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Abstract— In this article, we present a constraint-driven
optimal control framework that achieves emergent cluster
flocking within a constrained 2D environment. We formulate
a decentralized optimal control problem that includes safety,
flocking, and predator avoidance constraints. We explicitly
derive conditions for constraint compatibility and propose an
event-driven constraint relaxation scheme. We map this to
an equivalent switching system that intuitively describes the
behavior of each agent in the system. Instead of minimizing
control effort, as it is common in the ecologically-inspired
robotics literature, in our approach, we minimize each agent’s
deviation from their most efficient locomotion speed. Finally, we
demonstrate our approach in simulation both with and without
the presence of a predator.

I. INTRODUCTION

Multi-agent systems have attracted considerable attention
in many applications due to their natural parallelization,
general adaptability, and ability to self-organize [1]. One
emerging application of multi-agent systems is mimicking
the aggregate motion of certain birds and fish, also known
as cluster flocking or swarming [2]. There are several pur-
ported advantages of cluster flocking in biological systems,
including predator avoidance and estimating population size
[3].

In this article, we derive a distributed control algo-
rithm that induces cluster flocking in a multi-agent system.
Prior work has primarily relied on reinforcement learning
to achieve predator avoidance, including a multi-level ap-
proaches [4] and policy sharing [5], [6]. Traditional control
approaches tend to achieve swarming behavior by imple-
menting Reynolds flocking rules using potential fields [2].
These approaches have two major drawbacks. First, they
inevitably drive agents into a regular lattice formation [7],
which is not conductive to swarming. Second, potential fields
are known to cause steady oscillation in agent trajectories and
exacerbate deadlock in constrained environments [8].

In contrast to existing approaches, we propose a
biologically-inspired approach based on an analysis of sand-
eel schools in the presence of predators [9]. In this article, we
build on our previous work with set-theoretic control [10]–
[12], where we embed inter-agent and environmental inter-
actions as state and control constraints in an optimal control
problem. Our set-theoretic approach has the advantage of
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being interpretable, i.e., the cause of an agents’ action can be
deduced by examining which constraints are currently active.
Our technical results are closely related to the control barrier
function (CBF) literature, particularly multi-agent CBFs [13].
However, our approach does not require the constraints to
be encoded as sub-level sets of a continuous function—we
work with the sets directly. We also propose a solution to the
open problem of constraint incompatibility through an event-
triggered constraint relaxation scheme. Finally, we present
a mapping between constraint-driven control and switching
systems, which provides a rigorous and interpretable descrip-
tion of each boids’ behavior. The contributions of this article
are: 1) a decentralized optimal control algorithm that yields
emergent swarming behavior, 2) an event-triggered scheme
to selectively relax constraints and guarantee feasibility, 3)
a rigorous mapping between constraint-driven control and
switching systems, and 4) simulation results demonstrating
emergent cluster flocking and predator avoidance behaviors.

The remainder of the article is organized as follows. In
Section II, we formulate the cluster flocking problem and
discuss our working assumptions. In Section III, we derive
our optimal control policy, derive the safe action sets, and
map the problem to a switching system. In Section IV,
we validate our results in two simulations with 15 boids;
the first demonstrates emergent cluster flocking, and the
second demonstrates predator avoidance. Finally, we draw
conclusions and propose some directions for future research
in Section V.

II. PROBLEM FORMULATION

We consider a set of N ∈ N boids indexed by the set
B = {1, 2, . . . , N}. Each boid i ∈ B obeys second-order
integrator dynamics,

