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Abstract— In this paper, we investigate a decentralized
stochastic control problem with two agents, where a part of
the memory of the second agent is also available to the first
agent at each instance of time. We derive a structural form
for optimal control strategies which allows us to restrict their
domain to a set which does not grow in size with time. We also
present a dynamic programming (DP) decomposition which can
utilize our results to derive optimal strategies for arbitrarily
long time horizons. Since obtaining optimal control strategies
by solving this DP decomposition is computationally intensive,
we present potential resolutions in the form of simplified
strategies by imposing additional conditions on our model, and
an approximation technique which can be used to implement
our results with a bounded loss of optimality.

I. INTRODUCTION

Decentralized stochastic control problems consist of co-
operative agents who take actions over a time horizon to
minimize a shared cost, with limited ability to communicate
in real time. Typical decentralized systems include connected
and automated vehicles [1] and social media platforms [2].
Generally, no single agent has both: (1) access to all infor-
mation in the system and (2) the ability to assign all actions.
Thus, such systems are characterized by their information
structure, which describes the information available to each
agent at each time. Various information structures, summa-
rized in [3], are: (1) Classical, where all agents communicate
and recall information perfectly [4]; (2) Quasi-classical, if
agent 1 can affect the state of agent 2, and the information
available to agent 1 is also available to agent 2 [5]; and (3)
Non-classical, where agents can affect each others’ states
with incomplete information [6]–[13].

Non-classical systems suffer from doubly exponential
growth in computations required to generate optimal control
strategies with an increase in the planning horizon [14]. The
common information approach [6] alleviates this problem for
systems with partial history sharing among all agents. The
main idea in this approach is to identify an information state
which can be utilized, in place of the common information
across all agents, to derive the optimal control strategies. For
systems with partial history sharing, the information state
and private information of each agent do not grow in size
with time. Subsequently, we can use a dynamic programming
(DP) decomposition to compute optimal control strategies for
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long time horizons. However, the computational tractability
of this approach suffers if the private information of any
agent grows with time. This phenomenon is commonly ob-
served in systems with partially nested information [5], one-
directional communication [7]–[10] and unreliable commu-
nication [15], [16]. For such systems, current methods focus
on identifying specific dynamics and information structures
which yield computationally tractable solutions [7], [8].

In this paper, we identify a general information structure,
called nested accessible information, for decentralized sys-
tems with two agents, and show that even in the presence
of noisy observations of the state, it yields control strategies
which are functions of information states. At each instance of
time, we consider that a subset of the information available to
agent 2, called accessible information, is sequentially nested
within the information available to agent 1. However, the
information which is available to agent 1 and not available
to agent 2 is allowed to grow in size with time. For
example, this phenomenon occurs when agent 1 does not
share their observations and actions with agent 2 but receives
the actions and observations of agent 2 at each time. Other
special cases of our information structure include teams of
two agents with: (1) either instantaneous or delayed one-
directional communication from agent 2 to agent 1 [10], [11];
(2) transmission of data from agent 1 to agent 2 using an
unreliable communication channel, which was considered for
systems with linear dynamics, quadratic costs and Gaussian
noises in [16]; (3) real time communication from agent 1 to
agent 2 [8].

Our main contribution in this paper is that we establish a
structural form for optimal control strategies in systems with
nested accessible information (Theorem 2). This structural
form allows us to restrict their domain to a space which
does not grow in size with time. In our exposition, we use
a combination of the person-by-person [5] and prescription
[12] approaches. While both approaches are well established,
we combine them to yield results for optimal strategies which
cannot be derived by an individual application of either
of these approaches. Next, we present a DP decomposition
which utilizes our results to obtain optimal control strategies
(Section III-C). In general, solving this DP is computation-
ally challenging. As a potential resolution, we show how
our results can be simplified with an additional assumption
of decoupled dynamics for the system (Section IV). Finally,
we propose an approximate solution which can be used to
improve the computational tractability of the DP even in
the presence of coupled dynamics (Section V). While we
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restrict our attention to a team of two agents to simplify the
exposition, our results can also be applied to systems with
multiple agents in two nested subsystems, using a technique
presented in Section III of [17].

The remainder of the paper is organized as follows. In
Section II, we provide our problem formulation. In Section
III, we analyze the problem and derive our main results. In
Section IV, we present specialized results for systems with
additional assumptions on the dynamics. In Section V, we
present an approximation technique to implement our results.
Finally, in Section VI, we present concluding remarks and
discuss ongoing work.

II. PROBLEM FORMULATION

We consider a team of two agents who take actions over
T ∈ N discrete time steps. For each t = 0, . . . , T , the state of
the team is denoted by the random variable Xt which takes
values in a finite set Xt. The action of an agent k = 1, 2 at
time t is Ukt , which takes values in a finite set Ukt . We denote
the tuple (U1

t , U
2
t ) by U1:2

t . Starting at the initial state X0,
the system evolves as

Xt+1 = ft
(
Xt, U

1:2
t ,Wt

)
, t = 0, . . . , T − 1, (1)

where Wt is an uncontrolled disturbance which takes values
in a finite set Wt. At each t = 0, . . . , T , each agent
k = 1, 2 makes an observation Y kt := hkt (Xt, V

k
t ), which

takes values in a finite set Ykt . Here, V kt is a measurement
noise which takes values in a finite set Vkt . The external
disturbances {Wt : t = 0, . . . , T}, measurement noises
{V 1

t , V
2
t : t = 0, . . . , T}, and initial state X0 are collectively

called the primitive random variables of the team and their
probability distributions are known a priori. We assume
that each primitive random variable is independent of all
other primitive random variables to ensure that the system’s
evolution is Markovian [4].

Definition 1. For all t = 0, . . . , T , the memory of an agent
k = 1, 2 is a set of random variables Mk

t ⊆ {Y 1:2
0:t , U

1:2
0:t−1},

which takes values in a finite collection of sets Mk
t and

satisfies perfect recall, i.e, Mk
t−1 ⊆Mk

t , with Mk
−1 := ∅.

We partition the memory M2
t of agent 2 into two compo-

nents, the accessible information A2
t and private information

L2
t , which are described next:
1) The accessible information is a subset of the memory

of agent 2 which is also available to agent 1. For all
t = 0, . . . , T, we define the accessible information as a
set of random variables A2

t ⊆ M2
t which takes values in

a finite collection of sets A2
t and satisfies the properties: (1)

accessibility to agent 1, i.e., A2
t ⊆M1

t , and (2) perfect recall,
i.e., A2

t−1 ⊆ A2
t , with A2

−1 := ∅.
2) The private information of agent 2 is a subset of their

memory which is unavailable to agent 1. For all t = 0, . . . , T ,
we define the private information as the set of random
variables L2

t := M2
t \ A2

t which takes values in a finite
collection of sets L2

t . We impose the condition L2
t ∩M1

t = ∅
to specify that agent 1 can not access the private information
of agent 2 at each t.

