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Abstract— In this paper, we consider a multi-modal mobility
system of travelers each with an individual travel budget, and
propose a game-theoretic framework to assign each traveler
to a “mobility service” (each one representing a different
mode of transportation). We are interested in equity and
sustainability, thus we maximize the worst-case revenue of the
mobility system while ensuring “mobility equity,” which we
define it in terms of accessibility. In the proposed framework, we
ensure that all travelers are truthful and voluntarily participate
under informational asymmetry, and the solution respects the
individual budget of each traveler. Each traveler may seek to
travel using multiple services (e.g., car, bus, train, bike). The
services are capacitated and can serve up to a fixed number of
travelers at any instant of time. Thus, our problem falls under
the category of many-to-one assignment problems, where the
goal is to find the conditions that guarantee the stability of
assignments. We formulate a linear program of maximizing
worst-case revenue under the constraints of mobility equity,
and we fully characterize the optimal solution.

I. INTRODUCTION

Commuters in big cities have continuously experienced
the frustration of congestion and traffic jams. Travel delays,
accidents, and road altercations have consistently impacted
the economy, society, and the natural environment in terms
of energy and pollution [1]. One of the pressing challenges of
our time is the increasing demand for energy, which requires
us to make fundamental transformations in how our societies
use and access transportation. Emerging mobility systems
(EMS) (e.g., connected and automated vehicles (CAVs),
shared mobility, ride-hailing, on-demand mobility services)
are expected to eliminate congestion and significantly in-
crease mobility efficiency in terms of energy and travel
time. Several studies have shown the benefits of EMS to
reduce energy and alleviate traffic congestion in a number
of different transportation scenarios (see references therein
[2], [3]). However, recently it was shown that when daily
commuters were offered a convenient and affordable taxi
service for their travels, a change of behavior was noticed,
namely these commuters ended up using taxi services more
often compared to when they drove their own car [4].
Other studies [5], [6] have shown similar results which is
an indication that EMS could potentially affect people’s
tendency to travel and incentivize them to use cars more
frequently which potentially can also lead to a shift away
from public transit.

Wide accessibility to transportation in EMS can be im-
pacted by the socioeconomic background of the travelers,
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i.e., whether a traveler can afford it. For example, travelers
with a low-income background may be unable to use any or
all transportation travel options available in a city. Thus, our
approach, in this paper, is to study the game-theoretic interac-
tions of travelers seeking to travel in a multi-modal mobility
system, where each traveler has a unique travel budget. We
adopt the Mobility-as-a-Service (MaaS) concept, which is
a system of multi-modal mobility that handles user-centric
information and provides travel services (e.g., navigation,
location, booking, payment) to a number of travelers. So,
travelers are expected to report their preferences to a central
authority. The goal is to guarantee mobility as a seamless
service across all modes of transportation accessible to all in
a socially-efficient and fair way.

One of the standard approaches to alleviate congestion
in a transportation system has been the management of
demand size due to the shortage of space availability and
scarce economic resources in the form of congestion pric-
ing. Such an approach focuses primarily on intelligent and
scalable traffic routing, in which the objective is to guide
and coordinate users in path-choice decision-making. For
example, one computes the shortest path from a source to
a destination regardless of the changing traffic conditions
[7]. Interestingly, by adopting a game-theoretic approach,
advanced systems have been proposed to assign users con-
crete routes or minimize travel time and study the Nash
equilibria under different tolling mechanisms [8]–[11]. Partly
related to our work are matching models which describe
markets in which there are agents of disjoint groups and
have preferences regarding the “goods” of the opposite agent
they associate with. Two-sided matching with transfers have
been modeled as assignment problems where one entity (e.g.,
a firm) needs to pay salaries to individuals (e.g., workers)
[12], [13]. Tasks-matching problems under a wide range of
constraints have been reported in [14]. A wider literature on
matching under constraints can be found in [15]. Notable
examples are mechanisms that assign students to schools,
interns to hospitals, worker-firm contracts, or travelers to
vehicles [16]–[18]. It is easy to see that matching markets
are quite practical as they offer insights into the more
general economic and behavioral real-life situations. These
examples are all centralized approaches of determining who
gets assigned to whom at what cost and benefit. Given the
natural usefulness of matching markets, various extensions of
the assignment game have been developed focusing either on
different behavioral settings or information structures [19]–
[22]. Assignment games and matching markets have also
been studied extensively in auction theory [23], [24].

