
An Optimal Control Approach to Flocking

Logan E. Beaver, Student Member, IEEE, Chris Kroninger,
Andreas A. Malikopoulos, Senior Member, IEEE

Abstract— Flocking behavior has attracted considerable at-
tention in multi-agent systems. The structure of flocking has
been predominantly studied through the application of arti-
ficial potential fields coupled with velocity consensus. These
approaches, however, do not consider the energy cost of the
agents during flocking, which is especially important in large-
scale robot swarms. This paper introduces an optimal control
framework to induce flocking in a group of agents. Guarantees
of energy minimization and safety are provided, along with a
decentralized algorithm that satisfies the optimality conditions
and can be realized in real time. The efficacy of the proposed
control algorithm is evaluated through simulation in both
MATLAB and Gazebo.

I. INTRODUCTION

A. Background

Complex systems consist of many interdependent, inde-
pendent agents that are connected to each other in both space
and time [1]. The individual interactions between agents may
result in unpredictable emergent behavior at a large scale. As
the world becomes increasingly complex [2], modern control
approaches will be required to optimize individual agents
with an eye on overall system behavior [3], [4].

Multi-agent systems have attracted considerable attention
in many applications due to their natural parallelization,
general adaptability, and ability to self-organize [5]. This
has proven useful in many applications, such as transporta-
tion [6], construction [7], and surveillance [8]. Controlling
emergent flocking behavior has been of particular interest to
robotics researchers since the seminal paper by Reynolds [9],
which introduced three heuristic rules for flocking in digital
animation: move toward neighboring flockmates, avoid colli-
sions, and match velocity with neighbors. Flocking has many
practical applications, such as mobile sensing networks,
coordinated delivery, reconnaissance, and surveillance [10].

Currently, the most popular approach to impose flocking
in multi-agent systems is the use of artificial potential fields
and velocity consensus [11]–[13]. In these approaches, flock
aggregation and collision avoidance are both handled by the
potential field, the design of which is still an open question
[14]. Several theoretical guarantees have been proven for

This research was supported by Combat Capabilities Development Com-
mand, Army Research Laboratory, MD, USA.

Logan E. Beaver and Andreas A. Malikopoulos are with the Department
of Mechanical Engineering, University of Delaware, Newark, DE 19711,
USA.

Chris Kroninger is with Combat Capabilities De-
velopment Command, Army Research Laboratory,
MD, USA. (emails: lebeaver@udel.edu;
christopher.m.kroninger.civ@mail.mil;
andreas@udel.edu.)

these types of flocking models [15]; however, minimum-
energy flocking still remains relatively unexplored.

In this paper, we propose an extension of our previous
work on energy-optimal trajectories for formations [16]
and apply it to the problem of flocking. We provide the
following three contributions: (1) a continuous decentralized
optimal control framework for minimum-energy flocking, (2)
a closed-form solution for the energy-minimizing control
input in the centralized case, and (3) an adaptation of the
centralized optimal solution to the decentralized case.

There have been several approaches in the literature that
have considered optimal flocking using dynamic program-
ming for aircraft aggregation [17], and optimal control over
discrete time [18]. In contrast, our approach is continuous,
has an analytical solution, and allows flexibility in the flock
shape. Gomez et al. [19] used a centralized controller to
derive optimal trajectories for teams of agents to flock. In
contrast, our approach adopts the centralized solution to a
decentralized system without requiring a central computer
to plan trajectories. The framework we present in this paper
is related to the robot ecology paradigm for long-duration
autonomy [20], [21]. However, we apply optimal control over
a planning horizon, rather than reacting to the environment
with gradient flow.

The structure of the paper is as follows. We formulate
the problem in Section II. In Section III, we solve the
optimization problem for the unconstrained and constrained
cases. In Section IV, we provide two sets of simulation
results and discuss the observed emergent behavior. In the
first set, we use MATLAB to demonstrate the viability of
the proposed control scheme; in the second set, we use
Gazebo to validate a minimum-communication approach,
which reformulates the control method to use pure sensing.
Finally, we draw conclusions and discuss future work in
Section V.