ṗi(t) = vi(t),

v̇i(t) = ui(t),
(1)

where pi(t),vi(t) ∈ R2 correspond to the position and
velocity of each boid, and ui(t) ∈ R2 is the control input.
We also impose the state and control constraints,

pi(t) ∈ P, (2)
ui(t) ∈ U , (3)

where P ⊂ R2 is a non-empty intersection of half-planes
and U = {u(t) : ||u||∞ ≤ umax} ensures the boids’ do not
exceed their maximum control input at any time instant. We
employ the infinity norm to simplify our mathematical ex-
position; however, the norm does not impose any restrictions
in our approach.
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We account for interactions between boids using Voronoi
tessellation [14]. Under this approach, each boid is consid-
ered the center of a Voronoi cell. We define the interaction
graph V(t) ⊂ B × B which contains edges (i, j) and (j, i)
at time t if and only if the Voronoi cells i and j share a
common edge at that time. Equivalently, the set V(t) is the
Delaunay triangulation of the boids’ positions.

Definition 1 (Voronoi Neighborhood). The neighborhood of
each boid i ∈ B is the set,

Ni(t) :=
{
j ∈ B : (i, j) ∈ V(t)

}
, (4)

where boid i can receive information, via communication or
sensing, with any other boid j ∈ Ni(t).

As with k−nearest neighbors, a Voronoi neighborhood
may allow the boids to sense neighbors that are arbitrarily
far away in general. Similar to past work [10], [15], we do
not presume the boids possess infinite sensing capabilities;
rather that Definition 1 describes the interactions between
boids over their relatively small separating distances. One
potential solution is to only consider Voronoi neighbors that
are within a fixed sensing range [14], although results from
biology demonstrate that this is, in general, unnecessary [16].

Our objective is to generate emergent swarming behavior,
such that the boids remain close to their neighbors to avoid
predators. To achieve an aggregate swarming motion, we im-
plement a variation of the disk flocking constraint proposed
in [10]. First, we determine the neighborhood center for each
boid i ∈ B,

ci(t) =
1

|Ni(t)|
∑

j∈Ni(t)

pj(t). (5)

Note that Definition 1 guarantees |Ni(t)| > 0. We use the
neighborhood center to construct the relative position vector,

ri(t) := pi(t)− ci(t). (6)

Finally, to achieve swarming, we require each boid i to
approach and remain within a distance R ∈ R>0 of the
neighborhood center, i.e.,

gi(ri(t),ui(t)) =

{
||ri(t)|| −R if ||ri(t)|| ≤ R,
||ṙi(t)||
umax

ui(t) · ri(t) + ṙi(t) · ri(t) o.w.,

gi(ri(t),ui(t)) ≤ 0,

where ‘·’ denotes the dot product, i.e., u · ri = uᵀri. Note
that the first case is trivially satisfied, i.e., the boid must
remain within the disk while inside the disk. Thus, we write

||ri(t)|| > R =⇒
||ṙi(t)||
umax

ui(t) · ri(t) + ṙi(t) · ri(t) ≤ 0. (7)

We emphasize that our objective is not to trap boid i within
the disk of radius R centered at ci(t). Instead, we expect
the switching neighborhood topology and dynamic motion
of ci(t) to drive the swarming behavior. Additionally, the
form of (7) is inspired by energy-saving techniques in [17].
Note that when boid i travels in the “correct” direction, i.e.,

ṙi(t)·r < 0, the control action ui(t) can take some values in
the same direction as ri(t). However, when boid i is traveling
in the “wrong” direction, i.e., ṙi(t) · ri(t) > 0, the control
action ui(t) must be at least partially opposed to ri(t) to
drive boid i toward ci(t).

Next, inspired by the empirical data collected on sand-
eels [9], we model the predator as a ball of radius Γ. We
define the relative distance vector between each boid i and
the predator as,

di(t) := pi(t)− o(t), (8)

where o(t) is the position of the predator at time t. To ensure
predator avoidance, we select a value of Γ larger than the
diameter of the predator and employ a similar constraint to
repel the boids,

||di(t)|| < Γ =⇒

− ||ḋi(t)||
umax

ui(t) · di(t)− ḋi(t) · di(t) ≤ 0.

(9)

With the constraints defined, our next objective is to design
an optimal control problem such that the individual boid
motion generates emergent swarming behavior. To this end,
we impose the following assumptions on our system.

