Proof. The proof is similar to the proof of Lemma 2.3.16, and thus, it is omitted.

Proposition 2.3.20. Let xsi = [psi , v
s
i ]
⊤ and xei = [pei , v

e
i ]
⊤ be the initial and final states of

CAV i ∈ N (t) traveling in zone m ∈ Ii. Let xci = [pci , v
c
i ]
⊤ be the intermediate state at the
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time tc,mi that the control input changes sign. Then, the deadline of CAV i traveling in zone

m ∈ Ii for the unconstrained case is

D
m

i =
vci − vsi
umin

+
vei − vci
umax

, (2.83)

pci =
vei

2 − vsi 2 + 2(uminp
s
i − umaxp

e
i )

2(umax − umin)
, vci =

√
vsi

2 + 2umin · (pci − psi ). (2.84)

Proof. The control input of i ∈ N (t) in zone m ∈ Ii consists of two arcs, i.e., decelerating

with ui(t) = umin and accelerating with ui(t) = umax. Following similar arguments to

Lemma 2.3.17, we derive (2.84). The total time traveled inside the zone m can be found by

integrating (2.1), hence

vci − vsi = umin · (tc,mi − ts,mi ), ∀ t ∈ [ts,mi , tc,mi ],

vei − vci = umax · (te,mi − tc,mi ), ∀ t ∈ [tc,mi , te,mi ].
(2.85)

Solving (2.85) for tc,mi and te,mi , we have tc,mi =
vci−vsi
umin

+ ts,mi , te,mi =
vci−vsi
umin

+
vei−vci
umax

+ ts,mi .

Substituting te,mi into Dm

i = te,mi − ts,mi (2.83) follows.

State constraints are active

Next, we consider the cases where the speed constraints become active.

Theorem 2.3.21. In Problems 2.3.12 and 2.3.13, if there is no change on the sign of the

control input, then none of the speed constraints becomes active.

Proof. We consider the two cases that there is no change on the sign of the control input, i.e.,

case 1: ui(t) = umin, case 2: ui(t) = umax. Case 1: For all t < t′ ∈ [ts,mi , te,mi ], we have

vi(t) > vi(t
′). Hence, the minimum and maximum speed can only occur at te,mi and ts,mi

respectively, namely vei ≤ vi(t), and vi(t) ≤ vsi . However, from the Assumptions 2.3.4 and

2.1.1, we have vmin < vei ≤ vi(t) ≤ vsi < vmax.

Case 2: Following similar arguments to Case 1, we have vmin < vsi ≤ vi(t) ≤ vei <

vmax
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Corollary 2.3.22. For CAV i ∈ N (t) in zone m ∈ Ii, the unconstrained solution of the

release time problem (Problem 2.3.12) can not activate the constrained arc vi(t) = vmin.

Proof. From Theorem 2.3.21, we know that if there is no change on the sign of the control

input, then none of the speed constraints becomes active. Let’s consider that the control input

changes sign at tc,mi ∈ [ts,mi , te,mi ], thus

ui(t) = umax > 0⇒ vsi ≤ vi(t), ∀ t ∈ [ts,mi , tc,mi ], (2.86)

ui(t) = umin < 0⇒ vei ≤ vi(t), ∀ t ∈ [tc,mi , te,mi ]. (2.87)

It follows that the minimum speed of CAV i for all t ∈ [ts,mi , te,mi ] is either vei or vsi . From the

Assumptions 2.3.4 and 2.1.1, state constraints are not active at the entry and exit of the zones,

and the proof is complete.

One can verify whether the unconstrained solution of CAV i leads to violation of the

speed constraint vi(t) ≤ vmax in zone m, by checking the speed at the interior point vci found

from (2.78). If the unconstrained solution violates the speed constraint vi(t) ≤ vmax, then the

solution exits the unconstrained arc at time τ1, and enters the constrained arc vi(t) = vmax.

Then the unconstrained arc is pieced together with the constrained arc vi(t) = vmax, and we

re-solve the problem with the two arcs pieced together. The two arcs yield a set of algebraic

equations that are solved simultaneously using the boundary conditions and interior conditions

between the arcs. Since the speed at the boundary of zones do not activate the speed constraint,

the solution cannot stay at the constrained arc vi(t) = vmax and it must exit the constrained

arc vi(t) = vmax at time τ2. The unconstrained and constrained arcs are pieced together, and

we re-solve the problem consisting of the three arcs.

Theorem 2.3.23. The release time of CAV i ∈ N (t) traveling in zone m ∈ Ii when the

constraint vi(t) = vmax is active is

R
m

i =
ai + bi

2umin umax vmax

, (2.88)
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where

ai = vsi
2 umin − vei

2 umax + (umin − umax) v
2
max, (2.89)

bi = 2umin umax(p
e
i − psi ) + 2vmax (v

e
i umax − vsi umin). (2.90)

Proof. Let CAV i ∈ N (t) enter and exit the zone m ∈ Ii at tsi and tei respectively. From the

boundary conditions, we have pi(tsi ) = psi , vi(t
s
i ) = vsi , pi(t

e
i ) = pei and vi(tei ) = vei . CAV i

cruises with ui(t) = umax, and then it enters the constrained arc vi(t) = vmax at time τ1. It

stays at the constrained arc with ui(t) = 0 until time τ2. After exiting the constrained arc,

it decelerates with ui(t) = umin. Substituting the optimal control input in (2.1) yields the

following optimal state equations:

p∗i (t) =
1

2
umax(t

2 − tsi
2)− umaxt

s
i (t− tsi ) + vsi (t− tsi ) + psi ,

v∗i (t) =umax(t− tsi ) + vsi , ∀ t ∈ [tsi , τ
−
1 ].

p∗i (t) =vmax(t− τ1) + p∗i (τ
+
1 ), v∗i (t) = vmax, ∀ t ∈ [τ+1 , τ

−
2 ]. (2.91)

p∗i (t) =
1

2
umin(t

2 − τ 22 )− uminτ2(t− τ2) + v∗i (τ
+
2 )(t− τ2) + p∗i (τ

+
2 ),

v∗i (t) =umin(t− τ2) + v∗i (τ
+
2 ), ∀ t ∈ [τ+2 , t

e
i ].

The states of CAV are continuous at τ1 and τ2, thus

p∗i (τ
−
1 ) = p∗i (τ

+
1 ), v∗i (τ

−
1 ) = v∗i (τ

+
1 ), (2.92)

p∗i (τ
−
2 ) = p∗i (τ

+
2 ), v∗i (τ

−
2 ) = v∗i (τ

+
2 ). (2.93)

From (2.92)-(2.93) and the boundary conditions, piecing the unconstrained and constrained
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arcs together, we have

p∗i (τ1) =
1

2
umax(τ

2
1 − tsi )− umaxt

s
i (τ1 − tsi ) + vsi (τ1 − tsi ) + psi ,

τ1 =
vmax − vsi
umax

+ tsi ,

p∗i (τ2) = vmax(τ2 − τ1) + p∗i (τ1), v∗i (τ2) = vmax,

pei =
1

2
umin(t

e
i
2 − τ 22 )− uminτ2(t

e
i − τ2),+v∗i (τ2)(tei − τ2) + p∗i (τ2),

vei = umin(t
e
i − τ2) + v∗i (τ2).

Solving the system of equations above yields (2.88).

Remark 2.3.24. Similar to Corollary 2.3.22, for CAV i ∈ N (t) in zone m ∈ Ii, the uncon-

strained solution of the deadline problem (Problem 2.3.13) can not activate the constrained

arc vi(t) = vmax.

Proposition 2.3.25. Let τ1 and τ2 be the time that CAV i ∈ N (t) enters the constrained arc

vi(t) = vmin, while it is in zone m ∈ Ii. Let [psi , v
s
i ]
⊤ and [pei , v

e
i ]
⊤ be the initial and final

states of CAV i in zone m respectively. Then, the deadline of CAV i to exit zone m is

Dm
i =

vei − vmin

umax

+ τ2 − ts,mi , (2.94)

where

τ2 =
pi(τ2)− pi(τ1)

vmin

+ τ1, pi(τ2) =
v2min − vei 2

2 umax

+ pei , (2.95)

pi(τ1) =
v2min − vsi 2

2 umin

+ psi , τ1 =
−vsi + vmin

umin

+ ts,mi . (2.96)

Proof. The proof is similar to the proof of Theorem 2.3.23, and thus, it is omitted.
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Solution of the scheduling problem (Problem 2.3.10)

As we described earlier, at the entry of the control zone, CAV i ∈ N (t) computes

the release time and deadline for each zone m ∈ Ii. Then, it solves the scheduling problem

(Problem 2.3.10), the solution of which determines the schedule tuple Ti (Definition 2.3.5)

aimed at minimizing the time tfi that i exits the control zone. In the scheduling problem

(Problem 2.3.10) of CAV i, for each zone m which belongs to the conflict set Ci,j where

j < i ∈ N (t), we impose the safety constraint (2.57) (Definition 2.3.8) stated as

T
m

i − T
m

j ≥ th OR − (T
m

i − T
m

j ) ≥ th, (2.97)

which is a disjunctive constraint due to the OR statement, and also determines the order of

entry at zone m. By introducing a binary variable Bm

i,j ∈ {0, 1} and big number M ∈ R≥0
[195], we rewrite the disjunctive constraints (2.57) as two separate constraints as following

(T
m

i − T
m

j ) +B
m

i,j ·M ≥ th, (2.98)

−(Tm

i − T
m

j ) + (1−Bm

i,j) ·M ≥ th. (2.99)

However, there are two cases to consider in handling the safety constraint; case 1: CAV i and

CAV j follow the same path (Fig. 2.13), and case 2: CAV i and CAV j have different paths

that merge together (Fig. 2.14). In case 1, we have Ci,j = Ii = Ij implying that they conflict

on each zone of their path. Since CAV i entered the control zone later, it cannot arrive at any

zone earlier than CAV j, thus, we have Bm
i,j = 0 for all m ∈ Ci,j . For the second case, let

Ci,j = {ma, . . . ,mb} be the conflict set between CAV i and j, which have merging paths, ma

be the first zone that there is a potential lateral collision, and mb be their last conflict zone

with the potential rear-end collision. Since we relaxed the FIFO queuing policy, CAV i can

arrive at zone m1 either before (Bm1
i,j = 1), or after CAV j (Bm1

i,j = 0). However, to ensure

the absence of the rear-end safety in the following zones after ma, we need to have all the

binary variables equal to Bma
i,j , i.e., Bma

i,j = · · · = Bmb
i,j , B

ma
i,j ∈ {0, 1}.

In addition, the arrival time at each zone m is lower bounded with the arrival time
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Figure 2.13: CAV i and CAV j follow the same path.

and release time, and upper-bounded with arrival time and deadline of the previous zone
¯
m.

Similarly, the exit time from the control zone tfi is bounded by the arrival time, release time,

and deadline of the last zone.

After transforming each safety constraint to two separate constraints augmented with

a binary variable, we use a mixed-integer linear program (MILP) (IBM ILOG CPLEX [196])

to solve the scheduling problem. We discuss the implications on the computation effort of

solving the MILP in subsection 2.3.5.

Analytical solution of the energy minimization problem (Problem 2.3.15)

Similar to (2.17), we adjoin the qth-order state variable inequality constraint to the

Hamiltonian function. For each CAV i ∈ N (t), with CAV k ∈ N (t) positioned immediately

in front of it, the Hamiltonian is

Hi(t, pi(t), vi(t), ui(t), λ(t)) =
1

2
ui(t)

2 + λpi vi(t) + λvi ui(t) + µai (ui(t)− umax)

+µbi(umin − ui(t)) + µci(ui(t)) + µdi (−ui(t)) + µsi (vi(t)− vk(t) + φui(t)), (2.100)

where λpi and λvi are the costates, and µ⊤ is a vector of Lagrange multipliers.
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Figure 2.14: CAV i and CAV j have different paths that merge together.

State and control constraints are not active

If the state and control constraints are not active, µai = µbi = µci = µdi = µsi = 0 and

from [65] the solution is

u∗i = ait+ bi, (2.101)

by substituting (2.101) in (2.1) we have

v∗i =
1

2
ait

2 + bit+ ci, p∗i =
1

6
ait

3 +
1

2
bit

2 + cit+ di. (2.102)

In the above equations ai, bi, ci, di are constants of integration, which are found by substituting

the initial and final states pi(T
m

i ), vi(T
m

i ), pi(T
m̄

i ) and vi(T
m̄

i ) in zonem ∈ Ii . Thus, a system

of equations in the form of Tibi = qi, is


1
6

(
T

m

i

)3 1
2
(T

m

i )2 T
m

i 1

1
2

(
T

m

i

)2
T

m

i 1 0

1
6

(
T

m̄

i

)3 1
2

(
T

m̄

i

)2
T

m̄

i 1

1
2

(
T

m̄

i

)2
T

m̄

i 1 0

 ·

ai

bi

ci

di

 =


pi(T

m

i )

vi(T
m

i )

pi(T
m̄

i )

vi(T
m̄

i )

 . (2.103)
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Note that since (2.103) can be computed online, the controller may re-evaluate the four

constants at any time t ∈ [T
m

i , T
m̄

i ] and update (2.101).

There are different cases that can happen and activate either the state or control

constraints. Next, we consider the cases that CAV only travels on the constrained arcs except

the rear-end safety (2.52).

CAV travels on different constrained arcs

Case 1: CAV i ∈ N (t) enters the constrained arc ui(t) = umax at Tm

i . Then, it moves

to the constrained arc ui(t) = umin at τ1 and stays on it until T m̄

i .

Theorem 2.3.26. Let T
m

i and T
m̄

i be the schedules of CAV i ∈ N (t) for zones m, m̄ ∈ Ii
respectively, where zone m̄ is right after m. In zone m, the CAV i first enters the constrained

arc ui(t) = umax and then the arc ui(t) = umin, if the speed constraint does not become

active in zone m and

T
m̄

i − T
m

i = R
m

i . (2.104)

Proof. Let CAV i ∈ N (t) enter and and exit the zone m ∈ Ii at Tm

i and Tm′

i respectively.

Substituting (2.56) into T m̄

i − T
m

i = R
m

i , we have Tm′

i − T
m

i = R
m

i . Thus, CAV i is traveling

at the earliest feasible time in zone m. Since the speed constraint is not active, the solution

is equivalent to the solution of the release time problem (Problem 2.3.12) when the speed

constraint is not active.

In the above case, the optimal control input is

u∗i (t) =

 umax , if T
m

i ≤ t < τ1

umin , if τ1 ≤ t ≤ T
m̄

i

. (2.105)
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Substituting (2.105) in (2.1), we have

p∗i (t) =
1

2
umaxt

2 + bit+ ci, v∗i (t) =umaxt+ bi, ∀ t ∈ [T
m

i , τ
−
1 ], (2.106)

p∗i (t) =
1

2
umint

2 + dit+ ei, v∗i (t) =umint+ di, ∀ t ∈ [τ+1 , T
m̄

i ], (2.107)

where bi, ci, di and ei are constants of integration, which are found by using initial conditions

pi(T
m

i ), vi(T
m

i ) and final conditions pi(T
m̄

i ), vi(T
m̄

i ) of the CAV in zone m ∈ Ii. The

switching point τ1 can be found from (2.82).

Case 2: CAV i enters the constrained arc ui(t) = umax at Tm

i , then it moves to the

constrained arc vi(t) = vmax at t = τ1. It exits the constrained arc vi(t) = vmax at t = τ2, and

it enters the constrained arc ui(t) = umin and stays on it until T m̄

i .

Corollary 2.3.27. Case 2 is realized for CAV i ∈ N (t) travelling in zone m ∈ Ii, if the speed

constraint becomes active and (2.104) holds.

Proof. The proof is similar to the proof of Theorem 2.3.26, and thus, it is omitted.

In this case, the optimal control input is

u∗i (t) =


umax , if T

m

i ≤ t < τ1

0 , if τ1 ≤ t ≤ τ2

umin , if τ2 ≤ t ≤ T
m̄

i

. (2.108)

Substituting (2.108) in (2.1), we have

p∗i (t) =
1

2
umaxt

2 + bit+ ci, v∗i (t) =umaxt+ bi, ∀ t ∈ [T
m

i , τ
−
1 ], (2.109)

p∗i (t) =vmaxt+ di, v∗i (t) =vmax, ∀ t ∈ [τ+1 , τ
−
2 ], (2.110)

p∗i (t) =
1

2
umint

2 + eit+ fi, v∗i (t) =umint+ ei, ∀ t ∈ [τ+2 , T
m̄

i ], (2.111)
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where bi, ci, di, ei and fi are constants of integration, and time τ1 and τ2 are times that we

move from one arc to another arc, which are found by using initial and final conditions in

zone m and continuity of states at τ1 and τ2.

Case 3: CAV i ∈ N (t) enters the constrained arc ui(t) = umin at Tm

i . Then, it moves

to the constrained arc ui(t) = umax at τ1 and stays on it until T m̄

i .

Theorem 2.3.28. Let T
m

i and T
m̄

i be the schedules of CAV i ∈ N (t) for zones m, m̄ ∈ Ii
respectively, where zone m̄ is right after zone m. In zone m, CAV i first enters the constrained

arc ui(t) = umin, and then the constrained arc ui(t) = umax, if the speed constraint does not

become active in zone m and

T
m̄

i − T
m

i = Dm
i . (2.112)

Proof. The proof is similar to the proof of Theorem 2.3.26, and thus, it is omitted.

In this case, the optimal control input is

u∗i (t) =

 umin , if T
m

i ≤ t < τ1

umax , if τ1 ≤ t ≤ T
m̄

i

. (2.113)

Substituting (2.113) in (2.1), we have

p∗i (t) =
1

2
umint

2 + bit+ ci, v∗i (t) = umaxt+ bi, ∀ t ∈ [T
m

i , τ
−
1 ], (2.114)

p∗i (t) =
1

2
umaxt

2 + dit+ ei, v∗i (t) = umint+ di, ∀ t ∈ [τ+1 , T
m̄

i ], (2.115)

where bi, ci, di, and ei are integration constants, which can be computed by using initial and

final conditions of CAV in zone m ∈ Ii respectively. The switching point τ1 can be found

from (2.83).

Case 4: CAV i enters the constrained arc ui(t) = umin at Tm

i , then it moves to the

constrained arc vi(t) = vmin at t = τ1. It exits the constrained arc vi(t) = vmin at t = τ2, and

it enters the constrained arc ui(t) = umax and stays on it until T m̄

i .
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Corollary 2.3.29. Case 4 is realized for CAV i ∈ N (t) travelling in zone m ∈ Ii, if the speed

constraint becomes active in zone m and (2.112) holds.

Proof. The proof is similar to the proof of Theorem 2.3.26, and thus, it is omitted.

In this case, the optimal control input is

u∗i (t) =


umin , if T

m

i ≤ t < τ1

0 , if τ1 ≤ t ≤ τ2

umax , if τ2 ≤ t ≤ T
m̄

i

. (2.116)

Substituting (2.116) in (2.1), we have

p∗i (t) =
1

2
umint

2 + bit+ ci, v∗i (t) =umint+ bi, ∀ t ∈ [T
m

i , τ
−
1 ], (2.117)

p∗i (t) = vmint+ di, v∗i (t) =vmin, ∀ t ∈ [τ+1 , τ
−
2 ], (2.118)

p∗i (t) =
1

2
umaxt

2 + eit+ fi, v∗i (t) =umaxt+ ei, ∀ t ∈ [τ+2 , T
m̄

i ]. (2.119)

CAV travels on a combination of constrained and unconstrained arcs

Using (2.1), we first start with the unconstrained solution of Problem 2.3.15. If the

solution violates any of the speed (2.3) or control (2.2) constraints, then we piece the arcs

together as it was described in 2.2.3.

CAV enters the safety constrained arc

Let CAV i enter and exit zonem ∈ Ii at Tm

i and T m̄

i respectively. CAV k ∈ N (t)\{i}

is immediately positioned in front of CAV i in zone m, and CAV i activates the rear-end

safety constraint (2.52) at time τ1 ∈ [T
m

i , T
m̄

i ]. We have two cases to consider: Case 1:

CAV i remains in the constrained arc until T m̄

i or Case 2: CAV i exits the constrained arc at

τ2 ∈ [τ1, T
m̄

i ].
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Lemma 2.3.30. Let CAV i ∈ N (t) and k ∈ N (t) \ {i} enter zone m at time T
m

i and T
m

k

respectively. Let CAV k be immediately ahead of i. Then the rear-end safety constraint for

CAV i does not become active at the entry of zone m, if the minimum time headway th ∈ Γi,

where

Γi = {t |
1

2
umint

2 + vk(T
m

k )t− φvi(T
m

i )− γi > 0, ∀ t ∈ R≥0}. (2.120)

Proof. Since CAV i and k cruise on the same lane, (2.57) simplifies to Tm

i ≥ T
m

k + th. For

CAV k we have

pk(t) < pk(t
′), ∀ t < t′ ∈ R≥0, (2.121)

inf(pk(T
m

i )) = pk(T
m

k + th), T
m

i ≥ T
m

k + th. (2.122)

Evaluating the (2.52) at time Tm

i yields

(pk(T
m

i )− pk(T
m

k ))− (pi(T
m

i )− pi(T
m

i )) ≥ γi + φvi(T
m

i ). (2.123)

Then, we have

(pk(T
m

i )− pk(T
m

k )) ≥ γi + φvi(T
m

i ), (2.124)

(pk(T
m

i )− pk(T
m

k )) ≥ inf((pk(T
m

i )− pk(T
m

k ))), (2.125)

where inf((pk(T
m

i )− pk(T
m

k ))) = pk(T
m

k + th)− pk(T
m

k ). If

pk(T
m

k + th)− pk(T
m

k ) > γi + φvi(T
m

i ) (2.126)

holds, then (2.124) also holds, and the rear-end safety constraint never becomes active at

t = T
m

i .