II. PROBLEM FORMULATION

Consider a flock of N ∈ N agents indexed by the set
A = {1, 2, . . . , N}. Each agent i ∈ A follows the double
integrator dynamics,

ṗi(t) = vi(t), (1)
v̇i(t) = ui(t), (2)

where t ∈ R≥0 is the time, and pi(t),vi(t),ui(t) ∈ R2 are
the position, velocity, and control input, respectively. Each
agent occupies a closed disk of radius R ∈ R>0. The state

of each agent is given by

xi(t) =

[
pi(t)
vi(t)

]
. (3)

The speed and control input are constrained such that

||vi(t)|| ≤ vmax
i , (4)

||ui(t)|| ≤ umax
i , (5)

for all t ∈ R≥0.
For any pair of agents i, j ∈ A, the relative displacement

between them is described by the vector

sij(t) = pj(t)− pi(t), i, j ∈ A. (6)

To guarantee safety within the system, we impose the fol-
lowing constraints:

sij(t) · sij(t) ≥ 4R2, ∀ j ∈ A, ∀t ∈ R≥0, (7)
h > 2R, (8)

where (7) guarantees collision avoidance and (8) is a system-
level constraint which allows collisions to be detected before
they occur. Each agent has also a sensing/communicating
distance, h ∈ R>0, which is used to define its neighborhood.

Definition 1. The neighborhood of each agent i ∈ A, is
defined by the set

Ni(t) = {j ∈ A | ||sij(t)|| < h}, (9)

where || · || is the Euclidean norm.

The neighborhood is allowed to switch over time, while
i ∈ Ni(t) always holds. Agent i is able to communicate
with any agent j ∈ Ni(t) and sense its current state, xj(t).
A schematic of the system is presented in Fig. 1.

D

2

1

4

3
5

6

h

𝒙𝟏 𝑡𝑓

𝒙𝟔 𝑡𝑓

Fig. 1. A diagram of a flocking consisting of six agents.

Finally, every agent is also equipped with a long-range
sensor, which can estimate the centroid of the flock, given
by

pcg(t) =
1

|Ni(t)|
∑
i∈A

pi(t), (10)

where | · | denotes set cardinality. The purpose of (10) is
to drive isolated agents back toward the flock. This can

reasonably be achieved with inexpensive audio or visual
sensors in the case where a majority of the agents have
already formed an aggregate. However, for the case where
there is no clear flock, it may be challenging to determine
(10) in practice.

In order to guarantee safety (7), and to calculate (10),
agent i ∈ A requires information about the trajectories of
all agents j ∈ Ni(t). One potential approach to handle
this is to impose a priority ordering on the agents; in this
case, higher priority agents act first while lower priority
agents must steer to avoid them [22]. Our approach is for
each agent to apply model predictive control. Each agent
generates an initial unconstrained trajectory for a given time
interval t ∈ [t0, tf], where tf − t0 > 0 is the horizon. Then,
agent i follows this generated trajectory for some period ∆T ,
at which point the trajectory is recalculated over the new
interval t ∈ [t0 + ∆T, tf + ∆T].

In this case, a longer time interval corresponds to a larger
planning space at the cost of increased computational com-
plexity. A decrease in the replanning period, ∆T , provides
agent i with a better estimate of its neighbors’ trajectories
at the cost of more frequent calculations. The trajectory
generated by each agent is the outcome of minimizing the
flocking error function, defined next.

Definition 2. For all agents i ∈ A, the flocking error is
defined by the scalar function

Φ(xi, tf) = w1 φd(xi, tf) + w2 φv(xi, tf)

+ w3 φa(xi, tf), (11)

φd(xi, tf) = ||vi(tf)− vd(tf)||2, (12)

φv(xi, tf) = ||vi(tf)− vavg(tf)||2, (13)

φa(xi, tf) =

(||pcg(tf)− pi(tf)|| −D)2, |Ni(t0)| = 1,∑
j∈Ni(t0)

(
sij(tf) · p̂ij(tf)−D

)2
,

|Ni(t0)| > 1,

(14)

where w1, w2, and w3 are normalizing parameters which
weight the influence of velocity control φd(xi, tf), velocity
matching φv(xi, tf), and aggregation φa(xi, tf) in the over-
all system behavior. The system parameters vd(tf) and D
set the desired flock velocity and separating distance between
agents. The average agent speed, vavg(tf), is given by

vavg(tf) =

{
ṗcg(tf), |Ni(t0)| = 1,

1
|Ni(t0)|

∑
j∈Ni(t0)

vj(tf), |Ni(t0)| > 1.
(15)

The cases in (14) and (15) when |Ni(t0)| = 1 are
equivalent to placing a virtual agent at the centroid of the
flock for any agent which becomes isolated. This will drive
isolated agents toward the centroid by the construction of
the flocking error. However, this does not guarantee that
a disconnected group of agents will return to the flock if
separation occurs.