The main contribution of this paper is the game-theoretic
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development of framework to study the socioeconomic in-
teractions of travelers in a multi-modal mobility system. We
focus our analysis in the economic sustainability and mobility
equity of the mobility system. We offer a game-theoretic
definition of equity based on accessibility, i.e., we ensure
our framework satisfies the following properties: truthfulness,
voluntary participation, and budget fairness. In particular,
we formulate our problem as a linear program to compute
the assignments between travelers and mobility services that
maximize the worst-case revenue of the system. We consider
that information is asymmetric, i.e., a social planner has
no knowledge of the individual travelers’ valuations of the
services. We provide a pricing mechanism and show how
we can elicit the private information truthfully (Theorem 1)
while ensuring budget fairness (Theorem 2). We also show
that every traveler voluntary participates in our proposed
framework (Theorem 3).

The remainder of the paper is structured as follows. In
Section II, we present the mathematical formulation of the
proposed game-theoretic framework. In Section III, we de-
rive the theoretical properties of our framework, and finally,
in Section IV, we discuss the implementation of the proposed
framework, draw conclusions and future directions.

II. MODELING FRAMEWORK

A. Mathematical Formulation

We consider a mobility system where I ∈ N≥2 travelers,
indexed by i ∈ I, |I| = I , are interested in using J ∈ N
mobility services, indexed by j ∈ J , made available by a
social planner. In addition, we expect I < J . Any j ∈ J
represents the service that can be offered to traveler i. For
example, a taxicab service, say some j ∈ J , can satisfy
the travel needs of up to five travelers; thus, any service j
can be divided to multiple travelers based on the service j’s
physical capacity. Each traveler i ∈ I has a private valuation
vij associated with each of the services j ∈ J , which is not
known to the social planner.

Travelers are constrained by a travel budget, bi ∈ R≥0,
for any traveler i ∈ I. Thus, we can only charge travelers
payments that do not exceed their individual budgets. We
write B = {b1, b2, . . . , bI}. For the purposes of this work,
we assume that the budgets of each traveler are known
to the social planner. Our reasoning here is twofold: A
probabilistic distribution for unknown private budgets leads
to an impossibility result for socially-efficient mechanisms
[25], [26]. In addition, based on transportation literature, it
is reasonable to expect travelers to submit their travel budget
on a mobility app [27], [28].

For each service j ∈ J , we model the social planner’s
beliefs on the realization of the private valuations for service
j as real values from some subset of real values.

Definition 1. For each traveler i ∈ I, the traveler i’s valua-
tion profile of all mobility services is vi = (vi1, vi2, . . . , viJ),
vij ∈ R. We write v−ij = (v1j , . . . , v(i−1)j , v(i+1)j , . . . , vIj)
for the valuation profile of all travelers except i for service
j and denote by v−i = (v−i1, . . . , v−iJ) the profile of

valuations of all services of all travelers except traveler i.
Then, v = (vi, v−i) ∈ V ⊂ RI×J is the valuation profile of
all travelers for all mobility services.

For an arbitrary traveler i, the valuation vij can represent
the realization of a satisfaction function that captures, for
example, the maximum amount of money that traveler i is
willing to pay for mobility service j.

Travelers may use multiple services to satisfy their travel
needs, i.e., to reach their destination, via a smartphone
app. The social planner then compiles all travelers’ origin-
destination requests and other information (e.g., preferred
travel time, value of time, and maximum willingness-to-pay)
in order to provide a travel recommendation to each traveler.
However, we consider that the travelers’ budgets are known
to the social planner as it is reasonable to expect travelers to
submit their travel budget on a mobility app [27], [28]. The
travelers’ valuations for each different mobility service are
considered private information as we cannot expect travelers
to provide truthfully their preferences for any service.