The LHS of (2.126) corresponds to the distance that CAV k travelled after th seconds
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from its entry in the zone m, denoted by ∆m
k (th, ui(t)). Thus,

argmin
ui(t)

∆m
k (th, ui(t)) = umin. (2.127)

Substituting (2.127) and t = th into (2.1), we have

∆m
k =

1

2
umint

2
h + vi(T

m

k )th. (2.128)

If (2.128) is greater than γi + φvi(T
m

i ), it yields (2.126), and the proof is complete.

Lemma 2.3.31. If the rear-end safety constraint becomes active for CAV i ∈ N (t) at

τ1 ∈ (T
m

i , T
m̄

i ), then it must exit the rear-end safety constrained arc at τ2 ∈ [τ1, T
m̄

i ).

Proof. From Lemma 2.3.30, the rear-end safety constraint of CAV i with a schedule Tm

i ∈ Ti
does not become active at the entry of zone m ∈ Ii. Thus, if the rear-end safety constraint of

CAV i becomes active at τ1, it must exit the constrained arc before it exits zone m.

Suppose CAV i ∈ N (t) enters the zone m at time t = T
m

i and at some time t = τ1, the

rear-end safety constraint with the vehicle k becomes active until t = τ2, dm(pk(t), pi(t)) =

δi(t) for all t ∈ [τ1, τ2], in this case µsi ̸= 0. Let Ni(t,xi(t)) = (p∗i (t)− p∗i (T
m

i ))− (p∗k(t)−

p∗k(T
m

k )) + γ + v∗i (t). Note that, p∗i (T
m

i ) and p∗k(T
m

k ) are time-invariant and we can simplify

the notation by defining γ̄ = −p∗i (T
m

i ) + p∗k(T
m

k ) + γ. Thus, we have

Ni(t,xi(t)) = p∗i (t)− p∗k(t) + γ̄ + φv∗i (t). (2.129)

Since Ni(t,xi(t)) = 0 for t ∈ [τ1, τ2], its first derivative, which is dependent on the optimal

control input, should vanish in t ∈ [τ1, τ2]

N
(1)
i (t,xi(t)) = v∗i (t)− v∗k(t) + φu∗i (t) = 0. (2.130)
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By taking a time derivative from (2.130), the optimal control input of CAV i, when rear-end

safety constraint is active can be found from solving the following ODE.

u̇∗i (t) +
1

φ
u∗i (t)−

1

φ
u∗k(t) = 0, ∀ t ∈ [τ1, τ2]. (2.131)

The optimal solution need to satisfy the following jump conditions on costates upon entry the

constrained arc at t = τ1

λpi (τ
−
1 ) = λpi (τ

+
1 ) + πi

∂Ni

∂pi
= λpi (τ

+
1 ) + πi, (2.132)

λvi (τ
−
1 ) = λvi (τ

+
1 ) + πi

∂Ni

∂vi
= λvi (τ

+
1 ) + φπi, (2.133)

Hi(τ
−
1 ) = Hi(τ

+
1 )− πi

∂Ni

∂t
= Hi(τ

+
1 ) + πiv

∗
k(t), (2.134)

where πi is a constant Lagrange multipliers, determined so that Ni(τ1,xi(τ1)) = 0. At the

exit point of the constrained arc we have

λpi (τ
−
2 ) = λpi (τ

+
2 ), λvi (τ

−
2 ) = λvi (τ

+
2 ), Hi(τ

−
2 ) = Hi(τ

+
2 ). (2.135)

As described earlier, the three arcs need to be solved simultaneously using initial and final

conditions (speed and position), and interior conditions at unknown time τ1 and τ2 (continuity

of speed and position, jump conditions (2.129)-(2.135)). The complete analytical solution

when the rear-end safety constraint becomes active has been presented in [77, 91].

2.3.5 Simulation Results

To evaluate the effectiveness of the proposed framework to improve travel time and

the traffic throughput, we investigate coordination of CAVs at two adjacent intersections

considering different traffic volumes, and then compare the results with the baseline scenario

consisting of two-phase traffic signals. We consider two adjacent intersections which are 100

m apart. In addition, the length of each road connecting to the intersections is 300 m, and the

length of the merging zones are 30 m. We used the following parameters for the simulation:
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th = 1.5 s, vmin = 5 m/s, vmax = 25 m/s, vmerge = 15 m/s umin = −1 m/s2, umax = 1 m/s2,

γ = 5 m, and φ = 0.2 s.

For the first scenario, we consider CAVs enter the control zone with initial speed

uniformly distributed between 13 m/s to 16 m/s from four conflicting paths shown in figure

2.11 with equal traffic volumes. We construct the baseline scenario with two-phase fixed-time

traffic signals in PTV-VISSIM by considering all vehicles as human-driven and without

any vehicle-to-vehicle communication. We use VISSIM built-in traffic signal optimizer

to obtain the traffic signal timing. To emulate the driving behavior of real human-driven

vehicles, we use a built-in car-following model (Wiedemann [192]) in PTV-VISSIM with

default parameters. We let the speed limit for the baseline scenario to be vmax. In the optimal

scenario, we use MATLAB to simulate our framework. To compare the optimal scenario with

the baseline scenario, CAVs enter the control zone at the same time, speed, and path that they

entered in the baseline scenario. Videos of the experiment can be found at the supplemental

site, https://sites.google.com/view/ud-ids-lab/TITS.

Table 2.6 presents the average travel time of all CAVs inside the control zone for the

baseline and optimal scenarios at different traffic volumes ranging from 400 veh/h to 1200

veh/h per path. For each traffic volume, we performed five simulations with different random

seeds and averaged the results. Within our proposed framework, average travel time has been

decreased by 21%− 33% compared to the baseline scenario. Relative frequency histogram

of travel time of each CAV for traffic volume 1200 veh/h for a randomly selected seed for

the baseline and optimal scenarios are shown in Fig. 2.15. The optimal scenario has a high

relative frequency of lower travel time compared to the baseline scenario. Travel time for

65% of CAVs lies in the range [40s-50s] for the optimal scenario, whereas travel time of

vehicles for the baseline scenario has a higher variation, and only 20% of vehicles’ travel

time is in the range [20s-50s]. In the optimal scenario, maximum travel time is in the range

[60s-70s] compared to the maximum range [120s-130s] for the baseline scenario. Although

we used VISSIM built-in traffic signal optimizer to obtain the traffic signal-timing in the

baseline scenario, it is worth mentioning that one potential direction to explore is to construct
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Figure 2.15: A relative frequency histogram for travel time of each vehicle for the baseline
and optimal scenarios with traffic volume 1200 veh/h.

the baseline case such that human-driven vehicles cross a multiple signal-free intersections

using a standard car-following model. This approach allows a fairer comparison since the

vehicles do not have to come to a full stop due to a traffic light.

Table 2.6: Average travel time of vehicles in the optimal and baseline scenarios for different
traffic volumes.

Traffic volume Average number Average travel time (s) Decrease
(veh/h) of vehicles Baseline Optimal %

400 14 51.89 40.81 21
600 18 57.52 41.86 27
800 25 63.30 43.26 32
1000 31 68.82 46.59 32
1200 36 72.15 48.53 33

The instantaneous average, maximum and minimum speed of CAVs inside the control

zone for the baseline and optimal scenarios with traffic volume 600 veh/h, 1000 veh/h,

and 1200 veh/h for a randomly selected seed are illustrated in Fig 2.16. The instantaneous

minimum speed for all traffic volumes in the optimal scenario is positive and higher than vmin

indicating smooth traffic flow, compared to the baseline scenario, which experiences much

stopping due to the traffic lights. Relative frequency histogram of the average speed of each
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CAV for traffic volume 1200 veh/h for the baseline and optimal scenarios are plotted in Fig.

2.17 on top of each other. Figure 2.17 shows that, in the baseline scenario, the average speed

of almost all CAVs are lower than the optimal scenario, and that the CAVs in the optimal

scenario speed up and 70% of CAVs achieve mean speed higher than 14 m/s, whereas in the

baseline scenario vehicles decrease their speed while 75% of the vehicles have mean speed

less than 12 m/s.

 Vavg (m/s)_Optimal

(a)

 Vavg (m/s)_Optimal

(b)

 Time-optimal
 Vavg (m/s)_Baseline
 Vavg (m/s)_Optimal

(c)

Figure 2.16: The instantaneous average, maximum and minimum speed of CAVs inside the
control zone for the baseline and optimal scenarios with traffic volume (a) 600 veh/h, (b)
1000 veh/h and (c) 1200 veh/h.

To evaluate the fuel efficiency improvement through our framework, we use a poly-

nomial meta-model proposed in [193], which approximates the fuel consumption in ml/s as

a function of speed and control input of a CAV and coefficients obtained from an engine

torque-speed-efficiency map of a typical car. Table 2.7 summarizes the average fuel rate

and fuel consumption for the optimal and baseline scenarios at different traffic volumes for

which five simulations with different random seeds were performed, and the results were

averaged. Although our time-optimal framework results in higher average fuel rate compared

to the baseline scenario, it leads to smaller fuel consumption as the traffic flow gets higher.

A higher fuel rate in our approach is the result of speeding to reach the speed imposed at

the boundaries of zones in the merging zones, i.e., vmerge. Similarly, setting vmerge at the

boundaries of zones may lead to a discontinuity of the control input at these points, which

can cause a higher fuel rate, and passenger discomfort. As it can be seen, there is a trade-off

between minimizing travel time and energy consumption. One may consider minimizing

them jointly by formulating a multi-objective cost function as proposed by [78, 79] for a
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Figure 2.17: A relative frequency histogram for mean speed of each vehicle for the baseline
and optimal scenarios with traffic volume 1200 veh/h.

single intersection, or using a recursive structure for the upper-level problem in [65] to trade

off between the energy minimization and throughput maximization indirectly.

Table 2.7: Average fuel rate, and fuel consumption of vehicles in the optimal and baseline
scenarios for different traffic volumes.

Traffic volume Average fuel rate (ml/s) Average fuel consumption (l)
(veh/h) Baseline Optimal Baseline Optimal

400 1.53 2.03 0.076 0.083
600 1.45 1.92 0.079 0.080
800 1.35 1.80 0.079 0.077
1000 1.29 1.62 0.079 0.074
1200 1.24 1.57 0.077 0.075

The mean and standard deviation of computation times of CAVs in solving the MILP

in the scheduling problem (Problem 2.3.10) for different traffic volumes is listed in Table

2.8. For each traffic flow, we choose the seed with a maximum mean of computation time to

report. It shows that the scheduling problem is computationally feasible and does not grow

exponentially with increasing the traffic volume and number of CAVs. The mean computation

time of CAVs in different traffic volumes is in the range [21 ms - 25.4 ms] with a very small

standard deviation.
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In the second scenario, we further evaluate the performance of our upper-level schedul-

ing approach compared to the centralized scheduling and FIFO queuing policy. Namely, we

consider all different possible paths in two adjacent intersections. We have six different origins

or destination for vehicles, including northbound 1 (NB1), northbound 2 (NB2), eastbound

(EB), westbound (WB), southbound 1 (SB1), and southbound 2 (SB2) (Fig. 2.18). There are

five possible paths for each origin, which in total would be 30 possible paths. We assume

that CAVs enter the control zone based on a Poisson process with a rate of 1 second. We

performed five simulations with random seeds for different numbers of vehicles and averaged

the results.

Figure 2.18: Two interconnected intersections with origins and destinations.

To obtain the maximum possible performance of the system in the centralized schedul-

ing, we consider that the initial conditions of all CAVs, including their arrival time and their

initial speed at the control zone, are known to the central controller. We then formulated

a centralized scheduling problem aimed at minimizing the average travel time of all CAVs

subject to the constraints (2.55) and (2.57). The solution to the centralized scheduling problem

is schedule tuples of all CAVs, which then can be used as inputs for the low-level problem.

On the other hand, in our upper-level scheduling formulation, each CAV solves the scheduling

problem upon entering the control zone, and once the solution is derived, then the schedule

tuple of the CAV does not change. When a new CAV i enters the control zone, the schedule
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tuples of other CAVs are fixed since they entered earlier, and they have already obtained

their optimal schedule tuples. Using this sequential decision-making approach, we may

sacrifice optimality in terms of minimizing total travel time since we assume that when a new

vehicle arrives, it cannot change the schedule of the vehicles that arrived earlier. However,

the optimality gap between the centralized and decentralized solution may be reduced by

introducing a re-planning framework to update the schedules of the vehicles as new vehicle

arrives.

Figure 2.19 illustrates the average travel time of all CAVs and computation time for

our decentralized scheduling approach, centralized scheduling, and FIFO queuing policy.

As it can be seen, there is a close gap between the average travel time achieved by our

decentralized scheduling problem and the centralized scheduling problem. However, the

computation complexity of the centralized scheduling problem renders it inapplicable for

real-time implementation. Moreover, there are significant delays in travel time caused by the

strict FIFO queuing policy leading into sub-optimal solutions for two adjacent intersections.

Note that, by increasing the number of vehicles from 15 to 75, average travel time is changed

from 41 s to 44.6 s, and from 40 s to 42.9 s for decentralized and centralized scheduling,

respectively. However, this is not a significant change since the vehicles arrive at the control

zone at the fixed flow rate based on the Poisson process with a rate of 1 second.

To demonstrate the effects of flow rate on the performance of our approach, we evaluate

the coordination of 30 vehicles arriving at all possible paths under different Poisson process

arrival rates compared to the centralized scheduling and FIFO queuing policy. Similar to the

previous scenarios, we performed 5 simulations with random seeds for different arrival rates

and averaged the results. Figure 2.20 shows the average travel time and average computation

time for decentralized scheduling, centralized scheduling, and FIFO queuing policy. In Fig.

2.20, smaller Poisson arrival rates correspond to the higher traffic volumes. In all three

approaches, by decreasing traffic volume, average travel time increases; however, this change

is more significant in the FIFO queuing policy. In the centralized scheduling approach, the

computation complexity increases with the increase in traffic volume, making it difficult for
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Figure 2.19: Average travel time and computation time of decentralized scheduling, central-
ized scheduling, and FIFO queuing policy for different numbers of vehicles.

real-time implementation.

Since vmerge is imposed a priori, upon entering the control zone CAV i might find the

scheduling problem (Problem 2.3.10) infeasible. In this case, CAV i searches for the largest

speed less than vmerge, in which the scheduling problem has a feasible solution. Note that

due to the cheap computation cost of solving the scheduling problem (Table 2.8), this can

be achieved in real time. However, if there is a scenario of high-traffic volume and vmin > 0,

the scheduling problem may still have not a feasible solution. To address this problem, it is

required to set vmin = 0, implying that the latest feasible time for CAV i to travel at zone

m ∈ Ii is infinity. Thus, to satisfy the safety constraint, the arrival time at zone m might be

too big resulting in CAV i reaches to a full stop if the road reaches its maximum capacity.

2.4 A Hysteretic Q-learning Coordination Framework for Emerging Mobility Systems

in Smart Cities

In this section, we provide a decentralized coordination framework for CAVs at a

signal-free intersection to minimize travel time and improve fuel efficiency. We employ
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Figure 2.20: Average travel time and computation time of decentralized scheduling, central-
ized scheduling, and FIFO queuing policy for 30 vehicles with different Poisson arrival rates.

Table 2.8: The mean, and standard deviation of computation times of CAVs in solving the
MILP.

Traffic volume Total vehicles Mean Standard deviation
(veh/h) (ms) (ms)

400 16 21.0 2.9
600 19 21.3 1.6
800 25 23.8 2.3
1000 29 24.1 2.2
1200 35 25.4 1.9
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a simple yet powerful reinforcement learning approach, an off-policy temporal difference

learning called Q-learning, enhanced with a coordination mechanism to address this problem.

Then, we integrate a FIFO queuing policy to improve the performance of our system. We

demonstrate the efficacy of our proposed approach through simulation and comparison with

the classical optimal control method based on Pontryagin’s minimum principle.

The rest of this section is structured as follows. In subsection 2.4.1, we introduce

the problem formulation which includes main elements of the proposed framework, FIFO

queuing policy, and combined hysteretic Q-learning with FIFO framework. We present the

simulation framework in subsection 2.4.2, and the corresponding results in subsection 2.4.3.

2.4.1 Problem Formulation

We consider a single-lane signal-free intersection where the distance from the entry

of the control zone to the entry of the merging zone is L ∈ R>0. The length of the merging

zone is denoted by D ∈ R>0. We limit our analysis to the cases where left/right turns and

lane-changing maneuvers are not allowed.

We formulate this problem as a multi-agent Markov decision process ⟨n, S, U ,

P, R, γ⟩, where n ∈ N is total number of CAVs, S := ×ni=1S i is a finite set of states of all

CAVs, U := ×ni=1U i is the joint action space, where U i, i ∈ {1, 2, . . . , n} is the finite set of

actions of CAV i, P := S × U × S → [0, 1] is the state transition probability which defines

the transition probability between states, R := S × U → R is the reward function for all

CAVs, Ri is the reward function for CAV i, and γ ∈ [0, 1] is a discount factor.

Next, we briefly explain different approaches to formulate the Q-learning updates

along with advantages and disadvantages of each approach. For CAV i, we use sik and uik

to denote the state and action that CAV i takes at time step k ∈ N, respectively. Taking

action uik ∈ U i, CAV i transitions from sik ∈ S i to sik+1 ∈ S i and receives the reward

rik = Ri(sik, u
i
k). In the centralized update rule, the multi-agent system is viewed as a whole

and is solved as a single-agent learning task, in which there is only a single Q-function. The
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update rule is

Q(sk, u
1
k, . . . , u

n
k)← (1− α)Q(sk, u1k, . . . , unk)

+α

[
rk + γ max

u1k+1,··· ,u
n
k+1

Q(sk+1, u
1
k+1, . . . , u

n
k+1)

]
, (2.136)

where sk ∈ S is the state of the system (collection of states of all CAVs), rk = R(sk, u
1
k, . . .

, unk) is the total cost incurred on the system at time step k ∈ N, and α ∈ (0, 1] is the learning

rate. Although, theoretically, this approach converges with probability 1 to the optimal action-

value function, it does not scale well when the number of agents is increasing as the size of

Q-table grows exponentially.

In the decentralized framework, each CAV is an independent learner (IL) with a

corresponding Q-function. The update rule for CAV i is

Qi(sik, u
i
k)← Qi(sik, u

i
k)

+ α

[
rik + γmax

uik+1

Qi(sik+1, u
i
k+1)−Qi(sik, u

i
k)

]
, (2.137)

where sik+1 ∈ S i is the state of CAV i at time step k + 1. This approach has a smaller size

Q-table than the centralized approach, and by increasing the number of agents, the Q-table’s

size does not grow exponentially. However, one of the drawbacks of this method is the lack

of any coordination mechanism.

In our problem, CAVs need to coordinate to cross the intersection safely. Without

a coordination mechanism, a CAV may select an optimal action, but it gets penalized due

to the sub-optimal actions of other CAVs. It has been shown in [109, 197, 198], that using

decentralized learning in a multi-agent framework with interacting agents leads to more

oscillation in the learned policy and poorer performance compared to the centralized approach.

In addition, since all CAVs are learning synchronously, the environment is not stationary

anymore from the perspective of any CAV. Since past actions of some CAVs may affect

the current behavior of other CAVs, the system is not Markovian. The latter implies that
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convergence is not guaranteed for every single CAV [198].

Matignon et al. [198] first presented the hysteretic Q-learning approach to incorporate

coordination among ILs in a decentralized RL framework by including two learning rates.

They showed that by incorporating two learning parameters α and β, without affecting the Q-

table size, the coordination among IL agents could be achieved. In addition, the performance

of the system is as good as the centralized approach of multi-agent RL. The update rule is

given by

δ ← rik + γmax
uik+1

Qi(sik+1, u
i
k+1)−Qi(sik, u

i
k), (2.138)

where

Qi(sik, u
i
k) =

Q
i(sik, u

i
k) + αδ, if δ ≥ 0,

Qi(sik, u
i
k) + βδ, otherwise,

(2.139)

where δ is a temporal difference (TD) error and β < α ∈ (0, 1]. By using smaller learning rate

when TD error is negative, the update results in a slower degradation of Q-value (hysteresis)

associated with positive past experience. For instance, due to the sub-optimal actions of other

CAVs in the environment, CAV i may get penalized by doing action ui at state si, for which it

received a positive reward in the past. In this case, the effects of this penalty on Q-value of

agent i should be less important.

Main Elements of Proposed Framework

We adopt the hysteretic Q-learning formulation to update the Q-tables for each CAV

which is an IL agent with a unique assigned index. Next, we present the main elements of our

approach, including states, actions, and rewards.

At time step k, we consider that CAV i partially observes the system, and its state

is sik :=
〈
pik, v

i
k, X

i,rear
k , P i,lat

k

〉
, where pik and vik are its position and speed, respectively;

X i,rear
k :=

〈
pjk, v

j
k

〉
consists of the position and speed of CAV j, which is immediately ahead

of CAV i and P i,lat
k consists of the position of the three closest vehicles to the exit of merging

87



zone that have a potential of lateral collision with CAV i; and P i,lat
k consists of the position of

the three closest vehicles to the exit of merging zone that have a potential of lateral collision

with CAV i.

CAV i has to choose action uik at time step k which is acceleration/deceleration from a

discrete bounded set U i with lower bound ui,min and upper bound ui,max which correspond to

the minimum and maximum allowable control input of CAV i, respectively. Without loss of

generality, we do not consider variation among CAVs’ maximum and minimum control input.

