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Abstract— This paper proposes a decentralized approach
for solving the problem of moving a swarm of agents into
a desired formation. We propose a decentralized assignment
algorithm which prescribes goals to each agent using only
local information. The assignment results are then used to
generate energy-optimal trajectories for each agent which have
guaranteed collision avoidance through safety constraints. We
present the conditions for optimality and discuss the robustness
of the solution. The efficacy of the proposed approach is
validated through a numerical case study to characterize the
framework’s performance on a set of dynamic goals.

I. INTRODUCTION

A. Motivation

Complex systems are encountered in many applications,
including cooperative autonomous agents, sensor fusion,
and biological systems. Referring to something as complex
implies that it consists of interconnected agents which adapt
and respond to their local and global environment. As we
move towards increasingly complex systems [1], new control
approaches are needed to optimize the impact on system
behavior of the interaction between its entities [2], [3].

Robotic swarm systems can exhibit complex behavior
and have attracted considerable attention in many appli-
cations, e.g., transportation [4]–[6], construction [7], [8],
and surveillance [9]. A common requirement for swarms
is to move into a desired formation. However, due to
cost constraints imposed on individual agents in a swarm,
e.g., limited computation capabilities, battery capacity, and
sensing abilities, any efficient control approach must take
into account energy consumption. The task of moving in a
specified formation has been explored in the literature [10]–
[12]. However, achieving formations with minimum energy
consumption during operation has not yet been thoroughly
investigated.

Several approaches to building cohesive formations in
robotic systems have been proposed, such as formations built
from triangular sub-structures [13], [14], where a scalable
formation is achieved through the construction of a series
of isosceles triangles. Methods inspired by crystal growth
[15] and lattices structures [16] have also shown promise.
Other control methods using only scalar, bearing, or distance
measurements were presented by Swartling et al. [17]. This
approach was generalized to include the case where only a
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single leader agent was able to make distance or bearing
measurements.

The problem of generating a desired formation was solved
via scheduling by Turpin et al. [18], where an initial as-
signment is achieved using a scheduling-based heuristic run
on a central computer with global information. A signifi-
cant amount of work, e.g., Wang and Xin [19], Sun and
Cassandras [20], Xu and Carrillo [21], and Rajasree and
Jisha [22], used optimization techniques in their solutions.
However, these methods optimized the position of each
agent in a virtual potential field and did not consider energy
consumption by individual agents.

The contribution of this paper is an assignment and trajec-
tory generation algorithm which uses only local information
for each agent. Other approaches, such as those by Turpin et
al. [23], Morgan et al. [24], or Rubenstein et al. [25], required
global information in terms of a priori assignment, character-
istics about the communication network size, or specifically
oriented seed agents, respectively. Our proposed formulation
is valid for any feasible initial and final conditions, requiring
only that the initial and final positions be non-overlapping.
In addition, the formulation does not rely on potential fields
[19]–[21], and instead produces energy-optimal trajectories
which use proactive steering to avoid collisions.

The remainder of this paper proceeds as follows. In
Section II, we formulate the decentralized optimal control
problem for each agent. In Section III, we provide the prob-
lem formulation and solution approach of the assignment and
trajectory generation and discuss implications on robustness.
We present a numerical case study in Section IV, which
shows the behavior of the proposed method. Finally, we draw
concluding remarks and discuss some ideas about future
work in Section V.

II. PROBLEM FORMULATION

We consider the set A = {1, . . . , N}, N ∈ N>0, to
index a system of autonomous agents in R2. The agents
are moving into a desired formation indexed by a set of
F = {1, . . . ,M}, M ∈ N>0, goals. We consider the case
where N ≤ M , i.e., no redundant agents are brought to fill
the formation, as shown in Fig. 1. This requirement can be
relaxed by defining a behavior for excess agents, such as
idling [23].

