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A B S T R A C T

The decentralized aggregate motion of many individual robots is known as robotic flocking. The study
of robotic flocking has received considerable attention in the past twenty years. As we begin to deploy
flocking control algorithms on physical multi-agent and swarm systems, there is an increasing necessity for
rigorous promises on safety and performance. In this paper, we present an overview the literature focusing
on optimization approaches to achieve flocking behavior that provide strong safety guarantees. We separate
the literature into cluster and line flocking, and categorize cluster flocking with respect to the system-
level objective, which may be realized by a reactive or planning control algorithm. We also categorize the
line flocking literature by the energy-saving mechanism that is exploited by the agents. We present several
approaches aimed at minimizing the communication and computational requirements in real systems via
neighbor filtering and event-driven planning, and conclude with our perspective on the outlook and future
research direction of optimal flocking as a field.
. Introduction

Generating emergent flocking behavior has been of particular in-
erest since Reynolds proposed three heuristic rules for multi-agent
locking in computer animation; see Reynolds (1987). Robotic flock-
ng has been proposed in several applications including mobile sens-
ng networks, coordinated delivery, reconnaissance, and surveillance;
ee Olfati-Saber (2006). With the significant advances in computa-
ional power in recent decades, the control of robotic swarm systems
as attracted considerable attention due to their adaptability, scal-
bility, and robustness to individual failure; see Oh et al. (2017).
owever, constructing a swarm with a large number of robots imposes

ignificant cost constraints on each individual robot. Thus, any real
obot swarm must consist of individual robots with limited sensing,
ommunication, actuation, memory, and computational abilities. To
chieve robotic flocking in a physical swarm, we must develop and
mploy energy-optimal approaches to flocking under these strict cost
onstraints.

There have been several surveys and tutorials on decentralized
ontrol that include flocking; see Albert and Imsland (2018), Barve
nd Nene (2013), Bayindir (2016), Ferrari et al. (2016) and Zhu et al.
2016, 2017). In one motivating example, Fine and Shell (2013) discuss
arious flocking controllers without considering optimality. In general,
hese surveys have all considered flocking and optimal control to be
wo distinct problems. Thus, we believe it is appropriate to present

comprehensive overview of optimal flocking control algorithms as
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robotic swarm systems begin to roll out in laboratories, e.g., Beaver,
Chalaki et al. (2020), Jang et al. (2019), Malikopoulos et al. (2021),
Rubenstein et al. (2012) and Wilson et al. (2020), and field tests,
e.g., Mahbub et al. (2020) and Vásárhelyi et al. (2018). Our objective
for this overview is to establish the current frontier of optimal flocking
research and present our vision of the research path for the field.

While an extensive body of literature has studied the convergence of
flocking behavior, there has been almost no attention paid to the devel-
opment of optimal flocking control algorithms. Although Molzahn et al.
(2017) focused on optimal decentralized control in a recent survey,
the covered approaches focus on formation configuration, achieving
consensus, or area coverage. Thus, we seek to summarize the existing
literature at the interface of flocking and optimization with an emphasis
on minimizing agents’ energy consumption.

One significant problem throughout the literature is the use of the
term ‘‘flocking’’ to describe very different modes of aggregate motion.
The biology literature emphasizes this point, e.g., Bajec and Heppner
(2009), where the distinction of line flocking (e.g., geese) and cluster
flocking (e.g., sparrows) is necessary. To this end, we believe it is
helpful to partition the engineered flocking literature into cluster and
line flocking. As with natural systems, these modes of flocking have
vastly different applications and implementations; unlike biological
systems, the behavior of engineering systems is limited only by the
creativity of the designer. Our proposed flocking taxonomy is shown
in Fig. 1. We have partitioned cluster flocking into three categories
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Fig. 1. Our proposed flocking classification scheme for cluster and line flocking.

based on the desired system-level objective. In the context of optimal
flocking, each of our proposed categories corresponds to a system-
level cost function that a designer seeks to minimize by optimizing the
control policy of each agent. In contrast, the objective of line flocking
is always to minimize the energy consumed by each agent. Thus, we
have partitioned the line flocking literature based on the mechanism
that agents exploit to reduce energy consumption.

The objectives of this paper are to: (1) elaborate on a new classi-
fication scheme for engineered flocking literature aimed at enhancing
the description of flocking research (Fig. 1), (2) summarize the results
of the existing optimal flocking literature across engineering disciplines
and present the frontier of optimal flocking research, and (3) propose
a new paradigm to understand flocking as an emergent phenomenon
to be controlled rather than a desirable group behavior for agents to
mimic.

The contribution of this paper is the collection and review of
the literature in this area. In several cases the optimal flocking and
formation literature overlap. We have attempted to separate them and
present only the material relevant to flocking in this review. Any such
effort has obvious limitations. Space constraints limit the presentation
of technical details, and thus, extensive discussions are included only
where they are important for understanding the fundamental concepts
or explaining significant departures from previous work.

The remainder of this paper is structured as follows. In Section 1.1,
we present the common notation used throughout the paper. Then,
in Section 2, we give a brief introduction to cluster flocking. We
review the optimal cluster flocking literature in Sections 3–5 following
our proposed taxonomy (Fig. 1). In Section 3, we present various
approaches to minimize the deviation from Reynolds flocking rules. We
present approaches to optimally track a reference trajectory with the
center of a flock in Section 4, and in Section 5, we present other system-
level objectives where optimal control policies induce cluster flocking.
We further divide each of these sections into reactive and planning
approaches. We present the line flocking literature in Section 6. In
Section 7, we discuss the inherent trade-offs present in multi-objective
optimal flocking through the lens of Pareto analysis. In Section 8, we
discuss the implications of flocking with real robots. In Section 8.1,
we present approaches to reducing cyberphysical costs, while in Sec-
tion 8.2 we present flocking as a group strategy. Finally, in Section 9,
we present our research outlook, concluding remarks, and motivate a
new direction for flocking research.

1.1. Notation

We consider a swarm of 𝑁 ∈ N agents indexed by the set  =
{1, 2,… , 𝑁}. For each agent 𝑖 ∈ , we denote their position and
velocity by 𝐩𝑖(𝑡) and 𝐯𝑖(𝑡), respectively, at time 𝑡 ∈ R≥0. Agent 𝑖’s state
is denoted by the vector 𝐱 (𝑡), and the state of the system by 𝐱(𝑡) =
2

𝑖

[𝐱𝑇1 (𝑡),… , 𝐱𝑇𝑁 (𝑡)]𝑇 . Each agent 𝑖 ∈  has a neighborhood 𝑖(𝑡) ⊆ ,
which contains all neighbors that 𝑖 may sense and communicate with.
For consistency we explicitly include 𝑖 ∈ 𝑖(𝑡) for all 𝑡. There are
many ways to define a neighborhood, including inter-agent distance,
𝑘-nearest neighbors, and Voronoi partitions; see Fine and Shell (2013)
for further discussion. In most cases, each agent’s neighborhood is only
a fraction of the swarm; thus, each agent is only able to make partial
observations of the entire system state. Using neighborhoods as our
basis for local information, we propose the following definition for
connected agents.

Definition 1. Two agents 𝑖, 𝑗 ∈  are connected at time 𝑡 over a period
𝑇 ∈ R>0 if there exist a sequence of neighborhoods
{

𝑖(𝑡1),𝑘1 (𝑡2),𝑘2 (𝑡3),… ,𝑘𝑛 (𝑡𝑛+1)
}

, (1)

such that

𝑘1 ∈ 𝑖(𝑡1), 𝑘2 ∈ 𝑘1 (𝑡2),… , 𝑗 ∈ 𝑘𝑛 (𝑡𝑛+1), (2)

where 𝑛+1 is the length of the sequence and 𝑡 ≤ 𝑡1 ≤ 𝑡2⋯ ≤ 𝑡𝑛+1 ≤ 𝑡+𝑇 .