To this end, we set ui,min = umin and ui,max = umax. In order to choose all actions in all states

with nonzero probability and balance between exploration and exploitation, we employ the

epsilon-greedy algorithm with a linear decay as follows

ρ = max

{
total episodes− current episode

total episodes
, 0

}
, (2.140)

ϵ = (ϵi − ϵf )ρ+ ϵf , (2.141)

where ρ, ϵi, and ϵf are decay rate, initial and final ratio of exploration, respectively. In a RL

framework, each episode represent a simulation, in which there is a corresponding epsilon

found from (2.141). The corresponding epsilon determines the probability that an agent takes

a random action at each episode. The epsilon found from (2.141) is bounded between initial

and final ratio of exploration.

uik =


argmax

uik

Qi(sik, u
i
k), with probability 1− ϵ,

random action, with probability ϵ,
(2.142)

where ϵ is a small positive number. Employing epsilon-greedy with a linear decay results in

more exploration at the earlier episodes and less at the final episodes which can improve the

performance of the framework. It is worth mentioning that by choosing a same value for ϵi

and ϵf , the algorithm simplifies to the epsilon-greedy algorithm without decay.

CAV i takes an action uik at time step k, transitions from state sik to the new state sik+1,
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and receives a reward (or penalty) rik based on the multi-objective cost rik = w1 · rifuel + w2 ·

ridelay +w3 · rispeed +w4 · rirear +w5 · rilateral, where w1, . . . , w5 ∈ R≥0 are the weighting factors

corresponding to the following costs.

We use the L2-norm of the control input at each time step k as a penalty to reduce the

control effort, which decreases fuel consumption.

rifuel = −
∥uik∥2

(max{∥umax∥, ∥umin∥})2
. (2.143)

To improve the travel time, we define the time delay at each time step as a difference

between the time that it takes for CAV i to reach its current position from the entry of the

control zone and the time it would have taken for CAV i to cruise with the initial speed from

the entry of the control zone until its current position. Considering CAV i at time step k, the

traveled distance measured from the entry of the control zone is pik, and its entry speed is

denoted by vi0, the normalized penalty corresponding to delay is ridelay = −
(k∆t− τ)

τ
, where

∆t ∈ R>0 is the time step and τ =
pik
vi0

.

For each CAV i, at each time step k, the speed is bounded by 0 ≤ vmin ≤ vik ≤ vmax,

where vmin, vmax are the minimum and maximum speed limit, respectively. To ensure the

speed constraint does not become active, we have

rispeed =

pspeed, if speed violates the constraint,

0, otherwise,
(2.144)

where pspeed ∈ R<0 is the penalty for violating the speed constraint, and is decided a priori.

To ensure the absence of rear-end collision between CAV i and a preceding CAV j at

time step k, we impose pjk − pik ≥ dsafe, where dsafe ∈ R>0 is a safe constant distance. The
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associated penalty for violating rear-end safety at each time step k is

rirear =

pcol, if pjk − pik < dsafe,

0, if pjk − pik ≥ dsafe,

(2.145)

where pcol ∈ R<0 is the penalty for violating the safety, and is decided a priori.

To guarantee lateral safety as CAVs cross the merging zone, we limit the merging zone

occupancy to only one CAV at a time for CAVs with lateral collision potentials. Considering

that CAVs i and j might have a lateral collision inside the merging zone, we construct the

penalty according to the following two cases: Case 1: CAV i is outside the merging zone at

time step k, and by taking action uik, it enters the merging zone while CAV j, which previously

entered the merging zone, is either still inside the merging zone, or it enters the merging zone

at the same time as CAV i. In this case, CAV i receives the penalty rilateral = pcol ∈ R<0. Case

2: CAV i is outside the merging zone at time step k, and by taking an action uik, it enters the

merging zone while, at the same time step k, CAV j exits the merging zone. In this case, CAV

i receives no penalty.

If by the time CAV i enters the merging zone, there are more than one CAVs inside

the merging zone that can cause a lateral collision with CAV i, then CAV i gets penalized

for each of these CAVs separately equal to pcol. To encourage CAVs to have a safe pass

through the intersection, each CAV receives a terminal reward equal to n · rsuc (recall that n

is the total number of CAVs) when it exits the control zone, if the episode did not have any

crashes, where rsuc ∈ R>0 is the success reward. Additionally, the episodes with a crash are

terminated, and a new episode starts. Algorithm 4 shows the pseudocode of our decentralized

coordination-aware framework for CAV i.

FIFO Queuing Policy

Here, we provide a brief overview of a common approach in motion planning of

CAVs at signal-free intersections called FIFO queuing policy. By imposing a FIFO queuing
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Algorithm 4 Hysteretic Q-learning Pseudocode for CAV i
Input: α, β
1: Initialize Qi(sik, u

i
k) = 0 ∀sik ∈ Si, ui

k ∈ U i

2: for t = 1 : total episodes do
3: Reset entry time and speed randomly
4: for k = 1: maximum time step do
5: if CRASHED then
6: Break
7: end if
8: sik ← Compute current state
9: ui

k ← Pick an epsilon-greedy action
10: sik+1 ← Simulation
11: CRASHED← Did any CAVs violate the rear-end or lateral safety constraint? ▷ it is set to true, if

there is any collision in the episode
12: rik ← Compute reward
13: δ ← rik + γmax

ui
k+1

Qi(sik+1, u
i
k+1)−Qi(sik, u

i
k)

14: if δ ≥ 0 then
15: Qi(sik, u

i
k)← Qi(sik, u

i
k) + αδ

16: else
17: Qi(sik, u

i
k)← Qi(sik, u

i
k) + βδ

18: end if
19: end for
20: end for

policy, each CAV must enter the merging zone in the same order that it entered the control

zone. Let N(t) ∈ N be the total number of CAVs that have entered the control zone

by the time t, N (t) = {1, . . . , N(t)} be the queue which designates the order in which

CAVs enter the merging zone, and t0i , t
m
i ∈ R>0 denote the time when CAV i ∈ N (t)

enters the control zone and merging zone, respectively. The optimal entry time, which

satisfies safety and speed constraint, can be found through the following recursive structure

[65]. If i = 1, tm∗
i = t0i +

L
vi0

; if i − 1 ∈ safe, tm∗
i = max{tm∗

i−1, t
m∗
j + th, t

c
i}; or if

i − 1 ∈ {lateral, rear-end}, tm∗
i = max{tm∗

i−1 + th, t
c
i}, where based on the path of CAV

i− 1 and CAV i, CAV i− 1 belongs to one of the following subsets: (1) safe, if there is no

potential for collision with CAV i. (2) lateral, if there is a potential for lateral collision with

CAV i. (3) rear-end, if CAV i− 1 is the CAV immediately positioned in front of CAV i. The

earliest feasible time that CAV i can reach the merging zone is denoted by tci , and th is the

safe time-headway to ensure safety at the entrance of the merging zone. If i = 1, CAV i

cruises with the constant speed that it entered the control zone. Index j in tmj represents CAV
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j which is physically located in front of CAV i.

Combined Hysteretic Q-learning with FIFO Framework

In our hysteretic Q-learning framework, we aimed at achieving the lateral safety

through our state and reward architecture. Due to the fact that after each crash the simulation

episode is terminated, an increasing number of CAVs may require a greater number of simula-

tion episodes, which might become less applicable in the real systems. In this subsection, we

introduce an enhanced framework which is a combination of FIFO and hysteretic Q-learning.

In this framework, CAVs first find the optimal arrival time at merging zone recursively through

a FIFO queuing policy at the start of each simulation episode. Since the lateral safety, and

time-delay minimization are considered in the FIFO queuing policy [65], we need to modify

the state and reward function in our Q-learning framework. The revised state of CAV i

at time step k is sik :=
〈
pik, v

i
k, X

i,rear
k ,∆tm

∗
i

〉
, where pik and vik are its position and speed,

respectively; and X i,rear
k :=

〈
pjk, v

j
k

〉
consists of the position and speed of CAV j, which is

immediately ahead of CAV i. The difference between the optimal arrival time at merging

zone, and arrival time at the control zone is captured in the last element ∆tm∗
i = tm

∗
i − t0i ,

which takes value from a bounded set defined by speed limits of the roads. In the revised

reward function, the weights regarding the lateral collision and delay terms are set to zero and

rik = w′1 · rifuel +w′2 · rispeed +w′3 · rirear +w′4 · riFIFO, where w′1, . . . , w
′
4 ∈ R are new weighting

factors. To encourage CAV i to reach the merging zone at the planned arrival time tm∗
i , we

define riFIFO = −(EAT− tm∗
i )2 to be the negative of the normalized squared error of arrival

time at the merging zone computed as the difference of the estimated arrival time (EAT) at the

merging zone and the optimal arrival time. At time step k, the EAT of CAV i is approximated

by assuming that CAV i cruises with a constant speed vik for the rest of the path until the

merging zone.

As CAV i enters the merging zone, the crossing time tmi is compared to the optimal

arrival time tm∗
i , and CAV i receives the last FIFO reward as riFIFO = pFIFO × (tmi − tm

∗
i )2,

where pFIFO ∈ R<0 is the penalty for violating the FIFO arrival time, and is decided a priori.
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After entering the merging zone, w′4 for CAV i is set to zero.

2.4.2 Simulation Setup

In our decentralized hysteretic Q-learning framework, at each time step each CAV

needs to store the updated Q-value corresponding to the pair of current state and selected

action. The discretization level not only directly affects the size of the Q-table, which each

CAV stores, but it also influences the performance of our approach. Hence, determining

proper discretization levels is a trade-off between the Q-table size and performance of the

algorithm. Moreover, selecting improperly large or small values for time discretization results

in poor performance, or even oscillating behavior. For instance, selecting a very small time

step compared to the state discretization level leads to a situation in which a CAV takes action,

but its state does not change. On the other hand, by selecting a very large time step, the

system’s safety might be jeopardized. The discretization level for position, speed, control

input, and time are selected as ∆p = 2 m, ∆v = 1 m/s, ∆u = 0.5 m/s2, and ∆t = 0.5 s,

respectively. The rest of the parameters are set as follows: ϵi = 0.6, ϵf = 0.01, α = 0.4,

β = 0.05, pspeed = −1, pcol = −100, pFIFO = −10 , rsuc = 10, w1 = w3 = w4 = w5 = 1,

w2 = 0.3, and w′i = 1, i = {1, . . . , 4}.

At the start of each episode, the initial conditions of CAVs are reset. In order to do

that, the initial speed is drawn randomly from a uniform feasible speed distribution, and the

arrival time of CAV i is computed as t0i =
∑i

a=0 Ya, where t0i is the sum of i independent and

identically distributed random variable Ya drawn from an exponential distribution with mean

2 s.

2.4.3 Simulation Results

To evaluate the effectiveness of our proposed framework, we investigate the coordina-

tion of CAVs at a signal-free intersection in two scenarios. We use the following parameters

for the simulation: dsafe = 4 m, vmin = 5 m/s, vmax = 15 m/s, umax = 3 m/s2, umin = −3

m/s2.
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Scenario 1: For our first scenario, we consider coordination of four CAVs using the

hysteretic Q-learning framework in an intersection where the length of each road connected to

the intersection is L = 32 m, the length of the merging zones is D = 18 m, and total episodes

of simulation are set to 2,000,000. CAV #1, #2, #3, #4, enter the control zone from southbound

(SB), eastbound (EB), northbound (NB), and westbound (WB), respectively. Figure 2.21

shows the Cartesian norm of Q-table for each CAV and the average norm, respectively;

which are computed after each 100 episodes. As it can be seen in Fig. 2.21, the norm of

the Q-table for all four CAVs reaches to stable values and does not change that much in the

final episodes. The difference in the converged value is due to the fact that during the earlier

episodes of training, CAV #3 and #4 are more likely to cause accidents and get penalized

compared to CAV #1 and CAV #2, since CAV #3 and #4 enter the control zone later. After

Figure 2.21: Norm of Q-table for CAVs in Scenario 1.

the training phase, we test the policies for 1,000 randomly generated simulation. The same

initial conditions for four CAVs are used to simulate the optimal control framework. The

optimal control framework consists of throughput maximization and energy minimization

problems. In the throughput maximization problem, each CAV computes its arrival time at

the merging zone based on a FIFO queuing policy. By restricting CAVs to have a constant

speed after entering the merging zone, each CAV derives its energy-optimal control input
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from the control zone’s entry until it reaches the merging zone considering speed and control

constraints. Details of this approach can be found in [65]. The position trajectories of four

CAVs for a randomly selected simulation is shown in Fig. 2.22 (solid lines). The major

difference in the trajectories is because in the optimal control framework (dashed lines) the

arrival time at merging zones for each CAV is found first, and then for each CAV, the optimal

control problem is formulated from the arrival time at the control zone to the arrival time at the

merging zone. On the other hand, our hysteretic Q-learning approach determines the policy

with respect to the designed reward. Although trajectories resulted from our approach happen

to respect the FIFO queuing policy (i.e., CAVs enter the merging zone in the same order they

entered the control zone) without being enforced to, they appear to be more aggressive in

minimizing the travel time. One can explore tuning w1 and w2 to find the trade-off between

minimizing fuel consumption or delay.

Figure 2.22: Position trajectories of CAVs in Scenario 1.

Scenario 2: For the second scenario, we consider coordination of eight CAVs using

the combined hysteretic Q-learning with FIFO framework in an intersection which each road

connecting to the intersection to be L = 100 m, the length of the merging zones to be D = 18

m, and total episodes of simulation are set to 400,000. In this scenario, we employ the state

and reward architecture based on FIFO queuing policy. This extension allows us to reduce
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the state space size significantly. Namely, we are able to increase the control zone length in

order to have enough space for CAVs to coordinate with each other. The position trajectories

of eight CAVs for a randomly selected simulation (solid lines) along with the corresponding

trajectories computed from the optimal control (dashed lines) are shown in Fig. 2.23. We

note that CAVs following our combined hysteretic Q-learning with FIFO framework arrive

at the merging zone at the planned arrival time with very small deviation. The trajectories

for CAVs in our combined hysteretic Q-learning with FIFO framework do not deviate very

much from the energy-optimal trajectories found from the optimal control techniques. Our

proposed RL-based approach requires more time in the training phase compared to the

classical control techniques, but after that Q-table is converged, it can be implemented in

real-time. The videos from our simulation analysis can be found at the supplemental site,

https://sites.google.com/view/ud-ids-lab/HQLC.

Figure 2.23: Position trajectories of CAVs in Scenario 2.

2.5 Summary

In this chapter, we established two approaches based on a bi-level architecture to

coordinate CAVs at adjacent signal-free intersections consisting of the upper-level and low-

level planning. In the first approach, in the upper-level planning, each CAV recursively
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computes the energy-optimal arrival time at each intersection along its path, while ensuring

both lateral and rear-end safety. Additionally, each CAV investigates the feasibility of a

lane-changing maneuver and determines the optimal lane to occupy to the traffic throughput.

Given the output of the upper-level planning, in the low-level planning, we formulated an

optimal control problem for each CAV with the interior-point constraints, the solution of

which yields the energy optimal control input (acceleration/deceleration). In addition, we

enhanced our bi-level framework to guarantee safety in the presence of a bounded steady-

state error in tracking the positions of CAVs. Finally, our proposed framework exhibited

reduction in fuel-consumption, traffic delay, and improvement in the travel time compared to

the baseline scenario in different traffic volumes ranging from 600 veh/h to 1,400 veh/h for

both symmetric and asymmetric adjacent intersections.

On the other hand, in the second approach, we focused on minimizing travel time

and improving traffic throughput. Namely, in the upper level, we formulated a scheduling

problem that each CAV solves upon entering the control zone. The upper-level problem’s

outcome becomes the input of the low-level problem, which is the tuple of optimal arrival

time at each zone to avoid the lateral and rear-end collision and minimize the CAV’s travel

time. In the low-level control, we formulated an optimal control problem, the solution of

which yields the optimal control input (acceleration/deceleration) and minimizes the transient

engine operation. We derived an analytical solution for each zone that can be implemented

in real time. Finally, we demonstrated the effectiveness of the proposed framework through

simulation and comparison with signalized intersections, centralized scheduling, and FIFO

queuing policy.

From the technical perspective, although these two approaches address a similar
problem, they are different from each other on major aspects as follows:

• In Section 2.2, we considered multiple multi-lane adjacent intersections with limiting
our analysis to the cases that no left/right turns are allowed. However, in Section 2.3,
we considered two adjacent intersections including every possible path.

• In Section 2.2, we imposed a constant average speed inside the merging zone resulting
in traveling at the merging zone with constant time. However, in Section 2.3, we
partitioned the area around two adjacent intersections into different zones, and assumed
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that the speed of each CAV at the boundary of zones within the merging zones was
given and was equal to vmerge. Thus, the time that a CAV is inside each merging zone
depends on the solution of the upper-level scheduling problem.

• The upper-level coordination framework in Section 2.2 is profoundly different from the
one proposed in 2.3. The former is formulated to find the energy-optimal arrival time at
each merging zone and optimal lane to occupy through a recursive algorithm, while the
latter is concerned with finding the arrival time at each partitioned zone on the CAV’s
path aimed at minimizing total travel time through formulating a scheduling problem

• Although in both Sections 2.2 and 2.3, we follow Hamiltonian analysis to derive the
closed-form analytical solution to the low-level problem, two major differences set
the two low-level problems apart and make their Hamiltonian analysis fundamentally
different. In Section 2.2, speed at the initial time is only given, while in Section 2.3, the
speed at the boundaries is defined. Thus, the problem defined in Section 2.2, requires
to satisfy new sets of optimality conditions due to the interior-point constraints which
makes it different from the analysis in Section 2.3. Second, in contrast to Section
2.2, the rear-end safety constraint in Section 2.3 is speed dependent, which sets its
Hamiltonian analysis completely apart from the minimum safe distance rear-end safety
constraint discussed in Section 2.2

Finally, in this chapter, we proposed a learning-based decentralized coordination

framework for CAVs at a signal-free intersection to minimize travel delay and improve

fuel consumption while ensuring rear-end and lateral safety. We embedded a coordination

mechanism into our decentralized learning framework by using hysteretic Q-learning to

update the Q-table of each CAV. We also integrated FIFO queuing policy in our framework to

improve the performance of our system. Finally, we showed the effectiveness of our proposed

approach through simulation and comparison with the optimal control techniques based on

Pontryagin’s minimum principle.

While the proposed framework in this chapter does not consider inherent uncertainty

in any real-physical system due to the disturbances, deviation from the nominal trajectory, or

delay in the communication, it can be easily extended to work with the framework presented

in the next chapter to consider uncertainty and react to it appropriately.
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Chapter 3

A DECENTRALIZED COORDINATION FRAMEWORK FOR CONNECTED AND
AUTOMATED VEHICLES IN THE PRESENCE OF UNCERTAINTY

One who knows and knows that he knows;
his horse of wisdom will reach the skies.
One who knows, but doesn’t know that he knows;
he is fast asleep, so you should wake him up!
One who doesn’t know, but knows that he doesn’t know;
his limping mule will eventually get him home.
One who doesn’t know and doesn’t know that he doesn’t know;
he will be eternally lost in his hopeless oblivion!

Ibn Yamin, persian poet, 1286–1368 CE

Most of the existing work in optimal coordination of connected and automated vehicles

(CAVs), including the framework presented in Chapter 2, have neglected any source of

uncertainty in establishing their framework. This uncertainty can have a variety of sources

such as deviation from the nominal strategies, disturbances from the environment, noisy

observations, uncertainties in the system’s dynamics, and delayed communications. Any

framework for coordination of CAVs that neglects this uncertainty is prone to suboptimality

and can even lead to unsafe conditions. Therefore, in order to implement optimal control

strategies for coordination of CAVs in real-world scenarios, these uncertainties need to

considered in the framework, or there should exists a safety layer safe-guarding the system.

After the seminal work of Athans [33] on safely coordinating vehicles at merging

roadways, several research efforts have explored the benefits of coordinating CAVs in traffic

scenarios using a bi-level framework such as those described in Chapter 2. The bi-level

framework consists of (1) an upper-level optimization that yields, for each CAV, the optimal

time to exit a predetermined control zone of the intersection; and (2) a low-level optimization

that yields for the CAV its optimal control input (acceleration/deceleration) to achieve the
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optimal time derived in the upper-level subject to the state, control, and safety constraints.

There have been a variety of approaches in the literature to solve the upper-level optimization

problem, including first-in-first-out (FIFO) queuing policy [65, 75, 199], heuristic Monte

Carlo tree search methods [47, 200], centralized optimization techniques [57, 61], and job-

shop scheduling [55, 176]. Given the solution of the upper-level optimization problem, the

low-level optimization for each CAV addresses a constrained optimal control problem using

model predictive control (MPC) [49, 61–64], or standard optimal control techniques resulting

in closed-form analytical solutions [65, 78, 91, 175]. However, the latter approach leads to a

system of non-linear equations that might be challenging, in some instances, to solve in real

time. To address this problem, a different approach was proposed in [91], and implemented at

a roundabout in [92] consisting of a single optimization level aimed at both minimizing energy

consumption and improving the traffic throughput. In this approach, each CAV computes

the optimal exit time of the control zone corresponding to an unconstrained energy optimal

trajectory which satisfies all the state, control, and safety constraints.

In this chapter, we build upon the single-level optimization framework introduced in

[91] and implemented in [92] aimed at both minimizing energy consumption and improving

the traffic throughput. We first provide a general problem formulation and the single-level

optimization framework for coordination of CAVs at a signal-free intersection in Section 3.1.