Assumption 1. Each boid is equipped with a low-level
controller that is capable of tracking the control input.

We impose Assumption 1 to simplify our analysis and
understand how the system performs in the ideal case.
Assumption 1 is common for trajectory generation problems,
and it can be relaxed by introducing robust control terms or
a safety layer, e.g., using a control barrier function [18].

Assumption 2. The boids have sufficient vertical space
to avoid collisions between each other without an explicit
collision-avoidance constraint.

Assumption 2 is common in 2D swarming applications
[6], [19]. Furthermore, it has been thoroughly demonstrated
that adding an extra dimension of motion can significantly
reduce the likelihood of collisions [20].

III. SOLUTION APPROACH

We employ constraint-driven control to generate the con-
trol input for each boid. This is an optimization approach
wherein the desired behavior of each boid is encoded as a
constraint in an optimal control problem. This technique has
been used successfully to control multi-agent systems [13],
[21], [22]. Each boid solves the optimal control problem
reactively, i.e., they take an action at each time-instant
and do not account for the system state at future time
steps. Our motivation for this is twofold: first, it overcomes
the computational and communication costs associated with
decentralized trajectory planning [2]. Second, it allows boids
to freely enter and leave the domain, e.g., due to operating
constraints, mechanical failure, or predation, as the constraint
boundaries are a function of the local system state. For the
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remainder of our exposition, we omit the explicit dependence
of state variables on t when no ambiguity arises.

We start with the position constraint (2), which is not an
explicit function of the control input. Let k = 1, 2, . . . ,M
index the M hyperplanes that define the boundary of P .
Each hyperplane k = 1, 2, . . . ,M consists of a normal vector
n̂k ∈ R2 and offset bk ∈ R; the signed distance to the surface
of hyperplane k is,

dik = pi · n̂k + bk, (10)

for boid i ∈ B. Note that our convention assumes the
normal vector nk points away from the feasible region P .
To guarantee constraint satisfaction, we require the time
derivative of (10) to be non-positive when the constraint is
active, i.e.,

pi · n̂k + bk = 0 =⇒ vi · n̂k ≤ 0. (11)

This safety constraint (11) can be achieved by using a
stopping distance constraint for each k = 1, 2, . . . ,M [22],

gik =
(
pi · n̂k + bk

)
+ α

(
vi · n̂k

)2
2umax

≤ 0, (12)

where α ∈ R>0 is a parameter that determines the stopping
distance. Note that (12) trivially satisfies (11). This leads to
our definition of the safe action set.

Definition 2 (Safe Action Set). For each boid i ∈ B at time
t, the safe action set is,

Asi :=
{
ui ∈ R2 : ||ui||∞ − umax ≤ 0,

(
pi · n̂k + bk

)
+ α

(
vi · n̂k

)2
2umax

= 0 =⇒

vi · n̂k
(

1 +
α

umax
(ui · n̂k)

)
≤ 0,

∀k = 1, 2, . . . ,M
}
.

In our approach, we constrain the boids to remain within
an axis-aligned rectangular domain, i.e., P is constructed
from two pairs of parallel hyperplanes that intersect at right
angles. With the safe action set and constraints defined, each
boid i also requires a notion of performance to select the
“best” control input. The ecologically-inspired paradigm [23]
would suggest minimizing the norm of the control input,
which arguably yields a minimum effort policy. However,
as discussed in [9], sand-eels tend to cruise at a constant
speed of approximately 2 body lengths per second. Thus,
we require each boid to match an optimal swimming speed,
denoted ||v∗i ||, as closely as possible, i.e.,

Ji
(
vi(t)

)
=
(
||vi(t)|| − ||vi∗||

)2
. (13)

We interpret the optimal swimming speed as being bio-
mechanically advantageous, i.e., if J = ||ui|| minimizes
energy consumption, then (13) corresponds to minimum-
power locomotion.

