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a b s t r a c t

In this paper, we present an approach for solving the problem of moving N homogeneous agents into
M ≥ N goal locations along energy-minimizing trajectories. We propose a decentralized framework
that only requires knowledge of the goal locations and partial observations of the global state by
each agent. The framework includes guarantees on safety through dynamic constraints, and a method
to impose a dynamic, global priority ordering on the agents. A solution to the goal assignment and
trajectory generation problems is derived in the form of a binary program and a nonlinear system
of equations. Then, we present the conditions for optimality and characterize the conditions under
which our algorithm is guaranteed to converge to a unique assignment of agents to goals. We also
solve the fully constrained decentralized trajectory generation problem considering the state, control,
and safety constraints. Finally, we validate the efficacy of our approach through a numerical simulation
in MATLAB.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Complex systems consist of diverse entities that interact both
in space and time [1]. Referring to something as complex implies
that it consists of interdependent entities or agents that can
adapt, i.e., they can respond to their local and global environ-
ment. Complex systems appear in many applications, including
cooperation between components of autonomous systems, sensor
fusion, and natural biological systems. As we move to increasingly
complex systems [2], new control approaches are needed to opti-
mize the impact of individuals on system-level behavior through
the control of individual entities [3,4].

Swarms are typical complex system which have attracted
considerable attention in many applications, e.g., transportation,
exploration, construction, surveillance, and manufacturing. As
discussed by Oh et al. [5], swarms are especially attractive due
to their natural parallelization and general adaptability. One of
the typical multiagent applications is creating desired forma-
tions. However, due to cost constraints on any real swarm of
autonomous agents, e.g., limited computation capabilities, battery
capacity, and sensing capabilities, any efficient control approach
needs to take into account the energy consumption of each
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agent. Moving agents into a desired formation has been explored
previously; however, creating this formation while minimizing
energy consumption is an open problem.

1.2. Related work

Brambilla et al. [6] classified approaches to swarms into two
distinct groups, macroscopic, and microscopic. Macroscopic ap-
proaches generate group behavior from a system of partial dif-
ferential equations which are spatially discretized and applied to
individual agents; this approach is fundamentally based on work
by Turing [7], and is used extensively in bio-inspired formation
and pattern forming [8]. Our approach is microscopic; that is, we
control the behavior of individual agents to achieve some desired
global outcome. Microscopic approaches are based on the seminal
work by Reynolds [9], which applied an agent-based method to
capture the flocking behavior of birds.

There is a rich literature on the creation of a desired forma-
tion, such as the construction of rigid formations from triangular
sub-structures [10,11], formation algorithms inspired by crystal
growth [12], and growing swarm formations in a lattice struc-
ture [13]. It is also possible to build formations using only scalar,
bearing, or distance measurements to move agents into a desired
formation [14,15]. Olfati-Saber et al. [16] proved that many for-
mation problems may be solved by applying a modified form
of the basic consensus algorithm. However, none of these ap-
proaches consider the energy cost to individual agents in the
swarm.
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A significant amount of work has applied optimization meth-
ods to designing potential fields for agent interaction [17–21].
However, these approaches optimize the shape of the potential
field and do not consider the energy consumption of individual
agents. Previous work by Turpin et al. [22] has generated opti-
mal assignments using a centralized planner. Other approaches
require global information about the system (e.g., [22] requires
globally unique assignments a priori, [23] requires the graph
diameter of the system, and [24] imposes global ‘‘seed’’ agents
on the swarm).

Our approach is decentralized, and thus, each agent may only
partially observe the entire system state. The latter results in
a non-classical information structure and many techniques for
solving centralized systems do not hold [25]. To address this
problem, one may impose a priority ordering on the agents. This
has been achieved in previous work through a centralized con-
troller [26,27]. In general, finding an optimal ordering is NP-Hard,
and an optimal ordering is not always guaranteed to exist [28].
To reduce the complexity of ordering agents, much work has
been done to decentralize the ordering problem, including ap-
plying discretized path-based heuristics [29], and reinforcement
learning [30]. In contrast, our approach introduces a decentralized
method of dynamically ordering agents that is path independent
and relies only on information directly observable by each agent.

Our approach only requires agents to make partial observa-
tions of the entire system. This may lead to performance degra-
dation relative to a centralized controller with global knowledge.
However, this is a fundamental feature of decentralized control
problems in general [31]. Other efforts have attempted to cir-
cumvent this issue with information sharing, either directly [25]
or through decentralized auctioning [23]. However, these ap-
proaches tend to require knowledge of the global communication
graph, long delays before decisions are made, or both. In contrast,
we embrace partial observability of the system and exploit it to
reduce the computational load on each individual agent.

The main contributions of this paper are: (1) a decentralized
set of interaction dynamics, which impose a priority order on
agents in a decentralized manner, (2) an assignment algorithm
that exploits the unconstrained optimal trajectory of the agents,
(3) guarantees on the stability of the proposed control policy,
and (4) optimality conditions for the fully constrained collision
avoidance problem in R2, as well as a locally optimal solution in
the form of nonlinear algebraic equations.

1.3. Organization of this paper

The remainder of this paper proceeds as follows. In Section 2,
we formulate the decentralized optimal control problem, and
we decompose it into the coupled assignment and trajectory
generation subproblems. In Section 3, we present the conditions
which guarantee system convergence along with the assignment
problem. Then, in Section 4, we prove that these conditions
are satisfied by our framework and solve the optimal trajectory
generation problem. Finally, in Section 5, we present a series of
MATLAB simulations to show the performance of the algorithm,
and we presented concluding remarks in Section 6.