Each agent generates its energy-optimal trajectory by
solving the following decentralized optimal control problem.

Problem 1. (Minimum-energy flocking)
For every agent i ∈ A,

min
ui(t)

{
Φ(xi, tf) +

∫ tf

t0

||ui(t)||2dt
}

(16)

subject to: (1), (2), (4), (5), (7), xi(t0) = x0
i ,

where Φ(xi, tf) is given by Definition 2 and x0
i is the initial

state of agent i.

By minimizing the L2 norm of the control input we expect
to see a proportional reduction in energy consumption. To
solve Problem 1, we impose the following assumptions.

Assumption 1. There are no external disturbances or obsta-
cles.

Assumption 1 is imposed to evaluate the idealized perfor-
mance of the proposed algorithm. This assumption may be
relaxed by introducing a measure of robustness into Problem
1.

Assumption 2. There are no errors or delays with respect
to communication and sensing.

The strength of Assumption 2 is application dependent.
In general, it has been shown that sparse updates to model
predictive control may be sufficient [23].

Assumption 3. The flock is low-density (only two agents
i, j ∈ A ever come within distance |sij | = 2R of each other).

Assumption 3 may be strong, but it is imposed to simplify
the solution to the optimal speed profile for two agents that
are safety constrained. This assumption may be removed
if an order is imposed on the agents rather than using
model predictive control [22], and it may be relaxed in cases
when a numerical solver can generate the safety-constrained
trajectory in real-time.

III. SOLUTION APPROACH

To derive an analytical solution for Problem 1 we use
Hamiltonian Analysis. As the case where the state and
control constraints, (4) and (5), are active is well studied in
the literature [6] we will only consider the safety constrained
case.

As a first step, for an agent i ∈ A, the safety constraint,
(7), must be derived until the control input, ui(t), appears,

Ni(t) =

 4R2 − sij(t) · sij(t)
−sij(t) · ṡij(t)

−sij(t) · s̈ij − ṡij(t) · ṡij(t)

 ≤ 0. (17)

The Hamiltonian is then augmented by the final row of
Ni(t), which yields

Hi = ||ui(t)||2 + λp
i (t) · vi(t) + λv

i (t) · ui(t)

−
∑
j∈Ni

µi,j(t)
(
sij(t) · s̈ij(t) + ṡij(t) · ṡij(t)

)
, (18)

where λp
i (t),λv

i (t) are the position and velocity covectors,
and µij(t) is the Lagrange multiplier with values

µij(t) =

{
≥ 0, if sij(t) · s̈ij(t) + ṡij(t) · ṡij(t) = 0,

0, if sij(t) · s̈ij(t) + ṡij(t) · ṡij(t) > 0.

(19)

To solve (18) for agent i ∈ A we consider that (i)
all agents j ∈ Ni(t) satisfy µi,j = 0 or (ii) any agent
j ∈ Ni(t) satisfies µi,j > 0. We then piece the constrained
and unconstrained arcs together to arrive at a piecewise-
continuous, energy-optimal trajectory. Next, we present the
unconstrained motion and boundary conditions followed by
our algorithm for constructing an energy-optimal trajectory
in real-time.

A. Unconstrained Motion

The energy-optimal unconstrained trajectories for the po-
sition, speed, acceleration, and covectors resulting from (18)
over an interval t ∈ [t1, t2] ⊂ R≥0 are [6]

pi(t) =
1

6
ait

3 +
1

2
bit+ cit+ di, (20)

vi(t) =
1

2
ait

2 + bit+ ci, (21)

ui(t) = ait+ bi, (22)
λp
i (t) = ai, (23)

λv
i (t) = − ait− bi, (24)

where ai,bi, ci,di ∈ R2 are constants of integration. Equa-
tions (20) - (24) contain 8 unknowns, which are solved using
8 boundary conditions;

xi(t0) = x0
i , (25)

