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Abstract— Several approaches have been proposed in the
literature that allow connected and automated vehicles (CAVs)
to coordinate in areas where there is a potential conflict, for ex-
ample, in intersections, merging at roadways and roundabouts.
In this paper, we consider the problem of coordinating CAVs
in a corridor consisting of several conflict areas where collision
may occur. We derive a solution that yields the optimal control
input, in terms of fuel consumption, for each CAV to cross
the corridor under the hard safety constraints. We validate the
effectiveness of the solution through simulation, and we show
that both fuel consumption and travel time can be improved
significantly.

I. INTRODUCTION

Connected and automated vehicles (CAVs) provide the
most intriguing opportunity for enabling users to better mon-
itor transportation network conditions and make better oper-
ating decisions. Several research efforts have been reported in
the literature proposing different approaches on coordinating
CAVs at different transportation scenarios, e.g., intersections,
roundabouts, merging roadways, speed reduction zones, with
the intention to improve traffic flow. In 2004, Dresner and
Stone [1] proposed the use of the reservation scheme to
control a single intersection. Since then, similar approaches
have been reported in the literature to achieve safe and
efficient control of traffic through intersections, e.g., [2]–[4].

The objective of improving traffic flow through coordinat-
ing vehicles has been the focus in several papers [5], [6].
Kim and Kumar [7] proposed an approach based on model
predictive control that allows each vehicle to optimize its
movement locally in a distributed manner with respect to
any objective of interest. Most recently, [8] presented an ap-
proach for automated on-ramp merging and gap development
considering vehicle speed constraints. Other efforts have
also focused on multi-objective optimization problems for
coordination of CAVs at intersection using either centralized
or decentralized approaches [9]–[11].

Although previous research has aimed at enhancing our
understanding of improving the efficiency through coordi-
nation of CAVs, deriving an optimal solution for a corridor
still remains a challenging control problem. In this paper,
we address the problem of optimally coordinating CAVs that
travel through a corridor under hard safety constraints, elim-
inating stop-and-go driving behavior. In previous work [12],

This research was supported by the ARPAE’s NEXTCAR program under
the award number DE-AR0000796.

The authors are with the Department of Mechanical
Engineering, University of Delaware, Newark, DE 19716 USA
(email: mahbub@udel.edu; andreas@udel.edu;
lhzhao@udel.edu.)

[13], we presented a preliminary analysis on coordinating
CAVs in a corridor without considering state, control, and
safety constraints. In this paper, we implement a closed-
form analytical solution that includes the rear-end safety
constraint.

The structure of the paper is organized as follows. In
Section II, we formulate the problem, and derive the an-
alytical, closed form solution for the corridor with interior
constraints. In Section IV, we validate the effectiveness of the
analytical solution in a simulation environment and conduct a
comparison analysis with traditional human-driven vehicles.
Finally, we provide concluding remarks in Section V.

II. PROBLEM FORMULATION

We consider a corridor (Fig. 1) that consists of several
conflict zones (e.g., a merging area, an intersection, and
a roundabout), where potential lateral collision of vehicles
may occur. The corridor has a coordinator that can monitor
CAVs traveling along the corridor. Note that the coordinator
is not involved in any decision on the CAV operation. The
communication range of the coordinator can be adjustable
and its length could be extended as needed. For example,
we could use a network of drones to act as coordinators and
broadcast with the CAVs.

Fig. 1: Corridor with connected and automated vehicles.

Let N(t) ∈ N be the number of CAVs in the corridor
at time t ∈ R+, N (t) = {1, 2, . . . , N(t)} be a queue of
CAVs inside the corridor, and Z ∈ N be the number of
conflict zones along the corridor where lateral collisions may
occur. When a CAV enters the boundary of the corridor,
it broadcasts its route information to the coordinator. Then,
the coordinator assigns a unique integer i ∈ N that serves
as identification of CAVs inside the corridor. Let t0i be the



initial time that vehicle i enters the corridor, tzi be the time
for vehicle i to enter the conflict zone z, z ∈ Z , and tfi be
the time for vehicle i to enter the final conflict zone. For
example, for CAV #7 (Fig. 1), t07 is the time that it enters
the corridor, t17, t27, and tf7 = t37 are the times that it enters
the conflict zones #1,#2, and #3 respectively. There is a
number of ways to assign tzi for each CAV i. The policy
through which the “schedule” is specified is the result of a
high-level optimization problem [14].