2. Problem formulation

We consider a swarm of N ∈ N autonomous agents indexed by
the set A = {1, . . . ,N}. Our objective is to design a decentralized
control framework to move the N agents into M ∈ N goal
positions, indexed by the set F = {1, . . . ,M}. We consider the
case where N ≤ M , i.e., no redundant agents are brought to
fill the formation. This requirement can be relaxed by defining

a behavior for excess agents, such as idling [32]. Each agent i ∈ A
follows double-integrator dynamics,

ṗi(t) = vi(t), (1)

v̇i(t) = ui(t), (2)

where pi(t) ∈ R2 and vi(t) ∈ R2 are the time-varying position
and velocity vectors respectively, and ui(t) ∈ R2 is the control
input (acceleration/deceleration) over time t ∈ [t0i , t

f
i ], where t0i

is the initial time for agent i and t fi ∈ R>0 is the terminal time for
agent i. Additionally, each agent’s control input and velocity are
bounded by

vmin ≤ ∥vi(t)∥ ≤ vmax, (3)

umin ≤ ∥ui(t)∥ ≤ umax, (4)

where ∥ · ∥ is the Euclidean norm. Thus, the state of each agent
i ∈ A is given by the time-varying vector

xi(t) =

[
pi(t)
vi(t)

]
, (5)

and we denote the global (system) state as

x(t) =

[x1(t)
. . .

xN (t)

]
. (6)

The energy consumption of any agent i ∈ A is given by

Ėi(t) =
1
2
∥ui(t)∥2. (7)

We select the L2 norm of the control input as our energy model
since, in general, acceleration/deceleration requires more energy
than applying no control input. Therefore, we expect that min-
imizing the acceleration/deceleration of each agent will yield a
proportional reduction in energy consumption.

Our objective is to develop a decentralized framework for the
N agents to optimally, in terms of energy, create any desired
formation of M points while avoiding collisions between agents.

Definition 1. The desired formation is the set of time-varying vec-
tors G = {p∗

j (t) ∈ R2
| j ∈ F}. The set G can be prescribed offline,

i.e., by a human designer, or online by a high-level planner.

In this framework, the agents are cooperative and capable of
communication within a neighborhood, which we define next.

Definition 2. The neighborhood of agent i ∈ A is the time-varying
set

Ni(t) =

{
j ∈ A

⏐⏐⏐ ⏐⏐⏐⏐pi(t) − pj(t)
⏐⏐⏐⏐ ≤ h

}
,

where h ∈ R is the sensing and communication horizon of each
agent.

Agent i ∈ A is also able to measure the relative position
of any neighboring agent j ∈ Ni(t), i.e., agent i makes partial
observations of the global state. We denote the relative position
between two agents i and j by the vector

sij(t) = pj(t) − pi(t). (8)

Each agent i ∈ A occupies a closed disk of radius R; hence, to
guarantee safety for agent i we impose the following constraints
for all agents i ∈ A, j ∈ Ni(t), j ̸= i,

∥sij(t)∥ ≥ 2R, ∀t ∈ [t0i , t
f
i ], (9)

h ≫ 2R. (10)

Condition (9) is our safety constraint, which ensures that no two
agents collide. We also impose the strict form of (9) pairwise to
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all goals in the desired formation, G. Eq. (10) is a system-level
constraint which ensures agents are able to detect each other
prior to a collision.

In our modeling framework we impose the following assump-
tions:

Assumption 1. The state xi(t) for each agent i ∈ A is perfectly
observed and there is negligible communication delay between
the agents.

Assumption 1 is required to evaluate the idealized perfor-
mance of the generated optimal solution. In general, this assump-
tion may be relaxed by formulating a stochastic optimal control
problem to generate agent trajectories.

Assumption 2. The energy cost of communication is negligible;
the only energy consumption is in the form of (7).

The strength of this assumption is application dependent. For
cases with long-distance communications or high data rates, the
trade-off between communication and motion costs can be con-
trolled by varying the sensing and communicating radius, h, of
the agents.

To solve the desired formation problem, we first relax the
inter-agent collision avoidance constraint to decouple the agent
trajectories. This decoupling reduces the problem from a single
mixed-integer program to a coupled pair of binary and quadratic
programs, which we solve sequentially. This decoupling is com-
mon in the literature [22,23], and usually does not affect the
outcome of the assignment problem.

Next, we present some preliminary results before decompos-
ing the desired formation problem into the two subproblems,
minimum-energy goal assignment and trajectory generation.

2.1. Preliminaries

First we consider that any agent i ∈ A obeys double-integrator
dynamics, (1)–(2), and has an energy model with the form of (7).
Then, we let the state and control trajectories of agent i be un-
constrained, i.e., relax (3), (4), and (9). In this case, if i is traveling
between two fixed states, the unconstrained minimum-energy
trajectory is given by the following system of linear equations:

ui(t) = ai t + bi, (11)

vi(t) =
ai
2

t2 + bi t + ci, (12)

pi(t) =
ai
6

t3 +
bi

2
t2 + ci t + di, (13)

where ai, bi, ci, and di are constant vectors of integration. The
derivation of (11)–(13) is straightforward and can be found in
[33].

Thus, the energy consumed for any unconstrained trajectory
of agent i ∈ A at time t traveling towards the goal j ∈ F is given
by

E j
i (t) =

∫ t fi

t
∥ui(τ )∥2 dτ = (t3f − t3)

(a2i,x + a2i,y
3

)
+ (t2f − t2)

(
ai,x bi,x + ai,y bi,y

)
+ (tf − t)

(b2i,x + b2i,y
2

)
, (14)

where t ∈ [t0i , t
f
i ], and ai = [ai,x, ai,y]T , bi = [bi,x, bi,y]T are the

coefficients of (11).
Next, we present the interaction dynamics between agents. To

resolve any conflict between agents, we consider the following

objectively measurable constants: (1) neighborhood size, (2) en-
ergy required to reach a goal, and (3) agent index, which may
be arbitrarily assigned. Each of these quantities has an associated
indicator function for comparing two agents i, j ∈ A, j ̸= i,

1N
ij (t) :=

{
1 |Ni(t)| > |Nj(t)|,
0 |Ni(t)| ≤ |Nj(t)|,

(15)

1E
ij (t) :=

{
1 Ei(t) > Ej(t),
0 Ei(t) ≤ Ej(t),

(16)

1A
ij (t) :=

{
1 i > j,
0 i < j.