λi(tf) =
∂Φ(xi, t)

∂xi

∣∣∣
tf
. (26)

Solving (26) yields

λp
i (tf) = −2w3

∑
j∈Ni(t0)

((
||sij(tf)|| −D

)
sij(tf)

)
, (27)

λv
i (tf) = 2w2

(
vi(tf)− vavg

)
+ 2w1

(
vi(tf)− vd

)
. (28)

We then substitute (6), (23), and (24) into (27) and (28) to
solve for pi(tf) and ui(tf). This yields two equations

pi(tf) =
ai

2w3

∑
j(||sij(tf)|| −D)

+
∑
j∈Ni

pj(tf), (29)

ui(tf) = −2w2

(
vi(tf)− vavg

)
− 2w1

(
vi(tf)− vd

)
,

(30)

where ai = 0 if the right-hand side of (27) is ever zero.
Equations (25), (26), and (30) give three conditions to

solve for the constants bi, ci, and di in (20) - (24). The
value of ai can then be found by the solution of (29), which
must be computed numerically.

B. Constrained Motion

To generate the safety-constrained motion of agent i ∈ A,
we require agent i to cooperate with all agents j ∈ Ni(t) to
solve the centralized optimal control problem whenever the
collision avoidance constraint becomes active. The agents
will then all employ the centralized solution to guarantee
collision avoidance.

For any agent i ∈ A, we define the set Vi as

Vi(t) := {j ∈ Ni(t) | µij(t) > 0, j 6= i}. (31)

Thus, when Vi 6= ∅ agent i must follow a safety-
constrained trajectory. Application of the Euler-Lagrange
equations yields

ui(t) = − λv
i (t)−

∑
µij(t)sij(t), (32)

−λ̇
v

i (t) = λp
i (t) +

∑
µij(t)ṡij(t), (33)

−λ̇
p

i (t) =
∑

µij(t)s̈ij(t), (34)

which, in general, must be solved numerically. However,
under Assumption 3, we may consider the case where only
two agents interact. We define

aij(t) := ||ṡij(t)||, (35)

which is the relative speed between the two constrained
agents. We may then construct a new basis for R2 which
we define next.

Definition 3. The orthonormal contact basis for any two
agents in contact, i ∈ A, j ∈ Vi, with a nonzero relative
speed, is defined as

p̂ij(t) :=
sij(t)

||sij(t)||
=

sij(t)

2R
, (36)

q̂ij(t) :=
ṡij(t)

||ṡij(t)||
=

ṡij(t)

aij(t)
, (37)

where p̂ij(t) · q̂ij(t) = 0 by (17).

To solve the (32) - (34) we will project s̈ij(t) onto the
contact basis (Definition 3). From (17) we can project s̈ij
onto p̂ij by

s̈ij(t) · sij(t) = −ṡij(t) · ṡij(t) = −a2ij(t). (38)

The projection of s̈ij(t) onto q̂ij(t) can be calculated by
applying integration by parts, which yields [22],

s̈ij(t) · ṡij(t) = aij(t) · ȧij(t). (39)

Therefore, the projection of s̈ij onto the contact basis is

s̈ij(t) =

[
−a2ij(t) 1

2R

ȧij(t)

]
. (40)

Finally, we can use (40) to solve for the time derivatives of
(36) and (37). First we have

d

dt
p̂ij(t) =

ṡij(t)

2R
=
a(t)

2R
q̂ij(t). (41)

Taking the time derivative of q̂ij(t) and substituting (40) in
the numerator yields [22],

d

dt
q̂ij(t) = −a(t)

2R
p̂ij(t). (42)

By (6), we may now write s̈ij(t) projected on to the
contact basis (Definition 3) as

s̈ij(t) = uj(t)− ui(t) = −Lv
ij(t) +mij(t)sij(t)

= − Lv
ij(t) ·

[
p̂ij(t)
q̂ij(t)

]
+mij(t) ·

[
2R
0

]
, (43)

where mij(t) = µij(t)+µji(t), and Lx
ij(t) = λx

j (t)−λx
i (t).