Each agent, i ∈ A, is modeled as a double integrator

ṗi(t) = vi(t), (1)
v̇i(t) = ui(t), (2)
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Fig. 1. A group of N = 5 agents entering a formation consisting of
M = 7 goals in R2.

where pi(t) ∈ R2 and vi(t) ∈ R2 are the time-varying
position and velocity vectors respectively, and ui(t) ∈ R2

is the control input over time t ∈ [0, Ti], where Ti ∈ R>0, is
the arrival time for agent i to its assigned goal. Each agent’s
velocity and control input are bounded, namely,

vmin ≤ ||vi(t)|| ≤ vmax, (3)
umin ≤ ||ui(t)|| ≤ umax, (4)

where || · || denotes the Euclidean norm, and vmin, vmax and
umin, umax are the minimum and maximum allowable speed
and control input respectively for each agent i ∈ A. The state
of each agent is the time-varying vector

xi(t) =

[
pi(t)
vi(t)

]
. (5)

Our objective is to develop a framework for the N agents
to optimally, in terms of energy, create any feasible formation
of M points while avoiding collisions between agents. The
energy consumption of each agent i ∈ A is given by

Ėi(t) =
1

2
||ui(t))||2. (6)

By minimizing the L2 norm of the control input (acceler-
ation/deceleration) we will have direct benefits in energy
consumption.

Definition 1. The desired formation is the set of time-
varying goals G(t) = {pk(t) : R → R2 | k ∈ F}. The
set G can be prescribed offline, i.e., by a human designer, or
online by a high-level planner.

Next, we present our modeling framework, which outlines
the approach and assumptions used to solve the minimum
energy desired formation problem.

A. Modeling Framework

In this framework, the agents can communicate with each
other. The maximum sensing and communication range, h ∈
R>0, is used to define a neighborhood for each agent.

Definition 2. The neighborhood of agent i ∈ A is defined
as the time-varying set

Ni(t) = {j ∈ A |
∣∣∣∣pi(t)− pj(t)

∣∣∣∣ ≤ h}.

An agent i ∈ A is able to measure the relative position
of any neighboring agent j ∈ Ni. This leads to a natural
definition of the scalar separating distance.

Definition 3. The scalar separating distance is defined as

rij(t) =
∣∣∣∣pi(t)− pj(t)

∣∣∣∣.
Each agent i ∈ A occupies a closed disk of radius R.

To guarantee no collisions between any agents i, j ∈ A, we
impose the following conditions on the system

rij(t) > 2R, t ∈ R>0, (7)
h >> 2R. (8)

To ensure each goal in the formation is feasible, the following
condition should hold

min
p(t),q(t)∈G

{||p(t)− q(t)||} < 2R, t ∈ R>0. (9)

In our modeling framework we impose the following
assumptions:

Assumption 1. The state xi(t) for each agent i ∈ A is
perfectly observed and there is negligible communication
delay between the agents.

Assumption 1 is required to evaluate the idealized deter-
ministic performance of the generated optimal solution.

Assumption 2. All agents are homogeneous, and any agent
may fill any goal in the formation.

This assumption simplifies the trajectory generation and
assignment problems, and it can generally be relaxed by
adding goal types as a constraint on the goal assignment.

Assumption 3. The energy cost of communication is negli-
gible; the only energy consumption is in the form of (6).

The strength of this assumption is application dependent.
For cases with long-distance communications or high data
rates, the trade-off for communication cost can be controlled
by the selection of h.

Under this framework, the energy-optimal desired forma-
tion problem can be solved. This problem can be decom-
posed into two coupled subproblems: (1) goal assignment
and (2) trajectory generation. Both of these problems are
described in the following section, with emphasis on the goal
assignment.

III. SOLUTION APPROACH

The decentralized desired formation problem is solved by
decomposing it into the coupled goal assignment and tra-
jectory generation subproblems. To decouple these problems
the minimum energy objective in the assignment problem
is approximated by the minimum Euclidean distance. Prior
work, [23], [24], has shown that this approximation is
generally sufficient. This enables the assignment problem
to be solved independently, which results in the endpoint
constraints for the minimum-energy trajectory generation.