(17)

Next, we define the interaction dynamics by combining (15)–(17)
into a single indicator function.

Definition 3. We define the interaction dynamics between any
agent i ∈ A and another agent j ∈ Ni(t), j ̸= i as

1C
ij (t) = 1N

ij (t) +
(
1 − 1N

ij (t)
)(
1 − 1N

ji (t)
)(

1E
ij (t) +

(
1 − 1E

ij (t)
)(
1 − 1E

ji (t)
)
1A
ij (t)

)
, (18)

where 1C
ij = 1 implies agent i has priority over agent j, and 1C

ij = 0
implies that agent j has priority over agent i.

The interaction dynamics are instantaneously and noiselessly
measured and communicated by each agent under Assumption 1.
Whenever two agents have a conflict (i.e., share an assigned goal,
or have overlapping assignments) (18) is used to impose an order
on the agents such that higher priority agents act first.

Remark 1. For any pair of agents i ∈ A, j ∈ Ni(t), j ̸= i, it
is always true that 1C

ij (t) = 1 − 1C
ji (t), i.e., the outcome of the

interaction dynamics (18) is always unambiguous, and therefore
it imposes an order on any pair of agents.

Remark 1 can be proven by simply enumerating all cases of
(15)–(17).

3. Optimal goal assignment

The optimal solution of the assignment problem must assign
each agent to a goal such that the total unconstrained energy
cost, given by (14), is minimized. In our framework, each agent
i ∈ A only has information about the positions of its neighbors,
j ∈ Ni(t), and the goal positions prescribed by G. Agent i derives
the goal assignment using a binary matrix Ai(t), which we define
next.

Definition 4. For each agent i ∈ A, we define the assignment
matrix, Ai(t), as an |Ni(t)| × M matrix with binary elements. The
elements of Ai(t) map each agent to exactly one goal, and each
goal to no more than one agent.

The assignment matrix for agent i ∈ A assigns all agents in
Ni(t) to goals by considering the cost (14). We discuss the details
of the optimal assignment problem later in this section.

Next we define the prescribed goal, which determines how
each agent i ∈ A assigns itself a goal.

Definition 5. We define the prescribed goal for agent i ∈ A as
the goal assigned to agent i by the rule,

pa
i (t) ∈

{
pk ∈ G | aik = 1, aik ∈ Ai(t), k ∈ F

}
, (19)

where Ai(t) is the assignment matrix, and the right hand side is
a singleton set, i.e., agent i is assigned to exactly one goal.
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Next, we present the goal assignment algorithm in terms of
some agent i ∈ A. However, as this framework is cooperative,
each step is performed by all individuals simultaneously.

In some cases, multiple agents may select the same prescribed
goal. This may occur when two agents i ∈ A, j ∈ Ni(t), j ̸= i have
different neighborhoods and use conflicting information to solve
their local assignment problem. This motivates the introduction
of competing agents, which we define next.

Definition 6. For agent i ∈ A, we define the set of competing
agents as

Ci(t) =

{
k ∈ Ni(t) | pa

k(t) = pa
i (t)

}
.

When
⏐⏐Ci⏐⏐ > 1 there are at least two agents, i, j ∈ Ni(t) which

are assigned to the same goal. In this case, all but one agent in
Ci(t) must be permanently banned from the goal pa

i (t). Next, we
define the banned goal set.

Definition 7. The banned goal set for agent i ∈ A is defined as

Bi(t) =

{
g ∈ F

⏐⏐⏐ pa
i (τ ) = pg (τ ) ∈ G,( ∏

j∈Ci(τ ),j̸=i

1c
ij(τ )

)
= 0, ∃ τ ∈ [t0i , t]

}
, (20)

i.e., the set of all goals which agent i ∈ A had a conflict over and
did not have priority per Definition 3.

Banning is achieved by applying (20) to all agents j ∈ Ci(t)
whenever |Ci(t)| > 1. After the banning step is completed, agent
i ∈ A checks if the size of Bi(t) has increased. If so, agent i
increases the value of t fi by

t fi = t + T , (21)

where t is the current time, and T ∈ R>0 is a system parameter.
This allows agent i a sufficient amount of time to reach its new
goal.

Next, each agent broadcasts its new set of banned goals to all
of its neighbors. Any agent who was banned from Ci(t) assigns
itself to a new goal. However, this may cause new agents to enter
Ci(t) as they are banned from other goals. To ensure each agent
j ∈ Ni(t) is assigned to a unique goal, the assignment and banning
steps are iterated until the condition⏐⏐Cj(t)⏐⏐ = 1, ∀j ∈ Ni(t), (22)

is satisfied. For a given neighborhood Ni(t), i ∈ A, some number
of agents will be assigned to the goal g ∈ F . After the first
banning step, all agents except the one which was assigned to
goal g are permanently banned and may never be assigned to it
again. If additional agents are assigned to g , then this process will
repeat for at most N − 1 iterations. Afterwards every goal g will
have at most one agent from Ni(t) assigned to it. Thus, we will
have |Cj(t)| = 1 for all j ∈ Ni(t) for every i ∈ A.

We enforce the banned goals through a constraint on the
assignment problem, which follows.