Finally, while we analyze the system in continuous-time,
the optimal control problem must be implemented in discrete
time. This is a practical consideration for implementation
on a digital computer, and it is necessary here because the
objective is a function of the states rather than the control
input. Discretizing the optimal control problem is an area
of open research, where potential solutions include letting
the time step ∆t grow to an infinitesimally small dt [24]
or tightening the constraints at each time step to ensure the
continuous trajectory is feasible [25].

Problem 1. For each boid i ∈ B at time t, apply the control
action that solves,

min
ui(t)

(
||vi(t)+ui(t) ∆t|| − ||vi∗||

)2
subject to:

ui(t) ∈ Asi , (1), (7), (9).

Next, we present a result that guarantees recursive fea-
sibility for the safe action set. While this result relies on
having an axis-aligned rectangular domain, an extension is
straightforward, e.g., by replacing (25) with the L2 norm of
the control effort.

Theorem 1. For a fixed value of α ≥ 1, if a boid i ∈ B
satisfies (12) at some time t for a rectangular domain P , then
Asi satisfies recursive feasibility for all future time.

Proof. Let the rectangular domain P consists of four hyper-
planes, indexed by k = 1, 2, 3, 4 such that n̂1 = −n̂3 and
n̂2 = −n̂4. Without loss of generality, let vi · n̂1 > 0 and
vi · n̂2 > 0. When the safety constraint (12) is not active,
boid i may take any action satisfying the control bounds (25).
However, when (12) is active, we must ensure its derivative
is non-positive to guarantee safety. Taking the derivative of
(12) and combining terms yields,

ġik = vi · n̂k
(

1 +
α

umax

(
ui · n̂k

))
. (14)

We seek a control input such that ġik ≤ 0. For k = 1, 2,
dividing by vi · n̂k > 0 yields a condition on ui,

ui · n̂1 ≤ −
umax

α
, ui · n̂2 ≤ −

umax

α
. (15)

Similarly, for k = 3, 4, dividing by vi · n̂k < 0 implies,

ui · n̂3 ≥ −
umax

α
, ui · n̂4 ≥ −

umax

α
. (16)

Substituting n̂1 = −n̂3 and n̂2 = −n̂4 into (16) yields the
conditions,

ui · n̂1 ≤
umax

α
, ui · n̂2 ≤

umax

α
. (17)

Thus, to guarantee gik is nonincreasing, the control input
must satisfy (15) and (17), i.e.,

ui · n̂1 ≤ −
umax

α
≤ umax

α
, (18)

ui · n̂2 ≤ −
umax

α
≤ umax

α
. (19)
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This is satisfied by the candidate control action,

ui = −umax

α
n̂1 −

umax

α
n̂2, (20)

as n̂1 · n̂2 = 0 by definition. In our axis-aligned domain, the
control constraint implies,

||ui||∞ = max

{
umax

α
,
umax

α

}
=

1

α
umax, (21)

which satisfies (3) for α ≥ 1. Finally, for the case that vi ·
n̂k = 0 for any k = 1, 2, 3, 4, the corresponding derivative
ġik = 0 for every control input.

Thus, given a feasible initial state, Theorem 1 guarantees
that each boid’s trajectory will remain feasible indefinitely
if its control action is selected from Asi . However, we
require each boid to jointly satisfy the safety, swarming (7),
and predator avoidance (9) constraints to achieve emergent
cluster flocking behavior. Thus, guaranteeing the recursive
feasibility of Asi is insufficient to ensure a feasible control
action exists. The following results provide the explicit
conditions for constraint incompatibility, i.e., when the set
of feasible control actions becomes empty.

Lemma 1. For a boid i ∈ B, let k = 1, 2 index two
perpendicular hyperplanes in the rectangular domain such
that vi · n̂k ≥ 0. Then, if (12) is strictly equal to zero
and ||ri|| > Ri, there is no feasible action if none of the
conditions,

||ṙi||

(
1
α−1

1
α−1

 (n̂1 · r̂i) +


1
1
α−1

α−1

 (n̂2 · r̂i)

)
≥ ṙi · r̂i, (22)

hold at time t for k = 1, 2.