The allocation of the finite number of mobility services to
travelers can be described by a vector of binary variables.

Definition 2. The traveler-service assignment is a vector
a = (aij(v))i∈I,j∈J , where aij is a binary variable, i.e.,

aij(v) =

{
1, if i ∈ I is assigned to j ∈ J ,

0, otherwise.
(1)

Note that the assignment aij(v) between traveler i and
service j depends on the valuation vi of traveler i and the
valuations of all other travelers, i.e., v−i.

It is possible in our framework for a traveler to reject
all assignments with any service. However, we show in
Theorem 7 how to avoid such an outcome by providing
the right incentives to travelers to use at least one service.
Naturally, though, each service can accommodate up to a
some number of travelers, different for each type of services.
So, we expect the “physical traveler capacity” of each service
to vary significantly.

Definition 3. Each service j ∈ J is associated with a current
traveler capacity, denoted by εj ∈ N and εj ≤ ε̄j , where ε̄j
denotes the maximum traveler capacity of service j.

For example, a bus can provide travel services to a hundred
travelers (seated and standing) compared to a bike-sharing
company’s bike (since one traveler per bike).

Definition 4. A feasible assignment is a vector a =
(aij)i∈I,j∈J , aij ∈ {0, 1} that satisfies∑

j∈J
aij(v) ≤ δi, ∀i ∈ I, ∀v ∈ V, (2)∑

i∈I
aij(v) ≤ ε̄j , ∀j ∈ J , ∀v ∈ V, (3)

where (2) ensures that each traveler i ∈ I is assigned to at
most δi ∈ N mobility service j ∈ J , and (3) ensures that
the traveler capacity of each service j is not exceeded while
it is shared by multiple travelers.
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We represent the preferences of each traveler with a utility
function consisted of two parts: the traveler’s valuation of the
mobility outcome and the associated payment required for
the realization of that outcome. In other words, any traveler
is expected to pay a fare/toll for using the mobility service.

Definition 5. Each traveler i’s preferences are summarized
by a utility function ui : V × R → R that determines the
monetary value of the overall payoff realized by traveler i
from their assignment to service j. Thus, traveler i receives
a total utility

ui((vi, v−i), pi) =
∑
j∈J

vijaij(vi, v−i)− pi(vi, v−i), (4)

where pi ∈ R denotes traveler i’s mobility payment.

Note that each traveler’s goal is to choose a strategy that
maximizes their utility only. Next, we present the definition
of “mobility equity” of our game-theoretic framework.

Definition 6. A mobility system ⟨I,J ,V, (ui)i∈I , (pi)i∈I⟩
admits an equilibrium that is mobility equitable if (i) trav-
elers truthfully report their private information, (ii) travelers
voluntarily participate, and (iii) travelers can afford travel.

Next, we formally define the relation that ensures “eco-
nomic sustainability” for our game-theoretic framework.

Definition 7. Let linear function w : V × R → R≥0

that depends on the valuations, assignments, and individual
budgets of all the travelers denote the worst-case revenue.
Mathematically, we have∑

i∈I

∑
j∈J

wi(vij , aij , bi) ≤
∑
i∈I

pi(v), ∀v ∈ V. (5)

Our intuition behind Definition 7 is conceptually based
on what the United Nations Development Programme has
developed as part of their Sustainable Development Goals.
In particular, our goal in this work is to ensure long-
term economic growth in the worst possible cases (thus,
maximizing (5)) under the constraints of Definition 6. We
now define the constraints that ensure mobility equity in our
framework’s solutions based on Definition 6.

Definition 8. For the travelers to have no incentive to
misreport their valuations to the social planner, we need∑

j∈J
vijaij(ṽi, v−i)− pi(ṽi, v−i)

−
∑
j∈J

vijaij(vi, v−i) + pi(vi, v−i) ≤ 0, (6)

for all v = (vi, v−i) ∈ V , any ṽi ∈ V , and for all travelers
i ∈ I using any mobility service j ∈ J . We call ṽi traveler
i’s reported valuation that deviates from the true valuation vi.
If (6) holds, we say that the mechanism induces truthfulness.