Problem 1 (Goal Assignment). Each agent i ∈ A selects its
prescribed goal (Definition 5) by solving the following binary
program

min
ajk∈Ai

{ ∑
j∈Ni(t)

∑
k∈F

ajkEk
j (t)

}
(23)

subject to:∑
j∈F

ajk = 1, k ∈ Ni(t), (24)

∑
k∈Ni(t)

ajk ≤ 1, j ∈ F, (25)

ajk = 0, ∀ j ∈ Bk(t), k ∈ Ni(t), (26)
ajk ∈ {0, 1}.

This process is repeated by each agent, i ∈ A, until (22) is satisfied
for all j ∈ Ni(t).

As the conflict condition in Problem 1 explicitly depends on
the neighborhood of agent i ∈ A, Problem 1 may need to be
recalculated each time the neighborhood of agent i switches. The
assignments generated by Problem 1 are guaranteed to bring
each agent to a unique goal; we show this with the help of
Assumption 3 and Lemma 1.

Assumption 3. For every agent i ∈ A, for all t ∈ [t0i , t
f
i ], the

inequality
⏐⏐(F \

⋃
j∈Ni(t)

Bj(t)
)

≥ |Ni(t)| holds.

Assumption 3 is a condition that is sufficient but not neces-
sary to prove convergence of our proposed optimal controller.
Intuitively, Assumption 3 only requires that one agent does not
ban many agents from many goals. Due to the minimum-energy
nature of our framework, this scenario is unlikely; additionally,
permanent banning may be relaxed to temporary banning in a
way that Assumption 3 is always satisfied.

Lemma 1 (Solution Existence). Under Assumption 3, the feasible
region of Problem 1 is nonempty for agent i.

Proof. Let the set of goals available to all agents in the neighbor-
hood of agent i ∈ A be denoted by the set

Li(t) = {p ∈ F | p ̸∈ Bj(t), ∀j ∈ Ni(t)}. (27)

Let the injective function w : A → F map each agent to a
goal. By Assumption 3, |Ni(t)| ≤ |Li(t)|, thus a function w exists.
As w is injective, the imposed mapping must satisfy (24) and
(25). Likewise, Li(t)

⋂
Bj(t) = ∅ for all j ∈ Ni(t). Thus, w must

satisfy (26). Therefore, the mapping imposed by the function w is
a feasible solution to Problem 1. □

Next, we show that for a sufficiently large value of T the
convergence of all agents to goals is guaranteed.

Theorem 1 (Assignment Convergence). Under Assumption 3, for
sufficiently large values of the initial t fi and T , and if the energy-
optimal trajectories for agent i ∈ A never increase the unconstrained
energy cost (14), then t fi must have an upper bound for all i ∈ A.

Proof. Let {gn}n∈N be the sequence of goals assigned to agent
i ∈ A by the solution of Problem 1. By Lemma 1, {gn}n∈N must
not be empty, and the elements of this sequence are natural
numbers bounded by 1 ≤ gn ≤ M . Thus, the range of this se-
quence is compact, and the sequence must be either (1) finite, or
(2) convergent, or (3) periodic.

(1) For a finite sequence there is nothing to prove, as t fi is
upper bounded by t fi,initial + MT .

(2) Under the discrete metric, an infinite convergent sequence
requires that there exists N ∈ N>0 such that gn = p for all n > N
for some formation index p ∈ F . This reduces to case 1, as t fi does
not increase for repeated assignments to the same goal.

(3) By the Bolzano–Weierstrass Theorem, an infinite non-
convergent sequence {gn}n∈N must have a convergent subse-
quence, i.e., agent i is assigned to some subset of goals I ⊆ F
infinitely many times with some constant number of intermedi-
ate assignments, Pg , for each goal g ∈ I. Necessarily, I

⋂
Bi(t) =

∅ for all t ∈ [t0i , t
f
i ] from the construction of the banned goal set.
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This implies that, by the update method of t fi , the position of all
goals, g ∈ I must only be considered at time t fi .

This implies that the goals available to agent i, i.e., I = F \

Bi(t
f
i ), must be shared between n > 0 other periodic agents.

Hence, at some time t1 a goal, g ∈ I, must be an optimal
assignment for agent i, a non optimal assignment at time t2 > t1
and an optimal assignment again at time t3 which corresponds to
the Pg th assignment. As t3 > t2 > t1, the energy required to move
agent i to goal g satisfies

Eg
i (t1) ≤ Ek

i (t1), (28)

Ek
i (t2) ≤ Eg

i (t2), (29)

Eg
i (t3) ≤ Ek

i (t3), (30)

for any other goal k ∈ I, k ̸= g . Therefore, for agent i to follow
an energy optimal trajectory under our premise, it must never
increase the energy required to reach is assigned goal, which
implies

Eg
i (t1) ≥ Eg

i (t2), (31)

Ek
i (t2) ≥ Ek

i (t3), (32)

this implies

Ek
i (t1) ≥ Ek

i (t3), (33)

which is only possible if agent i simultaneously approaches all
goals k ∈ I. This implies that goals g and k are arbitrarily close,
which violates the minimum spacing requirements of the goals;
therefore no such periodic behavior may exist. □

Note that Theorem 1 bounds the arrival time of agent i ∈ A
to any goal g ∈ F . A similar bound may be found for the total
energy consumed, i.e.,

Eg
i (t) ≤

1
2
(t fi,initial + MT ) · max

{
|umin|, |umax|

}2
.

Next, we formulate the optimal trajectory generation problem
for each agent and prove that the resulting trajectories always
satisfy the premise of Theorem 1.