The second property of the accessible information of agent
2 motivates us to define the new information added to A2

t ,
for all t = 0, . . . , T , as the set of random variables Z2

t :=
A2
t \A2

t−1 which takes values in a finite collection of sets Z2
t .

Note that Z2
0 := A2

0. Analogously, for all t = 0, . . . , T , we
define the new information added to the memory of agent 1
as the set of random variables Z1

t := M1
t \M1

t−1 which takes
values in a finite collection of sets Z1

t , where Z1
0 := M1

0 . In
our information structure, we enforce that for all t, the new
information of agent 2 must satisfy Z2

t ⊆ L2
t ∪{Y 1:2

t , U1:2
t−1}.

This ensures that Z2
t 6⊂ M1

t−1 and Z2
t ⊆ Z1

t , i.e., Z2
t is not

accessible to agent 1 prior to time t and becomes accessible
to agent 1 at time t.

Remark 1. We call the shared set A2
t the accessible in-

formation of agent 2 instead of common information [6] to
highlight the additional restriction imposed by the property
Z2
t 6⊂ M1

t−1. The presence of this restriction allows us
to specialize our results to systems where the information
available to agent 1 but unavailable to agent 2, i.e., M1

t \A2
t ,

may grow in size with time. If we relax this restriction, the
accessible information is equivalent to common information.

Remark 2. As an example of an information structure
which satisfies Z2

t 6⊂ M1
t−1, consider one-directional com-

munication from 2 to 1 with a delay of d ∈ N time
steps. In such a system, M1

t = {Y 1
0:t, U

1
0:t−1, Y

2
0:t−d, U

2
0:t−d}

and M2
t = {Y 2

0:t, U
2
0:t−1}. Then, A2

t = {Y 2
0:t−d, U

2
0:t−d},

L2
t = {Y 2

t−d+1:t, U
2
t−d+1:t−1}, and the set M1

t \ A2
t =

{Y 1
0:t, U

1
0:t−1} grows in size with time. Recall that we have

referenced other information structures which satisfy the
conditions for nested accessible information in Section I.

For all t = 0, . . . , T , each agent k = 1, 2 uses a control
law gkt :Mk

t → Ukt to select their action

Ukt = gkt (Mk
t ), (2)

where M2
t = {L2

t , A
2
t}. We define the control strategy of

agent k as gk := (gkt : t = 0, . . . , T ) and the control strategy
of the team as g := (g1, g2). The set of all feasible control
strategies is G. After each agent k = 1, 2 selects their action
Ukt at time t, the team incurs a cost ct(Xt, U

1:2
t ) ∈ R≥0.

The performance criterion over the finite horizon T is

J (g) = Eg
[
T∑
t=0

ct
(
Xt, U

1:2
t

)]
, (3)

where the expectation is with respect to the joint probability
distribution on all random variables. Next, we state the
optimization problem for the team.

Problem 1. The optimization problem for the team is
infg∈G J (g), given the distributions of the primitive random
variables {X0,W0:t, V

1:2
0:t }, and the dynamics {ct, ft, h1:2t :

t = 0, . . . , T}.

Problem 1 is guaranteed to have a solution because all
variables take values in finite sets. Our goal is to derive a
structural form for an optimal strategy g∗ ∈ G in Problem 1
which can be computed using a DP decomposition.
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III. ANALYSIS USING PRESCRIPTIONS

A. Analysis for Agent 1

In this subsection, we derive a structural form for an
optimal control strategy of agent 1. We first note that given
a strategy g2, agent 1 cannot generate the action U2

t for
each t because they cannot access the complete memory
M2
t = {L2

t , A
2
t}. However, they can access the component

A2
t . This motivates us to consider a two stage process for

the generation of the action of agent 2: (1) agent 1 generates
a prescription for agent 2 using only A2

t , and (2) agent
2 computes U2

t using this prescription and their private
information L2

t .

Definition 2. For all t = 0, . . . , T , a prescription for agent
2 is a mapping Γ2

t : L2
t → U2

t which takes values in a finite
set F2

t .

At each t, the prescription for agent 2 is generated using a
prescription law ψ2

t : A2
t → F2

t , which yields Γ2
t = ψ2

t (A2
t ).

We call ψ2 := (ψ2
t : t = 0, . . . , T ) the prescription

strategy for agent 2. Given a prescription Γ2
t , the action

of agent 2 is computed as U2
t = Γ2

t

(
L2
t

)
. Next, we use

the person-by-person approach to set up a “new” centralized
problem for agent 1. We proceed by arbitrarily fixing the
prescription strategy ψ2 for agent 2. Since the prescription
Γ2
t is generated using only the accessible information A2

t ⊆
M1
t , agent 1 can derive the prescription using the fixed

strategy as Γ2
t = ψ2

t (A2
t ). Then, we define a new state for

agent 1 as S1
t := {Xt, L

2
t , A

2
t} for all t, which takes values

in a finite collection of sets S1t . Given a prescription strategy
ψ2, we can construct a state evolution function f̄1t (·), such
that S1

t+1 = f̄1t (S1
t , U

1
t ,Wt, V

1:2
t+1) and an observation rule

h̄1t (·) which yields Z1
t+1 = h̄1t (S

1
t , U

1
t ,Wt, V

1:2
t+1) for all t =

0, . . . , T−1. The existence of these functions can be verified
using the dynamics and information structure of the system to
write the LHS in terms of the variables in the RHS. Similarly,
we can construct a cost function c̄1t (·) which yields the cost
c̄1t (S

1
t , U

1
t ) := ct(Xt, U

1
t , ψ

2
t (A2

t )(L
2
t )) for all t. Then, for a

given prescription strategy ψ2, the new centralized problem
for agent 1 has state S1

t , control action U1
t , observation Z1

t ,
and cost c̄1t (S

1
t , U

1
t ) at time t. Furthermore, the performance

criterion is J 1(g1) := Eg1 [
∑T
t=0 c̄

1
t (S

1
t , U

1
t )].

Problem 2. The problem for agent 1 is infg1 J 1(g1), given
a prescription strategy ψ2, the probability distributions of
the primitive random variables {X0,W0:t, V

1:2
0:t }, and the

dynamics {c̄1t , f̄1t , h̄1t : t = 0, . . . , T}.