Definition 9. The travelers in the mobility system voluntarily
participate (VP) if, for any traveler i ∈ I,

pi(vi, v−i) ≤
∑
j∈J

vijaij(vi, v−i), ∀v ∈ V. (7)

We say then that the proposed mechanism induces voluntary
participation from all travelers.

Definition 10. The mechanism induces on individual level
budget fairness (BF), if for any traveler i ∈ I, we have

pi(v) ≤ bi, ∀v ∈ V. (8)

B. The Optimization Problem

Problem 1. The maximization problem is formulated as

max
aij

∑
i∈I

∑
j∈J

wi(vij , aij , bi), (9)

subject to: (2), (3), (5), (6), (7), (8),

where aij ∈ {0, 1} for all i ∈ I and all j ∈ J .

We note here that Problem 1 is a special case of the many-
to-many assignment problem that is known to be very hard
to solve analytically. Thus, we relax the integer constraint
and focus our analysis on deriving the optimal solutions of a
linearized version of Problem 1. Thus, we introduce a non-
negativity constraint variable as follows.

Problem 2. The linear program formulation is

max
aij

∑
i∈I

∑
j∈J

wi(vij , aij , bi) (10)

subject to: (2), (3), (5), (6), (7), (8), and
aij ≥ 0, ∀i ∈ I, ∀j ∈ J , (11)

where (11) transforms the (binary) assignment problem to a
(continuous) linear program.

Remark 1. Intuitively, in Problem 2, if aij > 0 it implies
that traveler i ∈ I is assigned to service j ∈ J .

Problem 2 is a constrained linear maximization problem
that admits at least one solution under certain conditions. A
solution of Problem 2 ensures the assignments between the
travelers and services are mobility equitable and economic
sustainable. We maximize the worst-case revenue of the
mobility system under the constraints of truthfulness, VP,
and BF. Next, inspired from Myerson’s auction [23] and
the Vickrey-Clarke-Groves (VCG) auction mechanism, we
introduce two key variables that can help us solve Problem
2, i.e., nominal assignments and reservation payments.

Definition 11. For any traveler i ∈ I, there is a reservation
payment for each mobility service j ∈ J , denoted by rij ∈
R≥0, representing the minimum necessary mobility payment
of traveler i to get assigned to mobility service j.

Definition 12. The final assignment aij(v) evaluated at the
realized valuation profile v ∈ V is computed as the sum
of the nominal assignment āij and the adapted assignment
ãij(v), i.e., we have aij(vi, v−i) = āij + ãij(vi, v−i).

III. ANALYSIS AND PROPERTIES OF THE MECHANISM

In this section, we show that the proposed mechanism
satisfies the desired properties of mobility equity (Definition
6). We start by stating the dual program of Problem 2.
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Lemma 1. The dual problem of Problem 2 is

min
∑
v∈V

∑
i∈I

ξi1(v)δi +
∑
j∈J

ξj2(v)ε̄j +
∑
i∈I

ξi4(v)bi

 (12)

subject to: ξi1(v) + ξj2(v) +
∑
ṽi∈V

ṽijξ
i
4(v, ṽi)

−vij
∑
ṽi

ξi4(v, ṽi)− vijξ
i
5(v) ≥ 0, ∀v ∈ V, (13)∑

ṽi∈V
ξi4(v, ṽi)−

∑
ṽi∈V

ξi4(v−i, ṽi, vi)− ξ3(v)

+ξi5(v) + ξi6(v) = 0, ∀v ∈ V, (14)∑
v∈V

ξ3(v) = 1, (15)

ξ1(v), ξ
j
2(v), ξ3, ξ

i
4(v, ṽi), ξ

i
5(v), ξ

i
6(v) ≥ 0, (16)

where ξi1, ξ
j
2, ξ3, ξ

i
4, ξ

i
5, and ξi6 are the dual variables for

constraints (2), (3), (5), (6), (7), and (8), respectively.