Finally, for any two agents 𝑖, 𝑗 ∈ , we denote their relative position
as

𝐬𝑖𝑗 (𝑡) = 𝐩𝑖(𝑡) − 𝐩𝑗 (𝑡). (3)

2. Cluster flocking and swarming

The swarming, aggregate motion of small birds is known as cluster
flocking in biological literature. The benefit of cluster flocking in
natural systems is unknown, however, several hypotheses have been
proposed. These include predator evasion, estimating the flock popula-
tion, and sensor fusion. It is also unclear if leadership is necessary to
generate the organized motion in cluster flocks of actual birds; Bajec
and Heppner (2009) provides a review of swarming in biological sys-
tems. In fact, the conditions under which leader-driven cluster flocking
is optimal is an open question; Jia and Vicsek (2019) provides further
results on hierarchical cluster flocking. For this reason, the study of
leader vs. leaderless flocking is outside the scope of this review.

In Sections 3–5, we present each formulation under the assumption
that all agents have access to any global reference information when
solving their local optimization problem. With this in mind, and based
on the work of Cucker and Smale (2007), Olfati-Saber (2006) and
Tanner et al. (2007), we present a general definition for cluster-flocking
behavior in engineered swarms.

Definition 2 (Cluster Flocking). A group of agents achieves cluster
flocking if:

1. There exists a finite distance 𝐷 ∈ R>0 such that ‖𝐩𝑖(𝑡)−𝐩𝑗 (𝑡)‖ ≤ 𝐷
for all 𝑖, 𝑗 ∈  and all 𝑡 ∈ R≥0.

2. There exists a finite period of time 𝑇 ∈ R>0 such that every pair
of agents 𝑖, 𝑗 ∈  is connected for all 𝑡 ∈ R≥0 (Definition 1).

3. No agent 𝑖 ∈  has a desired final state (i.e., there is no explicit
formation).

4. The agents do not remain stationary.

The first component of Definition 2 draws from the idea of cohesion
in Cucker and Smale (2007) and Olfati-Saber (2006), where the flock
must stay within some finite bounded diameter. The second component
of Definition 2 is inspired by Jadbabaie et al. (2003), which shows
that agents can converge to velocity consensus even when the commu-
nication topology of the flock is only connected over time. The third
component of Definition 2 seeks to differentiate cluster flocking from
formation control problems, which imposes an explicit structure on the
agents. Finally, the fourth component of Definition 2 requires the flock
to remain mobile, which is necessary to differentiate flocking from area
coverage.
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Fig. 2. A diagram showing the influence of collision avoidance, flock centering, and
velocity matching for agent 𝑖, in green.

In almost all cluster flocking applications, each individual agent
𝑖 ∈  may only observe neighboring agents 𝑗 ∈ 𝑖(𝑡) at any particular
instant in time. In general |𝑖(𝑡)| < ||, and therefore each agent
may only make partial observations of the system state, 𝐱(𝑡). Thus,
many of the approaches in the optimal cluster flocking literature rely
on repeatedly simulating the system, evaluating the global cost, and
updating the agents’ control policies.

Sections 3, 4, and 5 each correspond to distinct system-level ob-
jectives where cluster flocking emerges. In each section we present
literature and key results for optimizing the control policy of each
agent such that the system-level cost is minimized. We further split
each section into subsections on reactive and planning optimization
approaches.

3. Reynolds flocking

A vast amount of literature exists that seeks to achieve flocking
under Reynolds three flocking rules, (1) collision avoidance, (2) veloc-
ity matching, and (3) flock centering; see Reynolds (1987). Generally
these heuristic rules can be captured by imposing cost function of the
following form for each agent 𝑖 ∈ ,

𝐽𝑖 = 𝑉 (‖𝐬𝑖𝑗 (𝑡)‖) +
∑

𝑗∈𝑖(𝑡)
‖�̇�𝑖(𝑡)‖2, (4)

where 𝑗 ∈ 𝑖(𝑡) and 𝑉 is an attractive–repulsive potential function with
a local minimum at some desired distance. The first term of (4) manages
collision avoidance and flock centering, while the second term ensures
velocity alignment. Fig. 2 shows each component of an agent flocking
under Reynolds rules.

Given a distance 𝑑 ∈ R>0 that minimizes the potential function in
(4), Olfati-Saber (2006) proposes the 𝛼-lattice, i.e., any configuration
of agents such that each agent 𝑖 ∈  satisfies

‖𝐬𝑖𝑗 (𝑡)‖ = 𝑑, (5)

for all 𝑗 ∈ 𝑖(𝑡). This definition coincides with the global minimum
of (4), and many authors substitute (5) for the flock centering and
collision avoidance rules of Reynolds. In the following subsections, we
present reactive and planning approaches to minimize each agent’s
deviation from Reynolds flocking rules.

3.1. Reactive approaches

An early approach to optimally follow Reynolds flocking rules is
presented by Morihiro et al. (2006a), where the authors take a learning-
based approach to velocity alignment. In this work, each agent 𝑖 ∈ 
observes the state, 𝐱𝑗 (𝑡), of a randomly selected agent 𝑗 ∈ ⧵{𝑖} at each
time step 𝑡. Agent 𝑖 then follows one of four motion primitives: (1) move
toward 𝑗, (2) move away from 𝑗, (3) move the same direction as 𝑗, or (4)
3

move the opposite direction of 𝑗. The agents are rewarded for achieving
velocity alignment and staying near some desirable distance 𝑑 of their
neighbors, i.e., velocity matching and flock centering. In addition, the
authors include a set of predators that attempt to disrupt the flock. In
this case, the agents observe the state of the predator with probability
1 whenever it is within range. Agent 𝑖 is rewarded for evading the
predator and maintaining the structure of the flock. Further simulation
results for this method are presented in Morihiro et al. (2006b).

Wang et al. (2018) formulates flocking as a dynamic program to
generate optimal trajectories for a swarm of quadrotors in R2. The
system-level objective is for the quadrotors to follow Reynolds flocking
rules while moving the swarm center to a global reference position.
The agents follow unicycle dynamics, and each agent’s neighborhood
consists of its nearest left and right neighbor. This angular symmetry
reduces the likelihood of any small subset of agents forming an isolated
clique, which can easily occur when agents use distance-based and
nearest-neighbor rules to define their neighborhood; see Camperi et al.
(2012) and Fine and Shell (2013). The authors penalize each agent
for violating Reynolds flocking rules, coming within some distance
of an obstacle, or not moving toward the desired location. They also
incorporate a constant transition penalty if the agent is not within
a fixed distance of the goal, which encourages the agent to quickly
approach it. The authors follow a standard deep reinforcement learning
policy, which they verify on a group of 𝑁 = 3 agents in simulation.
They also show that the decentralized control policy generalizes to
larger systems of 5 and 7 uncrewed aerial vehicles (UAVs) without
significant deterioration of the final objective function value.

Metaheuristic algorithms, including Pigeon-inspired optimization,
proposed by Duan and Qiao (2014), and particle swarm optimization,
proposed by Kennedy and Eberhart (1995), have been used to generate
systems that optimally follow Reynolds flocking rules. In Qiu and Duan
(2020), the authors optimally select the control actions of a UAV in
R3 under state and control constraints. This is achieved by breaking
the controller into flocking and obstacle avoidance components, then
using pigeon-inspired optimization to weigh each component such that
the deviation from Reynolds flocking rules is minimized while avoiding
collisions.