In Section 3.2, we integrate the replanning mechanism into this single-level coordination

framework for CAVs. Since unexpected changes in the presence of disturbances and uncertain-

ties can result in deviations from the optimal planned trajectory of the CAVs, the replanning

mechanism introduces feedback in the planning which can respond to these changes in the

system to some extent. In addition, using the theory from the job-shop scheduling problem,

we further enhance this framework by introducing a priority-aware resequencing mechanism

to find the decision making sequence of the CAVs based on the minimum exit time from the

traffic bottleneck. In section 3.3, we improve the single-level coordination framework for

CAVs by reformulating the coordination of CAVs as a robust coordination problem. Employ-

ing Gaussian process (GP) regression, we learn the deviation of CAVs from their nominal
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time trajectory and obtain confidence intervals on the unknown errors of nominal trajectories

based on the noisy observations of CAVs. The obtained confidence intervals can then be used

to solve the robust coordination problem using a worst-case scenario approach. In Section

3.4, using control barrier functions (CBF) for safety-critical systems [149], we integrate a

safety layer into this framework to guarantee that the planned trajectory does not violate any

of the constraints in the system. Particularly, since safety constraints for each CAV involve

the trajectory of other CAVs, inspired by the idea of environmental CBFs [201], we consider

the evolution of other relevant CAVs in constructing our CBFs. By introducing a barrier

certificate as a safety middle layer between the vehicle-level tracking controller and physical

vehicle, we provide a reactive mechanism to guarantee constraint satisfaction in the system.

The enhanced framework results in a quadratic program (QP) that can be solved efficiently at

each time step. This approach also allows us to consider more complex vehicle dynamics to

ensure safety. Finally, in Section 3.5, we summarize the findings of this chapter.

The main contributions presented in this chapter are

• Section 3.2: (1) the introduction of replanning as a feedback mechanism to handle
uncertainties or disturbances; and (2) the development of a priority-aware resequencing
mechanism for the coordination of CAVs and relaxing the first-come-first-serve (FCFS)
decision making sequence of the CAVs. The results of this section were previously
presented in the following publication:

– [178] Behdad Chalaki and Andreas A. Malikopoulos. A priority-aware replan-
ning and resequencing framework for coordination of connected and automated
vehicles. IEEE Control Systems Letters, 6:1772–1777, 2022

• Section 3.3: (1) the development of a robust coordination framework of CAVs at a
signal-free intersection; and (2) using GP regression to learn the deviation of CAVs
from their nominal time trajectory and obtain confidence intervals on the unknown
errors of nominal trajectories based on the noisy observations of CAVs. The work in
presented in this chapter appeared in the following publication:

– [179] Behdad Chalaki and Andreas A Malikopoulos. Robust learning-based
trajectory planning for emerging mobility systems. In 2022 American Control
Conference (ACC), pages 2154–2159, 2022

• Section 3.4: (1) the introduction of barrier-certificate as a safety middle layer between
the vehicle-level tracking controller and physical vehicle in the optimal coordination of
CAVs at a signal-free intersection, and providing a reactive mechanism to guarantee
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Figure 3.1: A signal free intersection with conflict points.

constraint satisfaction in the presence of uncertainty. The results of this sections is
based on the material presented in:

– [180] Behdad Chalaki and Andreas A Malikopoulos. A Barrier-Certified Optimal
Coordination Framework for Connected and Automated Vehicles. arXiv:2203.16418
(in review), 2022

3.1 Modeling Framework

Similar to previous chapter, we consider a signal-free intersection (Fig. 3.1), which

includes a coordinator that stores information about the intersection’s geometry and CAVs’

trajectories. The coordinator acts only as a database for the CAVs and does not make any

decisions. The intersection includes a control zone inside of which the CAVs can communicate

with the coordinator. We call the points inside the control zone where paths of CAVs intersect

and a lateral collision may occur as conflict points. Let Q ⊂ N index the set of conflict

points, N(t) ∈ N be the total number of CAVs inside the control zone at time t ∈ R≥0, and

N (t) = {1, . . . , N(t)} be the queue that designates the order in which each CAV entered the

control zone.
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We model the longitudinal dynamics of each CAV i ∈ N (t) as a double integrator

ṗi(t) = vi(t),

v̇i(t) = ui(t),
(3.1)

where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote position, speed, and control input at t,

respectively. The sets Pi, Vi, and Ui, for i ∈ N (t), are compact subsets of R. Let t0i ∈ R≥0 be

the time that CAV i ∈ N (t) enters the control zone, and tfi > t0i ∈ R≥0 be the time that CAV

i exits the control zone. For each CAV i ∈ N (t), the control input and speed are bounded by

ui,min ≤ ui(t) ≤ ui,max, (3.2)

0 < vmin ≤ vi(t) ≤ vmax, (3.3)

where ui,min, ui,max are the minimum and maximum control inputs and vmin, vmax are the

minimum and maximum speed limits, respectively.

To guarantee rear-end safety between CAV i ∈ N (t) and a preceding CAV k ∈

N (t) \ {i}, we impose the following constraint,

pk(t)− pi(t) ≥ δi(t) = γ + φ · vi(t), (3.4)

where δi(t) is the safe speed-dependent distance, while γ and φ ∈ R>0 are the standstill

distance and reaction time, respectively.

Definition 3.1.1. For CAV i ∈ N (t), the inverse function, p−1i is the time trajectory and

denoted by ti : Pi → [t0i , t
f
i ]. The time trajectory yields the time that CAV i is at position

pi ∈ Pi inside the control zone.

Since 0 < vmin ≤ vi(t), the position pi(t) is a strictly increasing function. Moreover,

for every element in Pi, there is at least one element in [t0i , t
f
i ], which implies that the position

pi(t) is a surjective function, and hence the inverse ti (·) = p−1i (·) exists [91].
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CAV i may have a lateral collision with CAV j ∈ N (t) \ {i}, which has already

planned its trajectory, at conflict point n ∈ Q (Fig. 3.1) . We denote by pni and pnj the distance

of the conflict point n from i’s and j’s paths’ entries, respectively (Fig. 3.1). To guarantee

lateral collision avoidance, we impose the following time headway constraint

∣∣ti(pni )− tj(pnj )∣∣ ≥ th, (3.5)

where th ∈ R>0 is the minimum time headway between any two CAVs crossing conflict point

n.

Proposition 3.1.2. We can alternatively formulate the lateral safety constraint between CAV

i ∈ N (t) and CAV j ∈ N (t) \ {i} in (3.5) as a constraint on the distance to the conflict point

n ∈ Q as

min

{
max
t∈[t0i ,tnj ]

{δi(t) + pi(t)− pni },

max
t∈[t0i ,tni ]

{δj(t) + pj(t)− pnj }

}
≤ 0. (3.6)

Proof. Since we do not use the FIFO queuing policy, CAV i can reach at conflict point n

either after or before CAV j. In the first case, i.e., when CAV i reaches at conflict point n

after CAV j, we have

pni − pi(t) ≥ δi(t), ∀t ∈ [t0i , t
n
j ], (3.7)

where tnj is the known time that CAV j reaches at conflict point n, i.e., position pnj . In the

second case, where CAV i reaches at the conflict point n before CAV j, we have

pnj − pj(t) ≥ δj(t) = γ + φ · vj(t), ∀t ∈ [t0i , t
n
i ], (3.8)

where tni is determined by the trajectory planned by CAV i.

By moving all terms in (3.7) to the RHS, we get δi(t)+pi(t)−pni ≤ 0. Constraint (3.7)

is satisfied, if max(δi(t) + pi(t) − pni ) ≤ 0 in the interval [t0i , t
n
j ]. Likewise, if max(δj(t) +
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pj(t) − pnj ) ≤ 0 in the interval [t0i , t
n
i ] constraint (3.8) is satisfied. However, to ensure the

lateral safety between CAV i and CAV j at conflict point n, either (3.7) or (3.8) must be

satisfied, and thus the proof is completed.

In this chapter, we build upon the single-level optimization framework introduced in

[91] and implemented in [92] aimed at both minimizing energy consumption and improving

the traffic throughput. Upon entrance the control zone, each CAV i ∈ N (t) communicates

with the coordinator to access the time trajectories of CAVs which are already in the con-

trol zone. After obtaining this information, CAV i solves a time minimization problem to

determine the time that it must exit the control zone, tfi . The time tfi corresponds to the

unconstrained energy optimal trajectory guaranteeing that state, control, and safety constraints

are satisfied. This trajectory is communicated back to the coordinator, so that the subsequent

CAVs receive this information and plan their trajectories accordingly.

We first review the single-level optimization framework for coordination of CAVs. We

start the exposition with the unconstrained energy optimal solution of CAV i, which has the

following form [65]

pi(t) = ϕi,3 · t3 + ϕi,2 · t2 + ϕi,1 · t+ ϕi,0,

vi(t) = 3ϕi,3 · t2 + 2ϕi,2 · t+ ϕi,1, (3.9)

ui(t) = 6ϕi,3 · t+ 2ϕi,2,

where ϕi,3 ̸= 0 and ϕi,2, ϕi,1, ϕi,0 ∈ R are the constants of integration. CAV i must also satisfy

the boundary conditions

pi(t
0
i ) = 0, vi(t

0
i ) = v0i , (3.10)

pi(t
f
i ) = pfi , ui(t

f
i ) = 0, (3.11)

where ui(t
f
i ) = 0 because the speed at the exit of the control zone is not specified [190]. The

details of the derivation of the unconstrained solution are discussed in [65].

105



Using the Cardano’s method [202], ti(pi) is given by

ti(pi) =
3

√
−1

2
(ωi,1 + ωi,2 pi) +

√
1

4
(ωi,1 + ωi,2 pi)

2 +
1

27
ω3
i,0

+
3

√
−1

2
(ωi,1 + ωi,2 pi)−

√
1

4
(ωi,1 + ωi,2 pi)

2 +
1

27
ω3
i,0 + ωi,3, pi ∈ Pi, (3.12)

where ωi,3, ωi,2, ωi,1, and ωi,0 ∈ R such that 1
4
(ωi,1 + ωi,2 pi)

2 + 1
27
ω3
i,0 > 0, and they are all

defined in terms of ϕi,3, ϕi,2, ϕi,1, ϕi,0 [91]. We formally define the single-level optimization

framework as follows.

Problem 3.1.3. Each CAV i ∈ N (t) solves the following optimization problem at t0i , upon

entering the control zone

min
tfi ∈Ti(t0i )

tfi (3.13)

subject to: (3.4), (3.5), (3.9)− (3.11),

where the compact set Ti(t0i ) = [tf,τi , t
f,τ
i ] is the set of feasible solution of CAV i ∈ N (t) for

the exit time computed at t0i using the speed and control input constraints (3.2)-(3.3), and

boundary conditions (3.10)-(3.11).

We derive the upper and lower bounds on the exit time of the control zone for a CAV

i ∈ N (t) using the speed and control constraints by exploiting two properties of the optimal

trajectory. As the optimal control input is linear and satisfies ui(t
f
i ) = 0, it must be zero,

strictly decreasing, or strictly increasing. In all three cases ui(t) achieves its extreme at t0i , and

therefore satisfying umin ≤ ui(t
0
i ) ≤ umax is necessary and sufficient condition to guarantee

constraint satisfaction. Likewise, the speed of CAV i starts at vi(t0i ) = v0i ∈ [vmin, vmax] and

must be constant, strictly increasing, or strictly decreasing inside the control zone. In all three

cases vi(t) takes its extreme value at tfi , and thus satisfying vmin ≤ vi(t
f
i ) ≤ vmax is necessary

and sufficient condition to guarantee constraint satisfaction.

106



Next, without loss of generality, let t0i = 0 and p0i = 0. This implies that pi(t0i ) =

ϕi,0 = 0 and vi(t0i ) = ϕi,1 = v0i , while ui(t
f
i ) = 0 implies

ϕi,3 =
−ϕi,2
3tfi

, (3.14)

and pi(t
f
i ) = pfi yields

ϕi,2 =
3(pfi − v0i t

f
i )

2(tfi )
2

. (3.15)

In order to compute the lower bound on exit time of the control zone for CAV i, tfi , there are

two cases to consider:

Case L1: CAV i achieves its maximum control input at entry of the control zone, that

is, ui(t0i ) = umax. In this case, evaluating optimal control input from (3.9) at t0i = 0 yields

ui(t) = 2ϕi,2 = umax. (3.16)

Substituting (3.15) into (3.16) and solving for tfi yields the quadratic equation umaxt
f
i

2
+

3v0i t
f
i − 3pfi = 0, which has two real roots with opposite signs, since tfi,1t

f
i,2 =

−3pfi
umax

< 0.

Thus, tfi,umax
> 0 is tfi,umax

=

√
9v0i

2
+12pfi umax−3v0i
2umax

.

Case L2: CAV i achieves its maximum speed at the end of control zone, that is,

vi(t
f
i ) = vmax. For this case, by (3.9), we have

vi(t
f
i ) = 3ϕi,3t

f
i

2
+ 2bit

f
i + v0i = vmax. (3.17)

Substituting (3.14) and (3.15) into (3.17) yields

vi(t
f
i ) = 3

(−ϕi,2
3tfi

)
tfi

2
+ 2ϕi,2t

f
i + v0i = ϕi,2t

f
i + v0i =

3(pfi − v0i t
f
i )

2tfi
+ v0i = vmax, (3.18)

which simplifies to tfi,vmax
=

3pfi
v0i +2vmax

. Thus, our lower bound on tfi is given by tfi =

min
{
tfi,umax

, tfi,vmax

}
.
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The upper bound on exit time of the control zone for CAV i, t̄fi can be derived

following similar steps for the lower bound, and can be broken into two cases.

Case U1: CAV i achieves its minimum control input at the entry of the control zone,

that is, ui(t0i ) = umin. This implies umint
f
i

2
+ 3v0i t

f
i − 3pfi = 0, which has two positive roots,

as tfi,1t
f
i,2 =

−3pfi
umin

> 0, from which we select the smaller one,

tfi,umin
=

√
9v0i

2
+ 12pfi umin − 3v0i

2umin

, (3.19)

as the speed of the vehicle should be always greater than zero. Note that when 9v0i
2
+

12pfi umin < 0 there is no real value of tfi which satisfies all of the boundary conditions

simultaneously, and therefore the constraint u(t0i ) = umin can never become active if (3.19) is

complex. In that case, the upper bound must be given by Case U2.

Case U2: CAV i achieves its minimum speed at the entry of the control zone, that is,

vi(t
f
i ) = vmin. Evaluating (3.9) at tfi yields vi(t

f
i ) = 3ϕi,3t

f
i

2
+ 2bit

f
i + v0i = vmin, in which

substituting (3.14) and (3.15) yields

vi(t
f
i ) = 3

(−ϕi,2
3tfi

)
tfi

2
+ 2ϕi,2t

f
i + v0i = ϕi,2t

f
i + v0i =

3(pfi − v0i t
f
i )

2tfi
+ v0i = vmin, (3.20)

which simplifies to tfi,vmin
=

3pfi
v0i +2vmin

.

Thus, the upper bound on the exit time for CAV i is

t̄fi =

t
f
i,vmin

, if 9v0i
2
+ 12pfi ui,min < 0,

max{tfi,umin
, tfi,vmin

}, otherwise.
(3.21)

where tfi,vmin
=

3pfi
v0i +2vmin

and tfi,umin
=

√
9v0i

2
+12pfi umin−3v0i
2umin

.

Remark 3.1.4. The solution of Problem 3.1.3 yields a tfi which guarantees that none of

the constraints in Problem 3.1.3 becomes active, and thus CAV i follows the unconstrained
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energy-optimal solution (3.9).

This framework implies that the CAVs do not have to come to a full stop at the

intersection, thereby conserving momentum and fuel while also improving travel time. By

enforcing the unconstrained energy-optimal trajectory that guarantees the satisfaction of

all the state, control, and safety constraints, we avoid inherent real-time implementation

difficulties in solving a constrained optimal control and piecing constrained and unconstrained

arcs together [91, 92].

3.2 A Priority-Aware Replanning and Resequencing Framework for Coordination of

Connected and Automated Vehicles

Deriving optimal control strategies for coordination of CAVs often requires adjusting

the strategies in order to respond to unexpected changes in the presence of disturbances

and uncertainties. In this section, we first extend the single-level optimization framework

introduced in [91], and described in the previous section to incorporate replanning. Then,

we further enhance the framework by introducing a priority-aware resequencing mechanism

which designates the order of decision making of CAVs based on theory from the job-shop

scheduling problem. Our enhanced framework relaxes the FCFS decision order which

has been used extensively in the sequential decision making problems. We illustrate the

effectiveness of our proposed approach through numerical simulations.

We structure this section as follows: In subsection 3.2.1, we offer the problem formu-

lation and we present the priority-aware resequencing mechanism in Section 3.2.2. Finally,

we provide simulation results in Section 3.2.3.

3.2.1 Problem Formulation

We consider a signal-free intersection (Fig. 3.2), and assume that CAVs do not perform

any lane-change maneuver, and thus there are finite paths among which they can choose. The

set of all possible paths in the control zone is given by L = {1, . . . , z}, z ∈ N. The path
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Figure 3.2: A signal free intersection with conflict points.

of the CAV i ∈ N (t) in the control zone is denoted by ℓi ∈ L (Fig. 3.2), and is decided a

priori based on some upper-level routing problem. In this section, we make the following

assumption.

Assumption 3.2.1. Each path of a CAV cannot get either split to two paths or merged by

another CAV’s path.

This assumption implies that there should be separate lanes for the turning maneuvers

at the intersections. This might be a strong assumption, but it simplifies the time complexity

of our resequencing algorithm (formally defined next) by only considering the rear-end safety

constraints for the CAVs traveling on the same path.

One of the advantages of incorporating replanning in the framework is introducing

feedback in the system. Replanning can occur either periodically (i.e., at a period determined

a priori) or be event-driven (i.e., based on an occurrence of a certain event such as the entrance

of a new CAV in the control zone). All CAVs in the control zone observe their state at each
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replanning instance and re-solve their optimization problem, discussed next, sequentially

with the new initial conditions. For CAV i, let τ ∈ [t0i , t
f
i ] be the replanning time, and

x̃i(τ) = [p̃i(τ) ṽi(τ)]
⊤, be the measurement of the state at this time. The revised initial

conditions for CAV i at this replanning instance is given by

pi(τ) = p̃i(τ), vi(τ) = ṽi(τ). (3.22)

To avoid abrupt changes in the control input and unnecessary acceleration, we revise

the lower bound on exit time to use the maximum value between the earliest feasible exit

time computed at t0i (to simplify the notation denoted as tfi ), and the earliest feasible exit time

computed at τ . Thus, the feasible compact set computed at τ is given by

Ti(τ) =
[
max

{
tfi , t

f,τ
i

}
, t
f,τ
i

]
. (3.23)

Problem 3.2.2. Each CAV i ∈ N (t) at replanning instance τ solves the following optimization

problem

min
tfi ∈Ti(τ)

tfi (3.24)

subject to:

(3.4), (3.5), (3.9), (3.11), (3.22).

To some extent, this replanning provides the CAV a feedback mechanism to react to

any uncertainties.

3.2.2 A Priority-aware Resequencing

In the framework presented in [91], upon entering the control zone, CAV i ∈ N (t)

solves Problem 3.2.2 at τ = t0i by only considering CAVs in the control zone. For the cases
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in which CAVs enter the control zone simultaneously, the coordinator randomly decides the

decision-making order of CAVs. Namely, the order of decision making is based on the order

that CAVs entered the control zone, FCFS. We define the decision sequence formally as

follows.

Definition 3.2.3. The sequential decision making of N(t) CAVs is based on the decision

sequence that is given by the sequence s = (s1, s2, . . . , sN(t)) where sn ∈ N (t), n ∈

{1, . . . , N(t)} is the n’th CAV in the decision making process.

Without a resequencing mechanism, the decision sequence of the N(t) CAVs is given

by s = (1, 2, 3, . . . , N(t)) which is imposed by the order the CAV enter the control zone,

referred to as FCFS sequence. Note that this is different from the order that CAVs cross

the intersection, which is determined by the lateral safety constraint (3.5) or (3.6). Next,

we introduce our resequencing framework, which designates the decision sequence at each

replanning instance.

Unlike our previous framework, where CAVs only solve their optimization problem

upon entering the control zone, in this enhanced framework, CAVs re-solve the optimal

control problem at different instances based on new observed information. The observed

information of each CAV consists of position and speed of the CAV at the replanning instance,

which then can be used as new initial conditions (3.22) to solve Problem 3.2.2. In this section,

we introduce a priority-aware resequencing mechanism to find the sequence of decision

making based on the minimum exit time from the control zone using scheduling theory.

A scheduling problem is shown by a triplet (α | β | γ), where α and β fields describe the

machine environment and details of the processing characteristics and constraints, respectively,

while γ field describes the objective function. In our problem, the control zone can be

considered as a single machine, while different CAVs are considered as different jobs. In our

problem, we also have precedence constraint which requires that a CAV not plan earlier than

the physical CAV located in front of it, which we define formally next.

Definition 3.2.4. The precedence constraint can be represented by a directed graph G =
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(V,E), where V := N (t) is set of all CAVs and E := {(i, j)|i, j ∈ V, i→ j} is the set of all

constraints on the order of decision making. Edge (i, j) ∈ E shows that CAV i should plan

earlier than CAV j.

Definition 3.2.5. A non-empty subgraph G1 = (V1, E1), where V1 ⊂ V and E1 ⊂ E is called

a chain if for each vertex i ∈ V1, there exist at most a single edge (i, j) ∈ E1, j ∈ V1 \ {i}.

In a scheduling problem, the processing time of a single machine on the job i is denoted

by Pi, representing the time that it takes for the machine to process job i. In our case, we

consider the processing time of CAV i at replanning instance t to be equal to min(Ti(t)), i.e.,

the minimum exit time from the control zone which is independent of the decision sequence.