Next we substitute (38) and (39) into (43) and rewrite it as
a system of scalar equations,

Lv
ij(t) · p̂ij(t) =

a2ij(t)

2R
+ 2R mij(t), (44)

Lv
ij(t) · q̂ij(t) = −ȧij(t). (45)

Taking a time derivative yields

L̇v
ij(t) · p̂ij(t) + Lv

ij(t) · ˙̂pij(t) =
aij(t)ȧij(t)

R
+ 2Rṁij(t),

(46)

L̇v
ij(t) · q̂ij(t) + Lv

ij(t) · ˙̂qij(t) = −äij(t). (47)

Then we substitute (33), (41), and (42) into (46) and (47)
which simplifies to

Lp
ij(t) · p̂ij(t) = −2R ṁij(t)−

3

2R
aij(t)ȧij(t), (48)

Lp
ij(t) · q̂ij(t) = äij(t)−

a3ij(t)

4R2
. (49)

Repeating this process of deriving and substituting on (48)
and (49) yields a pair of coupled nonlinear second-order
ordinary differential equations,

4aij(t)äij(t)

2R
+

3ȧ2ij(t)

2R
+ 2Rm̈ij(t) =

a4ij(t)

8R3

+
mij(t)a

2
ij(t)

2R
, (50)

mij(t)ȧij(t) + ṁij(t)aij(t) +
6a2ij(t)ȧij(t)

4R2
=

...
a ij(t).

(51)

Thus, for any constrained trajectory to be energy-optimal it
must be a solution of (50) and (51) while also satisfying the
boundary conditions (25) and (26). In general this is difficult,
as both equations are nonlinear and (51) is third order.

An alternative solution is to impose aij(t) = 0 over any
nonzero interval where the safety constraint is active. This
implies ṡij(t) = vj(t) − vi(t) = 0. Additionally, as ṡij(t)
is constant, its derivative s̈ij(t) = 0. Thus we may select
vi(t) = vj(t) and ui(t) = uj(t) as a “reigning optimal”
solution [24].

To generate a final energy-optimal trajectory, each agent
will piece together unconstrained and constrained arcs during
each trajectory update. In the following section, we present
the decentralized strategy used by each agent to generate
collision-free by piecing together energy-optimal motion
primitives.

C. Decentralized Trajectory Generation

To generate the trajectory of each agent we will use the
following definition of contact intervals.

Definition 4. For each agent i ∈ A we define g ∈ N contact
intervals indexed by k = 1, 2, ..., g. These g intervals must
satisfy

τki ⊂ [t0, tf] such that

Vi(ta) = Vi(tb) 6= ∅ ∀ ta, tb ∈ τki ,

where for any two intervals p, q ∈ N, p 6= q, we have tp < tq
for tp ∈ τpi and tq ∈ τ qi . The contact intervals correspond
to the nonzero and non-overlapping intervals of time where
Vi(t) is invariant.

The contact intervals correspond to the instances in time
when each agent i ∈ A would violate the safety con-
straint when traveling along an unconstrained trajectory. To
guarantee safety, we enforce the centralized solution to the
safety-constrained case over these intervals. We then piece
these constraints together with the initial and final conditions
using unconstrained trajectory segments. Each agent i ∈ A
performs the following steps simultaneously:

i) Generate an unconstrained trajectory for t ∈ [t0, tf].
ii) Exchange unconstrained trajectories with all j ∈ Ni(t).

iii) Calculate Vi(t).
iv) Generate a constrained arc for every contact interval

(Definition 4) and fix the entry and exit states for each
interval.

v) Piece together all constrained arcs using unconstrained
trajectories and continuity in xi at the boundaries.

vi) Generate initial and final unconstrained arcs to satisfy
xi(t0) and xi(tf).

vii) Generate escape arcs, i.e., agent i may exit to an
unconstrained trajectory early if it does not violate any
safety constraints.

The above steps will be performed by all agents simulta-
neously and repeated with a period of ∆T per our control
framework.

IV. SIMULATION RESULTS

To validate our decentralized controller we developed two
sets of simulations. First, we implemented the controller in
MATLAB where the unconstrained and distance-constrained
trajectories could be validated on double integrator agents.
Next, the controller was applied to a set of AscTec quadrotors
in Gazebo. The results of this simulation show that our
optimal controller generates high-level trajectories which
display emergent flocking behavior. These trajectories are
also realizable by the dynamics and low-level flight controller
of a commercially available quadrotor.