Proof. The computations here are straightforward, hence we
omit them due to space limitations.

Based on Lemma 1, we can now compute the nominal as-
signments and reservation payments as follows: we formulate
the optimization problem for the assignments

max
aij

∑
i∈I

∑
j∈J

vijaij (17)

subject to: (2), (3), and
vijaij(ṽi, v−i)− vijaij(vi, v−i) ≤ 0, (18)

∀ṽi ∈ V, ∀i ∈ I, ∀j ∈ J ,∑
j∈J

vijaij(vi, v−i) ≤ bi, ∀i ∈ I, (19)

aij ≥ 0, ∀i ∈ I, ∀j ∈ J , (20)

where solving (17) gives us the valuation profile vworst =
(vworst

ij )i∈I,j∈J at the worst case and the associated nominal
assignment āij . Next, we derive ξi1, ξj2, ξi5, and ξi6 from
Lemma 1 and then compute rij = ξi1+ξj2+ξi5v

worst
ij +ξi6v

worst
ij .

The next step now is to present the pricing mechanism for
any traveler k ∈ I of our proposed framework. But first, we
define γij = argminṽ∈V

∑
j∈J āij ṽij . Then, we have

pk(v) =
∑
j∈J

ãkj(v)rkj +
∑
j∈J

ākjrkj −
∑
j∈J

ākjξ
k
5γkj

+
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)

−
∑

i∈I\{k}

∑
j∈J

ãij(v)(vij − rij), (21)

where ãij;k represents a “temporary” assignment of travelers
to mobility services expecting traveler k (we see how to
estimate this variable in (29)). We formally present how
to compute such an assignment in Theorem 2. The term∑

i∈I
∑

j∈J ãij(v)(vij−rij) represents the “social welfare”
of all travelers based on the valuations of each mobility

service j and the reservation mobility payments rij . We
motivate our mobility pricing mechanism (21) as follows:
with the help of the reservation payments we parameterize
the totals of social welfare in terms of the travelers’ val-
uations. So, the first three terms capture the parameterized
social welfare for all services from the point of view of one
traveler. Then the other two terms represent the social welfare
excluding traveler k’s contribution. Using these reservation
payments, we then introduce a mobility payment pk for
traveler k that charges the minimum required payment for
traveler k to get assigned to mobility service j while keeping
all other travelers’ reported valuations fixed. Next, we show
that our mechanism induces truthfulness from all travelers.

Theorem 1. The proposed framework induces all travelers to
report their valuations v ∈ V truthfully to the social planner
under the pricing mechanism (21).

Proof. Consider traveler k with a true valuation vkj for each
service j ∈ V . By reporting v′kj , traveler k is assigned service
j with ãkj(v

′
k, v−k). We formulate the optimization problem

(ãij(v))i∈I,j∈J = argmaxã∈A
∑

i∈I
∑

j∈J ãij(vij − rij),
where A is the set of positive values for ã that satisfies the
following two constraints:∑

i∈I
ãij ≤ 1−

∑
i∈I

āij , ∀j ∈ J , (22)∑
j∈J

ãij ṽij ≤ bi −
∑
j∈J

āijrij +
∑
j∈J

ākjξ
i
5γij , (23)

where (23) must hold for all i ∈ I, for all ṽ ∈ V , and
γij = argminṽ∈V

∑
j∈J āij ṽij . Since A does not depend

on any specific valuation profile, we have (ãij(v
′
k, v−k))ij ∈

A. Thus, we have
∑

i∈I
∑

j∈J ãij(vk, v−k)(vij − rij) ≥∑
i∈I

∑
j∈J ãij(v

′
k, v−k)(vij − rij). Using Definition 5,

we now compare the utilities of traveler k under the
two different valuations. So, we have uk(vk, v−k) =∑

j∈J akj(vk, v−k)vkj − pk(vk, v−k), which, by Definition
12 and (21), we can expand as follows

uk(vk, v−k) =
∑
j∈J

ãkj(vk, v−k)vkj +
∑
j∈J

ākjvkj

−
∑
j∈J

ãkjrkj −
∑
j∈J

ākjrkj +
∑
j∈J

ākjξ
k
5γkj

−
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)