Lemma 1. For a given control strategy g2, consider a
prescription strategy ψ2 such that

ψ2
t (A2

t )(·) := g2t (·, A2
t ), t = 0, . . . , T. (4)

Then, J (g1, g2) = J 1(g1) for the fixed prescription strat-
egy ψ2. Moreover, for any given prescription strategy ψ2,
consider a control strategy g2 constructed as

g2t (·, A2
t ) := ψ2

t (A2
t )(·), t = 0, . . . , T. (5)

Then, J 1(g1) after fixing ψ2 is equal to J (g1, g2).

Proof. For the first part, given a control strategy g and
prescription strategy ψ2, note that U2

t = g2t (L2
t , A

2
t ) =

ψ2
t (A2

t )(L
2
t ), i.e., the control law and prescription law result

in the same control action U2
t for a given memory M2

t =
{L2

t , A
2
t}, for all t = 0, . . . , T . Thus, after fixing ψ2, we

can write the expected cost at each t as Eg[ct(Xt, U
1:2
t )] =

Eg1 [ct(Xt, U
1
t , ψ

2
t (A2

t )(L
2
t ))] = Eg1 [c̄1t (S

1
t , U

1
t )], where the

second equality holds using the construction of c̄1t (·). The
proof is complete by summing the cost over all time steps.
For the second part, the proof follows from similar arguments
as in the first part.

Remark 3. We consider that a control strategy g2 and a
prescription strategy ψ2 are always selected to satisfy (4)
and (5) simultaneously. Thus, fixing ψ2 in Problem 2 also
fixes g2, and vice versa. Next, consider a control strategy
(g∗1, g∗2) which is an optimal solution to Problem 2. We
construct a prescription strategy for agent 2 as ψ∗2t (A2

t )(·) :=
g∗2t (·, A2

t ), for all t = 0, . . . , T , and use the first part of
Lemma 1 to conclude that g∗1 must an optimal solution for
Problem 2 after fixing ψ∗2. Thus, every optimal solution to
Problem 1 yields a corresponding solution to Problem 2.

Problem 2 is a centralized stochastic control problem for
agent 1, with a perfectly observed component A2

t of the state
S1
t and a partially observed component {Xt, L

2
t}, which

must be estimated using the memory M1
t . For such an

estimation problem, it is known [4, page 79] that agent 1
can use the probability distribution

Π1
t := Pg

(
Xt, L

2
t | M1

t ,Γ
2
0:t−1

)
, t = 0, . . . , T, (6)

which takes values in the set of feasible distributions P1
t :=

∆(Xt × L2
t ), where Γ2

0:t−1 are known given ψ2 and M1
t .

Next, we show that the information state Π1
t evolves inde-

pendent of the choice of strategies g1 and ψ2.

Lemma 2. For all t = 0, . . . , T − 1, there exists a function
f̃1t (·) independent of control strategy g1 and prescription
strategy ψ2, such that Π1

t+1 = f̃1t (Π1
t , U

1
t ,Γ

2
t , Z

1
t+1), and

subsequently, for any Borel subset P 1 ⊆ P1
t+1, P(Π1

t+1 ∈
P 1|M1

t , U
1
0:t,Γ

2
0:t) = P(Π1

t+1 ∈ P 1|Π1
t , U

1
t ,Γ

2
t ).

Proof. The proof follows the same arguments as the ones of
Lemma 4 in Section III-B.

Lemma 3. For any given prescription strategy ψ2 of agent
2, there exists a function c̃1t (·) for all t = 0, . . . , T , such that

Eg[ct(Xt, U
1:2
t ) | M1

t , U
1
t ,Γ

2
t ] = c̃1t (Π

1
t , A

2
t , U

1
t ). (7)

Proof. The proof follows the same arguments as the ones of
Lemma 5 in Section III-B.

The distribution Π1
t is called an information state of agent

1 at time t. As a consequence of Lemmas 2 and 3, the
information state yields the following result for Problem 2.

Theorem 1. For any given prescription strategy ψ2 of agent
2 in Problem 2, without loss of optimality, we can restrict
attention to control strategies g∗1 with the structural form

U1
t = g∗1t (A2

t ,Π
1
t ), t = 0, . . . , T. (8)
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Proof. This proof follows standard arguments for centralized
stochastic control problems in [4, page 79], and thus, it is
omitted.

Theorem 1 establishes a structural form for an optimal
control strategy g∗1 in Problem 2, which holds for all ψ2,
and subsequently, for all g2. From Remark 3, we note that
any optimal control strategy (g∗1, g∗2) for Problem 1 must
yield a corresponding prescription strategy ψ∗2 such that af-
ter fixing ψ∗2, the control strategy g∗1 is the optimal solution
to Problem 2. Thus, there exists an optimal control strategy
(g∗1, g∗2) for Problem 1 where g∗1 takes the structural form
in (8).

Remark 4. Consider that |Xt × L2
t | = m ∈ N. Then, the

information state Π1
t takes values in the continuous space

P1
t =

{(
pt(1), . . . , pt(m)

)
∈ [0, 1]m :

∑m
i=1 pt(i) = 1

}
.

However, for all t = 0, . . . , T , the information state can
only take countably many realizations because all random
variables take values in finite sets. For example, at t = 0,
for each x0 ∈ X0 and l20 ∈ L2

0, the probability Pg(x0, l
2
0 | z10)

can take only finitely many values, i.e., one value for each
z10 ∈ Z1

0 . Similarly, at any finite t, the memory M1
t can take

finitely many realizations and thus, there are finitely many
realizations for Π1

t . As the horizon T →∞, the information
state may take at most countably infinite realizations.

B. Analysis for Agent 2

In this subsection, we restrict agent 1 to control strategies
g1 which satisfy (8), and derive a structural form for the
optimal prescription strategy of agent 2. Given g1, agent 2
cannot generate the action U1

t at each t because they cannot
access Π1

t . Thus, we consider a two stage process to generate
the action of agent 1: (1) agent 2 generates a prescription for
agent 1 using only A2

t , and (2) agent 1 computes U1
t using

this prescription along with Π1
t .

Definition 3. For all t = 0, . . . , T , a prescription for agent
1 is a function Γ1

t : P1
t → U1

t which takes values in a finite
set F1

t .

At each t, the prescription for agent 1 is generated using a
prescription law ψ1

t : A2
t → F1

t , which yields Γ1
t = ψ1

t (A2
t ).