First, we validated our proposed controller by placing 12
agents at feasible initial points randomly within the domain
in MATLAB. The resultant flocking behavior if presented in
Fig. 2; this shows that after a short transient period, a stable
flock is formed which moves to the northeast as specified by
vd.

0 2 4 6 8
X pos [m]

-2

0

2

4

6

8

10

Y
 p

os
 [

m
]

2.727 sec

0 2 4 6 8
X pos [m]

-2

0

2

4

6

8

10

Y
 p

os
 [

m
]

8.788 sec

0 2 4 6 8
X pos [m]

-2

0

2

4

6

8

10

Y
 p

os
 [

m
]

17.879 sec

0 2 4 6 8
X pos [m]

-2

0

2

4

6

8

10

Y
 p

os
 [

m
]

28.485 sec

Fig. 2. Flocking behavior for 12 agents simulated in MATLAB.

Next, we implemented a sensing-based approximation
of the derived optimal control algorithm in Gazebo. This
approximation does sacrifice optimality; however, it does not
require communication between the agents and it allows an
explicit closed-form solution of the boundary conditions. The
sensing-based approach for agent i ∈ A approximates (29)
as

pi(tf) =
∑
j∈Ni

pj(t0) +
ai

2w3

∑
j(||sij(t0)|| −D)

, (52)

where pj(t0), j ∈ Ni(t0) must only be sensed by agent i.
The expected flocking behavior still emerges and is presented
in Fig. 3. We implemented our controller in Gazebo using
the RotorS package [25] and six AscTec Hummingbirds
operating in a horizontal plane. The parameters used for
this simulation were: D = 0.25 m, vd = (2.5, 0) m/s, and
h = 4.5 m. The results of these simulations are visualized
in Figs. 3 and 4. In Fig. 3, agents initially coalesce into a
hexagonal pattern before flocking along the direction of vd

(+x). The flock naturally forms a hexagonal near the end
of the simulation due to the relative distance term in the
cost function. Figure 4 shows the energy consumption of the
agents decaying despite the use of the sensing approximation
to estimate neighbor trajectories.

The Gazebo simulation shows an asymptotic reduction
in energy consumption for agents with significantly more
complicated dynamics, i.e., drones. Additionally, the sensing-
only approximation (52) does not seem to have a significant
impact on the global structure of the flock and rate of energy
consumption in this scenario.

V. CONCLUSION

In this paper, we proposed an optimal control approach to
realize flocking behavior in a group of cooperative agents.

-2 0 2 4 6 8
X Position [m]

-5

0

5
Y

 P
os

iti
on

 [
m

]
0.252 sec

0 5 10
X Position [m]

-5

0

5

Y
 P

os
iti

on
 [

m
]

5.097 sec

0 5 10 15
X Position [m]

-6

-4

-2

0

2

4

6

Y
 P

os
iti

on
 [

m
]

11.471 sec

0 5 10 15 20
X Position [m]

-10

-5

0

5

10

Y
 P

os
iti

on
 [

m
]

20.395 sec

Fig. 3. Gazebo simulation with six agents spaced in a hexagonal formation.

Fig. 4. Time series of the average and maximum acceleration magnitude
for the six drones.

We presented the optimal trajectory in the form of a boundary
value problem and provided a candidate solution which is
locally optimal. Some potential directions for future research
include extending the obstacle avoidance constraint to in-
clude terrain and mobile obstacles, redefining the aggregation
function to use a local description of flocking, and testing
the optimal control algorithm on physical hardware in the
University of Delaware’s Scaled Smart City.

ACKNOWLEDGMENTS

The authors would like to thank Michael Dorothy at Com-
bat Capabilities Development Command, Army Research
Laboratory, for his insightful discussions on optimal control.

REFERENCES

[1] A. A. Malikopoulos, “A duality framework for stochastic optimal con-
trol of complex systems,” IEEE Transactions on Automatic Control,
vol. 61, no. 10, pp. 2756–2765, 2016.

[2] ——, “Centralized stochastic optimal control of complex systems,”
in Proceedings of the 2015 European Control Conference, 2015, pp.
721–726.

[3] ——, “Equilibrium Control Policies for Markov Chains,” in 50th
IEEE Conference on Decision and Control and European Control
Conference, 2011, pp. 7093–7098.