880



A. Assignment Problem

The objective of the assignment problem is to assign each
agent to a goal such that the total distance traveled by all
agents is minimized. In the decentralized case, each agent i ∈
A only has information about the positions of its neighbors,
j ∈ Ni, and the available goals, G. A local assignment can
be realized with the use of a local assignment matrix, Ai,

p1(T1)
p2(T2)

...
pn(Tn)

 = Ai


g1
g2
...
gM

 , (10)

where pj(Tj), j ∈ Ni are the final positions of each agent
being assigned, gk, k ∈ F , are the indices for each goal,
and the elements ajk ∈ Ai are binary assignment variables.
Each agent i ∈ A can solve (10) independently as a linear
program, and use the solution to select the prescribed goal.

Definition 4. For each agent i ∈ A the prescribed goal,
pai (t), is defined as the goal assigned to agent i for which

pai (t) ∈ {pk ∈ G | k ∈ F , aik = 1, aik ∈ Ai}, (11)

where the right hand side is a singleton set.

It is possible for multiple agents to have the same pre-
scribed goal. This occurs when two agents i ∈ A, j ∈ Ni,
have different neighborhoods and use conflicting information
to solve their assignment problem. This conflict is resolved
by introducing the banned goal set, defined next.

Definition 5. For any agent i ∈ A, the banned goal set is
defined as the set Bi ⊂ G which consists of all goals that
agent i is permanently banned from when solving the goal
assignment (10).

The following definitions and algorithm are presented
for some agent i ∈ A. However, all steps are performed
simultaneously by all agents. For this agent i, the banned
goal set is initially empty. Goals may be added to this set
whenever the following condition is not satisfied

pai (t) 6= paj (t), ∀j ∈ Ni(t). (12)

In the case that (12) is not satisfied, some agent(s) must
be permanently banned from the conflict goal, defined for
agent i as

pc(t) := pai (t). (13)

Banning is achieved by sequential application of “tiebreaker”
heuristics which compare:
1) the size of each agent’s neighborhood,
2) the distance between each agent and the goal, and
3) the index of each agent.

Since the metrics of criteria 1, 2, and 3 are perfectly
measurable (Assumption 1), it follows that all agents must
agree on the tiebreaker resolutions. The tiebreaker hierarchy
allows the banned goal set to be broken into three partitions,

Bi(t) = B1i (t) ∪ B2i (t) ∪ B3i (t), (14)

where superscripts 1, 2, and 3 refer to the three tiebreakers,
respectively. The tiebreakers are performed by all agents in
the set of competing agents, defined next.

Definition 6. The set of competing agents for agent i ∈ A
is defined as

Ci(t) =
{
k ∈ Ni(t) | pka(t) = pc(t)

}
.

When |Ci| > 1 there are at least two agents, i, j ∈ Ni
assigned to pc. Similarly to (14), the set of competing agents
can be split into three decreasing subsets,

C3i ⊆ C2i ⊆ C1i = Ci (15)

where the superscripts 1, 2, and 3 correspond to the agents
which are comparing the three tiebreaker heuristics.

For each agent i ∈ A, the banned goal sets partitions in
(14) are defined as

Bmi (t) =
{ t⋃
τ=0

(
{pai (τ)} ∩ Φmi (τ)

)}
, (16)

where Φmi (t) is given by

Φmi (t) =



G, if m = 1, i 6= argmax
j∈C1i (t)

{|Nj |(t)},

G, if m = 2, i 6= argmax
j∈C2i (t)

{||pc(t)− pj(t)||},

G, if m = 3, i 6= argmin
j∈C3i (t)

{j},

∅, otherwise.
(17)

where m ∈ {1, 2, 3} again corresponds to the three tiebreaker
heuristics.