Navarro et al. (2015) applies particle swarm optimization to a neu-
ral network controller with 50 weights, nine inputs, and two outputs.
The inputs consist of distance measurements for each octant around
the agent and the average heading of all neighboring agents. The
outputs of the neural network are speed commands for the left and right
motor of a differential drive robot. The system is trained to maximize
a linear combination of local velocity alignment, desired inter-robot
spacing, and the average velocity of the flock. The agents are trained
in simulation in the local and global information case. The authors
demonstrate that a neural network trained on 4 agents can generalize
up to groups of at least 16.

The effect of control input constraints for an optimal flocking con-
troller is studied in Celikkanat (2008). In this work, the authors seek to
design a local control law to simultaneously maximize velocity align-
ment and minimize deviation from an 𝛼-lattice. The authors propose
two global parameters that the agents may access: the average heading
of all agents, and an order parameter based on Shannon’s information
entropy metric, first proposed in Shannon (1948), which considers the
proportion of robots within a disk of diameter ℎ. The authors employ
a genetic algorithm to find the optimal control parameters, and the
algorithm’s performance is validated in simulation. Another genetic
algorithm is employed by Vásárhelyi et al. (2018) to design a shared
feedback controller employed by each individual agent, which is pa-
rameterized in terms of 11 optimization variables. The authors optimize
the agents in a constrained environment with a complicated objective
function that includes the minimization of collision risk with walls and
other agents, deviation from desired speed, and the number of dis-
connected agents, while simultaneously maximizing velocity alignment
and the largest cluster size. The control variables are optimized offline
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in a realistic simulation that includes stochastic disturbances for desired
flock speeds of 4, 6, and 8 m∕s. The controller is validated in outdoor
light experiments with 30 Pixiehawk drones flown over 10-minute
ntervals.

Up to this point, obstacle avoidance and safety have primarily been
chieved through the use of artificial potential fields and attractive–
epulsive forces, e.g., by minimizing (4). In addition, the design of
otential fields has been the subject of significant research for general
avigation problems; see Vadakkepat et al. (2000). However, Koren
nd Borenstein (1991) have demonstrated several major drawbacks
ssociated with potential field methods. These include introducing
teady oscillations to trajectories and exacerbating deadlock in crowded
nvironments.

A promising alternative to potential field methods, which explicitly
uarantees safety, has been proposed as a novel paradigm for the design
f long-duration robotic systems by Egerstedt et al. (2018). In this
pproach, the tasks of each agent are imposed as motion constraints
hile the agents seek energy-minimizing trajectories. We interpret this

onstraint-driven approach to control as understanding why agents take
articular control actions, rather than designing control algorithms that
imic a desirable behavior. To the best of our knowledge, reactive

onstraint-driven Reynolds flocking has only been explored by Ibuki
t al. (2020). Under this approach, each agent 𝑖 ∈  generates an
ptimal control trajectory by solving the following optimal control
roblem at each time 𝑡,

min
𝐮𝑖(𝑡)∈R6 ,𝛿𝑖∈R

‖𝐮𝑖(𝑡)‖2 + 𝛿2𝑖

ubject to:

lim
𝑡→∞

‖𝐬𝑖𝑗 (𝑡)‖ ≤ 𝛿𝑖, (6)

lim
𝑡→∞

‖𝜙𝑖𝑗 (𝑡)‖ → 0, (7)

‖𝐬𝑖𝑗 (𝑡)‖ > 2𝑅 ∀𝑡 ∈ R≥0, (8)
∀𝑗 ∈  ⧵ {𝑖},

here 𝛿 is a slack variable, 𝜙𝑖𝑗 is a metric for attitude error, and 𝑅 is
he radius of a safety circle that circumscribes the agents. Constraint (6)
orresponds to pose synchronization (flock centering), (7) to attitude
ynchronization (velocity alignment), and (8) to collision avoidance.
he authors generate control inputs for each agent by applying gradient
low coupled with a control barrier function to guarantee constraint
atisfaction. Thus, under the constraint-driven approach, the agents
atisfy the safety constraint and realize Reynolds flocking rules within a
hreshold 𝛿 while traveling along a trajectory that minimizes the energy
onsumption of each individual agent.

.2. Planning approaches

As an alternative to simply reacting to the current state of the
nvironment and system, agents may instead plan an optimal trajectory
ver a time horizon. This can generally improve the performance of
he agent, e.g., by avoiding local minima; however, planning generally
equires more computational power than a reactive approach. The
tructure of the information in a decentralized system also creates
hallenges with respect to the information available over a planning
orizon. It has been shown that there is separation between estima-
ion and control for particular decentralized information structures;
ee Dave and Malikopoulos (2020) and Nayyar et al. (2013). How-
ver, this is an open problem for the general case. Some proposed
olutions include sharing information between agents, e.g., see Morgan
t al. (2016), only planning with agents shared between neighbors,
.g., see Dave and Malikopoulos (2019), and applying model predictive
ontrol (MPC). For large swarms of inexpensive agents, widespread
nformation sharing is generally infeasible, and it is unlikely that any
ommon information exists. For this reason, MPC has been a preferred
4

pproach in swarm systems. With MPC, each agent plans a sequence i
f control actions over a time horizon based on its current information
bout the system. After some time, the agent will replan its trajectory
ased on whatever new information it has received.

A significant number of MPC flocking algorithms seek to minimize
eviation from Reynolds flocking rules, which may be implemented
hrough a linear combination of the following objectives:

𝑑
𝑖 (𝑡) =

∑

𝑗∈𝑁𝑖(𝑡)

(

‖𝐬𝑖𝑗 (𝑡)‖ − 𝑑
)2

, (9)

𝐽 𝑣
𝑖 (𝑡) = ‖�̄�𝑖(𝑡) − 𝐯𝑖(𝑡)‖2, (10)

𝐽 𝑢
𝑖 (𝑡) = ‖𝐮𝑖(𝑡)‖2, (11)

here 𝑑 is the desired separating distance in (5), and �̄�𝑖(𝑡) is the average
elocity of all agents 𝑗 ∈ 𝑖(𝑡). Eq. (9) corresponds to flock centering,
10) to velocity matching, and (11) is a control effort penalty term.

The analysis by Zhang et al. (2008) presents a mechanism for
locking agents to estimate their neighbors’ future trajectories. The
redictive device is applied by Zhan and Li (2011b) to achieve Reynolds
locking under a fully connected communication topology. This is
xtended to the decentralized information case in Zhan and Li (2011a)
nd validated experimentally with outdoor flight tests in Yuan et al.
2017).

An infinite horizon continuous-time MPC approach is employed
n Xu and Carrillo (2015, 2017) to minimize flocking error over an
nfinite horizon in a continuous-time system. The resulting Hamilton–
acobi–Bellman equation is nonlinear and does not have a known
xplicit solution. As a result, the authors apply an original reinforce-
ent learning technique to optimize the agent trajectories online and

alidate the performance in simulation. The reinforcement learning
rchitecture is expanded on in Jafari et al. (2020), where the authors
nclude model mismatch and significant environmental disturbances
cting upon the agents. They also present simulation and experimental
esults for a flock of quadrotors moving through R3.

To guarantee feasibility of the planned trajectories, it is necessary
o explicitly impose constraints that bound the maximum control and
elocity of each individual agent within their physical limits, e.g., for
ach agent 𝑖 ∈ ,

‖𝐯𝑖(𝑡)‖ ≤ 𝑣max, (12)

𝐮𝑖(𝑡)‖ ≤ 𝑢max, (13)

or all 𝑡 ∈ R≥0. An analysis of constrained 𝛼-lattice flocking under MPC,
hich incorporates (12) and (13), is explored in Zhang et al. (2015),
nd is extended to velocity alignment in Zhang et al. (2016).