We call ψ1 :=
(
ψ1
t : t = 0, . . . , T

)
the prescription

strategy of agent 1 and ψ := (ψ1,ψ2) the prescription
strategy of the system. For a given prescription Γ1

t , agent
1 computes their action as U1

t = Γ1
t (Π

1
t ). Next, we set up

a new centralized problem from the perspective of agent
2 with a state S2

t := {Xt, L
2
t ,Π

1
t} for all t, which takes

values in the finite collection of sets S2t . Moreover, we
can construct a state evolution function f̄2t (·) such that
S2
t+1 = f̄2t (S2

t ,Γ
1:2
t ,Wt, V

1:2
t+1) and an observation rule h̄2t (·)

which yields Z2
t+1 = h̄2t (S

2
t ,Γ

1:2
t ,Wt, V

1:2
t+1) for all t =

0, . . . , T − 1. Similarly, we can construct a cost function
c̄2t (·) such that c̄2t (S

2
t ,Γ

1:2
t ) := ct(Xt,Γ

1
t (Π

1
t ),Γ

2
t (L

2
t )) for

all t. Thus, the new centralized problem for agent 2 has
the state S2

t , observation Z2
t and action (Γ1

t ,Γ
2
t ) at each

t. The corresponding performance criterion is J 2(ψ) =
Eψ[

∑T
t=0 c̄

2
t (S

2
t ,Γ

1:2
t )].

Problem 3. The optimization problem for agent 2 is
infψ J 2(ψ), given the probability distributions of the prim-
itive random variables {X0,W0:t, V

1:2
0:t }, and the dynamics

{c̄2t , f̄2t , h̄2t : t = 0, . . . , T}.

Remark 5. Using the same sequence of arguments as
Lemma 1, for each control strategy g, we can con-
struct an equivalent prescription strategy ψ such that
J (g) = J (ψ) and vice versa. Thus, we always ensure
that ψ is consistent with g, which implies that for all t,
Π1
t = Pg(Xt | M1

t ,Γ
2
0:t−1) = Pψ(Xt | M1

t ,Γ
2
0:t−1) =

Pψ(Xt | M1
t ,Γ

1
0:t−1,Γ

2
0:t−1), where we can add Γ1

0:t−1 to
the conditioning because they are functions of A2

t ⊆M1
t and

ψ1. Because of this property, we can equivalently write the
dependence of a probability distribution on either g or ψ.

Problem 3 is a partially observed centralized stochastic
control problem and thus, agent 2 must estimate the state
S2
t at each time t. For this purpose, agent 2 can use the

distribution

Π2
t := Pψ(Xt, L

2
t ,Π

1
t | A2

t ,Γ
1:2
0:t−1), t = 0, . . . , T, (9)

which takes values in the set of feasible distributions P2
t :=

∆(Xt × L2
t × P1

t ). Recall that at each t, the information
state of agent 1, Π1

t , can take at most countably infinitely
many realizations in the space P1

t . Thus, the information
state Π2

t can be represented using a tuple of probability
mass functions

(
pt(xt, `

2
t , · |a2t , γ1:20:t−1) : xt ∈ Xt, `2t ∈ L2

t

)
,

where pt(xt, `2t , · |a2t , γ1:20:t−1) : P1
t → [0, 1] for each xt ∈ Xt

and `2t ∈ L2
t . Next, we show that the evolution of Π2

t is
Markovian and independent of the prescription strategy ψ.

Lemma 4. For all t = 0, . . . , T − 1, there exists a function
f̃2t (·) independent of the prescription strategy ψ, such that
Π2
t+1 = f̃2t (Π2

t ,Γ
1
t ,Γ

2
t , Z

2
t+1), and subsequently, for any

Borel subset P 2 ⊆ P2
t+1, P(Π2

t+1 ∈ P 2 | A2
t ,Γ

1:2
0:t ) =

P(Π2
t+1 ∈ P 2 | Π2

t ,Γ
1:2
t ).

Proof. Let xt, γ1t , γ2t , a2t , and π1
t be realizations of Xt, Γ1

t ,
Γ2
t , A2

t , and the distribution Π1
t , respectively, for all t. Then,

using Bayes’ rule

Pψ(xt+1, `
2
t+1, π

1
t+1 | a2t+1, γ

1:2
0:t )

=
Pψ
(
xt+1, `

2
t+1, π

1
t+1, z

2
t+1 | a2t , γ1:20:t

)
Pψ
(
z2t+1 | a2t , γ1:20:t

) , (10)

where a2t+1 = a2t ∪ z2t+1. Using the dynamics {f̄2t , h̄2t , c̄2t},
we write that (xt+1, `

2
t+1) = η2t (s2t , γ

1:2
t , wt, v

1:2
t+1), π1

t+1 =
ξ2t (s2t , γ

1:2
t , wt, v

1:2
t+1), z2t+1 = h̄2t (s

2
t , γ

1:2
t , wt, v

1:2
t+1), for

some appropriate functions η2t (·) and ξ2t (·), where s2t =
{xt, `2t , π1

t }. Substituting these relationships into the numer-
ator in the RHS of (10) yields that

Pψ
(
xt+1, `

2
t+1, π

1
t+1, z

2
t+1 | a2t , γ1:20:t

)
=

∑
s2t ,wt,v1:2t+1

I[η2t (s2t , γ
1:2
t , wt) = (xt+1, `

2
t+1)] · P(wt, v

1:2
t+1)

· I[ξ2t (s2t , γ
1:2
t , wt, v

1:2
t+1) = π1

t+1] · Pψ
(
s2t | a2t , γ1:20:t−1

)
· I[h̄2t+1(s2t , γ

1:2
t , wt, v

1:2
t+1) = z2t+1], (11)
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where I(·) is the indicator function, and where we can drop
the prescriptions γ1:2t from the conditioning in the last term
because they are completely determined given ψ and a2t .
Note that in (11), Pψ

(
s2t | a2t , γ1:20:t−1

)
= π2

t (s2t ). Next, we
expand the denominator in (10) as

Pψ
(
z2t+1 | a2t , γ1:20:t

)
=

∑
s2t ,wt,v1:2t+1

P(wt, v
1:2
t+1)

· I[h̄2t (s2t , γ1:2t , wt, v
1:2
t+1) = z2t+1] · π2

t (s2t ). (12)

Then, the first result holds by constructing an appropriate
function f̃2t (·) using (10) - (12). To prove the second result,
for any Borel subset P 2 ⊆ P2

t+1, we write that

P(Π2
t+1 ∈ P 2 | a2t , γ1:20:t , π

2
0:t) =

∑
z2t+1

I[f̃2t (π2
t , γ

1:2
t ,

z2t+1) ∈ P 2] · P(z2t+1 | a2t , γ1:20:t , π
2
0:t). (13)

The second term in (13) can be expanded as
P(z2t+1 | a2t , γ1:20:t , π

2
0:t) =

∑
s2t ,wt,v1:2t+1

I[h̄2t (s2t , γ1:2t , wt,

v1:2t+1) = z2t+1] · P(v1:2t+1, wt) · π2
t (s2t ). The proof is complete

by substituting this equation into (13).