Proof. Under the premise of Lemma 1, we must determine
when the constraint,

||ṙi||
umax

ui · r̂i + ṙi · r̂i ≤ 0, (23)

is incompatible with Asi . First, ṙi = 0 satisfies (23) for any
ui, thus, we may divide (23) by ||ṙi|| and work with unit
vectors for the remainder of the proof, i.e.,

1

umax
ui · r̂i + ˆ̇ri · r̂i ≤ 0. (24)

Next, we consider the control ui = −u1n̂1 − u2n̂2. From
the proof of Theorem 1, (3) and (15) imply that u1 and u2
must satisfy,

1 ≥ u1
umax

≥ 1

α
, 1 ≥ u2

umax
≥ 1

α
. (25)

The swarming constraint (24) becomes,
u1
umax

(n̂1 · r̂i) +
u2
umax

(n̂2 · r̂i) ≥ ˆ̇ri · r̂i. (26)

The result follows from substituting the bounds (25) into
(26).

Lemma 2. For a boid i ∈ B, let k = 1, 2 index two
perpendicular hyperplanes in the rectangular domain such
that vi · n̂k ≥ 0. Then, if (12) is strictly equal to zero and
||di||<Γ, there is no feasible action if none of the conditions,

||ḋi||

(
1
α−1

1
α−1

 (n̂1 · d̂i)+


1
1
α−1

α−1

 (n̂2 · d̂i)

)
≤ ḋi · d̂i, (27)

hold at time t for k = 1, 2.

Proof. The proof Lemma 2 is identical to Lemma 1, and
thus we omit it.

Lemma 3. For a boid i ∈ B, let k = 1, 2 index two
perpendicular hyperplanes in the rectangular domain such
that vi · n̂k ≥ 0. Then, if (12) is strictly equal to zero,
||ri|| > Ri, and ||di||<Γ, there is no feasible control action
if the linear inequalities,[

||ṙi||n̂1 · r̂i ||ṙi||n̂2 · r̂i
−||ḋi||n̂1 · d̂i −||ḋi||n̂2 · d̂i

] [ u1

umax
u2

umax

]
≥
[
ṙi · r̂i
−ḋi · d̂i

]
has no solution that also satisfies 1

α ≤
u1

umax
≤ 1 and 1

α ≤
u2

umax
≤ 1.

Proof. The proof of Lemma 3 is constructed by satisfying
Lemmas 1 and 2 jointly.

The existing ecologically-inspired robotics literature sug-
gests employing slack variables to manage constraint incom-
patibility [23], [26]. However, it is unclear why one would
add slack to the predator avoidance constraint when the
premise of Lemma 2 is not satisfied. For this reason, we use
Lemmas 1–3 to selectively relax the predator avoidance and
swarming constraints; this implies an equivalent switching
system that completely describes the behavior of each boid.

Proposition 1. Each boid i ∈ B can be modeled as a switch-
ing system with three states: 1) Nominal, which considers
both behavioral constraints (7) and (9); 2) Strained, which re-
laxes the neighborhood constraint (7); and 3) Evasive, where
the boid executes an evasive maneuver. Boid i transitions
between these states based the premises of Lemmas 1–3 at
each time; this is described by Fig. 1.

Nominal

Strained

Evasive

Lemma 2¬ Lemma 2

Lemmas 1 or 3

Lemma 2

¬ (Lemmas 1, 2, and 3)

¬ (Lemmas 1, 2, and 3)

Fig. 1. A switching system that describes each boids’ feasible action space
based on whether the premise of Lemmas 1–3 are satisfied.
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Note that defining an appropriate evasive behavior when
Lemma 2 holds, e.g., a fountain [27] or flash [9] maneuver,
is beyond the scope of this work; in our simulations (Section
IV), we simply relax the predator-avoidance constraint. The
final step is to tune the system parameters, which we discuss,
along with the simulation results, in the following section.