+
∑

i∈I\{k}

∑
j∈J

ãij(vk, v−k)(vij − rij) (24)

=
∑
i∈I

∑
j∈J

ãij(vk, v−k)(vij − rij)−∑
i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)

+
∑
j∈J

ākjvkj −
∑
j∈J

ākjrkj +
∑
j∈J

ākjξ
k
5γkj (25)
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≥
∑
i∈I

∑
j∈J

ãij(v
′
k, v−k)(vij − rij)

−
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)

+
∑
j∈J

ākjvkj −
∑
j∈J

ākjrkj +
∑
j∈J

ākjξ
k
5γkj (26)

=
∑
j∈J

ãkj(v
′
k, v−k)vkj +

∑
j∈J

ākjvkj

−
∑
j∈J

ãkj(v
′
k, v−k)rkj −

∑
j∈J

ākjrkj

−
∑

i∈I\{k}

∑
j∈J

ãij(v−k)(vij − rij)

+
∑

i∈I\{k}

∑
j∈J

ãij(vk, v−k)(vij − rij), (27)

where the last equality (27) follows by simple rearrangement
using (21); therefore, (27) is equal to uk(v

′
k, v−k).

Theorem 2. The proposed framework ensures that no trav-
eler pays more than their budget for their assignment, i.e.,
under the pricing mechanism (21), for any traveler i ∈ I,
we have pi(v) ≤ bi, for all v ∈ V .

Proof. The mobility payment (21) of any traveler k is

pk(v) =
∑
j∈J

ãkj(v)rkj +
∑
j∈J

ākjrkj −
∑
j∈J

ākjξ
k
5γkj

+
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)

−
∑
i∈I

∑
j∈J

ãij(v)(vij − rij). (28)

Next, we formulate the following optimization problem:

(ãij;k(v−k))i∈I\{k},j∈J

= arg max
ã∈Ak

∑
i∈I\{k}

∑
j∈J

ãij(vij − rij), (29)

where ãij;k(v−k) ∈ Ak with constraints:∑
i∈I\{k}

ãij ≤ 1−
∑
i∈I

āij , ∀j ∈ J (30)

∑
j∈J

ãij ṽij ≤ bi −
∑
j∈J

āijrij , (31)

where (31) holds for all ṽ ∈ V and i ∈ I \ {k}. Thus, we
have (ãij;k(v−k))i∈I\{k},j∈J ∈ Ak, which yields∑

i∈I\{k}

ãij;k(v−k) ≤ 1−
∑
i∈I

āij , ∀j ∈ J , (32)

∑
j∈J

ãij;k(v−k)ṽij ≤ bi −
∑
j∈J

āijrij , (33)

where (33) holds for all ṽ ∈ V and for all i ∈ I \{k}. If we
construct an assignment α = (αij) such that

αij =

{
ãij;k(v−k), ∀i ∈ I \ {k}, ∀j ∈ J ,

0, i = k, ∀j ∈ J ,
(34)

then we have, for all j ∈ J ,∑
i∈I

αij =
∑

i∈I\{k}

ãij;k(v−k) ≤ 1−
∑
i∈I

āij , (35)

∑
j∈J

αij ṽij =
∑
j∈J

ãij;k(v−k)ṽij ≤ bi −
∑
j∈J

āijrij , (36)

where (36) holds for all ṽ ∈ V and for all i ∈ I \ {k}.
Similarly, for traveler k, it follows from (17)-(20) that∑

j∈J
αkj ṽkj = 0 ≤ bk −

∑
j∈J

ākjrkj . (37)

Thus, α ∈ A, and so we have the following inequality:∑
i∈I

∑
j∈J

ãij(v)(vij − rij) ≥
∑
i∈I

∑
j∈J

αij(vij − rij)

=
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij). (38)

From (28), we subtract
∑

j∈J ãkj(vk, v−k)vkj to obtain

pk(v) =
∑
j∈J

ãkj(v)rkj +
∑
j∈J

ākjrkj −
∑
j∈J

ākjξ
k
5γkj

+
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)

−
∑
i∈I

∑
j∈J

ãij(v)(vij − rij). (39)

From (38) and (39), pk(v) ≤
∑

j∈J ãkj(v)vkj +∑
j∈J ākjrkj −

∑
j∈J ākjξ

k
5γkj , thus pk(v) ≤ bk.