The policy, which determines the time tzi that each CAV i
enter the conflict zone, can aim at maximizing the throughput
at the corridor while ensuring that any lateral collision
constraint never becomes active. On the other hand, for
each CAV i, deriving the optimal control input (minimum
acceleration/deceleration) to achieve the target tzi can aim
at minimizing its fuel consumption [15] while ensuring that
the rear-end collision avoidance constraint never becomes
active. In what follows, we consider that a control scheme
for determining tzi for each CAV i is given, and we will
focus on the low-level control problem that yields for each
CAV the optimal control input to achieve the assigned tzi
subject to the state, control, and rear-end collision avoidance
constraints.

A. Vehicle model, Constraints, and Assumptions

Each CAV i ∈ N (t) is modeled by a second order
dynamics

ṗi = vi(t), v̇i = ui(t), (1)

where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the
position, speed and control input (acceleration/deceleration)
of each CAV i in the corridor; si(t) ∈ Si denotes the distance
between CAV i and CAV k which is directly ahead of i, and
ξi is the reaction constant of the CAV. The sets Pi, Si, Vi,
and Ui, i ∈ N (t), are complete and totally bounded subsets
of R. In the rest of the paper, we reserve the symbol k to
denote the CAV which is physically immediately ahead of i
in the same lane.

Let xi(t) = [pi(t) vi(t)]
T denote the state of each CAV

i, with initial value x0i =
[
p0i v

0
i

]T
, where p0i = pi(t

0
i ) = 0

and v0i = vi(t
0
i ). To ensure that the control input and speed

are within a given admissible range, the following constraints
are imposed.

umin ≤ ui(t) ≤ umax, and

0 ≤ vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
f
i ],

(2)

where umin, umax are the minimum deceleration and max-
imum acceleration for each CAV i ∈ N (t), and vmin, vmax

are the minimum and maximum speed limits respectively. To
ensure the absence of rear-end collision of CAV i ∈ N (t)
and its immediately preceding CAV k ∈ N (t), we impose
the following rear-end safety constraint

si(t) = ξi · (pk(t)− pi(t)) ≥ δi(t), ∀t ∈ [t0i , t
f
i ]. (3)

Here, the minimum safe distance δi(t) is a function of speed
vi(t) since δi(t) = γi + ρi · vi(t), for all t ∈ [t0i , t

f
i ], where

γi is the standstill distance, and ρi is minimum time gap

that CAV i would maintain while following another CAV.
In the modeling framework described above, we impose the
following assumptions:

Assumption 1. All CAVs are connected and automated.

Assumption 2. For each CAV i, none of the constraints (2)
and (3) is active at t0i .

Assumption 3. Each CAV i has proximity sensors and can
measure local information without errors or delays.

Assumption 4. The communication between the coordinator
and each CAV i is reliable and instantaneous.

Assumption 5. The corridor only contains single-lane road
segments. The CAVs traveling in the corridor do not change
lanes except to make necessary turns.

The first assumption limits the scope of our paper to an
idealized environment where all vehicles are connected and
automated, e.g., 100% CAV penetration rate. The second
assumption ensures that the solution of the optimal control
problem starts from a feasible state and control input. The
third assumption might impose barriers during implementa-
tion, but can be relaxed if the noise in the measurements and
delays are bounded. The fourth assumption is necessary for
the upper-level optimization problem although this problem
is not addressed in this paper. The last assumption simplifies
the optimal control problem so as to avoid implications
related to lane changing. However, the proposed framework
could be extended to multiple lanes by enhancing the vehicle
model to account for this accordingly.

III. THE LOW-LEVEL OPTIMAL CONTROL PROBLEM

We consider the problem of minimizing the control input
for each CAV i ∈ N (t) from the time t0i that the CAV
i enters the control zone until the time tfi that it exits
the last conflict zone under the hard safety constraint to
avoid rear-end collision. By minimizing each CAV’s control
input, we minimize transient engine operation. Thus, we can
have direct benefits in fuel consumption and emissions since
internal combustion engines are optimized over steady state
operating points (constant torque and speed) [16].

Therefore, the optimization problem for each CAV i ∈
N (t) is formulated as follows:

Ji(u(t)) =
1

2

∫ tfi

t0i

u2i (t) dt, (4)

subject to: (1), (3),

and given t0i , v0i , pi(t
0
i ) = 0, tzi

∗, pi(t
z
i
∗) = pz.