IV. SIMULATION

To validate our optimal control policy, we solved Problem
1 for N = 15 boids over a 120 second time interval.
In this section, we present our simulation parameters and
the physical intuition behind them, followed by simulations
that demonstrate the desired cluster flocking and preda-
tor avoidance behaviors. Additional details and simulation
videos can be found on the dedicated website of manuscript,
https://sites.google.com/view/ud-ids-lab/swarming.

Based on the information given in [9], we selected a diam-
eter of 5 cm for each boid, which implies an optimal speed
of approximately 12.5 cm/s. Intuitively, it is desirable for
each boid i ∈ B to have a small actuation limit relative to the
desired speed. Each boid ought to approach its neighborhood
center ci at a high speed, overshoot it, and circle back toward
ci in a wide arc. This circling motion will also influence the
topology of the Voronoi neighborhoods, which will further
perturb the flock. Ideally, these perturbations will push some
boids to the edge of the flock to counteract flock collapse
[7]. Additionally, we select a square domain P that is large
enough for cluster flocking to occur. We summarize our
simulation parameters in Table I.

TABLE I
SIMULATION PARAMETERS USED TO GENERATE SWARMING BEHAVIOR.

Domain Size (m) v∗ (m/s) umax (m/s2) R (cm) Γ (cm)

6 0.125 0.1 2.5 25

To simulate the swarming behavior, we initialize all boids
at rest with random initial positions within the domain P
such that none overlap. At each time step, we solve Problem
1 and relax constraints according to Proposition 1. The
behavior of the swarm is visualized in Fig. 2, which shows
two time snapshots from the simulation. Figure 2 (left) shows
the boids swarming toward the south-east 51 seconds into
the simulation, and Fig. 2 (right) shows motion qualitatively
similar to the ball behavior at 85 seconds as described by
[9]–where the boids form a tight cluster and follow a circular
motion.

Next, we introduce a simple predator model. The data
in [9] imply that individual sand-eels treat predators as
a moving obstacles. In fact, they explicitly state that “...
the mackerel ate very few of the sand-eels throughout the
duration of the experiment ...”—implying that the predator
avoidance behavior ought to emerge without an antagonistic
predator. With this justification, our predator follows a simple
rule: orient toward the center of the boid flock and travel in a
straight line for 8 seconds, which we found to be a reasonable
tradeoff for the predator to make several passes through the
boids. The predator moves 20% faster than the boids, and as

such it is able to pass through the swarm and influence its
behavior. A simulation snapshot is presented in Fig. 3 near
t = 52 s, where the boids qualitatively exhibit the vacuole
behavior seen in the sand-eel experiments [9].

Finally, we saved the size of each boids’ neighborhood
(Definition 1) at each time instant throughout the simulation.
A histogram of neighborhood size is given in Fig. 4 for the
simulation containing the predator. The distribution of neigh-
borhood sizes displays positive skewness, with 4 neighbors
being the most frequent. This supports existing results in the
biology literature [16], which claims that only considering
3–5 neighbors may be optimal for predator avoidance in 2D
swarms.

V. CONCLUSION

We constructed a decentralized control policy to generate
emergent swarming behavior for boids operating in a con-
strained environment. We extended current approaches be-
yond control minimization and instead considered an optimal
speed. We rigorously linked our event-triggered scheme for
constraint relaxation to a switching system, which guarantees
recursive feasibility without the use of slack variables. To
verify the emergence of swarming behavior, we performed
two simulations; one with no predator, and the second with
a velocity obstacle that tracks the centroid of the flock.

Future work includes extensions to R3 with explicit colli-
sion avoidance constraints. Further exploring the distribution
of neighborhood size for Voronoi neighborhoods is another
compelling direction. Finally, experiments with physical
robots will likely yield valuable insights.
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