As we begin to implement flocking in physical swarms, explicit
uarantees of safety are imperative for any proposed control algorithm.
he most straightforward approach to guarantee safety is to circum-
cribe each agent 𝑖 ∈  entirely within a closed disk of radius 𝑅 ∈ R>0.
he safety constraint for 𝑖 may then be formulated as

𝐬𝑖𝑗 (𝑡)‖ ≥ 2𝑅, ∀𝑗 ∈  ⧵ {𝑖}. (14)

In general, applying MPC to each agent does not guarantee that
oupled constraints, such as (14), are satisfied. At any planning instant,
gent 𝑖 only has the trajectories generated by 𝑗 ∈ 𝑖(𝑡) at a previ-
us time step. Thus, agent 𝑖 is unable to determine whether (14) is
atisfied for the unknown current trajectory of 𝑗. For this reason, in
he decentralized case, agents must either cooperatively plan trajecto-
ies or impose a compatibility constraint. To guarantee that coupled
onstraints between agents are satisfied, significant research effort has
een dedicated to decentralized MPC (DMPC). A common approach to
MPC is to design a communication protocol for agents to iteratively
enerate trajectories while driving their cost to a local minimum. An
terative approach, proposed by Zhan and Li (2013), cooperatively
enerates trajectories while limiting the number of messages exchanged
etween agents. The agents apply an impulse acceleration at discrete

ntervals and seek to minimize the flock centering error over a finite
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horizon. The agents sequentially generate trajectories up to some index
𝑙 ≥ 𝑁 , where at each iteration, agent 𝑖 =

(

𝑘 mod 𝑁
)

+ 1, 𝑖 ∈ , 𝑘 =
0, 1,… , 𝑙 − 1 generates its trajectory. This guarantees that the coupled
safety constraints are satisfied and that the cost of agent 𝑖’s trajectory
is nonincreasing with each planning iteration.

In contrast, Beaver, Kroninger et al. (2020) takes a cooperative
approach to DMPC, where Reynolds flocking rules are taken as an
endpoint cost in a continuous optimal control problem while including
(12)–(14) as constraints. Each agent 𝑖 ∈  first generates a trajectory
while relaxing the safety constraint (14). Agent 𝑖 then exchanges tra-
jectory information with every other 𝑗 ∈ 𝑖(𝑡). Finally, any agents
violating (14) cooperatively generate the centralized safety-constrained
trajectory between fixed start and end points, which guarantees safety,
state, and control constraint satisfaction.

4. Reference state cluster flocking

A common application where cluster flocking emerges is tracking
a reference trajectory with the center of mass of a swarm. In this
application, the reference trajectory (also called a virtual leader) is
generally presented as a time-varying reference state, 𝐱𝑟(𝑡), which may
be known to all agents. In general, this is by including an additional
cost to (4) with the form

𝐽 𝑟
𝑖 (𝑡) =

|

|

|

|

|

|

|

|

|

|

1
𝑁

∑

𝑖∈
𝐱𝑖(𝑡) − 𝐱𝑟(𝑡)

|

|

|

|

|

|

|

|

|

|

2

, (15)

which may be weighted with a positive scalar. The system-level ob-
jective of the swarm is to track the reference state, 𝐱𝑟(𝑡), within some
threshold 𝜖 ∈ R≥0, i.e.,
|

|

|

|

|

|

|

|

|

|

1
𝑁

∑

𝑖∈

(

𝐱𝑖(𝑡)
)

− 𝐱𝑟(𝑡)
|

|

|

|

|

|

|

|

|

|

≤ 𝜖. (16)

As with Reynolds flocking, the information available to each agent 𝑖 ∈
 is restricted to its neighborhood, 𝑖(𝑡). This is, in general, insufficient
for any agent to evaluate (16). Thus, the center of mass tracking
problem has generally been formulated as an optimal controller design
problem, or alternatively each agent might only consider agents within
its own neighborhood when evaluating (15). A schematic of reference
state cluster flocking agents is presented in Fig. 3, and we present
reactive and planning approaches to solve this problem in the following
sections.

4.1. Reactive approaches

An early approach proposed by Hayes and Dormiani-Tabatabaei
(2002) seeks to track a reference point with a flock of agents that follow
Reynolds flocking rules with an additional attractive force pointing
toward the reference state. The agents are placed in a rectangular
domain, where each agent has a uniform probability of failing over a
given period, i.e., the agent would stop moving but still be detectable.
The authors select the control parameters that minimize a combination
of travel time, cumulative distance traveled, and average inter-agent
spacing, using a standard reinforcement technique, in simulation. The
resulting controller is validated in physical experiments with 10 robots.
This system-level objective has become standard in many flocking
applications; see Bayindir (2016) for examples.

Another approach to reference tracking, proposed by La et al.
(2009), involves selecting optimal controller parameters such that the
reference trajectory 𝐱𝑟(𝑡) is tracked in minimum time while maintaining
an 𝛼-lattice configuration. The authors construct a cost function that
penalizes the time taken for the flock to catch the reference trajectory
scaled by their initial position. The resulting cost function is non-convex
and non-differentiable, thus the authors employ a genetic algorithm to
minimize it. To guarantee that (16) is globally satisfied, all controllers
that do not yield an 𝛼-lattice within some error bound are discarded.
5

Fig. 3. Agent 𝑖, in green, selects the control input that drives the center of the flock
toward the reference state, 𝐱𝑟.

The discrete-time version of this system is optimized by Khodayari et al.
(2016) using a gravitational search algorithm.

La et al. (2015) proposes a multi-level flocking and learning system
to guarantee flocking behavior in the presence of obstacles and preda-
tors. At the lower level, each agent seeks to reach the static reference
position 𝐩𝑟 with the center of their local neighborhoods. At the upper
level, each agent must select, in a decentralized way, the optimal 𝐩𝑟 ∈ 
from a finite set of positions,  . Each agent is rewarded proportionately
to the size of its neighborhood at each time step, up to a maximum
value of 6. The authors implement a cooperative 𝑄-learning approach,
where each agent 𝑖 ∈  is rewarded for selecting the appropriate 𝐩𝑟 by

𝑄𝑘+1
𝑖 = 𝑤𝑄𝑘

𝑖 (𝑠𝑖, 𝑎𝑖) + (1 −𝑤)
∑

𝑗∈𝑖(𝑡)
𝑄𝑘

𝑗 (𝑠𝑗 , 𝑎𝑗 ),

where 𝑤 ∈ [0, 1] weighs the influence of 𝑖’s neighbors, and 𝑠𝑖, 𝑎𝑖 are
the state and action taken by agent 𝑖, respectively. The convergence
properties of this cooperative learning scheme are proved and the
performance is demonstrated in simulations and experiments.

To track the reference trajectory under realistic conditions, Virágh
et al. (2016) seeks optimal values for a potential-field based controller
in R2 and R3 under the effects of sensor noise, communication delay,
limited sensor update rate, and constraints on the agent’s maximum
velocity and acceleration. The work is framed in terms of aerial traffic;
thus, multiple competing flocks are placed into shared airspace such
that their reference trajectories result in conflict between the flocks.
The authors presented two controllers, one that maintains constant
speed and one with a fixed heading. In both cases the authors propose a
potential field composed of sigmoid functions, which are parameterized
by the optimization variables. They construct a compound objective
function that is proportional to effective velocity and inversely pro-
portional to collision risk, and they describe 20 scenarios used to find
20 optimal parameter sets for each controller. The scenarios consist of
every combination of five different initial configurations for both the
constant-speed and constant-heading controllers in R2 and R3.