Lemma 5. There exists a function c̃2t (·) for all t, such that

Eg[ct(Xt, U
1:2
t ) | A2

t ,Γ
1:2
t ] = c̃2t (Π

2
t ,Γ

1:2
t ). (14)

Proof. Let a3t , γ1:2t , and π2
t be realizations of the random

variables A3
t , Γ1:2

t , and the conditional distribution Π2
t ,

respectively, for all t = 0, . . . , T . To prove the result, we
expand the expectation as Eg[ct(Xt, U

1:2
t ) | a2t , γ1:2t ] =

Eψ[c̄2t (S
2
t ,Γ

1:2
t ) | a2t , γ1:2t ] =

∑
s2t
c̄2t (s

2
t , γ

1:2
t ) · Pψ(S2

t =

s2t | a2t , γ1:2t ) =
∑
s2t
c̄2t (s

2
t , γ

1:2
t ) · π2

t (s2t ) =: c̃2t (π
2
t , γ

1:2
t ),

where we can drop the prescripitions γ1:2t from the condi-
tioning because they known given ψ and a2t .

We call Π2
t the information state of agent 2 at time t. As a

consequence of Lemmas 2 and 3, the information state yields
the following result for Problem 3.

Theorem 2. In Problem 3, without loss of optimality, we can
restrict our attention to prescription strategies ψ∗ with the
structural form

Γkt = ψ∗kt
(
Π2
t

)
, k = 1, 2, t = 0, . . . , T. (15)

Proof. This proof follows similar arguments for centralized
stochastic control problems in [4, page 79], and thus, it is
omitted.

Consider a prescription strategy ψ∗ = (ψ∗1,ψ∗2) which
is an optimal solution to Problem 3, and a control strategy
g∗) = g∗1, g∗2) given by g∗1t (Π1:2

t ) := ψ∗1t (Π2
t )(Π

1
t ) and

g∗2t (L2
t ,Π

2
t ) := ψ∗2t (Π2

t )(L
2
t ) for each k = 1, 2 and t =

0, . . . , T . Using the same arguments as in Lemma 1, we
conclude that J (g∗) = J 2(ψ∗) and subsequently, that g∗

is the optimal solution to Problem 1. Thus, without loss
of optimality, we can restrict attention to control strategies
g∗ with the structural form U1

t = g∗1t (Π1
t ,Π

2
t ) and U2

t =
g∗2t (L2

t ,Π
2
t ) for all t = 0, . . . , T .

Remark 6. Consider a system where, the feasible sets of
system variables are time invariant, i.e., Xt = X , Wt =W ,
Vkt = Vk, Ykt = Yk for each k = 1, 2 and t = 0, . . . , T ,
and the information structure satisfies L2

t = L2, Z1
t = Z1,

Z2
t = Z2 for all t. Note that the set M1

t still grows in size
with time. However, the spaces P1 = ∆(X ×L2) and P2 =
∆(X × L2 × P1) are time invariant and subequently, our
optimal control strategies have time-invariant domains for
both agents. This is a useful property to derive and implement
optimal control strategies for long time horizons.

C. Dynamic Programming Decomposition

In this subsection, we construct the value functions and
corresponding control laws to form a DP decomposition
which can derive the optimal prescription strategies. Let
γkt and πkt be the realizations of the prescription Γkt and
information state Πk

t , respectively, for each k = 1, 2 and
t = 0, . . . , T . Then, we recursively define the value functions

Jt(π
2
t ) := inf

γ1:2
t ∈F1

t×F2
t

c̃2t
(
π2
t , γ

1:2
t

)
+ Eψ

[
Jt+1

(
f̃2t (π2

t , γ
1:2
t , Z2

t+1)
)
| π2

t , γ
1:2
t

]
, (16)

for all t = 0, . . . , T and define JT+1(π2
T+1) := 0 identically.

For each agent k = 1, 2, the prescription law at time t is
γ∗kt = ψ∗kt (π2

t ), i.e., the arg inf in the RHS of (16). The
prescription strategy ψ∗ derived using this DP decomposition
can be shown to be the optimal solution to Problem 2 using
standard arguments [6], [18]. Recall that given an optimal
strategy ψ∗ derived using this DP decomposition, we can
also derive the optimal control strategy g∗ for Problem 1.

Remark 7. At each t = 0, . . . , T , our DP decomposition
requires solving an optimization problem for each real-
ization π2

t of the information state Π2
t , which is a tuple

of probability mass functions. Optimizing over probability
mass functions is a computationally challenging problem.
Next, we present two different approaches to alleviate the
computational implications. In Section IV, we show how
we can simplify our results when the system dynamics and
information structure have additional favorable properties. In
Section V, we present an approximation for the information
states which can reduce the number of computations required
to derive an approximately optimal strategy.

IV. SIMPLIFICATION FOR DECOUPLED DYNAMICS

In this subsection, we show how our results can be simpli-
fied when both agents have decoupled state and observation
dynamics. We denote the state of each agent k = 1, 2 at time
t by Xk

t ∈ X kt . Starting at Xk
0 , each state evolves as

Xk
t+1 = fkt (Xk

t , U
k
t ,W

k
t ), t = 0, . . . , T − 1, (17)

for k = 1, 2, where W k
t ∈ Wk

t is a disturbance acting
only on Xk

t . The observation of agent k at time t is
Y kt = hkt (Xk

t , V
k
t ). We assume that all primitive random

variables {Xk
0 ,W

k
t , V

k
t : k = 1, 2, t = 0, . . . , T} are

independent of each other and that the cost to the system
at each t = 0, . . . , T is ct(X

1:2
t , U1:2

t ) ∈ R≥0. Without
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loss of optimality, we restrict attention to control strategies
where g1 takes the form U1

t = g1t (Π1
t ,Π

2
t ) and where g2

takes the form U2
t = g2t (L2

t ,Π
2
t ), for all t = 0, . . . , T .