To begin the tiebreaker process for agent i ∈ A, consider
the first conflict set C1i with the neighborhood heuristic.
Every agent j ∈ C1i which satisfies

j = arg max
k∈C1i
{|Nk(t)|}, (18)

is eligible to be assigned to goal pc. If agent i ∈ A uniquely
satisfies (18), then the conflict test is complete and i is
assigned to pc. If i does not satisfy (18), then the goal pc is
added to B1i (t) as designated by (17). Finally, if agent i does
not uniquely satisfy (18) then the second criteria, distance to
goal, must be compared. This comparison is done over a
reduced conflict set,

C2i (t) =
{
j ∈ C1i (t) | |Nj(t)| = |Ni(t)|

}
. (19)

The second tiebreaker, maximum distance, is a minimax
strategy which seeks to minimize the maximum distance
traveled by any agent to the conflict goal. Again, every agent
j ∈ C2i which satisfies

j = argmax
k∈C2i

{||pk − pc||}, (20)

is eligible to be assigned to goal pc. If agent i uniquely
satisfies (20), then the conflict test is complete and i is
assigned to pc. If i does not satisfy (20), then the goal pc
is added to B2i per (17). Finally, if i satisfies (20), but not
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uniquely, the final test must be taken over a further reduced
conflict set, given by

C3i (t) =
{
j ∈ C2i (t) | ||pc − pj || = ||pc − pi||

}
, (21)

where the agent k satisfying

k = min
{
j ∈ C3i

}
, (22)

is assigned to the goal, and all other agents add pc to B3i as
designated by (17). After the conflicts are resolved, if the size
of Bi has increased then the value of Ti must also increase
to

Ti = t+ T, (23)

where t is the current time, and T is a system parameter.
This allows agent i a sufficient amount of time to reach its
new goal. Finally, for each subsequent assignment involving
agent i ∈ A, when Bi(t) 6= ∅ agent i must broadcast its
banned goal set to all j ∈ Ni.

The assignment and banning process is iterated by all j ∈
Ni until (12) is satisfied in the entire neighborhood. The
banned and restricted goal information is enforced through
a constraint on the assignment problem, which follows.

Problem 1 (Goal Assignment). Each agent assigns itself a
goal independently by solving the linear minimum-distance
assignment (10).

For each agent i ∈ A, we have

min
ajk∈Ai

{ ∑
k∈Ni

∑
j∈G

ajk
∣∣∣∣pk(t)− p∗j (Tk)

∣∣∣∣}, (24)

p0
k ∈ Ni, p∗j (t) ∈ G,

subject to ∑
j∈G

ajk = 1, k ∈ Ni, (25)∑
k∈Ni

ajk ≤ 1, j ∈ G, (26)

ajk = 0, k ∈ Ni, pj ∈ Bk, (27)
ajk ∈ {0, 1}.

Each agent independently solves Problem 1 as a linear pro-
gram and selects its assigned goal. This process is repeated
by each agent, i ∈ A, until |Ci| = 1.

As the safety constraints of Problem 1 explicitly depend on
the neighborhood of agent i ∈ A, the optimization must be
recalculated each time the cardinality of the neighborhood
of agent i changes. Under weak assumptions about the
trajectories of each agent, the assignments generated by
Problem 1 is guaranteed to bring each agent to a unique
goal as it is shown next.

Lemma 1. For every agent i ∈ A, if
∣∣(⋃

j∈Ni
Bj
)
\

G
∣∣ ≥ |Ni|, then the feasible region of Problem 1 is always

nonempty.

Proof. Let the set of goals available to all agents in the
neighborhood of agent i ∈ A be denoted by the set

Vi(t) = {p ∈ G | p 6∈ Bj(t), ∀j ∈ Ni(t)}. (28)

Let the injective function mi : Ni(t) → Vi(t) map each
agent to a goal. As |Ni| ≤ |Vi(t)|, the function mi must
always exist and imposes a mapping from each agent to a
unique goal.