For each job i, a weight wi ∈ R>0 describes the importance of job i relative to the other jobs

in the system. We consider that the weight of each CAV is inversely proportional to the size

of the compact set of its feasible solution. This potentially helps CAVs with smaller feasible

space to generate their trajectory first.

Since our goal is to find the optimal decision sequence based on the minimum exit

time of the CAVs, we consider the total weighted completion time of N(t) CAVs denoted

by Js =
N(t)∑
i=1

wi C
s
i as our cost function under decision sequence s, where Cs

i is the sum of

processing times of CAV i and other preceding CAVs in the decision sequence s. For example,

suppose for two CAV i and j, we have Pi < Pj and wi = wj . The cost functions for two

different decision sequences s = (i, j) and s′ = (j, i) are equal to Js = wi ·Pi+wj · (Pi+Pj)

and Js′ = wj ·Pj +wi · (Pj +Pi), respectively. It is clear that the decision sequence s, which

prioritize CAV i over CAV j, has a lower total cost.

Our scheduling problem is denoted by (1 | G |
N(t)∑
i=1

wi C
s
i ) which describes a single

machine model with precedence constraint G, and the objective is to minimize the total

weighted completion time by finding the optimal decision sequence s.

Lemma 3.2.6. The precedence constraint’s graph of CAVs crossing a single intersection

given Assumption 3.2.1 consists of multiple disjoint chains.
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Proof. From Assumption 3.2.1, we do not have any merging or splitting paths, and thus the

precedence constraint only exists among CAV i and j ∈ N (t) on the same path ℓ ∈ L such

that ℓi = ℓj = ℓ. Thus, among CAVs on path ℓ there exist a chain denoted by Gℓ ⊂ G such

that
⋃
x∈LGx = G.

Definition 3.2.7. A ρ-factor of the chain Gℓ = (Vℓ, Eℓ), is denoted by ρ (Gℓ) ∈ R>0 and for

the chain Gℓ given by 1→ 2→ · · · → k is computed as

ρ(Gℓ) = max
a∈{1,...,k}

(∑a
j=1 wj∑a
j=1 Pj

)
=

∑a∗

j=1 wj∑a∗

j=1 Pj
, (3.25)

where a∗ ∈ Vℓ ⊂ N (t) is called the CAV that determines the ρ-factor of the chain Gℓ.

The interpretation of the CAV a∗ ∈ Vℓ in the above lemma is that the ratio of weight

divided by the processing time of the CAV in the chain Gℓ increases from the first CAV in the

chain until CAV a∗.

Lemma 3.2.8. If CAV i ∈ Vℓ ⊂ N (t) determines the ρ-factor of chain Gℓ = (Vℓ, Eℓ)

given by 1 → 2 → · · · → k, ℓ ∈ L, then there exist an optimal decision sequence that

processes CAVs 1, . . . , i one after another without any interruption by CAVs from other chains

Gℓ′ , ℓ
′ ∈ L \ {ℓ}.

Proof. The proof is by contradiction and is similar to that of [194, Lemma 3.1.3.] and follows

from [194, Lemma 3.1.2.] by using the results in which it is optimal to process the chain of jobs

1→ 2→ · · · → k before the chain of jobs k + 1→ · · · → n if
∑k

j=1 wj∑k
j=1 Pj

>
∑n

j=k+1 wj∑n
j=k+1 Pj

.

By our resequencing mechanism, at each instance of replanning, CAV i accesses the

coordinator and inquires the decision sequence computed using Algorithm 5.

Theorem 3.2.9. Under Assumption 5, the decision sequence of N(t) CAVs, which is the

optimal solution to (1 | G |
N(t)∑
i=1

wi C
s
i ), is computed using Algorithm 5.
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Algorithm 5 Re-sequencing Algorithm
Input: All available chains Gℓ = (Vℓ, Eℓ), ℓ ∈ L
Output: Decision Sequence s = (s1, s2, s3 . . . , sN )
1: while

⋃
l∈LGl is not empty do

2: Update aℓ and ρ (Gℓ) for all Gℓ = (Vℓ, Eℓ), ℓ ∈ L
3: ρmax, ℓ∗, a∗ℓ ← 0

4: for ℓ ∈ L do
5: if ρmax < ρ (Gℓ) then
6: ▷ Find maximum ρ-factor among all chains, the corresponding chain and CAV
7: ρmax ← ρ (Gℓ) ; ℓ∗ ← ℓ ; a∗ℓ ← aℓ
8: end if
9: end for
10: subSequence← ∅
11: while True do
12: if ∃ i ∈ Vℓ∗ such that (i, a∗ℓ ) ∈ Eℓ∗ then
13: subSequence.PushFront(i) ▷ Add i to the front of the subsequence
14: Remove (i, a∗ℓ ) from Eℓ∗

15: Remove i from Vℓ∗
16: a∗ℓ ← i

17: else
18: Break
19: end if
20: end while
21: sequence.PushBack(subSequence) ▷ Add subsequence to the back of the sequence
22: end while
23: return sequence

Proof. Among all the disjoint chains of all paths, let ρmax and a∗ℓ be the maximum ρ-factor

and the corresponding CAV determining it, respectively. Namely, ℓ∗ is the associated path

with ρmax and a∗ℓ . For every ℓ ∈ L \ {ℓ∗}, we have

ρmax >

∑aℓ
j∈Vℓ wj∑aℓ
j∈Vℓ Pj

, (3.26)

where aℓ is the CAV determining the ρ-factor of a chain Gℓ = (Vℓ, Eℓ) (lines 3-9 in the

algorithm). From (3.26) and [194, Lemma 3.1.2.], the chain Gℓ∗ , should be processed first.

From Lemma 3.2.8, all the CAVs in the chain Gℓ∗ , should be processed until CAV a∗ℓ one after

another without any interruption by CAVs from other chains (lines 11-20 in the algorithm).

All processed CAVs get removed from their corresponding chain (lines 14 and 15 in the

algorithm), and then the process will be repeated until no CAVs remained unprocessed.
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3.2.3 Simulation Results

We evaluate the effectiveness of our framework in simulation through several scenarios.

In all scenarios, we consider CAVs entering the control zone from six different paths shown

in Fig. 3.2, where the length of control zone for straight and turning paths are 212 m and 215

m, respectively. The CAVs enter the control zone with initial speed uniformly distributed

between 12 m/s to 17 m/s from each entry with equal traffic volumes varying from 800 to

2400 veh/h. Videos from our simulation analysis can be found at the supplemental site,

https://sites.google.com/view/ud-ids-lab/RPRS.

For the first scenario, we demonstrate the effects of the replanning mechanism to

respond to the deviations from the previously planned trajectory. We consider 24 CAVs

entering the control zone with the rate of 2, 400 veh/h per path, and replanning occurs every

time the new CAVs enter the control zone. To only consider the effects of replanning, we set

the decision sequence of CAVs at each replanning instance to be based on FCFS sequence. At

each replanning instance, we consider CAVs to observe their current position and speed with

deviation uniformly distributed in the range of [−2, 2] m and [−0.2, 0.2] m/s, respectively.

The position trajectory of CAVs traveling from westbound to eastbound is visualized in Fig.

3.3 in the presence of deviation. The CAVs’ positions in this path are denoted by solid lines,

while their corresponding rear-end constraints are shown with dashed lines. The CAVs from

other paths that have the potential for lateral collision with CAVs in this path are shown with

a square and vertical bar showing their safety time headway. Figure 3.3 shows that by using

our replanning framework, CAVs respond to the observation made at each replanning point,

and they adjust their trajectory to ensure safety.

For the second scenario, we show the change in average travel time of CAVs within

our proposed framework compared to the baseline case for different traffic volumes 2, 400

veh/h and 1, 200 veh/h per path. In the baseline case, CAVs only solve their optimization

problem upon entering the control zone based on FCFS, while in our proposed framework,

CAVs replan based on the new decision sequence as a new CAV enters the system. In this

scenario, we assumed that all CAVs have the same weights, and for each traffic volume, we

116

https://sites.google.com/view/ud-ids-lab/RPRS


Figure 3.3: Time vs position in the presence of deviation.

performed 30 simulations with different random seeds. The results are presented in Fig. 3.4,

and it can be seen how resequencing CAVs affects the average travel time. As the traffic

flow increases, the change in average travel time varies more, highlighting the importance of

decision sequence in influencing the traffic throughput.

For our last scenario, we demonstrate the change in weighted average travel time

of CAVs within our proposed framework compared to the baseline case, at different traffic

volumes 2, 400 veh/h, 1, 200 veh/h, and 800 veh/h in Fig. 3.5. Similar to the previous scenario,

in our proposed framework, CAVs replan based on the new decision sequence as a new CAV

enters the system. We performed 30 simulations with different random seeds for each traffic

density. In this scenario, we consider that all CAVs’ weights are inversely proportional to the

size of their compact set of the feasible solution. After performing 30 different simulations

for each traffic flow, our resequencing framework based on the minimum exit time is shown

to improve the travel time on average by about 2%.

It should be noted that in 2017, congestion in urban areas across the U.S. led to drivers

collectively spending an extra 8.8 billion hours on the road and purchasing an additional

3.3 billion gallons of fuel, ultimately resulting in a $166 billion expense [203]. Thus, 2%

improvement on average travel time in the scale of transportation network by only changing

117



Figure 3.4: Change in average travel time compared to the FCFS decision sequence for
different traffic volumes.

the decision sequence can be quite substantial. Additionally, the main benefit of our approach

lies in providing a systematic framework to relax the FCFS sequence in decision making.

This would be useful if one needs to prioritize some CAVs to other CAVs, such as giving

higher priority to vehicles with higher passenger capacity or emergency vehicles.

By formulating the resequencing problem as a scheduling problem, we find the optimal

solution to the scheduling problem. However, this optimal schedule is not the optimal solution,

which minimizes the average of actual travel time of all CAVs. The actual travel time of CAVs

depends on the decision sequence order, and finding this optimal sequence of decision making

is a combinatorial problem, which is an NP-hard problem [81]. However, the algorithm

employed in this section depends on a simple sort which can be done in O(n log(n)) [194].

Thus, if the sole purpose is to improve the average travel time of all CAVs, one can find the

decision sequence using our proposed framework and compare it with FCFS policy, and only

choose the decision sequence based on the minimum exit time if it improves the performance.
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Figure 3.5: Change in weighted average travel time compared to the FCFS decision sequence
for different traffic volumes.

3.3 Robust Learning-Based Trajectory Planning for Emerging Mobility Systems

In this section, we extend a framework that we described earlier in Section 3.1 for

coordination of CAVs at a signal-free intersection (Fig. 3.1) to incorporate uncertainty.

Using the possibly noisy observations of actual time trajectories and leveraging Gaussian

process regression, we learn the bounded confidence intervals for deviations from the nominal

trajectories of CAVs online. Incorporating these confidence intervals, we reformulate the

trajectory planning as a robust coordination problem, the solution of which guarantees that

constraints in the system are satisfied in the presence of bounded deviations from the nominal

trajectories. We demonstrate the effectiveness of our extended framework through a numerical

simulation.

We organize this section as follows: In subsection 3.3.1, we introduce the problem

formulation, and in subsection 3.3.2, we present the solution approach. Finally, we provide

simulation results in subsection 3.3.3.
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3.3.1 Problem Formulation

In an earlier work [92], we showed that there is a discrepancy between the actual and

planned trajectories due to the presence of uncertainty originated from errors in low-level

tracking, noisy measurements, etc. In this section, to accommodate this uncertainty, we

reformulate Problem 3.1.3 as a robust coordination problem, the solution of which guarantees

that constraints in the system are satisfied in the presence of bounded deviations from the

nominal trajectories. In this section, we make the following assumption.

Assumption 3.3.1. The deviation from the deterministic nominal time trajectory of a real-

physical CAV i ∈ N (t) is given by an unknown function ei : Pi → Ei, where Ei is an unknown

bounded subset of R.

We consider that ei(pi) can be approximated by a GP defined on a probability space

(Pi,Pi,P), where Pi is the associated σ-algebra and P is a probability measure on (Pi,Pi).

This is a reasonable approach, since GP regression has been used successfully to approximate

functions in many applications [136].

Definition 3.3.2. The actual time trajectory for CAV i ∈ N (t) is a random process defined

on (Pi,Pi,P), denoted by t̂i : Pi → R, and given by

t̂i(pi) = ti(pi) + ei(pi), (3.27)

where ti(pi) is the nominal trajectory which is the solution of Problem 3.1.3.

From Definition 3.1.1, the time trajectory is the inverse function of the position

trajectory. Having a deviation in the time trajectory also makes the deviation in the position

trajectory inevitable.

Definition 3.3.3. The actual position trajectory of CAV i ∈ N (t) is a random process denoted

by p̂i defined on a probability space (Ωi,Fi,P), Ωi ∈ R, and given by

p̂i(t) = pi(t) + fi(t), (3.28)
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where fi(t) is the unknown deviation from the nominal position trajectory, and it is defined

on (Ωi,Fi,P).

Lemma 3.3.4. The deviation in the position trajectory of CAV i ∈ N (t), fi(t), can be derived

from the deviation ei(t) of its time trajectory.

Proof. Let pi ∈ Pi be an arbitrary known position, with pi = pi(t). By evaluating (3.27) at

pi, we obtain the actual time t̂i(pi) that CAV i ∈ N (t) is at position pi. Evaluating (3.28) at

the actual time, we obtain

p̂i(t̂i(pi)) = pi(t̂i(pi)) + fi(t̂i(pi)). (3.29)

By definition of inverse function (pi ◦ p−1i )(x) = x, and thus LHS in (3.29) equals to pi.

Substituting (3.27) in the first term of RHS, we have

pi = ϕi,3 · (ti(pi) + ei(pi))
3 + ϕi,2 · (ti(pi) + ei(pi))

2

+ ϕi,1 · (ti(pi) + ei(pi)) + ϕi,0 + fi(t̂i(pi)). (3.30)

Next, by expanding (3.30), we get

fi(t̂i(pi)) = −[ϕi,3 · ei(pi)3 + 3ϕi,3 · ei(pi)2 · ti(pi)

+ ϕi,2 · ei(pi)2 + 3ϕi,3 · ei(pi) · ti(pi)2

+ 2ϕi,2 · ei(pi) · ti(pi) + ϕi,1 · ei(pi)]. (3.31)

Since pi ∈ Pi is an arbitrary known position, the above equation holds for any pi, and the

proof is complete.

Corollary 3.3.5. The actual speed trajectory of CAV i ∈ N (t), v̂i(t) is a random process

defined on probability space (Ωi,Fi,P), and it is found from

v̂i(t) = vi(t) + gi(t), (3.32)
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where gi(t) is unknown deviation from nominal speed trajectory, and is defined on (Ωi,Fi,P).

Proof. By taking time derivative of (3.28), the result follows immediately.

For each CAV i ∈ N (t), we formulate a robust coordination problem in the presence

of uncertainty. We seek to derive the new minimum time tfi for CAV i to exit the control zone.

This exit time corresponds to a new unconstrained energy-optimal trajectory that satisfies all

the state, control, and safety constraints for all realizations of uncertainty. In what follows,

let Ei(·) ⊂ Ei, Fi(·) ⊂ Pi, Gi(·) ⊂ Vi denote the bounded confidence intervals of CAV i for

random process ei(·), fi(·), and gi(·), respectively.

We enhance (3.5) as follows

∣∣t̂i(pni )− t̂j(pnj )∣∣ ≥ th, ∀ei(pni ) ∈ Ei(pni ),∀ej(pnj ) ∈ Ej(pnj ), (3.33)

to include the CAVs’ deviations from their nominal time trajectories. This constraint should

be satisfied for every possible realizations of deviation from the nominal time trajectory of

CAV i ∈ N (t) and CAV j ∈ N (t) \ {i}. Note that for CAVs i and j, pni , pnj are constant and

they depend only on the intersection’s geometry (Fig. 3.1).

Similarly, we enhance rear-end safety constraint (3.4) defined on the nominal trajecto-

ries by incorporating the deviations from nominal position trajectories (3.28) as follows

p̂k(t)− p̂i(t) ≥ δ̂i(t) = γ + φ · v̂i(t), (3.34)

∀fi(t) ∈ Fi(t), ∀fk(t) ∈ Fk(t), ∀gi(t) ∈ Gi(t),

where the distance between CAV i ∈ N (t) and the preceding CAV k ∈ N (t) \ {i} has to

be greater than a safe distance δ̂i(t) for every realizations of deviations from the nominal

trajectories of CAV i and CAV k.
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Finally, to account for the deviation of the speed of CAV i, we enhance the constraint

vmin ≤ v̂i(t) ≤ vmax, ∀gi(t) ∈ Gi(t), (3.35)

for every realizations of deviation from the nominal speed trajectory of CAV i.

Problem 3.3.6. For each CAV i ∈ N (t), we consider the following robust coordination

problem

min
tfi ∈Ti(t0i )

tfi (3.36)

subject to: (3.9), (3.12), (3.27), (3.28), (3.32)− (3.35),

and given boundary conditions.

In what follows, to simplify notation, for CAV i ∈ N (t), we denote the original nomi-

nal trajectories (resulting from the solution of Problem 3.1.3) with bar, e.g., t̄i(pi), p̄i(t), v̄i(t),

and ūi(t), and reserve ti(pi), pi(t), vi(t), and ui(t) for the new nominal trajectories (resulting

from the solution of Problem 3.3.6).

3.3.2 Solution Approach

In our framework, upon entering the control zone, CAV i ∈ N (t) does not have

any information about its uncertainty, and thus we have Ei(·) = Fi(·) = Gi(·) = ∅. First,

CAV i communicates with the coordinator and obtain trajectories and information about the

uncertainty of CAVs which are already in the control zone. Using this information, CAV i

computes its nominal trajectories by solving Problem 3.3.6. As CAV i travels following these

nominal trajectories, it makes measurements (possibly noisy) of the actual time that it reaches

to different positions pi ∈ Pi, denoted by t̃i(pi) ∈ R≥0, and given by t̃i(pi) = t̂i(pi) + ξi,

where ξi ∼ N (0, σ2
n) is a Gaussian noise with unknown variance σ2

n. Next, we define the

error in the time trajectory based on these measurements.
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Definition 3.3.7. The difference between the noisy measurements of the time trajectory t̃i(pi)

and the nominal time trajectory ti(pi) is denoted by ẽi(pi) = t̃i(pi)−ti(pi), which is a random

process on a probability space (Pi,Pi,P).

The set of observation samples of CAV i ∈ N (t), is denoted by Oi = (pi, ẽi) ={(
p
(j)
i , ẽi(p

(j)
i )
)
| j = 1, . . . , n

}
, where pi, ẽi represent the n dimensional vector of positions

and corresponding observed errors in time trajectory; respectively, and the j th sample is

denoted by
(
p
(j)
i , ẽi(p

(j)
i )
)

. We consider that CAV i makes the noisy observations Oi before

reaching a perfectly known landmark in the control zone called uncertainty characterization

point denoted by pz ∈ Pi. Let tzi be the actual time that CAV i reaches this point. After CAV

i reaches pz, it characterizes its uncertainty in the time, position, and speed trajectories based

on the observed information, Oi. Then, CAV i communicates with the coordinator to access

the trajectories of other CAVs j < i ∈ N (t) which entered the control zone earlier than CAV

i. CAV i also obtains information about their deviation from their trajectories, if they have

already characterized their uncertainty. After obtaining this information, CAV i solves the

robust coordination problem (Problem 3.3.6), with the revised initial conditions pi(tzi ) = pz

and vi(tzi ) = v̄i(t
z
i ) + g(tzi ) (recall that v̄i(tzi ) is the speed of CAV i at tzi computed from the

original nominal trajectory). CAV i communicates back these new nominal trajectories along

with its characterization of uncertainty to the coordinator. Then, the coordinator broadcasts a

replanning event for all CAVs j > i ∈ N (t) which entered the control zone after CAV i to

re-plan their trajectory with this new information. These CAVs then sequentially resolve their

optimization problem, and plan their trajectory accordingly. Algorithm 6 shows a psueducode

of this process.

Next, we present the process for characterizing uncertainty for CAV i ∈ N (t) based

on Oi.
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Algorithm 6 Robust Coordination Pseudocode
1: Replanning Event←False
2: for CAV i ∈ N (t) do
3: if t = t0i then
4: Ei, Fi, Gi ← ∅
5: Solve Problem 3.3.6
6: else if CAV i reached at pz then
7: Ei, Fi, Gi ← Characterize uncertainty based on Oi

8: Solve Problem 3.3.6
9: Replanning Event←True

10: else if Replanning Event then
11: Solve Problem 3.3.6
12: end if
13: end for

Modeling Uncertainty in Time Trajectory as GP

Given the observation samples,Oi, we use GP regression to model ei(pi) ∼ GP(m(pi)

, k(pi, p
′
i)), where m(pi) and k(pi, p

′
i) represents the prior mean and covariance, respec-

tively. We assume no prior knowledge on the error is available, and thus, we set the prior

mean to zero, m(pi) = 0. For the covariance function, we adopt the Matérn 3/2 model

that is one time differentiable in the mean-square sense, and it is given by k(pi, p
′
i) =

σ2
s

Γ(3
2
)

(√
3
pi−p′i
ℓs

) 3
2
K 3

2

(√
3
pi−p′i
ℓs

)
, where K 3

2
and Γ are modified Bessel and Gamma func-

tions, respectively. Let σ2
s and ℓs be the process variance, the covariance function’s parameter,

respectively [136]. The hyperparameters are represented by θ = [σ2
s σ

2
n ℓs]

⊤, where σ2
n is the

unknown variance of observation noise. The hyperparameters can be learned by maximizing

the log marginal likelihood of the observation samples, i.e., θ∗ = argmaxθ logP(ẽi|pi, θ).