As an alternative to deriving an optimal feedback gain, Atrianfar
and Haeri (2013) seeks to minimize the number of informed agents
while guaranteeing that the entire flock tracks a known reference
trajectory. First, the authors impose that, for a given sensing distance ℎ,
the potential field must approach infinity as 𝐬𝑖𝑗 approaches ℎ. This prop-
erty guarantees that any connected group of agents remains connected
for all time. Thus, any initially connected group of agents containing an
informed agent is guaranteed to converge to the reference trajectory.
The latter implies that at most one informed agent is required for each
group of connected agents. In addition, as a function of their initial
conditions, some uninformed groups may merge with an informed clus-
ter. Following this reasoning, the authors propose that the minimum
number of informed agents is not more than the number of initial agent
clusters.

Departing from the aforementioned approaches, a centralized ap-
proach to tracking a virtual velocity reference is rigorously studied
in Piccoli et al. (2016) for double-integrator agents in R𝑘. The authors
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present a consensus-driven control law for each agent 𝑖 ∈ , with the
form of Cucker–Smale flocking,

𝐮𝑖(𝑡) = 𝛼𝑖
(

𝐯𝑟(𝑡) − 𝐯𝑖(𝑡)
)

+ (1 − 𝛼𝑖)

⋅
1

𝑁 − 1
∑

𝑗∈𝑖(𝑡)⧵{𝑖}
‖𝐬𝑖𝑗 (𝑡)‖�̇�𝑖𝑗 (𝑡), (17)

where 𝛼𝑖 ∈ [0, 1] weighs the trade-off between consensus and velocity
tracking. The authors seek values of 𝛼𝑖 such that ∑

𝑖∈ 𝛼𝑖 ≤ 𝑀,𝑀 ∈
R>0, while minimizing the error function

𝑒(𝑡) = 1
𝑁

𝑁
∑

𝑖=1
‖𝐯𝑖(𝑡) − 𝐯𝑟(𝑡)‖2, (18)

ver a time interval [𝑡0, 𝑡𝑓 ] ⊂ R≥0 The optimal values of 𝛼𝑖 are derived
or three cases: (1) instantaneously minimizing 𝑑𝑒

𝑑𝑡 , (2) minimizing the
terminal cost 𝑒(𝑡𝑓 ), and (3) minimizing the integral cost, ∫ 𝑡𝑓

𝑡0 𝑒(𝑡) 𝑑𝑡. The
resulting optimal control analysis implies that, in general, the optimal
strategy is to apply the maximum feedback to a few agents before
applying moderate feedback to all agents. This aims to drive agents
with high variance toward the reference velocity, enhancing the rate
of consensus. The authors also note the presence of a dwell time in
the terminal cost case, i.e., the optimal strategy includes applying no
control input over a nonzero interval of time starting at 𝑡0.

4.2. Planning approaches

Optimal planning has several advantages over reactive methods,
although it suffers from a handful of challenges related to information
structure as discussed in Section 3. As with the reactive methods, the
desired reference trajectory is a time-varying function denoted by 𝐱𝑟(𝑡).
To guarantee that the reference trajectory can be tracked, the agents
must be capable of evaluating 𝐱𝑟(𝑡) over their entire planning horizon.
In addition, each agent 𝑖 ∈  generally must plan under the assumption
that their neighborhood, 𝑖(𝑡), is invariant. Relaxing this assumption
may require levels of information sharing that are infeasible for large
swarm systems.

Lee and Myung (2013) apply collective particle swarm optimization
to generate the optimal sequence of control actions for a general cost
function. In their approach, each agent 𝑖 ∈  performs a particle swarm
optimization with 𝑀 ∈ N particles that correspond to possible control
inputs of agent 𝑖. The agents then transmit their 𝑔 < 𝑀 best performing
particles to all 𝑗 ∈ 𝑖(𝑡) and iteratively solve their local particle swarm
optimization until the planned trajectories converge system-wide.

Lyu et al. (2019) propose to track a known reference trajectory by
generating the following virtual state for each agent 𝑖 ∈ ,

𝐳𝑖(𝑡) =
1

|𝑖(𝑡)|

∑

𝑗∈𝑖

𝐱𝑖(𝑡), (19)

i.e., 𝐳𝑖(𝑡) is the average state of agent 𝑖’s neighborhood. Agent 𝑖 then
imposes the constraint

𝐳𝑗 (𝑡) = 𝐱𝑟(𝑡), ∀𝑗 ∈ 𝑖(𝑡), (20)

and generates its optimal sequence of control actions using the alternat-
ing direction method of multipliers (ADMM) technique; see Summers
and Lygeros (2012) for further details on ADMM. Since 𝑖 ∈ 𝑗 (𝑡) im-
lies 𝑗 ∈ 𝑖(𝑡), the components of (20) are shared between neighboring
gents and thus are expected to converge.

Reference tracking under uncertainty is explored by Quintero et al.
2013) to track the position of a mobile ground vehicle with a known
rajectory, 𝐱𝑟(𝑡). Under this approach, the flocking UAVs travel at a
onstant speed and altitude with stochasticity in their dynamics. The
bjective of each agent is to remain within a predefined annulus
entered on the ground vehicle. The cost for agent 𝑖 ∈  is defined
s the signed distance of agent 𝑖 from the edge of the annulus plus
heading alignment term. The authors determine the optimal control

ctions of each agent through dynamic programming. Hung and Givigi
2017) extend this approach to include external disturbances, and the
ptimal policy is derived in real time under a reinforcement learning
ramework.
6

. Other cluster flocking

In addition to Reynolds flocking and centroid tracking, several other
pplications have been shown to induce cluster flocking behavior. Al-
hough not widely addressed in the literature, these results demonstrate
he breadth of applications that would benefit from further analysis
f cluster flocking. One motivating example is presented in Vatankhah
t al. (2009), where each agent uses local measurements to determine
he control input that maximizes the velocity of the swarm center via
article swarm optimization.

As another example, anisotropy in the angle between neighboring
lockmates is proposed as a metric for measuring the quality of a
lock of birds by Ballerini et al. (2008). Makiguchi and Inoue (2010)
onstruct a measure for anisotropy using a projection matrix
(𝑛)
𝑝𝑞 = 1

𝑁
∑

𝑖∈
(�̂�𝑖𝑘) ⋅ 𝐩 (�̂�𝑖𝑘) ⋅ 𝐪, (21)

here 𝑘 indexes the 𝑛’th nearest neighbor of 𝑖, and 𝐩,𝐪 ∈ {�̂�, �̂�, �̂�}
re vector components of an orthonormal basis for R3. Eq. (21) is
sed to calculate normalized anisotropy, denoted by 𝛾 ∈ [0, 1], by
omparing the eigenvectors of 𝑀 (𝑛)

𝑝𝑞 to the average agent velocity. The
uthor’s objective is to select the optimal weights for each of Reynolds
locking rules (cohesion, alignment, and separation) to maximize flock
nisotropy for the case that 𝑛 = 1 in (21). The authors discard any
arameter sets that result in collisions or flock fragmentation and
chieve a final anisotropy of 𝛾 ≈ 0.8, which is significantly higher than
he critical value for flocking to occur, 𝛾 = 1

3 .
Veitch et al. (2019) employs ergodic trajectories to achieve flocking.

trajectory is ergodic if the average position of the agents over time
s equal to some spatially distributed probability mass (or density)
unction. The authors decompose a desired probability density function
nto a finite Fourier series to provide a metric for the ergodicity of a
rajectory. The proposed control policy for each robot maximizes the
rgodicity metric along an agent’s trajectory. In addition, each agent
∈  periodically shares its Fourier coefficients with all 𝑗 ∈ 𝑖(𝑡).
his allows the agents to predict where their neighbors have previously
xplored while also guaranteeing collision avoidance by the nature of
rgodicity. Finally, to achieve flocking, the authors generate a uniform
robability distribution in a closed disk centered on a reference state in
2. By construction, this guarantees that all agents will enter the closed
isk and remain within it in finite time. Finally, by smoothly moving
he disk around R2, the average velocity and centroid of the flock can
e precisely controlled.