Here, recall that Π1
t = Pg

(
X1:2
t , L2

t |M1
t ,Γ

2
0:t−1

)
and Π2

t =
Pg
(
X1:2
t , L2

t ,Π
1
t |A2

t ,Γ
1:2
0:t−1

)
. Next, we show that the in-

formation state Π1
t can be simplified using the decoupled

dynamics.

Lemma 6. For each k = 1, 2 and t = 0, . . . , T , let xkt , mk
t ,

l2t , and a2t be realizations of the random variables Xk
t , Mk

t ,
L2
t , and A2

t , respectively. Then,

Pg(x1:2t , l2t | m1
t ) = Pg(x1t | m1

t ) · Pg(x2t , l
2
t | a2t ). (18)

Proof. Given the realizations xkt , ykt , ukt , γkt and l2t of Xk
t ,

Y kt , Ukt , Γkt , and L2
t , respectively, for each k = 1, 2 and

t = 0, . . . , T , we prove (18) by mathematical induction. At
t = 0, depending on the information sharing pattern of the
system, there are two possible realizations of the memory of
agent 1, either m1

0 = {y10} or m1
0 = {y10 , y20}. For the first

realization of the memory of agent 1, the private information
of agent 2 is l20 = {y20}, and thus, we can expand the LHS
of (18) as Pg(x1:20 , y20 |m1

0) = Pg(x1:20 , y20 |y10) = Pg(x10|y10) ·
Pg(x20, y

2
0), where recall that the observation yk0 depends only

on xk0 for each k, and the primitive random variables are
independent of each other. For the second realization of the
memory of agent 1, note that l2t = ∅ because l2t∩m1

t = ∅, and
thus, we can expand the LHS as Pg(x1:20 |m1

0) = Pg(x10|y10) ·
Pg(x20|y20). For both cases at t = 0, we have shown the LHS
is equal to the RHS in (18). This forms the basis of our
induction. Next, we consider the induction hypothesis that
(18) holds at each 0, . . . , t, and expand the LHS at t+ 1 as

Pg(x1:2t+1, l
2
t+1 | m1

t+1) =
Pg(x1:2t+1, l

2
t+1, z

1
t+1 | m1

t )

Pg(z1t+1 | m1
t )

=
Pg(x1:2t+1, l

2
t+1, z

1
t+1 | m1

t )∑
x1:2
t+1,l

2
t+1

Pg(x1:2t+1, l
2
t+1, z

1
t+1 | m1

t )
. (19)

Note that in the partially accessible information structure,
l2t+1 ∪ z1t+1 = l2t ∪ {y1:2t+1, u

1:2
t }. Thus, we can write that

Pg(x1:2t+1, l
2
t+1, z

1
t+1 | m1

t ) = Pg(x1:2t+1, y
1:2
t+1, u

1:2
t , l2t | m1

t ) =
Pg(y1t+1|x1t+1) · Pg(y2t+1|x2t+1) · I[g1t (m1

t ) = u1t ] ·I[γ2t (l2t ) =
u2t ] · Pg(x1:2t+1, l

2
t |m1

t ), where I(·) is the indicator func-
tion, and where γ2t and u1t are completely determined
given m1

t and g. Furthermore, we expand the last term
as Pg(x1:2t+1, l

2
t |m1

t , u
1
t , γ

2
t ) =

∑
x1:2
t ,w1:2

t
I[f1t (x1t , u

1
t , w

1
t ) =

x1t+1] · I[f2t (x2t , γ
2
t (l2t ), w

2
t ) = x2t+1] · P(w1

t , w
2
t ) ·

Pg(x1:2t , l2t |m1
t ), where we can use the induction hy-

pothesis to obtain Pg(x1:2t , l2t |m1
t ) = Pg(x1t |m1

t ) ·
Pg(x1:2t , l2t |a2t ). Substituting these results into (19), and
rearranging the terms yields Pg(x1:2t+1, l

2
t+1|m1

t+1) =
Pg(x1

t+1,y
1
t+1,u

1
t |m

1
t )

Pg(y1t+1,u
1
t |m1

t )
· Pg(x2t+1, l

2
t+1|a2t , z2t+1) = Pg(x1t+1|

m1
t , y

1
t+1, u

1
t ) · Pg(x2t+1, y

2
t+1|a2t+1). To complete the proof

by mathematical induction, we need to show that the first
term in the RHS of the previous equation is equal to the
first term in the RHS of (18). We achieve this by expanding
Pg(x1t+1|m1

t , y
1:2
t+1, u

1:2
t , l2t ) =

Pg(x1
t+1,y

1
t+1|m

1
t ,l

2
t ,y

2
t+1)∑

x1
t+1

Pg(x1
t+1,y

1
t+1|m1

t ,l
2
t ,y

2
t+1)

=

∑
x1
t
Pg(y1t+1|x

1
t+1)·P

g(x1
t+1|x

1
t ,u

1
t )·P

g(x1
t |m

1
t )∑

x1
t:t+1

Pg(y1t+1|x1
t+1)·Pg(x1

t+1|x1
t ,u

1
t )·Pg(x1

t |m1
t )

, where, in the

last equality, we use Bayes’ rule and the induction hypoth-
esis. Recall that z1t+1 ⊆ l2t ∪ {y1:2t+1, u

1:2
t }. This implies

that Pg(x1t+1|m1
t , y

1:2
t+1, u

1:2
t , l2t ) = Pg(x1t+1|m1

t , z
1
t+1) =

Pg(x1t+1|m1
t , y

1
t+1, u

1
t ), which complete the proof.

Motivated by Lemma 6, we define the distributions Θ1
t :=

Pg(X1
t |M1

t ) and Θ2
t := Pg(X2

t , L
2
t |A2

t ) and note that the
information state Π1

t at each t = 0, . . . , T can be written as
a function of (Θ1

t ,Θ
2
t ). Thus, at time t, agent 1 can track

the distributions (Θ1
t ,Θ

2
t ) instead of Π1

t to compute their
optimal control action U1

t . Next, we show that the evolution
of Θk

t , for each k = 1, 2, is Markovian, strategy independent
and decoupled from the dynamics of the other agent.

Lemma 7. At each time t, there exists a function ẽkt (·),
independent of the strategy g, for all k = 1, 2 such that

Θk
t+1 = ẽkt (Θk

t , U
k
t , Y

k
t+1). (20)

Proof. The proof follows the same arguments as the ones in
Lemma 4 and thus, due to space limitations, it is omitted.