[4] A. A. Malikopoulos, V. Maroulas, and J. Xiong, “A multiobjective
optimization framework for stochastic control of complex systems,”
in Proceedings of the 2015 American Control Conference, 2015, pp.
4263–4268.

[5] H. Oh, A. R. Shirazi, C. Sun, and Y. Jin, “Bio-inspired self-organising
multi-robot pattern formation: A review,” Robotics and Autonomous
Systems, vol. 91, pp. 83–100, 2017.

[6] A. A. Malikopoulos, C. G. Cassandras, and Y. J. Zhang, “A decen-
tralized energy-optimal control framework for connected automated
vehicles at signal-free intersections,” Automatica, vol. 93, no. April,
pp. 244–256, 2018.

[7] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction with quadrotor
teams,” Autonomous Robots, 2012.

[8] J. Cortes, “Global formation-shape stabilization of relative sensing
networks,” in Proceedings of the American Control Conference, 2009.

[9] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” Computer Graphics, vol. 21, no. 4, pp. 25–34, 1987.

[10] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory,” IEEE Transactions on Automatic Control, vol. 51,
no. 3, pp. 401–420, 3 2006.

[11] A. Barve and M. J. Nene, “Survey of Flocking Algorithms in Multi-
agent Systems,” International Journal of Computer Science, vol. 19,
no. 6, pp. 110–117, 2013.

[12] S.-J. Chung, A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A
Survey on Aerial Swarm Robotics,” IEEE Transactions on Robotics,
vol. 34, no. 4, p. 837/855, 2018.

[13] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[14] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and
T. Vicsek, “Optimized flocking of autonomous drones in confined
environments,” Science Robotics, vol. 3, no. 20, 2018.

[15] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed
and switching networks,” IEEE Transactions on Automatic Control,
vol. 52, no. 5, pp. 863–868, 2007.

[16] L. E. Beaver and A. A. Malikopoulos, “A Decentralized Control
Framework for Energy-Optimal Goal Assignment and Trajectory Gen-
eration,” in Proceedings of the 2019 Conference on Decision and
Control, Nice, FR, 2019.

[17] S. A. Quintero, G. E. Collins, and J. P. Hespanha, “Flocking with
fixed-wing UAVs for distributed sensing: A stochastic optimal control
approach,” in Proceedings of the American Control Conference, 2013,
pp. 2025–2031.

[18] H. T. Zhang, Z. Cheng, G. Chen, and C. Li, “Model predictive flocking
control for second-order multi-agent systems with input constraints,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62,
no. 6, pp. 1599–1606, 6 2015.

[19] V. Gómez, S. Thijssen, A. Symington, S. Hailes, and H. J. Kappen,
“Real-Time Stochastic Optimal Control for Multi-agent Quadrotor
Swarms,” in 26th International Conference on Automated Planning
and Scheduling. London: AAAI Press, 2016, p. 17.

[20] M. Egerstedt, J. N. Pauli, G. Notomista, and S. Hutchinson, “Robot
ecology: Constraint-based control design for long duration autonomy,”
pp. 1–7, 1 2018.

[21] T. Ibuki, S. Wilson, J. Yamauchi, M. Fujita, and M. Egerstedt,
“Optimization-Based Distributed Flocking Control for Multiple Rigid
Bodies,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
1891–1898, 4 2020.

[22] L. E. Beaver and A. A. Malikopoulos, “An Energy-Optimal Frame-
work for Assignment and Trajectory Generation in Teams of Au-
tonomous Agents,” Systems & Control Letters (forthcoming), 2020.

[23] Y. Hu, J. Zhan, and X. Li, “Self-triggered distributed model predictive
control for flocking of multi-agent systems,” IET Control Theory &
Applications, vol. 12, no. 18, pp. 2441–2448, 12 2018.

[24] I. M. Ross, A Primer on Pontryagin’s Principle in Optimal Control,
2nd ed., E. Solon, Ed. San Francisco: Collegiate Publishers, 2015.

[25] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS—A
Modular Gazebo MAV Simulator Framework,” in Robot Operating
System (ROS): The Complete Reference (Volume 1), A. Koubaa, Ed.
Cham: Springer International Publishing, 2016, pp. 595–625.