Optimal shepherding, or influencing, of a flock is explored in Genter
2017). In this work the author seeks to inject and optimally control
nfluencing agents within an existing flock of agents that obey Reynolds
locking rules. The system-level objective is to, in an optimal way, steer
eal flocks of birds to avoid man-made obstacles, particularly airports.
his is achieved by deriving an optimal plan, i.e., sequence of control

nputs, such that the entire flock becomes aligned to a target angle
n a minimum number of time steps; see Genter et al. (2013). The
uthor also considers different methods of introducing the influencing
gents to an existing flock and the performance implications of these
pproaches; see Genter et al. (2015) and Genter and Stone (2016) for
urther details. A related approach to influences a flock’s direction is
iscussed by Ben-Shahar et al. (2014), where the authors propose a
ethod to optimally cycle between different leading agents to steer the

lock in a desired direction. The authors provide additional guarantees
hat no collisions will occur and that all agents will remain connected
o the flock.

Inspired by Reynolds flocking rules and the constraint-driven
aradigm for control, Beaver and Malikopoulos (2020) proposes a set
f flocking rules over a planned horizon, which achieve cluster flocking
y: (1) minimizing energy consumption, (2) staying near the neighbor-
ood center, and (3) avoiding collisions. Condition 2 (aggregation) is
mposed with the constraint
|

|

|

𝐩𝑖(𝑡) −
1

| (𝑡)| − 1

∑

𝐩𝑗 (𝑡)
|

|

|

|

|

|

≤ 𝐷, (22)

𝑖 𝑗∈𝑖(𝑡)⧵{𝑖}
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Fig. 4. Agent 𝑖, in green, is constrained to remain within a disk positioned at its
neighborhood center.

Fig. 5. The lead agent induces upwash and downwash in its wake due to its trailing
wing vortices, and the following agents exploit the upwash to induce lift and reduce
energy consumption.

for some distance 𝐷 much greater than the diameter of any agent, and
for |𝑖(𝑡)| > 1. This approach is visualized in Fig. 4.

The proposed constraint confines each agent within a diameter 𝐷
disk positioned at their neighborhood center. The intuition is that the
agents may move freely within the disk; however, their velocity cannot
vary dramatically from the average velocity in their neighborhood for
long periods of time. These rules yield velocity consensus asymptoti-
cally when 𝑖(𝑡) is forward-invariant. In a more recent effort, Beaver,
Dorothy et al. (2021) proposes a method for a constraint-driven agent
to generate an optimal control policy in real-time. This is an important
next step in real-time optimal control of physical flocks.

6. Line flocking

In this section, we review literature related to line flocking, which is
a naturally occurring phenomenon commonly found in large birds (such
as geese) that travel in a vee, jay, and echelon formations over long
distances. It has long been understood that saving energy is a significant
benefit of flying in such formations; see Cutts and Speakman (1994)
and Mirzaeinia et al. (2020). In aerial systems, the main energy savings
comes from upwash, i.e., trailing regions of upward momentum that
can be exploited by birds to induce lift and reduce energy consumption.
Upwash is illustrated in Fig. 5. Similar benefits have been found in
terrestrial and underwater vehicles, where a leader may create a low-
pressure wake that reduces the overall drag force imposed on the
following vehicles.
7

In this context, the most straightforward method to achieve line
flocking may be to generate an optimal set of formation points based
on the drag, wake, and upwash characteristics of each agent. This
effectively transforms the line flocking problem into a formation re-
configuration problem, where each agent must assign itself to a unique
goal and reach it within some fixed time, as is the case in Nathan
and Barbosa (2008). However, a formation reconfiguration approach
generally requires the formation to be computed offline and does not
necessarily consider differences between individual agents (e.g., age,
weight, size, and efficiency) or environmental effects. Although forma-
tion reconfiguration algorithms have rich supporting literature, they are
beyond the scope of this paper. For recent reviews of formation control
see Oh et al. (2015, 2017).

Another approach to line flocking is modeling the aerodynamic
and hydrodynamic interactions between agents so that they may dy-
namically position themselves to save energy. This is the approach
taken by Bedruz, Maningo et al. (2019), where the authors determine
the optimal following distance behind each agent using computational
fluid dynamics simulations of wheeled mobile robots. This is extended
in Bedruz, Bandala et al. (2019), where the authors propose a fuzzy
logic controller to maximize the effect of drafting. The authors vali-
date these controllers in simulations and experiments using wheeled
differential drive robots.

An early approach to capture line flocking behavior in a robotic
system with model predictive control is explored in Yang et al. (2016).
In this work, the authors seek to maximize velocity matching and
upwash benefits for each agent 𝑖 ∈  while minimizing the field of view
occluded by leading agents. Using simulations, the authors demon-
strate emergent line flocking behavior, and show that a vee formation
consistently emerges independent of the flock’s initial conditions.

As a next step toward optimal line flocking, an analysis of the effect
of upwash on energy consumption in fixed-wing UAVs is presented
by Mirzaeinia et al. (2019). The authors show that the front and tail
agents in a vee formation have the highest rate of energy consumption
in the flock. This implies that the lead or tail agents become the limiting
factor in the total distance traveled by the flock. The authors propose
a load balancing algorithm based on a root-selection protocol, where
the highest-energy agents replace the lead and tail agents periodically.
The authors then demonstrate, in simulation, that periodic replacement
of the lead and tail agents significantly increases the total distance
traveled by the flock.

A final facet of line flocking is the effect of environmental dis-
turbances, such as turbulence and currents. Energy-optimal flocking
in the presence of strong background flows is investigated by Song
et al. (2017). The authors calculate an energy-optimal reference tra-
jectory, 𝐱𝑟(𝑡), that the centroid of the flock must track. To generate this
trajectory, the authors approximate the flock as a point mass at the
centroid and seek to minimize its energy consumption in the presence
of a background flow, denoted 𝐔(𝐩, 𝑡), where 𝐩 ∈ R2 is a position. The
normalized rate of power consumption of an agent is given by

𝑃 (𝐩𝑟(𝑡), 𝑡) =
‖𝐯𝑟(𝑡) − 𝐔(𝐩𝑟(𝑡), 𝑡)‖3

𝑣3max
, (23)

and the authors proposed the optimal planning problem

min
𝑡0 ,𝑡𝑓 ,𝐩𝑟(𝑡)∫

𝑡𝑓

𝑡0
𝑃 (𝐩𝑟(𝑡), 𝑡)𝑑𝑡

subject to: 𝐩𝑟(𝑡0) = 𝐩0,𝐩𝑟(𝑡𝑓 ) = 𝐩𝑓 ,
‖𝐯𝑟(𝑡)‖ ≤ 𝑣max,

𝑡min ≤ 𝑡0 < 𝑡𝑓 ≤ 𝑡max.