Note that we have omitted the state and control constraint
(2). The problem formulation with the state and control
constraints requires the constrained and unconstrained arcs
of the state and control input to be pieced together to satisfy
the Euler-Lagrange equations and necessary condition of
optimality. To simplify the analysis, we focus on the rear-
end safety constrained case (3) only. The other constrained
cases related to the state and control are similar to the cases



presented in [17]–[19], and thus, we do not repeat here.
In our analysis, we consider that when a CAV enters the
control zone, none of the constraints is active (Assumption
2). From (1) and (4), we formulate the Hamiltonian for each
CAV i ∈ N (t) by indirectly adjoining the rear-end safety
constraint (3),

Hi

(
t, pi(t), vi(t), si(t), ui(t)

)
=

1

2
u(t)2i + λpi · vi(t) + λsi · ξi · (vk(t)− vi(t)) + λvi · ui(t)

+µe
i · (ρi · ui(t)− ξi(vk(t)− vi(t))), (5)

where λpi , λsi , and λvi are the costate components, and µe
i

is the Lagrange multiplier. The Euler-Lagrange equations
become

λ̇pi (t) = −
∂Hi

∂pi
= 0, λ̇si (t) = −

∂Hi

∂si
= 0,

λ̇vi (t) = −
∂Hi

∂vi
= −(λpi − ξi · λ

s
i + µe

i · ξi), and

∂Hi

∂ui
= ui(t) + λvi + ρi · µe

i = 0. (6)

1) State constraint is not active, analytical solution with-
out interior constraints: When the rear-end constraint is not
active, µe

i = 0. From (6), we have λpi (t) = ai, λsi (t) = bi,
and λvi (t) = −

(
(ai − bi · ξi) · t + ci

)
. The coefficients ai,

bi, and ci are constants of integration corresponding to each
CAV i. From (6), the optimal control input as a function of
time is

u∗i (t) = (ai − bi · ξi) · t+ ci, ∀t ≥ t0i . (7)

Substituting the last equation into (1) we find the optimal
speed and position for each CAV, namely

v∗i (t) =
1

2
(ai − bi · ξi) · t2 + ci · t+ di, ∀t ≥ t0i (8)

p∗i (t) =
1

6
(ai − bi · ξi) · t3 +

1

2
ci · t2 + di · t+ ei, ∀t ≥ t0i .

(9)

where di and ei are constants of integration. The constants
of integration ai, ci, di, and ei are computed for each CAV i
from the values of the speed and position at t0i , the position
at tfi , and λvi (t

f
i ) = 0.

2) State constraint is active, analytical solution without
interior constraints: Suppose the CAV starts from a feasible
state and control at t = t0i and at some time t = t1, si(t1) =
δ(t1). In this case, µe

i 6= 0. The closed-form solution for this
case has been derived in [18], and thus, it is not repeated
here.

3) State constraint is not active, analytical solution with
interior constraints: In this case, the path of CAV i consists
of more than one conflict zone, e.g., CAV i enters from
the second ramp and travels through #1 and #2 in Fig. 1.
Between the time t0i that the CAV enters the corridor and
the time tfi that the CAV exits the conflict zone #2, CAV
i has to travel across the intermediate merging zone #1
(i.e., the first conflict zone) at designated time t1i

∗, then we
have an additional interior boundary condition at t = t1i

∗,

pi(t
1
i
∗
) = p1 and/or vi(t1i

∗
) = v1, where where p1 and v1

are the position and designed speed limit (if exists) for the
conflict zone. In this case, the Hamiltonian in (5) needs to be
solved as a three point boundary value problem piecing two
unconstrained arcs together with proper jump conditions at
the interior boundary point at t = t1i

∗ as described in [20].
Following the same procedure as in [20], we can extend this
solution for multiple interior points of a route of a CAV.

4) State constraint is active, analytical solution with in-
terior constraints: We consider the case where the path
of CAV i consists of more than one conflict zone (i.e.,
analytical solution with interior constraints), and the safety
constraint is activated in one or more arcs. In this case, we
have at least two junction points where the Hamiltonian is
discontinuous. Suppose the CAV starts from a feasible state
and control at t = t0i , travel across an intermediate conflict
zone 1 at a given time t = t1i

∗, and at some time t = t1,
si(t1) = δ(t1). Note that safety constraint may be violated
before or after t1i

∗. Depending on relationship between t1i
∗

and t1, the constrained and unconstrained arcs can be pieced
together at the optimal junction points by combining case 2
and 3.