Since mi is injective, it satisfies (25) and (26). Likewise,
Vi ⊂ Bcj for all j ∈ Ni, and therefore the imposes
mapping satisfies (27). Therefore, the mapping imposed by
the function mi is a feasible solution to Problem 1.

For a sufficiently large value of T , the convergence of all
agents to goals is guaranteed by Theorem 1.

Theorem 1 (Assignment Convergence). Under the assump-
tions of Lemma 1, for a sufficiently large value of T , and if
the energy-optimal trajectories for each agent always move
toward their assigned goal, then all i ∈ A must reach an
assigned goal in finite time.

Proof. Let {gn}n∈N be the sequence of goals assigned to
agent i ∈ A as designated by the solution of Problem 1.
From Lemma 1, {gn}n∈N is not empty, and the elements of
this sequence are integers bounded by 1 ≤ gn ≤ |maxF|.
Thus, the range of this sequence is compact and must be (1)
finite, (2) convergent, or (3) periodic.

(1) For a finite sequence, Ti is bounded by T · |G|.
(2) Under the discrete metric, an infinite convergent se-

quence requires that there exists N ∈ N>0 such that gn = p
for all n > N for some formation index p ∈ F . This reduces
to case 1, as Ti does not increase for repeated assignments
to the same goal.

(3) By the Bolzano-Weierstrass Theorem, an infinite non-
convergent sequence {gn}n∈N must have a convergent subse-
quence, i.e., agent i is assigned to some subset of goals I ⊆
G infinitely many times with some number of intermediate
assignments for each goal g ∈ I. From the construction of
the banned goal set, we must have I

⋂
Bi(t) = ∅ for all

t ∈ [0, Ti]. This implies that, by the update method of Ti,
the position of all goals, g(t) ∈ I must only be considered
at time Ti, which we denote as g(Ti) ∈ I = g ∈ I.

This implies that the goals available to agent i, i.e., I =
G \Bi, must be shared between n > 0 other periodic agents.
This implies at some time t1 that a goal, g ∈ I, must be
an optimal assignment for agent i, a non optimal assignment
at time t2 > t1 and an optimal assignment at time t3 > t2.
This implies the distance between agent i and goal g satisfy

|pi(t1)− g| < |pi(t1)− g′|, (29)
|pi(t2)− g′| < |pi(t2)− g|, (30)
|pi(t3)− g| < |pi(t3)− g′|, (31)

for some goal g′ ∈ I, g′ 6= g. Agent i must not increase his
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distance from his assigned goal, which implies

|pi(t1)− g| > |pi(t2)− g|, (32)
|pi(t2)− g′| > |pi(t3)− g′|, (33)

(34)

and hence

|pi(t1)− g′| > |pi(t3)− g′|, (35)

which is satisfied for all goals g′ ∈ I. This is only possible
if agent i simultaneously approaches all goals in I, which
implies they are arbitrarily close. This contradicts (9), and
thus no such periodic behavior may exist.

B. Optimal Trajectory Generation

After the goal assignment is determined, each agent must
generate a collision-free and energy-optimal trajectory to
their assigned goal. The initial and final condition constraints
for any agent i ∈ A are given by(

pi(t0)− pi,0, vi(t0)− vi,0

)
=
(
0, 0

)
, (36)(

pi(Ti)− pi,f , vi(Ti)− vi,f

)
=
(
0, 0

)
, (37)

where pi,f ,vi,f are the result of solving Problem 1. To
resolve the coupling introduced by collision avoidance, each
agent i ∈ A predicts the optimal trajectories of its neighbors,
j ∈ Ni to select its prescribed trajectory.

Definition 7. The prescribed trajectory, uai (t), is the tra-
jectory assigned to agent i after solving for the optimal
trajectories of every agent in its neighborhood, j ∈ Ni.