4. Optimal trajectory generation

After the goal assignment is complete, each agent must gen-
erate a collision-free trajectory to their assigned goal. The tra-
jectories must minimize the agent’s total energy cost subject to
dynamic, boundary, and collision constraints. The initial and final
state constraints for each agent i ∈ A are given by

pi(t0i ) = p0
i , vi(t0i ) = v0i , (34)

pi(t
f
i ) = pa

i (t
f
i ), vi(t

f
i ) = ṗa

i (t
f
i ), (35)

where the conditions at t fi come from the solution of Problem 1.
Whenever an agent must steer to avoid collisions, we will

apply the agent interaction dynamics (Definition 3) to impose an
order on the agents such that lower priority agents must steer to
avoid the higher priority ones. Thus, we may simplify the collision
avoidance constraint for agent i ∈ A to

∥sij(t)∥ ≥ 2R, ∀ j ∈ {k ∈ A | 1ik(t) = 0}, (36)

∀ t ∈ [t0i , t
f
i ],

which will always guarantee safety for all agents.
We may then formulate the decentralized optimal trajectory

generation problem.

Problem 2. For each agent i ∈ A, find the optimal control input,
ui(t), which minimizes the energy consumption of agent i and
satisfies its boundary conditions and safety constraints.

min
ui(t)

1
2

∫ t fi

t0i

∥ui(t)∥2 dt (37)

subject to: (1), (2), (34), (35), and (36).

By imposing an order on the agents, we can show that the so-
lution of Problem 2 will always satisfy the premise of
Theorem 1. First, Lemma 2 shows that an unconstrained trajec-
tory must never increase the energy required to reach a goal.

Lemma 2. For any agent i ∈ A, following the unconstrained
trajectory, the energy cost (14) required to reach a fixed goal g ∈ F
is not increasing.

Proof. We may write the derivative of (14) along an uncon-
strained trajectory as

dEg
i (t)
dt

= lim
δ→0

1
δ

(∫ t fi

t+δ

∥ui(τ )∥2dτ −

∫ t fi

t
∥ui(τ )∥2dτ

)

= − lim
δ→0

1
δ

∫ t+δ

t
∥ui(τ )∥2dτ , (38)

which is never positive. Therefore, (14) is never increasing. □

Next, we introduce Theorem 2, which proves the premise of
Theorem 1 is always satisfied by any trajectory which is a feasible
solution to Problem 2.

Theorem 2. If a solution to Problem 2 exists for all agents, then
Theorem 1 is satisfied as long as Assumption 3 holds.

Proof. The case when any agent i ∈ A is moving with an
unconstrained trajectory is covered by Lemma 2, so we focus on
the case when any of the safety constraints are active.

Let K ⊆ A be a group of agents which all have their safety
constraint active over some interval t ∈ [t1, t2]. By Definition 3,
there exists some i ∈ K such that 1C

ij (t) = 1 for all j ∈ K, j ̸= i.
Therefore, agent i satisfies Lemma 2 and always moves toward its
assigned goal by Theorem 1.

Next, consider agent j ∈ V \ {i} such that 1c
jk(t) = 1 for

all k ∈ K \ {i}. As agent j may never be assigned to the same
goal as i, there must exist some time tj < min{t fi , t

f
j } such that

|sij(tj)| > 2R by the goal spacing rules. Thus, agent j will move
with an unconstrained trajectory for all t ∈ [tj, t

f
j ]. The above

steps can be recursively applied until only a single agent remains,
which follows an unconstrained trajectory for some finite time
interval. This satisfies the premise of Theorem 1. □

4.1. Hamiltonian analysis

We solve Problem 2 by applying Hamiltonian analysis. We will
follow the standard methodology used in optimal control theory
for problems with interior point constraints. First, we start with
the unconstrained solution, given by (11)–(13). If this solution
violates the state, control, or safety constraints, we piece it to-
gether with solutions corresponding to the violated constraint.
These two arcs yield a set of algebraic equations that must be
solved simultaneously using the boundary conditions (34) and
(35) and interior conditions between the arcs. If the resulting
trajectory, which includes the optimal switching time between
the arcs, still violates any constraints, the new solution must
be pieced together with a third arc corresponding to the new
violated constraint. This process is repeated until no constraints
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are violated, which yields the energy-optimal state trajectory for
each agent i ∈ A.

The case where only the control and state constraints become
active has been extensively studied in [33]. Thus, we will relax
the state and control constraints and only consider the safety
constraint in this section. Next, we analyze the case where the
collision avoidance constraint becomes active.

First, the safety constraint (9) must be derived until the control
input ui(t) appears. To ensure smoothness in the derivatives we
use the equivalent squared form of (9). This yields

Ni
(
t, xi(t)

)
=

⎡⎣ 4R2
− sij(t) · sij(t)

−sij(t) · ṡij(t)
−sij(t) · s̈ij(t) − ṡij(t) · ṡij(t)

⎤⎦ ≤ 0, (39)

where the first two elements of Ni(t) are the tangency conditions
which must be satisfied at the start of a constrained arc, while the
third element is augmented to the unconstrained Hamiltonian.
The Hamiltonian is

Hi =
1
2
∥ui(t)∥2

+ λ
p
i (t) · vi(t) + λv

i (t) · ui(t)

−

∑
j∈Ni

µij(t)
(
sij(t) · s̈ij(t) + ṡij(t) · ṡij(t)

)
, (40)

where λ
p
i (t), λ

v
i (t) are the position and velocity co-vectors, and

µij(t) is an inequality Lagrange multiplier with values

µij(t) =

{
> 0 if sij(t) · s̈ij(t) + ṡij(t) · ṡij(t) = 0,
0 if sij(t) · s̈ij(t) + ṡij(t) · ṡij(t) > 0.