Note that the distribution Θ2
t is also available to agent 2 at

each t = 0, . . . , T , because it depends only on the accessible
information A2

t . Subsequently, using the same sequence of
arguments as the ones in Theorem 2, we conclude that,
without loss of optimality, agent 2 can restrict attention
to prescription strategies with the structural form Γkt =
ψkt
(
Pg(X1:2

t , L2
t ,Θ

1
t |A2

t ),Θ
2
t

)
, for each k = 1, 2 and t =

0, . . . , T . Next, we show that the term Pg(X1:2
t , L2

t ,Θ
1
t |A2

t )
in the argument of the prescription law for each k can also
be simplified using the decoupled dynamics of the system.

Lemma 8. For each k = 1, 2 and t = 0, . . . , T , let xkt , l2t ,
a2t , and θkt be realizations of the random variables Xk

t , L2
t ,

A2
t , and the probability distribution Θk

t , respectively. Then,

Pg(x1:2t , l2t , θ
1
t |a2t ) = Pg(x1t , θ

1
t |a2t ) · Pg(x2t , l

2
t |a2t ). (21)

Proof. The proof follows by mathematical induction using
the same arguments as the ones in Lemma 6, and thus, due
to space limitations, it is omitted.

Starting with the structural form of optimal prescription
strategies in Theorem 2, we can use Lemmas 6 and 8, to
conclude that in systems with decoupled dynamics, without
loss of optimality, we can restrict attention to control strate-
gies g∗ with the structural form

U1
t = g∗1t

[
Θ1
t ,Θ

2
t ,Pg(X1

t ,Θ
1
t | A2

t )
]
, (22)

U2
t = g∗2t

[
L2
t ,Θ

2
t ,Pg(X1

t ,Θ
1
t | A2

t )
]
, t = 0, . . . , T. (23)

Remark 8. The control strategy g1 yielded a control law
for each t = 0, . . . , T for agent 1 with the form U1

t =
g1t (Π1

t ,Π
2
t ), which has the domain ∆(X 1

t × X 2
t × L2

t ) ×
∆(X 1

t × X 2
t × L2

t × ∆(X 1
t × X 2

t × L2
t )). In contrast, the

domain of the control law g∗1t in (22) is ∆(X 1
t )×∆(X 2

t ×
L2
t ) × ∆(X 1

t × ∆(X 1
t )), which is a space with a smaller

dimension than the one before. Similarly, the control laws
of agent 2 have a domain with a smaller dimension in (23)
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than the control laws derived using Theorem 2. Thus, we
have obtained a simpler form for an optimal control strategy
in systems with decoupled dynamics.

We can further simplify the structural form of the optimal
control strategies when agent 1 can perfectly observe the
state X1

t , i.e, Y 1
t = Xt and subsequently, X1

t ⊆M1
t at each

t = 0, . . . , T . Then, for a given realization m1
t of the memory

M1
t , the probability distribution Θ1

t at each t is simply given
by Θ1

t = I[X1
t = x1t ] for the realization x1t ∈ m1

t of X1
t ,

where I is the indicator function. Using this result in (22)
and (23), we conclude that, without loss of optimality, we
can restrict attention to control strategies g∗ with the form

U1
t = g1t

[
X1
t ,Θ

2
t ,Pg(X1

t | A2
t )
]
, (24)

U2
t = g2t

[
L2
t ,Θ

2
t ,Pg(X1

t | A2
t )
]
, t = 0, . . . , T. (25)

Remark 9. When agent 1 can perfectly observe their
own state, at each t, the domains of the optimal control
laws g∗1t and g∗2t are X 1

t × ∆(X 2
t × L2

t ) × ∆(X 1
t ) and

L2
t × ∆(X 2

t × L2
t ) × ∆(X 1

t ), respectively. These domains
are small enough that the optimal control laws at each
t are functions of distributions over finite sets instead of
probability mass functions. Thus, the resulting DP can be
solved using standard techniques for centralized problems.

V. IMPLEMENTATION

In this subsection, we present an approach to approximate
the information state Π1

t for all t = 0, . . . , T which
ensures that the approximation can only take finitely
many values. To simplify the notation, we restrict our
attention to systems where |Xt × L2

t | = m, m ∈ N for all
t = 0, . . . , T . Furthermore, we consider that the maximum
cost at each t is bounded above by ||c||∞ < ∞. Recall
that the space of feasible values for Π1

t is the simplex
P1 =

{(
p(1), . . . , p(m)

)
∈ [0, 1]m :

∑m
i=1 p(i) = 1

}
. We

use the procedure in [19] to generate a set of equally
distributed points in P1. Specifically, we select a number
n ∈ N and define a set Qn :=

{(
q(1), . . . , q(m)

)
∈ P1 :

n · q(i) ∈ N≥0, i = 1, . . . ,m
}

. The set Qn forms a lattice
containing |Qn| =

(
m+n−1
m−1

)
points in the simplex P1. For

example, let Xt = {0, 1} and L2
t = ∅, which implies that

m = 2. Then, by selecting n = 2 we construct the set
Q2 =

{
(0, 1), (1/2, 1/2), (1, 0)

}
. Similarly, if m = 3 and

we select n = 2, we construct the set Q2 =
{

(1, 0, 0),
(1/2, 1/2, 0), (0, 1, 0), (0, 1/2, 1/2), (0, 0, 1), (1/2, 0, 1/2)

}
.

Next, we define the total variation distance between any
point in P1 and Qn, and then, we use this metric to define
an approximate information state.

Definition 4. The total variation distance between any π1
t =

(p(1), . . . , p(m)) ∈ P1 and any qt = (q(1), . . . , q(m)) ∈ Qn
is |π1

t − q|TV =
∑m
i=1 |p(i)− q(i)|.

Definition 5. The approximate information state for agent 1
at each t = 0, . . . , T is a random variable Π̂1

t which takes
values in the finite set Qn, and which is given by

Π̂1
t = σ(Π1

t ) := arg min
q∈Qn

|Π1
t − q|TV . (26)

Given any distribution π1
t ∈ P1, the corresponding realiza-

tion of the approximate information state π̂1
t = σ(π1

t ) can
be efficiently computed using the algorithm in [19]. Next,
we present an upper bound in the total variation distance
between any information state and its approximation.

Lemma 9. For all t = 0, . . . , T , for any realization π1
t of

the information state Π1
t , it holds that |π1

t − σ(π1
t )|TV ≤

2a·(1+a)
m·n , where a = bm/2c ∈ N and b·c is the floor function.

Proof. The proof follows from [19, Proposition 2].