The authors assume that the background flow dominates the energy
consumption of the agents, and therefore a tight cluster of agents
closely approximates the energy-optimal trajectory traced out by the
center of the flock.
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7. Pareto front selection

An essential consideration in multi-objective optimal control is in
the trade-off between each of the individual objectives. This can be
observed, for example, in the trade-off between neighborhood centering
and velocity alignment in Reynolds flocking. This trade-off can be
explored by finding Pareto-efficient outcomes. An outcome is Pareto-
efficient if no individual term in the cost function can be increased
without decreasing the value of any other term; see Malikopoulos et al.
(2015). The set of all Pareto-efficient outcomes is called the Pareto
frontier. After establishing a Pareto frontier, the most desirable outcome
can be selected as the Pareto-optimal control policy; see Malikopoulos
(2016). Pareto frontier generation is explicitly discussed in terms of
control by Kesireddy et al. (2019), who notes that almost all optimal
flocking algorithms apply arbitrary weights to the components of multi-
objective flocking problems. The authors present three cooperative
evolutionary algorithms, each of which generates a family of control
policies that constitutes a Pareto frontier with respect to Reynolds flock-
ing rules. This approach could be used to augment existing evolutionary
algorithm approaches, e.g., Vásárhelyi et al. (2018) and Virágh et al.
(2016), to ensure the resulting control strategies are approximately
Pareto optimal.

The Pareto frontier is exhaustively searched by Hauert et al. (2011)
to determine the optimal trade-off of design parameters on flocking
performance for a group of UAVs. The authors note that, due to
the hardware limitations, designers must weigh the cost of enhanced
communication range versus the maximum turning rate for each agent.
The authors explore this trade-off by exhaustively exploring the design
space to calculate the resulting heading angle (velocity alignment) and
relative drift (flock centering) errors. Using extensive simulation data,
the authors construct the Pareto frontier of optimal design choices.
Finally, to validate their analysis, the authors conduct a set of four
outdoor experiments using 10 UAVs.

Recent work by Zheng et al. (2020) examines the trade-off between
flocking performance and privacy. The authors describe a system that
follows Reynolds flocking rules guided by a leader robot. The system
is observed by a discriminator that seeks to determine which agent is
the leader. The authors propose a genetic algorithm that co-optimizes
the flocking controller parameters and the discrimination function.
The authors present a frontier of parameters that influence flocking
performance and leader detectability, and select the Pareto optimal
values that yield the best performance for several different leader
trajectories.

8. Considerations for physical swarms

As the number of agents in a flock increases, the amount of inter-
agent communication required may become a significant energy and
performance bottleneck. This has motivated several approaches to min-
imize the cyberphysical costs incurred by each agent by either reducing
the amount of communication required, explicitly including commu-
nication cost into an agent’s objective function, or purposely breaking
communication links with a subset of neighboring agents. In the follow-
ing subsections, we explore these approaches and discuss their potential
value to optimal flocking.

8.1. Reducing cyberphysical costs

The cost of communication is explicitly included by Li et al. (2013)
as part of a holistic cyberphysical approach to flocking. To account
for environmental and inter-agent communication disturbances, the
authors calculate the probability of communication errors as a func-
tion of the physical antenna properties. The authors then select a
maximum failure risk threshold, which determines the maximum sep-
arating distance allowed between neighboring agents. Based on the
8

collision avoidance constraint and maximum communication distance, t
each agent 𝑖 ∈  determines a minimum and maximum distance to ev-
ery neighbor 𝑗 ∈ 𝑖(𝑡). Agent 𝑖 selects the optimal separating distance,

ithin these bounds, to minimize a combination of communication
rror and a crowding penalty. In Li et al. (2017), the authors propose an
daptive controller for the optimal separating distance, and they extend
he analysis to include both near and far-field communication.

A control method for preserving agent connectivity while minimiz-
ng the number of neighbors is proposed by Zavlanos et al. (2009). In
his formulation, agents receive a number of communication hops from
heir neighbors, which they use to estimate the communication graph
iameter. This information is used by each agent to break the maximum
umber of communication links while guaranteeing that the communi-
ation topology remains connected. Graph topology is explicitly linked
ith antenna power in Dolev et al. (2010), where the agents seek to
inimize communication power while guaranteeing a minimum global

raph diameter. This work is expanded upon in Dolev et al. (2013),
here agents apply a gossip algorithm to achieve global information
bout the system trajectory. Communication hop approaches have al-
eady been successfully used in more centralized and structured swarm
roblems, particularly pattern formation; see Rubenstein et al. (2012)
nd Wang et al. (2020). Although these methods are not directly appli-
able to swarm systems, a similar approach may be beneficial to ensure
hat all agents satisfy Definition 2 while minimizing communication
osts between agents. Finally, Chen et al. (2012) seeks to determine
he minimum possible communication distance that guarantees agents
nder the Vicsek flocking model; see Vicsek et al. (1995), conver-
ence to velocity consensus. The authors show that if the position and
rientation of the agents are randomly and uniformly distributed in
0, 1]2 × [−𝜋, 𝜋], then the minimum possible communication distance is
√

log𝑁
𝜋𝑁 . This provides a lower bound on the minimum communication

energy cost for the flock under the distance-based neighborhood metric.
Camperi et al. (2012) studies the stability of a flock when noise and

external perturbations are introduced. The authors seek to optimize
the resistance to fragmentation of a large swarm of Vicsek agents in
R3 by changing the neighborhood topology. The authors note that,
as Ballerini et al. (2008) found, a 𝑘−nearest or Voronoi neighborhood
topology leads to more stable flocking while reducing the size of
each agent’s neighborhood. This has significant implications in how
the selection of a neighborhood topology affects the energy cost of
communication.

Zhou and Li (2017) proposes to minimize communication and com-
putational costs of MPC approaches by screening out neighbors that
do not negatively impact the objective function of agent 𝑖 ∈ . The
authors apply MPC to a discrete-time flocking system with the 𝛼-lattice
bjective (5) and a control penalty term (11). In this case, given a
esired distance 𝑑 > 0, agent 𝑖 constructs the screened neighbor sets
1
𝑖 (𝑡) = {𝑗 ∈ 𝑖(𝑡) ⧵ {𝑖} ∶ ‖𝐬𝑖𝑗 (𝑡)‖ > 𝑑,

𝐬𝑖𝑗 (𝑡) ⋅ �̇�𝑖𝑗 (𝑡) ≥ 0}, (24)
2
𝑖 (𝑡) = {𝑗 ∈ 𝑖(𝑡) ⧵ {𝑖} ∶ ‖𝐬𝑖𝑗 (𝑡)‖ < 𝑑,

𝐬𝑖𝑗 (𝑡) ⋅ �̇�𝑖𝑗 (𝑡) ≤ 0}, (25)

here 1
𝑖 (𝑡) consists of neighbors further than 𝑑 and moving away,

nd 2
𝑖 (𝑡) consists of neighbors closer than 𝑑 and moving closer. Thus,

gent 𝑖 must only consider 𝑗 ∈ 1
𝑖 (𝑡)

⋃

2
𝑖 (𝑡) when communicating and

lanning.
Another approach to reduce communication and computational

osts is to perform sparse planning updates using event-triggered con-
rol. Sun et al. (2019) proposes an update rule for flocking systems
sing the potential field approach with time delays. A continuously
ifferentiable and bounded function 𝜏(𝑡) acts as a time delay on all
osition measurements. The authors let the portion of the control input
hat achieves velocity consensus for agent 𝑖 ∈  be constant over
n interval [𝑡1, 𝑡2). Then, the authors propose an error function that

he agent uses to update the potential field (i.e, collision avoidance,
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component) of its controller. In particular, the event requires global
knowledge of the average agent velocity, communication graph Lapla-
cian, and a Lipschitz bound on the agent dynamics. The authors prove
that, under this event-triggered scheme, the agents converge to steady-
state flocking behavior and the system is free of Zeno, i.e., chattering,
behavior. This is a promising result for reducing the computational
burden on agents, and the development of a decentralized triggering
function is a promising area of research.