IV. SIMULATION RESULTS

A. Numerical Analysis

We analyzed four cases to validate the effectiveness of
the analytical solution. In all cases, we set a leading CAV
and the following CAV, we call it “ego” vehicle, traveling
through a corridor. The total length of the corridor is 300
m. When t0i = 0 s, the following CAV i is at the entry of
the corridor with p0i = 0 m. For simplification, we assume
the final time for the following CAV has been determined at
tfi = 26 s. At t0i = 0 s, the speed for the leading CAV is
vk = 11.5 m/s. The final time of the leading CAV around
tkf = 24 s, after which, the leading CAV exits the corridor.
We use different acceleration profiles of the leading CAVs
to validate the optimal control for the following CAV.

Case 1: safety constraint not activated, no interior points.
In this case, CAV i enters with an initial speed of 12.0
m/s at time t0i = 0 s. The initial following distance s0i is
30 m. The state following distance si(t), together with the
difference between following distance si(t) and the safety
distance δi(t), is plotted in the left panel of Fig. 2, where
we observe that if state constraint is not activated, the optimal
control yields a linear acceleration profile for the following
CAV i.

Case 2: safety constraint activated, no interior points. In
this case, CAV i enters with a higher initial speed of 14.0
m/s at time t0i = 0 s, when the initial following distance s0i
is 20 m. We see from Fig. 3 that the state constraint becomes
activated at t1 = 3.2 s when si(t1)− δi(t1) = 0. Since CAV
k keeps accelerating while CAV i decelerates after t1, CAV
i exits the constrained arc at t2 = 5.2 s. After t2, CAV i
decelerates with a linearly increased acceleration profile.

Case 3: safety constraint not activated, interior point exists.
We look into the case when there is an interior point, the case
is set up as follows: CAV i enters with an initial speed of 12.0



Fig. 2: Case 1: safety constraint is not activated, no interior
points.

Fig. 3: Case 2: safety constraint is activated, no interior
points.

m/s at time t0i = 0 s, when the initial following distance
s0i = 0 m. There is an intersection at p1 = 150 m, where
the scheduled entry time for CAV i is t1 = 15 s. Suppose
CAV k travels at a constant speed. Due to the existence of
an intermediate point, we can see two arcs from the optimal
acceleration profile the right panel of Fig. 4. For the first
half segment, CAV i first decelerate and then accelerate to
meet the assigned entry time at the intersection; then for the
second half, CAV i keeps accelerating till the end.

Fig. 4: Case 3: safety constraint is not activated, interior point
exists.

Case 4: safety constraint is activated, interior point exists.
In case 3, if the assigned entry time of CAV i at the inter-
mediate point, the safety constraint may be activated. Thus,
in case 4, we analyze the situation when safety constraint
is activated in a corridor. In this case, the scheduled entry
time at p1 = 150 m for CAV i is t1 = 13 s. In Fig. 5, we
see that due to the change of entry time at the intermediate
point, CAV i, with a high initial speed, activates the safety
constraint at 2.7 s, and leaves the constrained arc at 3.4 s.
With the optimal control for constrained and unconstrained
arcs, CAV i is able to pass through the intersection and final

location at predetermined times.

Fig. 5: Case 4: safety constraint is activated, interior point
exists.

B. Traffic Simulation
With the simulation network of Mcity created in PTV

VISSIM (Version 11) environment, we define a corridor
consisting of four conflict zones: (1) a merging roadway,
(2) a speed reduction zone, and (3) a roundabout, and (4) an
intersection (Fig. 6). CAVs enter the network on the ramp,
join the traffic on the highway with desired speed of 22 m/s,
and then enter the speed reduction zone where the speed
limit drops to 11 m/s. The CAVs exit the highway segment
and travel through the roundabout, where a desired speed of
13 m/s is imposed until the exit of the roundabout, to the
intersection (conflict zone #4).

Fig. 6: Study corridor in Mcity.

To evaluate the network performance with the proposed
control framework, we consider two scenarios as follows: (a)



Baseline: All vehicles in the network are non-connected and
non-automaicles. In this case, the Wiedemann car following
model [21] built in VISSIM is applied. 1.2 s time headway
is adopted to estimate the minimum allowable following
distance.
(b) Optimal Control: We adopt the same simulation plat-
form as in our previous work [22], where the proposed
control framework is integrated to generate the optimal ac-
celeration/deceleration profile for each CAV in the network.
Same time headway under Scenario 1 is applied in the
optimal control model.