Given any upper bound ε ∈ R>0, we can use Lemma 9
to construct a set Qn which satisfies |π1

t − σ(π1
t )| ≤ ε for

all π1
t ∈ P1, by selecting n ≥ 2a(1+a)

m·ε . Furthermore, the
resulting approximate information state Π̂1

t can be updated
in a Markovian and strategy independent manner as Π̂1

t+1 =

σ[f̃1t (Π̂1
t , U

1
t ,Γ

2
t , Z

1
t+1)], for all t = 0, . . . , T − 1.

Our aim is to solve the centralized Problem 2 for agent
1 using the approximate information state Π̂1

t , which takes
only finitely many values for all t = 0, . . . , T , instead of
the information state Π1

t , which can take countably infinitely
many values. For a fixed prescription strategy ψ2, recall from
Lemma 3 that the expected cost at time t can be written
as c̃1t (Π

1
t , A

2
t , U

1
t ). Then, in Problem 2, we can optimize

the performance criterion J 1(g1) using a centralized DP as
follows. Let u1t , a2t , and π1

t be the realizations of U1
t , A2

t

and Π1
t , respectively. Then, we define the value functions

J1
t (π1

t , a
2
t ) := inf

u1
t∈U1

t

c̃1t (π
1
t , a

2
t , u

1
t )

+ E[J1
t+1(Π1

t+1, A
2
t+1) | π1

t , a
2
t , u

1
t ], t = 0, . . . , T, (27)

and J1
T+1(πT+1, aT+1) := 0 identically. The person-by-

person optimal control law at time t is u∗1t = g∗1t (π1
t , a

2
t ),

i.e., the arg inf in the RHS of (27), and the performance of
the system is J 1(g∗1) = E[J1

0 (Π1
0, A

2
0)].

However, we seek the best control strategy ĝ∗1 for Prob-
lem 2 which takes the structural form u1t = ĝ1t (π̂1

t , a
2
t ) for all

t = 0, . . . , T . Thus, we define the modified value functions

Ĵ1
t (π̂1

t , a
2
t ) := inf

u1
t∈U1

c̃1t (π̂
1
t , a

2
t , u

1
t )

+ E[Ĵ1
t+1(Π̂1

t+1, A
2
t+1) | π̂1

t , a
2
t , u

1
t ], t = 0, . . . , T, (28)

and Ĵ1
t+1(π̂1

t , a
2
t ) := 0 identically, where π̂1

t = σ(π1
t ).

For a fixed ψ2, the best control law using the approximate
information state at each t is u∗1t = ĝ∗1t (π̂1

t , a
2
t ), i.e., the

arg inf in the RHS of (28), and the performance of the
system is J 1(ĝ∗1) = E[Ĵ1

0 (Π̂1
0, A

2
0)]. The loss in person-by-

person performance which arises from using the approximate
information state is measured by the difference |J 1(g∗1)−
J 1(ĝ∗1)|. Next, we present a result for this performance loss.

Lemma 10. For any given prescription strategy ψ2,

lim
n→∞

|J 1(g∗1)− J 1(ĝ∗1)| = 0. (29)

Proof. The proof follows directly from [20, Theorem 3].

Lemma 10 establishes the asymptotic convergence of the
optimal performance by using the approximate information
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state towards the exact person-by-person optimal perfor-
mance. Furthermore, it implies that for any desired upper
bound on loss α0 ∈ R≥0, there exists a number n ∈ N
and set Qn, such that |J 1(g∗1) − J 1(ĝ∗1)| < α0. An
explicit relationship between the upper bound α0 and the
upper bound on total variation distance, ε can be obtained
using Theorem 9 and Proposition 46 of [21]. This is given
by recursively defining

αt = 2(ε · ||c||∞ + 3ε · ||Ĵ1
t+1||∞ + 3ε · Ĵ1

L + αt+1), (30)

where ||Ĵ1
t+1||∞ := supπ̂1

t ,a
2
t
Ĵ1
t+1(π̂1

t+1, a
2
t+1) and Ĵ1

L is a
finite upper bound on the Lipschitz constant of Ĵ1

t for all
t = 0, . . . , T . Note that an upper bound on the value of Ĵt
exists for all t = 0, . . . , T because cost is upper bounded.
Furthermore, the Lipschitz continuity of Ĵ1

t arises naturally
from the fact that it is piece-wise linear and concave with
respect to π̂1

t for all t = 0, . . . , T [22].
The maximum loss in person-by-person performance from

using an approximate information state in Qn is ||α0||∞ :=
supψ2 α0. Furthermore, we define an approximate informa-
tion state for agent 2 as Π̂2

t := Pψ(X1
t , L

2
t , Π̂

1
t |M2

t ,Γ
1:2
0:t−1).

In a manner similar to Lemma 4, we can show that at
each t = 0, . . . , T − 1, there exists a function f̂2t such
that Π̂2

t+1 = f̂2t (Π̂2
t ,Γ

1:2
t , Z2

t+1). Thus, using the same
sequence of arguments as Theorem 2, we conclude that
if we restrict our attention to control strategies with the
structural form U1

t = ĝ1t (Π̂1
t , Π̂

2
t ), and U2

t = ĝ2t (L2
t , Π̂

2
t ) for

all t = 0, . . . , T , the maximum loss in optimal performance
in Problem 1, |J (g∗)− J (ĝ∗1, ĝ∗1)|, is also ||α0||∞.

Remark 10. In this approximation technique, the set of
feasible values of Π̂1

t , Qn, is finite and does not grow in size
with time. Thus, Π̂2

t is a simple probability distribution with
a finite support, which, in turn, simplifies the implementation
of our DP. However, it is still challenging to compute
globally optimal prescription strategies for moderate and
large values of the parameter n ∈ N because the number
of possible prescriptions of agent 1, |U1

t ||Qn|, grows expo-
nentially with n. Instead, this approach may be utilized when
only person-by-person optimal strategies are required.

VI. CONCLUSIONS

In this paper, we introduced a general model for de-
centralized control of two agents with nested accessible
information. We derived structural forms for optimal control
strategies with domains which do not grow in size with time
and thus, can be derived using a DP decomposition. We also
presented simplified optimal control strategies for systems
with decoupled state and observation dynamics. Finally, we
presented an approximate information state which can be
used to derive approximately optimal control strategies with
smaller domains. One potential direction for future research
includes deriving more efficient approximate representations
of the information state and prescriptions. Another important
direction of future research is the development of approx-
imate algorithms specialized to efficiently solve the DPs
which arise in decentralized control.
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