For agent i to calculate its prescribed trajectory, uai (t), the
trajectory optimization problem must be solved over the set

Ui(t) =
{
uj(t) : j ∈ Ni

}
,

such that
uai (t) = ui(t) ∈ Ui(t).

This can be achieved by the quadratic optimization problem
given by:

Problem 2 (Trajectory Generation). For each agent i ∈ A,
we have

min
ui∈U

{ ∑
j∈Ni

∫ Ti

τ=t

||uj(τ)||dt

}
, (38)

subject to

Dynamic constraints (1), (2),

State and control bounds (3), (4),

Collision avoidance (7),

Boundary constraints (36), (37).

Problem 2 can be solved as an iterated quadratic program
with a similar conflict framework as Problem 1, where one
agent fixes its trajectory and others steer to avoid it.

Problems 1 and 2 are solved sequentially at time t = 0
to achieve an initial set of assignments and corresponding
optimal trajectories. As both optimizations only use local
information, each agent must resolve each problem whenever
their neighborhood changes. This ensures that every agent is
using all available information to optimize their trajectories
while guaranteeing collision avoidance.

Remark 1. The solutions of Problems 1 and 2 reduce to the
centralized case as h→∞.

Remark 1 relies on the fact that, as h→∞, it must be true
that Ni(t0) = A and Bi(t0) = ∅ ∀i ∈ A. Hence, problems
1 and 2 simply reduce to each agent solving the centralized
problem individually.

IV. SIMULATION CASE STUDY

To give insight into the behavior of the agents a series
of simulations were performed in Matlab. Each simulation
lasted for 20 s or until all agents reach their assigned goal,
whichever was longer. The centroid of the formation moved
with a fixed velocity, while the leftmost and rightmost three
goals included additional periodic motion

The minimum separating distance between agents, total
energy consumed, and maximum velocity for the uncon-
strained solutions to Problem 2 are given as a function of
the horizon in Table I. A graph of each agent’s position over
time for two cases is given in Fig. 2 and 3.

Fig. 2. Agent trajectories for the centralized case, here the assignment
globally minimizes distance travelled and trajectories are evenly spaced.

The results in Table I generally show no correlation
between energy consumption and sensing horizon. In fact,
the minimum energy consumption occurs near R = 1.3 m
rather than the centralized case. This is likely a result of the
minimum distance approximation, which does not account
for the required change in velocity for a dynamic formation
with moving goals.

V. CONCLUSION

In this paper, we proposed an approach for solving the
desired formation problem of a group of autonomous agents.
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Fig. 3. Agent trajectories for R = 0.5m, one grid cell in diameter. Agents
use very little information and tend to group at the nearest goal position.

h [m] min. separation [cm] E [kJ/kg] tf [s]

inf 16.5 63.77 20
1.60 0.82 83.76 27
1.50 1.21 56.43 20
1.40 0.38 140.7 41
1.30 5.25 52.26 20
1.10 0.32 96.13 34
0.95 0.54 41.61 20
0.75 0.60 227.7 42
0.50 2.41 140.1 39

TABLE I
NUMERICAL RESULTS FOR N=M=10 AGENTS AND GOALS, WITH A TIME

PARAMETER OF T = 10 S AND VARIOUS SENSING DISTANCES.

We presented a formulation of the formation reconfiguration
problem and introduced a concept of prescribed goals and
trajectories. The robustness and convergence properties of
the system were discussed, and the performance was char-
acterized relative to the centralized approach. A numerical
solution was presented for N = M = 10 agents and goals,
and the system performance metrics were compared relative
to the sensing radius.

Future areas of research include: relaxing the assumptions
on Lemma 1 to characterize when solutions exist, incorpo-
rating information from outside the neighborhood into goal
assignment, analyzing the effect on sensing radius on com-
munication cost versus convergence and propulsion energy,
reducing the computational load in calculating Problem 2,
and characterizing the optimality of the tiebreaker heuristics.
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