Given the observation samples,Oi, the marginalized GP posterior at any arbitrary point p∗i is a

univariate normal distribution, denoted by ei(p∗i ) ∼ N (µe(p
∗
i ), σ

2
e(p
∗
i )) defined with the mean

µe(p
∗
i ) = m(p∗i ) + k∗(K + σ2

nI)
−1ẽi and variance σ2

e(p
∗
i ) = k(p∗i , p

∗
i )− k∗

⊤
(K + σ2

nI)
−1k∗,

where K = K(pi,pi) denotes the n× n matrix of the covariances evaluated at all pairs of

training point pi, and k∗ = K(pi, p
∗
i ) is the n× 1 matrix of the covariances evaluated at n

training points and one arbitrary point, p∗i .

Theorem 3.3.8. Deviation from the nominal speed trajectory of CAV i ∈ N (t), gi(t), follows

a Chi-square distribution with one degree of freedom, and its posterior mean and variance
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at actual time t̂i(pi), where CAV arrives at position pi can be derived from µg(t̂i(pi)) =

a′1 µe + a′2 (µ
2
e + σ2

e) and

σ2
g(t̂i(pi)) = σ2

e

(
a′1

2
+ 4µe(a

′
1 a
′
2 + a′2

2
µe) + 2 a′2

2
σ2
e

)
, (3.37)

where a′1 = −2ϕi,2 − 6ϕi,3 · ti(pi) and a′2 = −3ϕi,3, and µe = µe(pi), σe = σe(pi).

Proof. Let pi ∈ Pi be an arbitrary known position, with pi = pi(t) and t̂i(pi) be the actual

time, where CAV arrives at position pi. Following the same steps as Lemma 3.3.4, the

deviation is given by gi(t̂i(pi)) = −[(2ϕi,2 + 6ϕi,3 · ti(pi)) · ei(pi) + 3ϕi,3 · ei(pi)2], where

ei(pi) is a univariate normal variable, and thus gi(t̂i(pi)) follows a Chi-square distribution

with one degree of freedom [204]. To derive expectation and variance of gi(t̂i(pi)), we use

moment-generating function and its properties. Since ei(pi) is a normal random variable, its

moment-generating function is given by Me(τ) = exp(τµe +
1

2
σ2
eτ

2). The nth moment of

random variable ei(pi), denoted by E[ei(pi)n], can be derived from
dn

dτn
Me(τ) |τ=0. From

linearity of expectation, we have µg(t̂i(pi)) = E[gi(t̂i(pi))] = a′1 E[ei(pi)] + a′2 E[ei(pi)2],

where the first and second moments of ei(pi), are given by µe and µ2
e + σ2

e , respectively. To

find the variance, we use σ2
g(t̂i(pi)) = E[gi(t̂i(pi))2]− E[gi(t̂i(pi))]2, where we can employ

the same procedure and derive (3.37).

Corollary 3.3.9. The deviation fi(t) from the nominal position trajectory of CAV i ∈ N (t)

follows a cubic normal distribution.

Proof. Let pi ∈ Pi be an arbitrary known position, with pi = pi(t) and t̂i(pi) be the actual

time, where CAV arrives at position pi. From (3.31), we have fi(t̂i(pi)) = a3 · ei(pi)3 + a2 ·

e(pi)
2 + a1 · ei(pi), where ei(pi) is a normal variable,-

a1 = −3ϕi,3 · ti(pi)2 − 2ϕi,2 · ti(pi)− ϕi,1, (3.38)

a2 = −3ϕi,3 · ti(pi)− ϕi,2, (3.39)

and a3 = −ϕi,3. Since a1, a2, and a3 are not random variables, the proof is complete.
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Proposition 3.3.10. For CAV i ∈ N (t), posterior mean and variance of fi(t) at actual time

t̂i(pi), where vehicle arrives at position pi can be derived from

µf (t̂i(pi)) = a1µe + a3(µ
3
e + 3µeσ

2
e) + a2(µ

2
e + σ2

e) (3.40)

σ2
f (t̂i(pi)) = σ2

e [a1
2 + 4a1a2µe + 6a1a3µ

2
e + 6a1a3σ

2
e+

4a2
2µ2

e + 2a2
2σ2

e + 12a2a3µ
3
e + 24a2a3µeσ

2
e

+9a3
2µ4

e + 36a3
2µ2

eσ
2
e + 15a3

2σ4
e ], (3.41)

where µe = µe(pi), σe = σe(pi).

Proof. The proof is similar to Theorem 3.3.8, hence it is omitted.

Next, we construct a bounded confidence interval for random process ei(pi), denoted

by Ei(pi) ⊂ Ei, within which ei(pi) lies with probability Pe as follows

Ei(pi) = [µe(pi)− zσe(pi), µe(pi) + zσe(pi)] , (3.42)

z =
√
2 erf−1(Pe), (3.43)

where µe(pi) and σe(pi) are posterior mean and standard deviation of ei(pi) at position pi ∈ Pi,

respectively, and erf−1(·) is the inverse error function. Using Chebyshev’s inequality, we

construct a bounded confidence interval for the random process fi(t), denoted by Fi(t) ⊂ Pi,

within which fi(t) lies with at least probability Pf .

Fi(pi) = [µf (t)− zσf (t), µf (t) + zσf (t)] , (3.44)

P (fi(t) ∈ Fi(t)) ≥ Pf = 1− 1

z2
. (3.45)

Deviation from speed trajectory, gi(t), follows a Chi-squared distribution which is a uni-modal

distribution, i.e., its distribution permits a Lebesgue density that is non-decreasing up to a

mode and non-increasing thereafter. This unimodality allows us to employ a tighter bound for

the confidence interval using Vysochanskii-Petunin inequality [205]. We construct a bounded
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confidence interval for the random process gi(t), denoted by Gi(t) ⊂ Vi, within which gi(t)

lies with at least probability Pg as follows

Gi(pi) = [µg(t)− zσg(t), µg(t) + zσg(t)] , (3.46)

P (gi(t) ∈ Gi(t)) ≥ Pg = 1− 4

9z2
. (3.47)

The solution to Problem 3.3.6 is the optimal nominal trajectories for CAV i ∈ N (t)

satisfying the safety constraints in the presence of uncertainty, which is modeled through GP

based on the possibly noisy observations of the time trajectory.

3.3.3 Simulation Results

To demonstrate the effectiveness of our proposed framework, we investigate the

coordination of 24 CAVs at a signal-free intersection shown in Fig. 3.1. The CAVs enter the

control zone from 6 different paths shown in Fig. 3.1 with the total rate of 3600 veh/hour and

their initial speeds uniformly distributed between 12 m/s to 14 m/s. We use the following

parameters for the simulation: th = 0.5 s, vmin = 0.25 m/s, vmax = 30 m/s, umax = 2

m/s2, umin = −2 m/s2, γ = 1.5 m, φ = 0.5 s, pz = 50 m, Pe = Pf = Pg = 95%. We

consider the actual deviation from the nominal time trajectory for CAV i ∈ N (t) is given by

function ei(pi) = 0.012 log (1 + pi)
1.5 which is not known to CAV i a priori. Videos from

our simulation analysis can be found at the supplemental site, https://sites.google.

com/view/ud-ids-lab/RBST.

Fig. 3.6 illustrates time trajectories of CAVs traveling from westbound to eastbound.

The CAVs nominal trajectories on this path are denoted with solid lines, while their corre-

sponding rear-end safety constraints (3.34) are visualized with dotted lines in the same color.

Replanning events that are due to the change of the trajectories of other CAVs in the control

zone are shown with blue asterisks, and the uncertainty characterization point at which each

CAV quantifies its trajectory is shown with a black square marker. The 95% confidence

bounds of the time trajectories are shown with dashed lines. Moreover, the CAVs from other
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paths that have the potential for lateral collision with CAVs in this path are shown with vertical

thicker lines. Their arrival times at the conflict points with 95% confidence bound are shown

in red, and corresponding lateral safety constraints (3.33) are shown with vertical black lines.

This figure shows that by using our robust framework, CAVs’ nominal trajectories satisfy

the safety constraints for every realization of the deviations from the nominal trajectories.

Fig. 3.7 visualizes the case where CAVs stick to their initial planned nominal trajectories,

ignoring uncertainty. It can be seen that for multiple cases, the trajectories of the CAVs with

95% confidence bounds cross the vertical lines representing the lateral constraints.
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Figure 3.6: Time trajectories of CAVs under robust coordination.

We demonstrate the control input trajectory of CAV #19 traveling from westbound

to eastbound under the robust coordination framework in Fig. 3.8. It can be seen that at

replanning events shown with blue asterisks, CAV #19 solves Problem 3.3.6 with updated

trajectories of other CAVs and new information about their uncertainty. Upon reaching the

uncertainty characterization point shown with a black square, CAV #19 learns the deviation

in its nominal trajectories and solves Problem 3.3.6 with this new information. It communi-

cates back the new nominal trajectories along with its characterization of uncertainty to the

coordinator. Then, the coordinator broadcasts a replanning event for all CAVs which entered

the control zone after CAV #19 to replan their trajectories.
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Figure 3.7: Time trajectories of CAVs under deterministic coordination.

3.4 A Barrier-Certified Optimal Coordination Framework for Connected and Auto-

mated Vehicles

In this section, we integrate a safety layer using the control barrier function into the

framework that we described earlier in Section 3.1 for coordination of CAVs at a signal-

free intersection. First, in our motion planning module, each CAV computes the optimal

control trajectory using simple vehicle dynamics. The trajectory does not make any of the

state, control, and safety constraints active. A vehicle-level tracking controller employs a

combined feedforward-feedback control law to track the resulting optimal trajectory from the

motion planning module. Then, a barrier-certificate module, acting as a middle layer between

the vehicle-level tracking controller and physical vehicle, receives the control law from the

vehicle-level tracking controller and using realistic vehicle dynamics ensures that none of the

state, control, and safety constraints becomes active. The latter is achieved through a quadratic

program, which can be solved efficiently in real time. We demonstrate the effectiveness of

our extended framework through a numerical simulation.

We structure the rest of the section as follows: In Section 3.4.1, we introduce the

general modeling framework. In Section 3.4.2, we present the motion planning, and in Section
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Figure 3.8: Control input trajectory of a CAV under robust coordination.

3.4.3, we introduce the barrier-certificate modules. Finally, we provide simulation results in

Section 3.4.4.

3.4.1 Problem Formulation

We consider coordination of CAVs at a signal-free intersection (Fig. 3.9). Our

coordination framework architecture consists of two main interconnected components called

motion planning and barrier certificate (Fig. 3.10). Using the simplified dynamics of each

CAV, the motion planning module which is described in Section 3.1 yields an optimal exit

time from the control zone. The resulting optimal exit time corresponds to the unconstrained

optimal control trajectory, derived using simple dynamics, and guarantees that none of the

state, control, and safety constraints becomes active. The approach in [91] considers that

a vehicle-level tracking controller can perfectly track the resulting optimal trajectory from

the motion planning module. In this section, however, we no longer consider this and

introduce the vehicle-level tracking controller that employs a combined feedforward-feedback

control law to track the resulting optimal trajectory from the motion planning module. Then,

we introduce an intermediate barrier certificate module between the vehicle-level tracking

controller and physical vehicle, which takes the reference control law, and by using complex
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Figure 3.9: A signal free intersection with conflict points.

Figure 3.10: Coordination framework architecture.

vehicle dynamics, it ensures that none of the constraints in the system are violated. In

particular, the barrier-certificate module yields a QP that can be solved at each time step

onboard each CAV in real time.

3.4.2 Motion Planning

Definition 3.4.1. For CAV i ∈ N (t), and a conflict point n ∈ Q, sni : R≥0 → R is the

function that gives the distance between CAV i and conflict point n (Fig. 3.9), and it is given
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by

sni (t) = pni − pi(t), ∀t ∈ [t0i , t
f
i ], (3.48)

where pni is the distance of the conflict point n ∈ Q from the point that CAV i enters the

control zone.

We need to slightly enhance lateral safety constraint (3.6) for CAV i ∈ N to make

it compatible for using CBF, since the constraint or its higher-order derivatives has to be

a function of control input of CAV i. Let CAV j ∈ N (t) \ {i} be a CAV that has already

planned its trajectory which might cause a lateral collision with CAV i. CAV i can reach at

conflict point n either after or before CAV j. In the first case, we have

sni (t) + snj (t) ≥ δi(t), ∀t ∈ [t0i , t
n
j ], (3.49)

where tnj is the known time that CAV j reaches the conflict point n, i.e., position pnj . The

intuition in (3.49) is that at tnj , snj is equal to zero based on Definition 3.4.1, and CAV i should

maintain at least a safe distance δi(t) from the conflict point n. However, for t ∈ [t0i , t
n
j ), s

n
j is

a positive number, and hence sni (t) needs to be greater than δi(t)− snj (t). Similarly, in the

second case, where CAV i reaches the conflict point n before CAV j, we have

sni (t) + snj (t) ≥ δj(t), ∀t ∈ [t0i , t
n
i ], (3.50)

where tni is determined by the trajectory planned by CAV i.

By moving all terms in (3.49) to the LHS, we obtain sni (t) + snj (t)− δi(t) ≥ 0. Con-

straint (3.49) is satisfied, if min(sni (t) + snj (t)− δi(t)) ≥ 0 in the interval [t0i , t
n
j ]. Likewise,

constraint (3.50) is satisfied if min(sni (t)+s
n
j (t)− δj(t)) ≥ 0 in the interval [t0i , t

n
i ]. However,

to ensure the lateral safety between CAV i and CAV j at conflict point n, either (3.49) or
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(3.50) must be satisfied, and thus we impose the following lateral safety constraint on CAV i

max

{
min

t∈[t0i ,tnj ]
{sni (t) + snj (t)− δi(t)},

min
t∈[t0i ,tni ]

{sni (t) + snj (t)− δj(t)}

}
≥ 0. (3.51)

Next, we formally define the motion planning problem to minimize the exit time from

the control zone.

Problem 3.4.2. Each CAV i ∈ N (t) solves the following optimization problem at t0i , upon

entering the control zone

min
tfi ∈Ti(t0i )

tfi (3.52)

subject to: (3.4), (3.9)− (3.11), (3.51).

Solving Problem 3.4.2, CAV i derives the optimal exit time, tfi , corresponding to

an optimal trajectory, ūi(t), v̄i(t) and p̄i(t), which satisfies all the state, control, and safety

constraints.

A vehicle-level tracking controller employs a combined feedforward-feedback control

law urefi to track the resulting optimal trajectory from the motion planning module as follows

urefi (t) = ūi(t) + kp · (p̄i(t)− pi(t)) + kv · (v̄i(t)− vi(t)), (3.53)

where pi(t) and vi(t) are current observed position and speed of CAV i; respectively, while

kp, kv ∈ R>0 are feedback control gains.

Remark 3.4.3. In this section, we consider that CAVs solve Problem 3.4.2 upon entering

the control zone. However, one can consider the case in which CAVs re-solve their motion

planning problem either periodically or based on an occurrence of a certain event such as

the entrance of a new CAV in the control zone as described in Section 3.2 [178].

134



3.4.3 Barrier-certificate

In this subsection, we present our barrier-certificate module which is a middle layer

between the vehicle-level tracking controller and physical vehicle. In this module, we consider

more realistic model to describe the dynamics of each CAV i ∈ N (t) as follows

ṗi(t) = vi(t),

v̇i(t) = ui(t)−
Fr(vi(t))

mi

.
(3.54)

Let Fr ∈ R≥0 correspond to all resisting forces including longitudinal aerodynamic

drag force and rolling resistance force at tires, while mi ∈ R≥0 is the mass of CAV [206, 207].

The net resisting force typically is approximated as a quadratic function of the CAV’s speed

[206, Chapter 2], i.e.,

Fr(vi(t)) = β0 + β1 vi(t) + β2 v
2
i (t), (3.55)

where β0, β1, β2 ∈ R≥0 are all constant parameters that can be computed empirically. We

write (3.54) in a control-affine, vector form as

ẋi(t) =

 vi(t)

−Fr(vi(t))
mi


︸ ︷︷ ︸

fi(xi(t))

+

0
1


︸︷︷︸

gi(xi(t))

ui(t), (3.56)

where xi(t) = [pi(t), vi(t)]
⊤ ∈ Pi × Vi denotes the state of the CAV i at t. Note that fi and

gi are globally Lipschitz functions, which results in global existence and uniqueness of the

solution of (3.56) if ui is also globally Lipschitz [206, Chapter 3].

Background Materials

Here, we review some basic definitions and results from [149, 154] adapted appropri-

ately to reflect our notation. Inspired by the idea of environmental CBFs [201], we construct
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a CBF for the cases in which the constraint of the CAV is coupled to the dynamics of other

CAVs, such as lateral safety and rear-end safety constraints. To simplify notation, we discard

the argument of time in our state and control variables whenever it does not create confusion.

Next, we define the safe set of a constraint that depends only on the state of a CAV.

Definition 3.4.4. For CAV i ∈ N (t), the safe set C is a zero-superlevel set of a continuously

differentiable function h : Pi × Vi → R,

C = {xi ∈ Pi × Vi : h(xi) ≥ 0}. (3.57)

For those cases where a constraint of CAV i also depends on another CAV j, i.e., in

rear-end safety and lateral safety constraints, we define the coupled safe set next.

Definition 3.4.5. For CAV i ∈ N (t), the coupled safe set C ′ with CAV j ∈ N (t) is a zero-

superlevel set of a continuously differentiable function z : D ⊆ (Pi × Vi)× (Pj × Vj)→ R,

C ′ = {(xi,xj) ∈ D : z(xi,xj) ≥ 0}. (3.58)

Next, we define the safety of the CAV i, with longitudinal dynamics (3.56), with

respect to the safe set C.

Definition 3.4.6. CAV i with the longitudinal dynamics given by (3.56) is safe with respect to

the safe set C if the set C is forward-invariant, namely, if xi(t0i ) ∈ C, xi(t) ∈ C for all t ≥ t0i .

Similarly, we define safety with respect to the coupled safe set C ′.

Definition 3.4.7. CAV i with longitudinal dynamics given by (3.56) is safe with respect to the

coupled safe set C ′ with CAV j, if the set C ′ is forward-invariant, namely, if (xi(t0i ),xj(t
0
i )) ∈

C ′, (xi(t),xj(t)) ∈ C ′ for all t ≥ t0i .

Next, we need to define the extended class K∞ function.
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Definition 3.4.8. A strictly increasing function α : R → R with α(0) = 0, is an extended

class K∞ function.

Definition 3.4.9 ([149]). Let C be a safe set for CAV i ∈ N (t) for a continuously differentiable

function h : Pi × Vi → R. The function h is a CBF if there exists an extended class K∞
function α(·) such that for all xi ∈ C

sup
ui∈Ui

ḣ(xi, ui) ≥ −α(h(xi)), (3.59)

where

ḣ(xi, ui) = ∇h(xi) · ẋi, (3.60)

and ẋi is given by (3.56).

Remark 3.4.10. We can also write (3.60) in terms of Lie derivatives as follows

ḣ(xi, ui) = Lfih(xi) + Lgi
h(xi)ui, (3.61)

where

Lfih(xi) =

[
∂h(xi)

∂pi
,
∂h(xi)

∂vi

]⊤
· fi(xi), (3.62)

Lgi
h(xi) =

[
∂h(xi)

∂pi
,
∂h(xi)

∂vi

]⊤
· gi(xi). (3.63)

Theorem 3.4.11 ([149]). Let C be a safe set for CAV i ∈ N (t) for a continuously differentiable

function h : Pi × Vi → R. If h is a CBF on Pi × Vi, then any Lipschitz continuous controller

ui : Pi × Vi → Ui such that ui(xi) ∈ Ah(xi) renders the safe set C forward invariant, where

Ah(xi) = {ui ∈ Ui : ∇h(xi) · ẋi ≥ −α(h(xi))}. (3.64)

Inspired by the idea of environmental CBF [201], which considers the evolution of
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environment state in analyzing safety, we consider the evolution of other relevant CAVs in

constructing the CBF for CAV i.

Definition 3.4.12. Let C ′ be a coupled safe set for CAV i and j ∈ N (t) for a continuously

differentiable function z : D ⊆ (Pi × Vi)× (Pj × Vj)→ R. The function z is a CBF if there

exists an extended class K∞ function α(·) such that for all (xi,xj) ∈ C ′

sup
ui∈Ui

ż(xi, ui,xj, uj) ≥ −α(z(xi,xj)), (3.65)

where

ż(xi, ui,xj, uj) = ∇xi
z(xi,xj) · (fi(xi) + gi(xi)ui)︸ ︷︷ ︸

ẋi

+∇xj
z(xi,xj) · (fj(xj) + gj(xj)uj)︸ ︷︷ ︸

ẋj

, (3.66)

∇xi
z(xi,xj) =

[
∂z(xi,xj)

∂pi
,
∂z(xi,xj)

∂vi

]⊤
, (3.67)

∇xj
z(xi,xj) =

[
∂z(xi,xj)

∂pj
,
∂z(xi,xj)

∂vj

]⊤
. (3.68)

Remark 3.4.13. Note that in our decentralized coordination framework, CAV i ∈ N (t) plans

its trajectory after CAV j ∈ N (t), which means that xj and uj are available to CAV i through

the coordinator.