(41)

To solve (40) for agent i ∈ A, we consider two cases:

1. all agents j ∈ Ni(t) satisfy µij = 0, and
2. any agent j ∈ Ni(t) satisfies µij > 0.

This results in a piecewise trajectory, where the first case
corresponds to following an unconstrained trajectory, while the
second corresponds to some collision avoidance constraints be-
coming active. Our task is to derive the form of the constrained
arcs, then optimally piece the constrained and unconstrained arcs
together. This will result in the optimal trajectory for agent i.

Next, we present the solution to the constrained case and the
optimal time to transition between the two cases.

4.2. Constrained solution

As with the assignment problem, the constrained solution is
presented in terms of some agent i ∈ A. However, the steps given
here are performed simultaneously by all agents. First, we define
the conflict set.

Definition 8. We define the conflict set for agent i ∈ A at time
t ∈ [t0i , t

f
i ] as

Vi(t) =

{
j ∈ Ni(t)

⏐⏐ µij(t) > 0, 1c
ij = 0

}
, (42)

i.e., the set of all agents which i may collide with and have a
higher priority than agent i.

Agent i must then steer to avoid all agents j ∈ Vi(t). To
solve for the constrained trajectory we introduce Lemma 3, which
considers the case when |Vi(t)| > 1.

Lemma 3 (Collision-Avoidance Constraints). Let any agent i ∈ A be
moving along a collision constrained arc such that |Vi(t)| > 1. Then,
only feasible trajectory for agent i is to remain in contact with all
agents j ∈ Vi(t) until agent i exits this constrained arc. This unique
trajectory is therefore optimal.

Proof. For any two agents j, k ∈ Vi(t) we have ∥sij(t)∥ = 2R and
∥sik∥ = 2R. This implies that the points pi(t), pj(t), and pk(t) must
form an isosceles triangle with two edges of length 2R and base of
length 2R ≤ ∥sjk(t)∥ ≤ 4R. Therefore, the only feasible trajectory
of agent i is to maintain the isosceles triangle between i, j, and k.
As this is the only one feasible trajectory for agent i, it must be
the optimal trajectory. □

Note that Lemma 3 holds for a single constrained arc. As such,
agent i ∈ A may exit to a different constrained arc with a new
set Vi(t) or may exit to an unconstrained arc.

Next we consider the case where agent i moves along a con-
strained arc with |Vi(t)| = 1. First, we use the Euler–Lagrange
conditions to obtain,
∂Hi

∂ui
= 0, (43)

−λ̇i =
∂Hi

∂xi
. (44)

Application of (43) to (40) yields

ui(t) = −λv
i (t) −

∑
j∈Vi(t)

µij(t) sij(t), (45)

while (44) results in

−λ̇
p
i (t) =

∑
j∈Vi(t)

µij(t) s̈ij(t), (46)

−λ̇
v

i (t) = λ
p
i +

∑
j∈Vi(t)

µij(t) ṡij(t). (47)

As |Vi(t)| = 1, the optimality condition and Euler–Lagrange
equations become

ui(t) = −λv
i (t) − µij(t) sij(t), (48)

−λ̇
p
i (t) = µij(t) s̈ij(t), (49)

−λ̇
v

i (t) = λ
p
i + µij(t) ṡij(t), (50)

where j ∈ Vi(t). We denote the relative speed between two agents
i and j as

aij(t) = ∥ṡij(t)∥. (51)

Next, we define a new orthonormal basis for R2.

Definition 9. For an agent i ∈ A satisfying
⏐⏐Vi(t)

⏐⏐ = 1, over
some nonzero interval t ∈ [t1, t2], where aij(t) ̸= 0, we define the
contact basis as

p̂ij(t) =
sij(t)

∥sij(t)∥
=

sij(t)
2R

, (52)

q̂ij(t) =
ṡij(t)

∥ṡij(t)∥
=

ṡij(t)
aij(t)

, (53)

where p̂ij(t) · q̂ij(t) = 0 by (39), and both vectors are unit length.
Thus, (52) and (53) constitute an orthonormal basis for R2.

Next, we find the projection of s̈ij(t) onto the new contact
basis. From (39) we have

s̈ij(t) · p̂ij(t) = s̈ij(t) ·
sij(t)
2R

=
−a2ij(t)

2R
. (54)

We apply integration by parts to find the q̂ij(t) component of s̈ij(t).
First,∫

s̈ij(t) · ṡij(t) dt = ṡij(t) · ṡij(t) −

∫
s̈ij(t) · ṡij(t) dt, (55)

which implies∫
s̈ij(t) · ṡij(t) dt =

1
2
ṡij(t) · ṡij(t) =

1
2
a2ij(t). (56)
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Taking a time derivative of (56) yields

s̈ij(t) · ṡij(t) = aij(t)ȧij(t). (57)

Next we present Theorem 3, which gives the optimal trajec-
tory for agent i whenever aij(t) = 0 over any nonzero interval
while the safety constraint is active.

Theorem 3. For any agents i ∈ A and j ∈ Vi(t), if aij(t) = 0 over
some nonzero interval t ∈ [t1, t2], then the optimal trajectory for
agent i is to follow ui(t) = uj(t) for all t ∈ [t1, t2).

Proof. By definition we have aij(t) = |ṡij(t)| = 0. This implies
ṡij(t) = 0, and therefore vj(t) = vi(t) for all t ∈ [t1, t2]. Thus
ui(t) = uj(t) for all t ∈ [t1, t2). □

Thus, for any agent i ∈ A which has an active safety constraint
with some agent j ∈ Vi(t), Theorem 3 provides the optimal control
input for agent i in the case that aij(t) = 0 over a nonzero time
interval. If aij(t) = 0 for at single instant t ∈ R, then the optimal
solution at that instant must enforce continuity of aij(t) and the
constraint sij(t) · sij(t) = 4R2.