8.2. Flocking as a strategy

As we begin to deploy robotic swarm systems in situ, it is crucial to
consider when cluster flocking is an optimal strategy for a swarm. Clus-
ter flocking as a system-level strategy has recently been explored using
a reinforcement learning approach by Hahn et al. (2019, 2020). In both
cases a swarm of selfish agents is trained using the parameter sharing
learning technique. Under the parameter sharing approach, a single
neural network is trained from which all agents derive their actions.
Furthermore, during each learning episode a single agent is selected to
update the shared policy using only locally available information. After
each learning episode, the shared policy is updated across all agents and
a new learning agent is selected.

Hahn et al. (2019) proposes an approach similar to Morihiro et al.
(2006a), which yields an emergent swarming behavior for predator
avoidance. The authors fix the control policy of the predator such that
it always moves toward the nearest agent. In the case that multiple
agents are equally close, the predator selects an agent at random. This
switching behavior presents an opportunity for the agents to confuse
the predator by forcing it to frequently change which agent it is moving
toward. The authors also include a minimum dwell time before the
predator is able to switch the agent that it is following. The learning
agent is rewarded for every time step that it avoids the predator, and
is heavily penalized if it comes within a fixed distance of the predator.
Under this setup, and without including any explicit flocking rules, a
cluster flocking behavior emerges where the agents dynamically form
and break apart clusters in an attempt to change the agent that the
predator is following.

Parameter sharing is also employed by Hahn et al. (2020) to solve
the centroid tracking problem using a swarm of fixed-speed agents.
The system-level objective is to track a moving food source, while
each agent is rewarded proportionally to its distance from the target.
In addition, the speed of an agent is reduced by half whenever it
collides with a neighboring agent. Finally, the authors compare the
performance of their learned algorithm to Reynolds flocking, a heuristic
strategy, and a control policy of taking random actions. The authors
show through simulation, and without incorporating any flocking rules,
their learning agents outperform the other methods when tracking
the reference trajectory. Additionally, a global alignment behavior
emerges, i.e., the agents aligned themselves with their neighbors to
avoid collisions and approach the target when it is outside of their
maximum sensing distance.

Line flocking as a strategy has been explored as a trade-off between
the energy savings of flocking and the energy cost of rerouting to join a
flock. Significant research effort has gone toward the rendezvous prob-
lem, that is, given a set of agents with distinct origins and destinations,
when is it optimal for agents to expend energy in order to form an
energy-saving flock. This has primarily been explored through the lens
of air traffic management, where commercial aircraft may rendezvous
to form flocks between origin and destination airports given a takeoff
and landing window. A centralized approach to the rendezvous prob-
lem is presented in Ribichini and Frazzoli (2003), where the authors
prove several properties of energy-optimal rendezvous for two agents.
The two-agent case is further explored in Rao and Kabamba (2006) for
minimum-time graph traversal. The effect of wind and environmental
factors is determined in Marks et al. (2018), where the authors use his-
9

torical traffic and environmental data to show a 5%–7% increase in fuel
economy resulting from coordination. A flocking protocol for selfish
agents is presented in Azoulay and Reches (2019), and the air traffic
routing problem is extensively explored in Kent (2015) and Verhagen
(2015). Line flocking as a strategy is also explored in the context of
passenger vehicle eco-routing by Fredette (2017). In this approach, the
author adapts Reynolds flocking rules to a two-lane highway with the
objective of minimizing vehicle fuel consumption while maintaining a
desired velocity subject to the physical parameters that describe each
vehicle. This results in each vehicle approaching its desired speed while
dynamically forming and exiting flocks under a centralized control
scheme.

9. Outlook and research directions

In the past twenty years, a rich literature on the control of flocking
systems has been produced. Control algorithms that implement variants
of Reynolds rules have proven rigorous guarantees on their steady-state
behavior. Recently, control algorithms that optimally implement these
rules have been demonstrated in simulation and large-scale outdoor
flight tests. Therefore, optimal Reynolds flocking will seemingly be
driven by advances in decentralized control, robust control, and long-
duration autonomy in the future. However, some application areas,
such as mobile sensor networks, have criticized Reynolds flocking
as a novelty that does not necessarily have advantages in terms of
performance or ease of implementation; see Albert and Imsland (2018)
for a motivating example.

For this reason we have proposed a new paradigm to understand
the nature of flocking. As we demonstrated, there is a distinction in the
natural world between cluster and line flocking. We wish to strengthen
this distinction, and to that end, we propose a flocking taxonomy that
partitions the literature into line and cluster flocking as we present in
Fig. 1. We have also presented several types of cluster flocking, defined
by their system-level objective, which have all been conflated using
the nebulous term ‘‘flocking’’ in the past. In fact, due to the nature
of engineering systems, new types of cluster flocking have already
emerged that have no natural counterpart. For this reason, we believe
that precisely classifying cluster flocking problems based on the system-
level objective will be essential to advancing the research frontier of
flocking as a desirable emergent behavior. Furthermore, classifying the
line flocking literature around the exploited energy-saving mechanism
is a practical step to enhance collaboration in these domains and to
continue driving line flocking research forward.

We believe that there will be at least four significant challenges in
the near future on systems with optimal flocking.

First, the relationship between information and performance in
decentralized systems will be an area that would require to overcome
significant challenges. As robotic flocks emerge they will generate
information and make decisions at a rate that is infeasible for a central
controller or database to manage. Thus, the ability for each agent to
identify what local information is of high value will become increas-
ingly important, particularly for applications in isolated or spatially
distributed settings.

Second, while great strides have been made in terms of generating
optimal trajectories, there is a clear gap for holistic approaches that in-
cludes the communication, sensing, and computational costs necessary
for fully autonomous flocking.

Third, there is no rigorous mathematical approach to predict the
emergence and stability of flocking behavior in decentralized system.
For this challenge we propose constraint-driven optimal control as a
natural choice to provide guarantees on emergent flocking behavior.
Under this design paradigm, it is possible to achieve rigorous guaran-
tees on the safety and tasks imposed on agents as they travel along
energy-minimizing trajectories. There has already been some initial
exploration into Reynolds flocking, e.g.,see Ibuki et al. (2020), and sys-
tems with limited communication range under disk flocking; see Beaver

and Malikopoulos (2020). These approaches have also shown a capacity
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for generating emergence in relatively simple multi-agent systems,
e.g., see Notomista and Egerstedt (2019), and the imposed constraints
provide guarantees on agent behavior to neighbors and the system
designer. Moving forward, we expect that by applying similar solution
methods to those used in the past, e.g., see Jadbabaie et al. (2003) and
Tanner et al. (2007), we may provide guarantees on the behavior of
many types of cluster flocking agents.

Finally, heterogeneity in cluster and line flocking will be essential
as optimal flocking algorithms are realized on physical systems, where
it is effectively impossible for any two robots to have identical phys-
ical properties and performance capabilities. Heterogeneity of agent
properties is particularly important in the biological line flocking lit-
erature, where the variable size, wingspan, metabolism, and age of
flock members significantly affects the system’s overall energy savings;
see Mirzaeinia et al. (2020). Prorok et al. (2017) also shows that for
general swarm systems, an increase in agent diversity expands the
feasible solution space for each agent’s control action. This may be ben-
eficial for designing robust systems, especially for applications related
to emerging transportation systems; however, it may also increase the
difficulty of finding an optimal solution. Future flocking research ought
to consider diversity in agent properties and behaviors to exploit the
full benefits of swarm intelligence.
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