Theorem 3.4.14. Let C ′ be a coupled safe set for CAV i ∈ N (t) and j ∈ N (t) for a

continuously differentiable function z : D ⊆ (Pi × Vi)× (Pj × Vj)→ R. If z is a CBF on

D, then any Lipschitz continuous controller ui : D → Ui such that ui(xi,xj) ∈ Az(xi,xj)

renders the coupled safe set C ′ forward invariant, where

Az(xi,xj) = {ui ∈ Ui : ∇xi
z(xi,xj) · ẋi +∇xj

z(xi,xj) · ẋj ≥ −α(z(xi,xj))}. (3.69)

Proof. The proof is similar to the one in [201, Theorem 2]. By considering the new state Xi,j

as stacked state of xi and xj , and applying Theorem 3.4.11, the result follows.
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Constructing CBFs

Using CBFs, we can map all of the constraints from the states for CAV i ∈ N (t) to

the control input. For the speed constraint (3.3) of CAV i, we consider

h1(xi) = vmax − vi, (3.70)

h2(xi) = vi − vmin. (3.71)

From Definition 3.4.9 and choosing αq(x) = λqx, λq ∈ R>0, q ∈ {1, 2}, we have h1(xi) and

h2(xi) as CBFs to ensure satisfying the speed limit constraint. Then, from Theorem 3.4.11,

any control input ui should satisfy the following

ui ≤
Fr(vi)

mi

+ λ1(vmax − vi), (3.72)

ui ≥
Fr(vi)

mi

− λ2(vi − vmin). (3.73)

Rear-end safety constraint depends on both states of CAV i and k ∈ N (t), and thus we have

z1(xi,xk) = pk − pi − (γ + φ · vi). (3.74)

From Definition 3.4.12 and choosing α3(x) = λ3x, λ3 ∈ R>0, we have z1(xi,xk) as a CBF

to guarantee satisfying the rear-end safety constraint. Next, we use the result of Theorem

3.4.11 to derive the condition on control input that needs to be satisfied. The gradient of z1 is

∇xi
z1(xi,xk) = [−1,−φ]⊤ , (3.75)

∇xk
z1(xi,xk) = [1, 0]⊤ . (3.76)

Taking the dot product of (3.75) and (3.76) with ẋi and ẋk; respectively, yields

∇xi
z1(xi,xk) · ẋi = −vi − φ(−

Fr(vi)

mi

+ ui), (3.77)

∇xk
z1(xi,xk) · ẋk = vk. (3.78)
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Using the result of Theorem 3.4.14, the control input ui should satisfy the following condition

in order to satisfy the rear-end safety constraint,

ui ≤
1

φ
[λ3(pk − pi − (γ + φvi)) + vk − vi] +

Fr(vi)

mi

. (3.79)

For the lateral-safety constraint (3.49), when tni > tnj , we have

z2(xi,xj) = sni + snj − δi

= (pni − pi) + (pnj − pj)− (γ + φ · vi). (3.80)

By choosing α4(x) = λ4x, λ4 ∈ R>0, z2(xi,xj) is a CBF to guarantee satisfying the lateral

safety constraint, which implies

∇xi
z2(xi,xj) = [−1,−φ]⊤ , (3.81)

∇xj
z2(xi,xj) = [−1, 0]⊤ . (3.82)

Taking the dot product of above equations with ẋi and ẋj; respectively, yields

∇xi
z2(xi,xj) · ẋi = −vi − φ(−

Fr(vi)

mi

+ ui), (3.83)

∇xj
z2(xi,xj) · ẋj = −vj. (3.84)

For this case, the control input ui should satisfy the following condition in order to satisfy

constraint (3.49),

ui ≤
1

φ

[
λ4(s

n
i + snj − δi)− (vi + vj)

]
+
Fr(vi)

mi

. (3.85)

For the lateral-safety constraint (3.50), we have

z3(xi,xj) = sni + snj − δj

= (pni − pi) + (pnj − pj)− (γ + φ · vj). (3.86)
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However, since ż3 does not depend on ui, (3.86) cannot be a valid CBF for CAV i. These

type of constraints are called constraints with higher relative degree r > 1. For example, the

relative degree of (3.50) is equal to 2. A complete analysis of handling higher relative degree

constraints in general cases is given in [153].

Next, we use a higher order CBF based on [153, Definition 7, Theorem 5], and

extend it to our case with coupled constraints. We first form a series of functions ψq : D ⊆

(Pi × Vi)× (Pj × Vj)→ R, q = {0, 1, 2} as

ψ0(xi,xj) = z3(xi,xj),

ψ1(xi,xj) = ψ̇0(xi,xj) + α5(ψ0(xi,xj)), (3.87)

ψ2(xi,xj) = ψ̇1(xi,xj) + α6(ψ1(xi,xj)),

where α5(·) and α6(·) are extended class K∞ functions. The zero-superlevel sets of ψ0 and

ψ1 are given by

C ′1 = {(xi,xj) ∈ D : ψ0(xi,xj) ≥ 0}, (3.88)

C ′2 = {(xi,xj) ∈ D : ψ1(xi,xj) ≥ 0}. (3.89)

Based on [153, Definition 7], if there exist extended class K∞ functions α5(·) and α6(·)

such that ψ2(xi,xj) ≥ 0 for all (xi,xj) ∈ C ′1 ∩ C ′2, z3(xi,xj) is a higher order CBF. From

[153, Theorem 5], if (xi(t0i ),xj(t
0
i )) ∈ C ′1 ∩ C ′2, then any Lipschitz continuous controller

ui : D → R such that ui(xi,xj) ∈ Aψ(xi,xj) renders the set C ′1 ∩ C ′2 forward invariant,

where

Aψ(xi,xj) = {ui ∈ Ui : ψ2(xi,xj) ≥ 0}. (3.90)

Theorem 3.4.15. The allowable set of control actions that renders the set C ′1 ∩ C ′2 forward
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invariant, Aψ, is given by

ui ≤ −λ5(vi + vj) +
Fr(vi)

mi

+
Fr(vj)

mj

− φβ1Fr(vj)

m2
j

− 2φβ2vjFr(vj)

m2
j

+ (
φβ1 + 2φβ2vj

mj

− λ5φ− 1)uj

− φu̇j + λ6 ψ1. (3.91)

Proof. By choosing αq(x) = λqx, λq ∈ R>0, q ∈ {5, 6}, we have

ψ1(xi,xj) = ∇xi
z3(xi,xj) · ẋi +∇xj

z3(xi,xj) · ẋj

+ λ5z3(xi,xj), (3.92)

where

∇xi
z3(xi,xj) · ẋi = −vi, (3.93)

∇xj
z3(xi,xj) · ẋj = −vj + φ

Fr(vj)

mj

− φuj. (3.94)

Substituting (3.86),(3.93), and (3.94) in (3.92) yields

ψ1(xi,xj, uj, Fr(vj)) = −vi − vj + φ
Fr(vj)

mj

− φuj

+ λ5[p
n
i − pi + pnj − pj − γ − φ · vj]. (3.95)

Next, we derive the full time derivative of (3.95) in order to construct ψ2(xi,xj) in

(3.87),

ψ̇1(xi,xj) = ∇xi
ψ1 · ẋi +∇xj

ψ1 · ẋj +
∂ψ1

∂uj
u̇j

+
∂ψ1

∂Fr(vj)

∂Fr(vj)

∂vj
v̇j, (3.96)
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where

∇xi
ψ1 · ẋi = −λ5vi +

Fr(vi)

mi

− ui, (3.97)

∇xj
ψ1 · ẋj = −λ5vj +

Fr(vj)

mj

+ λ5φ
Fr(vj)

mj

− uj − λ5uj, (3.98)

∂ψ1

∂uj
u̇j = −φ u̇j, (3.99)

∂ψ1

∂Fr(vj)

∂Fr(vj)

∂vj
v̇j =

φ

mj

(β1 + 2β2vj) · (−
Fr(vj)

mj

+ uj). (3.100)

By substituting (3.96)-(3.100) into (3.87), we derive ψ2(xi,xj) from (3.87), which can then

be used to construct the condition for the control input ui based on (3.90), and the proof is

complete.

As described in Section 3.4.2, to guarantee the lateral safety between CAV i ∈ N (t)

and CAV j ∈ N (t) at conflict point n ∈ Q, either (3.49) or (3.50) must be satisfied. Thus,

depending on the the arrival time at conflict point n for CAV i and j (tni and tnj , respectively),

we must satisfy (3.85) or (3.91) as follows ui ≤ A, if tni > tnj

ui ≤ B, if tni < tnj

, (3.101)

where

A =
1

φ

[
λ4(s

n
i + snj − δi)− (vi + vj)

]
+
Fr(vi)

mi

, (3.102)

B = λ5(vi + vj) +
Fr(vi)

mi

+
Fr(vj)

mj

− φβ1Fr(vj)

m2
j

− 2φβ2vjFr(vj)

m2
j

+ (
φβ1 + 2φβ2vj

mj

− λ5φ− 1)uj

− φu̇j + λ6 ψ1. (3.103)

Next, we formulate an optimization problem based on QP for our barrier-certificate
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module. This QP can be solved at discrete time step to verify the reference control input

urefi (t), resulting from the vehicle-level tracking controller. In case of a potential violation,

QP minimally modifies the control input to guarantee the satisfaction of all constraints.

Problem 3.4.16. Each CAV i ∈ N (t) at time t observes its state xi and accesses the states

and control inputs, xj and uj , respectively, of neighbour CAVs. Then, i solves the following

optimization problem to find the safe control input.

u∗i (t) = argmin
ui(t)

1

2
∥ui(t)− urefi (t)∥2 (3.104)

subject to:

(3.2), (3.72), (3.73), (3.79), (3.101),

where each pertaining constraint (3.3)-(3.50) for CAV i are mapped to the control input

constraint using the appropriate CBFs (3.64), (3.69), or (3.90). Note that urefi (t) is the

combined feedforward-feedback control law to track the resulting optimal trajectory from the

motion planning module 3.4.2.

Since the control input is bounded, the feasibility of the QP in Problem 3.4.16 can be

ensured by choosing appropriate λq ∈ R≥0 for class K∞ functions αq(x) = λqx, q ∈ N. Note

that in this section, we chose linear class K∞ functions; however, one may decide to choose a

different form for their class K∞.

3.4.4 Simulation Results

To show the performance of our barrier-certified coordination framework, we in-

vestigate the coordination of 24 CAVs at a signal-free intersection shown in Fig.3.9. The

CAVs enter the control zone from 6 different paths (Fig. 3.9) with a total rate of 3600

veh/hour while their initial speed is uniformly distributed between 12 m/s and 14 m/s.

We consider the length of the control zone and road width to be 212 m and 3 m, respec-

tively. The rest of the parameters for the simulation are vmin = 0.2 m/s, vmax = 20 m/s,

144



umax = 2 m/s2, umin = −2 m/s2, γ = 2.5 m, φ = 0.5 s kp = kv = 1.5, ∆t = 0.1 s.

We used lsqlin in Matlab to solve Problem 3.4.16 and ODE45 to integrate the vehicle

dynamics. Videos from our simulation can be found at the supplemental site, https:

//sites.google.com/view/ud-ids-lab/BCOCF.

Figs. 3.11-3.13 demonstrate the control input, position, and speed for a selected CAV

in the simulation. The blue line in Fig. 3.11 shows the reference control input from the

feedforward-feedback control law (3.53), and the dashed red line denotes the resulting optimal

control trajectory from the motion planning module. The black line shows the applied control

input at each time step resulting from the Solution of Problem 3.4.16. It can be seen that at

around 16.5 s the barrier-certificate module overrides the reference control input in order to

satisfy the speed limit constraint. The actual trajectory of the vehicle in Figs. 3.12 and 3.13

is computed by integrating the realistic vehicle dynamics (3.56) and applying the solution

of Problem 3.4.16 at each time step. Our proposed framework tracks the resulting optimal

trajectory from the motion planning module, while it ensures that none of the state, control,

and safety constraints becomes active.

Figure 3.11: Control input for a selected CAV.

The mean and standard deviation of computation times of the motion planning and

barrier-certificate modules in our proposed framework are listed in Table 3.1. It shows that

our framework is computationally feasible.
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Figure 3.12: Actual and optimal position trajectory for a selected CAV.

Figure 3.13: Actual and optimal speed trajectory for a selected CAV.

3.5 Summary

In this chapter, we first reviewed a single-level coordination framework for CAVs

proposed in [91], and implemented at a roundabout in [92]. Utilizing the proposed framework,

each CAV computes the optimal unconstrained control trajectory without activating any of

the state, control, and safety constraints. One direct benefit of this framework is that it avoids

the inherent implementation challenges in solving a constrained optimal control problem in

real time described in Chapter 2.

In this chapter, we provided three different approaches to make our coordination

framework uncertainty-aware. First, we integrated a replanning mechanism into our coordina-

tion framework, which can be implemented in a time-driven or event-driven manner. This

embedded replanning aims at introducing indirect feedback into the coordination framework

to respond to the unexpected changes in the system to some extent. Additionally, using the
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Table 3.1: The mean and standard deviation of computation times for each module.

Mean (s) Standard deviation (s)

Motion planning 0.029 0.0331
Barrier-certificate 0.0063 0.0026

theory of the job-shop scheduling problem, we further enhanced our decentralized coordina-

tion framework by introducing a priority-aware resequencing mechanism, which designates

the order of decision making. This enhancement advances the state of the art in a way that

relaxes the FCFS decision making sequence of the CAVs. Moreover, in our resequencing

framework, we can have different weights representing the priorities for CAVs based on the

application. Here, we chose the weights of the CAVs to be inversely proportional to the size

of their compact set of feasible solutions.

Second, we reformulated the motion-planning framework for CAVs at a signal-free

intersection as a robust coordination problem by including the deviations from the nominal

trajectories as uncertainty. We adopted the data-driven approach, GP regression, to learn the

uncertainty from the possibly noisy observation of CAVs’ time trajectories. After obtaining

the statistical knowledge about the deviation from nominal trajectories, we constructed the

confidence interval for time, position, and speed trajectories using the inverse error function,

Chebyshev’s inequality, and Vysochanskii-Petunin inequality, respectively.

Finally, we enhanced the motion planning framework for coordination of CAVs at a

signal-free intersection through employing CBFs to provide an additional safety layer and

ensure the satisfaction of all constraints in the system. By using the proposed framework in

the motion planning module, each CAV first uses simple longitudinal dynamics to derive the

optimal control trajectory without activating any constraint. In a real physical system, we

require a vehicle-level controller to track the resulting optimal trajectory. However, due to

the inherent deviations between the actual trajectory and the planned trajectory, the system’s

constraints may become active. We addressed this issue by introducing a barrier-certificate

module based on a more realistic dynamics as a safety middle layer between the vehicle-

level tracking controller and physical vehicle to provide a reactive mechanism to guarantee
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constraint satisfaction in the system.

Next, we introduce our scaled smart city to validate the coordination framework of

CAVs in a safe and controlled environment, and to prove the concepts beyond the simulation.
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Chapter 4

EXPERIMENTAL VALIDATION OF CONNECTED AND AUTOMATED VEHICLES
AT A SCALED ENVIRONMENT

Two men took useless trouble and strove without any profit,
when one of them accumulated property without enjoying it, and
the other learned without practicing what he had learned.

Saadi Shirazi, The Gulistan of Saadi (1258 CE)

Commercial simulation platforms are currently available for testing and validating

control algorithms for connected and automated vehicles (CAVs) in a safe and cost-efficient

setting. Simulation can help us gather key information about how the system performs in

an idealized environment. However, evaluating the performance of CAVs in a simulation

environment imposes limitations since modeling the exact vehicle dynamics and driving

behavior is not feasible. Capturing the complexities arising from data loss and transmission

latency associated with connectivity and communication networks can also be challenging.

As Grim et al. [164] stated, “the problem with simulations is that they are doomed to succeed.”

Although there have been several studies reporting on the impact of coordination of CAVs in

traffic scenarios, e.g., intersections, merging at roadways and roundabouts, the effectiveness

of these approaches has been mostly shown in simulation. Therefore, validating control

approaches for CAVs in a physical testbed is of great importance.

In this chapter, we first provide a description of the hardware and software architecture

of the Information and Decision Science Lab’s Scaled Smart City (IDS3C) in Section 4.1.

Then, in Section 4.2, we show a tutorial of the coordination of CAVs at multi-lane roundabout

in IDS3C using 9 CAVs. Next, in Section 4.3, we show how we can improve traffic throughput

along a transportation corridor consisting of a roundabout, an intersection, and a merging
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roadway by using a fleet of 15 CAVs. Finally, in Section 4.4, we provide a summary of the

chapter.

The main contributions presented in this chapter are

• (1) The development of a robotic scaled (1:25) testbed to validate control approaches
beyond simulation in applications related to emerging mobility systems; (2) validating
the control framework for coordination of CAVs at a multi-lane roundabout in real
time; and (3) demonstrating the scalability of the control framework at a transportation
corridor using a fleet of 15 CAVs. The results of this section were previously presented
in the following publications:

– [93] Behdad Chalaki, Logan E. Beaver, A M Ishtiaque Mahbub, Heeseung Bang,
and Andreas A. Malikopoulos. A research and educational robotic testbed for real-
time control of emerging mobility systems: From theory to scaled experiments.
IEEE Control Systems Magazine, 2022 (in press)

– [92] Behdad Chalaki, Logan E Beaver, and Andreas A Malikopoulos. Experi-
mental validation of a real-time optimal controller for coordination of cavs in a
multi-lane roundabout. In 31st IEEE Intelligent Vehicles Symposium (IV), pages
504–509, 2020

4.1 Information and Decision Science Lab’s Scaled Smart City

IDS3C (Fig. 4.1) is a 1:25 scaled testbed spanning over 400 square feet, and it is

capable of replicating real-world traffic scenarios in a small and controlled environment using

50 ground and 10 aerial vehicles. IDS3C provides the opportunity to prove concepts beyond

simulations and to understand the implications of errors and delays in the vehicle-to-vehicle

and vehicle-to-infrastructure communication as well as their impact on energy usage. IDS3C

can also be used to understand the implications of emerging mobility systems, consisting

of CAVs, electric vehicles, and shared mobility, on energy consumption and transportation

efficiency. Another facet of research that can be explored using IDS3C is complex missions

that include the cooperation of aerial and ground vehicles for logistic problems, such as

last-mile delivery. IDS3C has six driver emulation stations interfaced directly with the robotic

cars which also allow us to explore human driving behavior.

IDS3C is equipped with a VICON motion capture system and uses eight cameras

to track the position of each vehicle with sub-millimeter accuracy. The testbed contains a
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Figure 4.1: A view of the IDS Lab’s Scaled Smart City.

dozen traffic bottlenecks, including merging roadways, multi-lane roundabouts, adjacent

intersections, multi-lane intersections, lane-drops, and speed reduction zones. A central

mainframe computer (Processor: Intel Core i7-6950X CPU @ 3.00 GHz x 20, Memory: 128

GB) stores a map of the IDS3C as a database of line and arc segments that make up the road

network. Coordination of the CAVs within the IDS3C is achieved using a multi-level control

framework spanning the mainframe computer and the individual CAVs in an experiment; a

schematic of this multi-level framework is shown in Fig. 4.2.

At the start of the experiment, each CAV sets its temporal baseline from which

it measures all later times; this avoids the problem of synchronizing CAV clocks, as all

information is calculated relative to the experiment start time. High-level trajectory generation

is achieved by a multi-threaded C++ program on the mainframe computer, which allocates a

thread to each CAV in the experiment. Each CAV is given its own thread on the mainframe,

which it uses to receive position information from VICON and generate its trajectory. This

is equivalent to other decentralized control architectures, where routing is performed on

supplementary external hardware [171]. The only difference is that our external hardware

shares a single physical processor. This approach replicates the decentralized structure of

traffic coordination problems. The control strategy for each CAV is defined for each zone

in the experiment (for example, optimal control in the control zone and the intelligent driver

model everywhere else). The mainframe computer transmits the current state of the CAV as
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well as reference trajectory data to each CAV through WiFi.

Figure 4.2: Diagram of the high, medium, and low-level control loops. This schematic shows
the high-level (mainframe), medium-level (Raspberry Pi) and low-level (Zumo) control loops
in IDS3C and communication structure for each CAV.

Lane and reference trajectory tracking are accomplished onboard each CAV in a purely

distributed manner. Using state and trajectory data from its reserved thread on the mainframe,

each CAV updates its lateral, heading, and distance error at a rate of 50 Hz. Each CAV can

operate in one of three modes depending on its control strategy. In trajectory tracking mode,

i.e., optimal planning, the CAV uses a modified Stanley controller [208] for lane tracking

while a feedforward-feedback PID controller [209] tracks the desired longitudinal speed and

position. In lane tracking mode, that is, reactive control, the modified Stanley controller is

used to control the steering angle, while the desired speed is transmitted directly to the CAV.

Finally, in human driver mode, the CAV directly receives a steering angle and wheel speed

command from a driving base station and transmits back a live feed from the onboard Pi

camera.

The CAVs of IDS3C have been designed using off-the-shelf electrical components

and 3D printed parts that we designed in house. The primary microcontroller on the CAV
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is a Raspberry Pi 3B+ running Ubuntu Mate and ROS Kinetic. The Raspberry Pi tracks the

reference trajectory and passes a desired motor speed and steering angle to a Pololu Zumo

32U4 for low-level control. The Zumo applies PID control to track the desired motor speed

while acting as an ad-hoc analog to digital converter for sensors.

The CAVs are equipped with a Pi Camera, accelerometer, gyroscope, and compass

to collect experimental data and to allow for some degree of onboard localization. With this

hardware configuration, each CAV is able to run and collect experimental data at 20 Hz for

approximately 2 hours.

We designed IDS3C with the capacity to experimentally validate a wide variety of

urban traffic scenarios. This includes eco-routing, mixed traffic [71], ride-sharing [5], last-

mile delivery [183], and air-ground coordination [210]. In several recent efforts, we have

used IDS3C to implement and validate control algorithms for coordinating CAVs at traffic

scenarios, such as merging roadways [74], roundabouts [92], intersections [90], adjacent

intersections [69, 175, 176], and corridors [75]. We have used IDS3C to generate control

actions from neural networks [184, 185] and handle the stochasticity that arises in physical

systems [179]. IDS3C also provides a means for user interaction through a mobile application,

which enables them to submit origin and destination pairs for dynamic routing in shared

mobility and last-mile delivery scenarios.