Finally, we may project the dynamics of agent i onto the basis
given in Definition 9 and solve for the optimal trajectory when
aij(t) ̸= 0. Next, we will use (54) and (57) to project s̈ij(t) onto
the contact basis,

s̈ij(t) =

[
−

a2ij(t)

2R

ȧij(t)

]
·

[
p̂ij(t)
q̂ij(t)

]
, (58)

which we use to solve for the time derivatives of (52) and (53).
First,

d
dt

p̂ij(t) =
ṡij(t)
2R

=
a(t)
2R

q̂ij(t). (59)

Then, by the quotient rule,

d
dt

q̂ij(t) =
s̈ij(t) aij(t) − ṡij(t) ȧij(t)

a2ij(t)

=
aij(t)

(
−a2(t) 1

2R p̂ij(t) + ȧij(t)q̂ij(t)
)

a2ij(t)

−
ṡij(t) ȧij(t)

a2ij(t)

= −
aij(t)
2R

p̂ij(t). (60)

From (8), we may now write s̈ij(t) projected on to the contact
basis (Definition 9) as

s̈ij(t) = uj(t) + λv
i (t) + µi(t)sij(t)

=

(
uj(t) + λv

i (t)
)[p̂ij(t)

q̂ij(t)

]
+ µi(t)

[
2R
0

]
. (61)

Next, we set (58) equal to (61) and rewrite it as a system of scalar
equations,

λv
i (t) · p̂ij(t) = −

a2ij(t)

2R
− 2R µij(t) − uj(t) · p̂ij(t), (62)

λv
i (t) · q̂ij(t) = ȧij(t) − uj(t) · q̂ij(t). (63)

Taking the time derivative of (62) yields

aij(t)
2R

λv
i (t) · q̂ij(t) + λ̇

v

i (t) · p̂ij(t) = −
aij(t)ȧij(t)

R

− 2Rµ̇ij(t) − u̇j(t) · p̂ij(t) −
aij(t)
2R

uj(t) · q̂ij(t). (64)

We then substitute (50) and (63) into (64), which yields

λ
p
i (t) · p̂ij(t) =

3aij(t)ȧij(t)
2R

+ 2Rµ̇ij(t)

+ u̇j(t) · p̂ij(t). (65)

Taking a time derivative of (63) yields,

−
aij(t)
2R

λv
i (t) · p̂ij(t) + λ̇

v

i (t) · q̂ij(t) = äij(t)

− u̇j(t) · q̂ij(t) +
aij(t)
2R

uj(t) · p̂ij(t), (66)

and substituting (50) and (62) into (66), yields

λ
p
i · q̂ij(t) = u̇j(t) · q̂ij(t) − äij(t) +

a3ij(t)

4R2 . (67)

We then take an additional time derivative of (65) and (67).
This yields

λ̇
p
i (t) · p̂ij(t) = −

aij(t)
2R

λ
p
i (t) · q̂ij(t)

+
3
2R

(ȧ2ij(t) + aij(t)äij(t)) + 2Rµ̇ij(t)

+
aij(t)
2R

u̇j(t) · q̂ij(t) + üj(t)p̂(t), (68)

λ̇
p
i (t) · q̂ij(t) =

aij(t)
2R

λ
p
i (t) · p̂ij(t)

−
...
a ij(t) +

3
4R2 a

2
ij(t)ȧij(t)

−
aij(t)
2R

u̇j(t) · p̂ij(t) + üj(t) · q̂(t). (69)

Substituting (49), (65), and (67) into (68) and (69) yields a system
of nonlinear ordinary differential equations,

a2ij(t)

2R
µij(t) +

a4ij(t)

8R3 = 2Rµ̇ij(t) +
4
2R

aij(t)äij(t)

+
3
2R

ȧij(t) + üj(t) · p̂ij(t), (70)

aij(t)µ̇ij(t) + ȧij(t)µij(t) + üj(t) · q̂ij(t)

+
6

4R2 a
2
ij(t)ȧij(t) =

...
a ij(t). (71)

Thus, for any constrained trajectory to be energy-optimal, it
must be a solution of (70) and (71). In general, finding a solution
is rare, since both equations are nonlinear and (71) is third
order. Therefore, our approach will be to impose ȧij(t) = 0
over the constraint arc, which is a locally optimal trajectory per
Theorem 3.

Thus, the remaining unknown quantities are: the junction
time when agent i transitions from the unconstrained to con-
strained arc, t1, the junction time that agent i exits from the
constrained arc, t2, and the initial orientation of the vector sij(t1).
These quantities are coupled to the proceeding and following
unconstrained arcs by the jump conditions [34],

xi(t−1 ) = xi(t+1 ), (72)

λT
i (t

−

1 ) = λT
i (t

+

1 ) + νT
i
∂Ni
(
t, xi(t)

)
∂x(t)

⏐⏐⏐⏐⏐
t=t1

, (73)

H(t−1 ) = H(t+1 ) + νT
i
∂Ni
(
t, xi(t)

)
∂t

⏐⏐⏐⏐⏐
t=t1

, (74)

H(t−2 ) = H(t+2 ), (75)

xi(t−2 ) = xi(t+2 ), (76)

λi(t−2 ) = λi(t+2 ), (77)
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where the superscripts t− and t+ correspond to the left and right-
side limits of t , respectively. Thus, t−1 and t+2 correspond to the
unconstrained arcs at the junctions t1 and t2. Likewise, t+1 and
t−2 correspond to the junctions where agent i enters and exits
the constrained arc, respectively. The constant vector νi is given
by [34]

νi =

⎡⎣−
ui(t

−

1 )·ui(t
−

1 )

2(sij(t
−

1 )·vi(t
−

1 ))

0

⎤⎦ . (78)

For the case when agent i’s trajectory has only a single con-
strained arc, (72)–(77) coupled with the initial and final condi-
tions, (35) and (34), constitute 26 scalar equations to solve for
the 26 unknowns (8+8+8 constants of integration + 2 transition
times). When additional constrained arcs become active, addi-
tional jump conditions must be computed using (72)–(77). The
entire system of equations is then solved simultaneously to yield
the energy-optimal trajectory for agent i.