1) Vehicle Trajectory: The speed trajectories for 0% and
100% CAV penetration rate are shown in Fig. 7. For the
baseline scenario with 0% CAV penetration rate, CAVs
traveling along the corridor need to yield to mainline traffic,
and wait for the green light before the intersection. Thus, we
can see that there are many fluctuations in CAV acceleration
profiles under the baseline scenario (i.e., black dots in upper
right panel of Fig. 7). With the optimal control operation
under 100% CAV penetration rate, the traffic information for
the entire corridor is shared for all CAVs. Therefore, CAVs
traveling through the corridor could drive more smoothly
to avoid hard acceleration/deceleration for any merging or
speed reduction events in the path (i.e., red dots in lower
panel of Fig. 7). Note that a desired speed is defined for
each conflict zone, which is the reason for the jumps in the
acceleration profiles. If desired, we could eliminate the jumps
in the optimal acceleration solution by removing the hard
speed limits for the conflict zones (as shown in Fig. 4).

Fig. 7: Vehicle trajectories.

2) Travel Time: As we can see from the left panel of
Fig. 8, smooth vehicle movement under the optimal control
operation leads to smaller fluctuation in corridor travel time
among CAVs, compared with baseline scenario. The right
three panels in Fig. 8 represent travel time distribution for
mainline traffic towards the three conflict zones, i.e., highway
merging area, roundabout, and the intersection. In general,
the average travel time for mainline CAVs is scarified in
order to generate proper gaps for CAVs on secondary direc-
tion to conduct non-stop merging maneuver. However, since
traffic signal controller is disabled in the network with 100%

CAV penetration rate, the travel times for all CAVs towards
the intersection are reduced substantially (i.e., the bottom
figure in the right panel of Fig. 8).

Fig. 8: Travel time distribution for different network seg-
ments.

3) Following Distance: We collect from VISSIM the
distance between a CAV and its physically immediately
leading CAV (i.e., following distance) every second, and the
minimum safe distance calculated based on travel speed. The
following distance difference in Fig. 9 is defined as the differ-
ence between second-by-second CAV following distance and
the minimum safe distance. A value above 250 m in VISSIM
records means that there is no leading CAV ahead. We see in
Fig. 9 that with the optimal control algorithm, the variance
in following distance difference among CAVs decreases,
indicating a more homogeneous traffic pattern under 100%
penetration rate. Furthermore, we note that in the baseline
scenario, there are some cases when safety constraint is
violated as circled by the eclipse in Fig. 9. Plotting the events
along the distance traveled in the corridor (i.e., the insert
panel in Fig. 9), we see that most of the violation events
happen near the entries of conflict zones as well as the start of
the speed reduction zone. If sudden/sharp deceleration (e.g.,
from a relative high speed to a low speed or even stopping)
is necessary for a series of CAVs, chances are that some
CAVs in the chain may not be able to decelerate enough in a
short time period with the minimum safe distance constraint
satisfied (i.e., relatively high risk of collision). It implies that
by recommending acceleration/deceleration profiles for all
the CAVs, the optimal control algorithm could potentially
reduce the risk of collision and improve traffic safety.

4) Fuel Consumption: With vehicle trajectory data col-
lected every 1 s, fuel consumption is estimated by using
the polynomial metamodel proposed in [23] that relates
vehicle fuel consumption as a function of speed v(t) and
acceleration u(t). With smooth acceleration/deceleration pro-
files throughout the entire corridor (see Fig. 7), vehicles’
stop-and-go driving behavior is eliminated under Scenario
2 with 100% CAV penetration rate. Thus, transient engine



Fig. 9: Accumulated delay in each zone.

operation is minimized, leading to direct fuel consumption
savings compared to the baseline scenario. Overall, through
the optimal control algorithm, an average of 41% savings in
total fuel consumption for CAVs traveling along the corridor
is yielded.

V. CONCLUDING REMARKS

In this paper, we investigated the optimal coordination
of CAVs in a corridor. We derived a closed-form analytical
solution that considers interior constraints and provides the
optimal trajectory for the entire route for each CAV. We
showed through simulation that coordination of CAVs can
eliminate stop-and-go driving and improve fuel consumption.
Ongoing work addresses the problem of optimal control of
CAVs in a mixed traffic environment.

Although potential benefits of full penetration rates of
CAVs to alleviate traffic congestion and reduce fuel con-
sumption are apparent, different penetration rates of CAVs
can alter significantly the efficiency of the entire system.
Ongoing work emphasizes addressing the problem of co-
ordinating CAVs in a mixed traffic environment. In our
proposed framework, we made the assumption of perfect
communication which might impose barriers in a potential
implementation and deployment of the proposed framework.
Another important direction for future research is to relax
this assumption, and investigate the implications of having
information with errors and/or delays to the system behavior.
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