Recently, we introduced a Unity-based virtual simulation environment for emerging

mobility systems, called the IDS 3D City, intended to operate alongside its physical peer,

IDS3C, and interface with its existing control framework. The IDS 3D City is a digital replica

of the IDS3C using AirSim and Unity. We have designed the IDS 3D City to integrate the

control framework used in IDS3C to simulate virtual vehicles. The IDS 3D City enables users

to rapidly iterate their control algorithms and experiment parameters before deploying it to

IDS3C. A schematic of how the IDS 3D City interacts with IDS3C is shown in Fig. 4.3. The

end result is a transition between the physical and virtual environments with minimal changes

to input files, as well as the capability to mix physical and virtual vehicles.
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Figure 4.3: The physical and virtual city environments. The mainframe computer can switch
between physical and virtual experiment.

4.2 Tutorial: Roundabout Case Study

We performed experiments in the multi-lane roundabout shown in Fig. 4.4 using three

CAVs per path in IDS3C to illustrate the implementation of the single-level coordination

framework described in 3.1. Fig. 4.4 shows three paths with three conflict points that have a

potential for lateral collisions, which we denote as lateral nodes. The length of the control

zone for paths are 5.3 m, 5.8 m, and 3.8 m (132.5 m, 145 m, 95 m scaled), respectively. The

CAVs initially follow the intelligent driver model controller [211], and switch to our proposed

optimal control framework when entering the control zone. Each CAV then determines its

optimal trajectory by solving 3.1.3 numerically. The CAV follows this optimal trajectory

through the control zone. Upon exiting the control zone, it reverts to the intelligent driver

model and loops back around toward the control zone entrance.

To facilitate data collection and fast analysis, we define a finite state machine for the

experiment consisting of three states: Starting, Running, and Waiting. In the Starting state

of the experiment, CAVs are released upstream of the considered traffic scenario (that is,

roundabout) and drive towards the control zone. Once the first CAV enters the control zone,
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Figure 4.4: A schematic of the roundabout scenario. The highlighted control zone continues
upstream from the roundabout at both entrances.

we log the current time and the state machine transitions to Running. In the Running state,

we track the planned exit time and trajectory coefficients of each CAV that enters the control

zone. Simultaneously, we log the state information of each CAV inside the control zone with

a corresponding timestamp. Finally, when a CAV exits the control zone, we log the actual

exit time, and, if it is the last CAV to exit the experiment, the state machine transitions to

Waiting. Once all of the CAVs have exited the experiment and a sufficient number of CAVs

have circled around to their initial positions, a user-specified countdown begins before the

CAVs are released to start another experiment.

To automate the testing procedure, we developed a queue sign, which is analogous to

a ramp metering signal. We use queue signs to precisely time the release of CAVs on each

path during an experiment. The number of CAVs released by each queue sign is determined

by user input, and it can be fixed or drawn from a discrete uniform distribution for each

experiment. Once the required number of CAVs have formed a queue behind a queue sign, the

experiment state machine is notified that it is ready for the experiment to begin. A schematic

showing the behavior of the experiment and queue signs, as well as their connections, is
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shown in Fig. 4.5. Once all queue signs have a sufficient number of CAVs accumulated, the

state machine can transition from Waiting to Starting, wherein it will notify all queue signs

to release CAVs. Each queue sign has a user-specified initial delay, which allows the arrival

time of CAV to the control zone to be precisely selected. The initial delay can either be a

fixed number or drawn from a user-supplied uniform distribution. Similarly, the time delay

between the release of each CAV from a particular queue sign can be set to a fixed number or

a uniform distribution. Once the queue sign has released the appropriate number of CAVs,

it waits for the experiment to complete, and at that point, it selects the number of CAVs for

the next experiment. This allows for little to no delay between experiments if the number of

CAVs physically present in the testbed is greater than the number of CAVs required for any

single experiment—potentially doubling the rate of data collection.

Figure 4.5: State machine diagrams of the experiment and queue sign. The starting states for
experiment and queue sign state machines are colored green. Solid lines correspond to state
transitions, and hollow lines correspond to communication between state machines.

For the roundabout experiments we used the following parameters: vmax = 0.5 m/s

(28 mph full scale), vmin = 0.15 m/s (8.4 mph full scale), umax = 0.45 m/s2 (11 m/s2 full

scale), and umin = −umax. To ensure safety, we select a time gap of 1.0 s and a minimum

standstill distance of 0.07 m (approx. 1 car length). Our coordination framework has an

average computation time of 2.14 ms, with a maximum of 3.4 ms when a CAV plans its

trajectory. To quantify the effect of noise and disturbances acting on the system, we repeated
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the experiment five times. Furthermore, we precisely timed the release of the CAVs into the

roundabout such that lateral collisions would occur without intervention. Supplementary

videos of the roundabout experiment can be found at https://sites.google.com/

view/ud-ids-lab/csm.

Minimum and average speed and travel time results for the five experiments are

summarized in Table 4.1. Note that the minimum speed of all CAVs is 0.12 m/s (7 mph at full

scale) across all optimal control experiments, which demonstrates that stop and go driving has

been completely eliminated. Additionally, the average speed of CAVs is 0.42 m/s (24 mph

at full scale), which implies that most CAVs travel near vmax = 0.5 m/s. The error between

desired and actual exit time varies between 2− 4%, which comes from the tracking error in

the CAV’s low-level controller.

Table 4.1: Minimum and average speed and travel time results for the 5 experiments. The
root mean square error (RMSE) of the actual exit time compared to the desired exit time from
the control zone averaged over all CAVs in each experiment is provided.

Experiment vmin [m/s] vavg [m/s] Travel Time RMSE

1 0.16 0.41 2.71 %
2 0.27 0.45 1.54 %
3 0.18 0.41 4.03 %
4 0.12 0.43 1.92 %
5 0.21 0.42 1.38 %

The exit time data for each CAV is visualized in Fig. 4.6, which demonstrates the

variation between the simulated and actual behavior of each CAV. The grey bars represent the

feasible space of tfi , the wide black bars correspond with the planned value of tfi , and the thin

red bars show the actual value of tfi achieved by each CAV. This effect of tracking error is

visible in Table 4.1, where the minimum achieved speed is slightly lower than the minimum

speed imposed on the reference trajectory. Fig. 4.6 also demonstrates how some scenarios

can lead to a very small feasible space, i.e., an exit time near the maximum. This can be seen

in vehicles 17, 18, and 27. This motivates the introduction of a regularization zone upstream,

which could influence the initial state of each CAV in the control zone to enlarge its feasible

space.
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Figure 4.6: Planned and achieved exit time for each vehicle over all experiments. The grey
bars shows the range of admissible tfi from the state and control constraints. Every 9 vehicles
corresponds to a single experiment; they are sorted in ascending order by departure time from
the control zone.

The position trajectory of an ego-CAV, which is selected to be the last CAV following

path 2, is given in Fig. 4.7. The ego-CAV’s position is denoted by the dashed red line, while

the positions of two other CAVs are represented by dotted black lines. The lateral collision

constraints are denoted by vertical black bars, and the rear-end safety constraint is the hashed

region on the graph. There are two other CAVs shown; one is on path 3 and merges in front

of the ego-CAV at node 1 (see Fig. 4.4) and a second CAV leads the ego-CAV on path 2.

Fig. 4.7 demonstrates that, in a physical testbed, noise and disturbances play a significant

role in the actual trajectory of the CAVs. The trajectory generated by the ego-vehicle did not

lead to a physical collision, but it does violate the rear-end safety constraint by a car length.

However, at that speed, the rear-end safety constraint required a three-car length gap, so a

robust control formulation of 3.1.3 similar to 3.3.6 could likely guarantee collision avoidance.

This can also be seen in the lateral collision avoidance constraint in Fig. 4.7, where a CAV

later in the sequence crosses node 3 in a way that violates the time headway constraint (again,

without leading to an actual collision). This further demonstrates the value of performing

scaled experiments, where external physical factors, such as unmodeled dynamics and slip,

can inform new research directions without the cost and risk associated with full-scale testing.
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Figure 4.7: Position trajectory for the third vehicle entering from path 2 in the 5th experiment.
The lateral constraints are shown as vertical lines, and the rear-end safety constraint is the
hashed region.

Finally, the average, maximum, and minimum speed for each CAV across all exper-

iments are given in Fig. 4.8. Each figure corresponds to a single path (see Fig. 4.4) and

considers 15 CAVs (3 CAVs per path over five experiments). The CAVs’ positions are taken

directly from VICON and numerically derived using a first-order method. From Fig. 4.8,

the average speed for CAVs on each path is very close to constant. Path 1 shows the most

variance, which is due to the distance between collision nodes 2 and 3 on path 1 (see Fig. 4.4).

In order for a CAV i ∈ N (t) that is traveling along path 1 to reduce its arrival time at node

2, it must make a proportionally larger reduction in the value of tfi . This is a side effect of

enforcing the unconstrained trajectory on each CAV over the entire control zone. Additionally,

the entrance to the control zone along path 3 follows a sharp right turn. This results in a

relatively lower average speed in Fig. 4.8(c), as the dynamics of the CAVs reduce their speed

while turning, causing them to enter the control zone at a lower initial speed. Finally, there

are instances in Fig. 4.8(b) where the maximum vehicle speed surpasses the speed limit. This

is a result of stochasticity in the vehicle dynamics and sensing equipment, as well as envi-

ronmental disturbances, on our deterministic controller. This analysis motivates an enhanced

trajectory generation framework that accounts for noise, disturbances, communication delay,

and low-level tracking errors in the CAVs [175, 179].
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Next, we present a high-level overview and analysis of our framework for a full

transportation corridor in IDS3C .
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Figure 4.8: Speed range and average for all CAVs on (a) path 1, (b) path 2, and (c) path 3
across all experiments in the multi-lane roundabout.

4.3 Transportation Corridor

To demonstrate the single-level optimal coordination framework described in 3.1 for a

transportation corridor in IDS3C, we use a fleet of 15 CAVs. The corridor is shown in Fig. 4.9,

where 3 ego-CAVs are released along the red path (starting in the northeast of the IDS3C) and

travel through a roundabout, an intersection, and a merging roadway. At each traffic scenario,

we release 3 additional CAVs per path (as indicated in Fig. 4.9) to create congestion. The

traffic scenarios were specifically selected so that upon entering the control zone, each CAV

would have approximately 3 m (75 m scaled) to adjust their speed before reaching a conflict

point. This also allowed us to consider each coordinator and control zone independently, as

the control zone length was sufficiently long to neglect the influence of another upstream

control zone.

In the baseline case, we replaced the roundabout and merging zone coordinators with

yield signs. In both scenarios, the merging vehicles yield to any vehicle within 0.4 m of

the merging zone (10 m scaled, approx. 4 car lengths). To manage the intersection, we

implemented a four-way stop with a FIFO queue, that is, whenever a vehicle enters a line

segment leading up to the intersection, it is added to the queue. When the merging zone
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Figure 4.9: Corridor experiment where the ego-CAVs (red path) must navigate a roundabout,
intersection, and merging roadway. The paths are only colored where they pass through a
control zone, and the segments belonging to the same path have a shared color.

contains no vehicles, if the front vehicle has come to a complete stop, it is removed from the

queue and allowed to pass through the merging zone. We have taken this approach to the

intersection in order to avoid any bias that may be introduced into our results by the timing of

a traffic light.

Finally, to ensure a fair comparison, we set the speed limit for the entire city to 0.5

m/s (approximately 30 mph scaled) in both tests. In our framework, we impose a maximum

speed of 0.3 m/s (approx. 15 mph scaled) outside of the control zone. This ensures that the

vehicles enter the control zone at a speed lower than vmax, and gives them the opportunity to

accelerate through the control zone. This decision was an insight from previous experiments

in the IDS3C. Reducing the initial speed of the vehicles below vmax at the entrance of the

control zone generally leads to an larger feasible space for tfi .

Fig. 4.10 shows that despite the apparent advantage of the baseline case’s higher
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speed limit, the ego-CAV maintains a higher average speed in the optimal control case, and

stop-and-go driving has been completely eliminated. Furthermore, Fig. 4.11 shows that the

ego-CAVs do not activate any safety constraints throughout the experiment. Additional videos

and figures of the experiment can be found at https://sites.google.com/view/

ud-ids-lab/csm.
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Figure 4.10: Speed vs position graph for the front ego vehicles in the optimal control and
baseline cases. Blue highlighted areas are within each of the control zones in the optimal case,
and the vertical dashed lines correspond to the location of stop and yield signs in the baseline
case.

4.4 Summary

In this chapter, we first introduced the IDS3C, a robotic scaled (1:25) testbed capable

of safely validating control approaches beyond simulation in applications related to emerging

mobility systems such as coordination of CAVs. Then, we demonstrated the effectiveness of

coordination of CAVs at a multi-lane roundabout and we showed its scalability in a corridor

consisting of a roundabout, an intersection, and a merging roadway.

162

https://sites.google.com/view/ud-ids-lab/csm
https://sites.google.com/view/ud-ids-lab/csm


2 4 6 8 1 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Tim
e (s

)

P o s i t i o n  ( m )

 C A V  1
 C A V  2
 C A V  3
 R e a r - E n d
 L a t e r a l  C o n s t r a i n t

Figure 4.11: Time vs position graph for the ego CAVs in the optimal control case. Solid
lines correspond to the CAV trajectories, dashed lines correspond to CAVs that merge onto
the ego-path, and orange boxes correspond to time intervals when a lateral conflict point is
occupied by another CAV.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

If your tree bears the fruit of knowledge;
you can govern the stars yourself.

Naser Khosrow, Diwan, 1004–1088 CE

In Chapter 1, we completed the literature review and presented some major research

gaps in the literature. In Chapter 2, we developed two different bi-level approaches for

coordinating CAVs at adjacent signal-free intersections consisting of the upper-level and

low-level planning. In the first approach, in the upper-level planning, each CAV recursively

computes the energy-optimal arrival time at each intersection along its path, while ensuring

both lateral and rear-end safety. Additionally, each CAV investigates the feasibility of a

lane-changing maneuver and determines the optimal lane to occupy to the traffic throughput.

Given the output of the upper-level planning, in the low-level planning, we formulated an

optimal control problem for each CAV with the interior-point constraints, the solution of

which yields the energy optimal control input (acceleration/deceleration). In addition, we

enhanced our bi-level framework to guarantee safety in the presence of a bounded steady-

state error in tracking the positions of CAVs. Finally, our proposed framework exhibited a

reduction in fuel-consumption, traffic delay, and improvement in the travel time compared to

the baseline scenario in different traffic volumes ranging from 600 veh/h to 1,400 veh/h for

both symmetric and asymmetric adjacent intersections.

Focusing on minimizing travel time and improving traffic throughput, in the second

approach, we formulated the upper-level problem as a scheduling problem that each CAV

solves upon entering the control zone. The upper-level problem’s outcome becomes the input

of the low-level problem, which is the tuple of optimal arrival time at each zone to avoid the
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lateral and rear-end collision and minimize the CAV’s travel time. In the low-level control,

we formulated an optimal control problem, the solution of which yields the optimal control

input and minimizes the transient engine operation. We derived an analytical solution for

each zone that can be implemented in real time. Finally, we demonstrated the effectiveness of

the proposed framework through simulation and comparison with signalized intersections,

centralized scheduling, and FIFO queuing policy. Finally, in the last section of Chapter 2,

we proposed a learning-based decentralized coordination framework for CAVs at a signal-

free intersection to minimize travel delay and improve fuel consumption while ensuring

rear-end and lateral safety. We introduced a coordination mechanism into our decentralized

learning framework by using hysteretic Q-learning to update the Q-table of each CAV. We

also integrated FIFO queuing policy in our framework to improve the performance of our

system. Finally, we showed the effectiveness of our proposed approach through simulation and

comparison with the optimal control techniques based on Pontryagin’s minimum principle.

In Chapter 3, after reviewing a single-level coordination framework for CAVs proposed

in [91], we provided three different approaches to enhance this framework in the presence of

uncertainty. First, we integrated a replanning mechanism into our coordination framework,

which can be implemented in a time-driven or event-driven manner. This embedded replanning

aims at introducing indirect feedback into the coordination framework to respond to the

unexpected changes in the system to some extent. Additionally, using the theory of the job-

shop scheduling problem, we further enhanced our decentralized coordination framework by

introducing a priority-aware resequencing mechanism, which designates the order of decision

making. This enhancement advances the state of the art in a way that relaxes the FCFS decision

making sequence of the CAVs. Second, we reformulated the motion-planning framework

for CAVs at a signal-free intersection as a robust coordination problem by including the

deviations from the nominal trajectories as uncertainty. We adopted the data-driven approach,

GP regression, to learn the uncertainty from the possibly noisy observation of CAVs’ time

trajectories. After obtaining the statistical knowledge about the deviation from nominal

trajectories, we constructed the confidence interval for time, position, and speed trajectories
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using the inverse error function, Chebyshev’s inequality, and Vysochanskii-Petunin inequality,

respectively. Finally, we enhanced the motion planning framework for coordination of CAVs

at a signal-free intersection through employing control barrier functions (CBFs) to provide an

additional safety layer and ensure the satisfaction of all constraints in the system. By using the

proposed framework in the motion planning module, each CAV first uses simple longitudinal

dynamics to derive the optimal control trajectory without activating any constraint. In a

real physical system, we require a vehicle-level controller to track the resulting optimal

trajectory. However, due to the inherent deviations between the actual trajectory and the

planned trajectory, the system’s constraints may become active. We addressed this issue by

introducing a barrier-certificate module based on a more realistic dynamics as a safety middle

layer between the vehicle-level tracking controller and physical vehicle to provide a reactive

mechanism to guarantee constraint satisfaction in the system.

In Chapter 4, we introduced Information and Decision Science Lab’s Scaled Smart

City (IDS3C), a robotic scaled (1:25) testbed capable of safely validating control approaches

beyond simulation in applications related to emerging mobility systems such as coordination

of CAVs. Then, we demonstrated the effectiveness of coordination of CAVs at a multi-

lane roundabout and we showed its scalability in a corridor consisting of a roundabout, an

intersection, and a merging roadway.

The contributions of this dissertation are summarized as follows:

1. Development of a bi-level coordination framework for CAVs at multiple adjacent multi-
lane signal-free intersections closely distanced from each other aimed at improving
traffic throughput and minimizing energy consumption (Chapter 2).

2. Establishment of a decentralized coordination framework for CAVs at a signal-free
intersection through combining FIFO queuing policy and hysteretic Q-learning (Chapter
2).

3. Integrating replanning and resequencing mechanisms into the coordination framework
to introduce feedback and relax FCFS decision sequence (Chapter 3).

4. Development of a robust coordination framework by learning deviation from the nomi-
nal trajectory online using Gaussian process (Chapter 3).
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5. Introducing a safety-layer into the coordination framework of CAVs at a signal-free
intersection using CBFs (Chapter 3).

6. Validating the coordination framework for CAVs at different traffic scenarios in a scaled
environment (Chapter 4).

These research contributions together result in a mathematically rigorous framework

for the online coordination of CAVs in different traffic scenarios. This dissertation advances

the state of the art in utilizing CAVs in real-world traffic scenarios to alleviate congestion,

improve traffic throughput, and increase passenger safety.

5.1 Future Work

Several studies have developed eco-driving approaches for signalized intersections

under mixed-traffic scenarios [212–214]. However, coordination for mixed-traffic scenarios

and the interaction of human-driven vehicles and CAVs are still open research questions and

potential directions for future research. A recent approach proposed in [26, 28] explored

forming platoons using CAVs to indirectly control human-driven vehicles. Future studies

should investigate the coordination of platoons of mixed-vehicle in traffic scenarios. Another

possible direction is to model human-driven vehicles as uncertainty or disturbances for the

CAVs and extend the coordination framework to consider this uncertainty.

Our proposed RL-based coordination framework for CAVs at a signal-free intersection

through combining FIFO queuing policy and hysteretic Q-learning can be extended in several

ways. Future research should examine exploring the convergence properties of the proposed

learning framework. Another future direction is integrating a safety layer based on CBFs

into the RL-based coordination framework to ensure safety during the training and after

deployment.

This dissertation assumed that CAVs can communicate with other CAVs and the

coordinator without errors, communication delays, or packet loss. For a scenario of vehicle

platooning at a highway on-ramp merging, we explored the effect of delayed communication

among the CAV platoons and proposed a robust framework in the presence of bounded delays
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[30]. A potential future direction would be to extend the proposed coordination framework

in this dissertation to be robust in the presence of communication delay or packet loss.

Future research should also investigate online learning techniques to characterize the bounds

of communication delays. Another potential direction is to explore other communication

structures, such as word-of-mouth communication [215], where each CAV may directly

communicate only with a subset of CAVs in the control zone or nested information structure

[216–218], where information flow among CAVs is not bidirectional.

In our resequencing framework, we assumed that each path of a CAV cannot get

either split into two paths or merged by another CAV’s path. One can investigate relaxing

this assumption and establish a computationally efficient algorithm for the general case in

future work. Additionally, the main benefit of our resequencing framework lies in providing a

systematic framework to relax the FCFS sequence in decision making. This would be useful if

one needs to prioritize some CAVs over other CAVs, such as giving higher priority to vehicles

with higher passenger capacity or emergency vehicles. One future direction is to explore

the implications of the resequencing framework to incentivize people to use other modes of

transportation through mechanism design [219–222].
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