4.3. The Full Solution to Problem 2

So far, we have provided the unconstrained and safety-
constrained arcs with a relaxation of the state and control con-
straints. An extension to the fully-constrained case for agent i ∈ A
is straightforward, and the solution for every possible case is
outlined below.

1. No constraints are active: Agent i will follow an uncon-
strained trajectory.

2. Only one safety constraint is active: Agent i will follow the
trajectory outlined in Section 4.2.

3. More than one safety constraint is active: By Lemma 3, the
unique trajectory of agent i will be defined by the active
constraints.

4. Only one state/control constraint is active: This reduces
to a steering problem, where agent i follows a known
velocity profile and must arrive at a target state along a
minimum-energy path [35].

5. One safety and one state/control constraint are active:
Agent i must follow the path imposed by the safety con-
straint with a speed profile determined by the state/control
constraint. The unique solution to this problem is, there-
fore, optimal.

The state trajectory of agent i ∈ A must be a piecewise-
continuous function consisting of the five possible cases. These
segments are then pieced together using the optimality con-
ditions. We presented the optimality conditions for collision
avoidance in Section 4.2; the conditions for the state and control
constraints are derived in [33] and [34].

5. Simulation results

To provide insight into the behavior of the agents, a series
of simulations were performed with M = N = 10 agents and
a time parameter of T = 10 s. The simulations were run for
t = 20 s or until all agents reach their assigned goal, whichever
occurred later. The center of the formation moved with a ve-
locity of vcg = [0.15, 0.35] m/s; the leftmost and rightmost
three goals each move with an additional periodic velocity of
[0.125 cos 0.75t, 0] m/s relative to the formation. Videos of the
simulation results can be found at https://sites.google.com/view/
ud-ids-lab/omas.

The minimum separating distance between agents, total en-
ergy consumed, and maximum velocity for the unconstrained
solutions to Problem 2 are all given as a function of the horizon
in Table 1. The energy consumption only considers the energy

Fig. 1. Simulation result for the centralized case. Goals which minimize the
unconstrained trajectories are assigned to the agents once at t0i .

Table 1
Numerical results for N = 10 agents and M = 10 goals for various sensing
distances.
h [m] min. separation Energy tf Total bans

[cm] [J/kg] [s]

∞ 25.25 0.85 20 0
1.60 1.64 1.10 20 4
1.50 1.60 1.17 20 24
1.40 2.01 1.96 23.3 31
1.30 0.33 1670 26.05 36
1.20 0.65 866 25.35 34
1.10 1.05 5370 26.85 40
1.00 1.96 7609 30.65 35
0.95 3.12 3149 25.05 27
0.75 1.37 6.87 20 35
0.50 0.27 692.0 26.65 35

required to reach the goal, which, in this case, was significantly
lower than the energy required to maintain the formation. The
trajectory of each agent over time is given in Figs. 1–3 for varying
sensing horizon values. Although the trajectories may appear to
cross in Figs. 1–3, they are only crossing in space and not in time.

The performance of our algorithm is strongly affected by how
much information is available to each agent. This is a function of
the sensing horizon, initial states of the agents, and the desired
formation shape. Generally, better overall performance requires
the agents to have more information. However, it is not apparent
what information is necessary; in fact, the results in Table 1
generally show no correlation between energy consumption and
sensing horizon.

The trade-off for more information is in the computational
and sensing load imposed on each agent. As an agent observes
more of the system (via sensing, communication, or memory),
the computational burden to solve the assignment and trajectory
generation problems also increases. However, this computational
cost does not necessarily result in improved system performance,
as demonstrated in Table 1.

6. Conclusion

In this paper, we proposed a decentralized framework for
moving a group of autonomous agents into a desired formation.
The only information required a priori is the positions of the
goals in a global coordinate frame. We provided guarantees of

https://sites.google.com/view/ud-ids-lab/omas
https://sites.google.com/view/ud-ids-lab/omas
https://sites.google.com/view/ud-ids-lab/omas
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Fig. 2. Simulation result for h = 1.30 m. The agents do not start with a
globally unique assignment, and several agents must re-route partway through
the simulation. Although the trajectories cross in space they do not cross in
time.

Fig. 3. Simulation result for h = 0.75 m. Although the horizon for this case is
smaller than in Fig. 2, the system dynamics happen to result in more efficient
trajectories overall.

convergence under Assumption 3. Our method leveraged a set
of agent interaction dynamics, which allowed a decentralized
calculation of the priority order for agents. We also derived local
energy-optimal trajectories for constrained and unconstrained
paths and presented the conditions for optimality in the form
of a boundary-value nonlinear ordinary differential equation. The
resulting optimal controller was validated in MATLAB using ten
agents and ten dynamic moving goals with varying values of the
sensing radius.

One area for future research is finding a relaxation of
Assumption 3 or another fundamental condition to replace it.
Deriving additional locally-optimal solutions to (70) and (71) is
another research direction. A relaxation of the jump conditions
to find approximately optimal trajectories that can be generated
in real-time is another area which is under active research [36].

Finally, analysis of the system parameter T using the fully con-
strained agent trajectories is another potential direction for future
research. This includes methods to optimally select T or to esti-
mate its magnitude based on the state and observations of each
agent.
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