Theorem 3. The proposed framework induces all travelers to
voluntary participate under the pricing mechanism (21), and
thus satisfy the last necessary property for mobility equity.

Proof. By Theorem 1, we have

ui(vk, v−k) =
∑
i∈I

∑
j∈J

ãij(vk, v−k)(vij − rij)

−
∑

i∈I\{k}

∑
j∈J

ãij;k(v−k)(vij − rij)

+
∑
j∈J

ākjvkj −
∑
j∈J

ākjrkj +
∑
j∈J

ākjξ
k
5γkj , (40)

which leads to ui(vk, v−k) ≥
∑

j∈J ākjvkj −∑
j∈J ākjrkj +

∑
j∈J ākjξ

k
5γkj , where we have used

(38). From Lemma 1 it follows straightforwardly that∑
j∈J

āijrij −
∑
j∈J

āijv
′
ij ≤ 0, v′ij ∈ V, ∀i ∈ I, (41)

āijrij = āijv
worst
ij , ∀i ∈ I, ∀j ∈ J . (42)

Thus, we have∑
j∈J

ākjvkj ≥
∑
j∈J

ākjzkj =
∑
j∈J

ākjrkj (43)

≥
∑
j∈J

ākjrkj −
∑
j∈J

ākjξ
k
5γkj . (44)

Note that ākj , ξk5 , and γij are non-negative. Thus, we have,
for any traveler i ∈ I, ui(vk, v−k) ≥ 0.
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IV. DISCUSSION

A. Implementation

In this subsection, we outline how our proposed frame-
work can be potentially implemented by considering an
example of a major metropolitan area with an extensive
road and public transit infrastructure. For example, several
key areas in Boston, MA are connected by roads, buses,
light rail, and bikes, thus any traveler has access to any of
these four modes of transportation. By applying the MaaS
concept, a social planner (e.g., central computer) offers
travel services (e.g., navigation, location, booking, payment)
to all passing travelers at travel hub locations (e.g., train
stations with bus stops and taxi waiting line). Information
is shared among all travelers via a “mobility app,” which
allows them to access the services. Travelers pay for their
travel while submitting their individual budget and valuations
via a “preferences” questionnaire within the app. Note that
each mode of transportation offers different benefits in utility
(e.g., a car is more convenient than a bus and is expected
to be in high demand). This justifies our modeling choice
of each traveler having valuations for each mobility service.
Our design of the payments (21) guarantee that no traveler
has an incentive to misreport these preferences (Theorem 1).
In addition, travelers are incentivized to use the mobility app
multiple times for their travels and interact with each other
more than once (Theorem 3). Hence, our framework provides
an efficient and fair way for travelers to travel using different
modes of transportation while competing with many other
travelers and pay a fare/toll always within their individual
budget using the mobility app (Theorem 2).

B. Concluding Remarks

In this paper, we provided a game-theoretic framework
for a multi-modal mobility system where travelers can travel
using different modes of transportation and each has a
different and unique travel budget. Our goal in this paper was
to ensure economic sustainability by maximizing the worst-
case revenue of the mobility system under the constraints of
mobility equity, which we defined explicitly as truthfulness,
voluntary participation, and budget fairness. We proved that
our framework ensures budget fairness in the sense that
no budget is violated. Under informational asymmetry, we
showed that no traveler has an incentive to misreport and
they voluntarily participate. Thus, our framework satisfies
mobility equity by ensuring access to mobility to all travelers.
Ongoing work includes relaxing our assumption of linearity
in the utility functions and also investigating our model under
the prospect theory behavioral model [29].
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